

TEST REPORT

SCOPE: EMISSIONS, EFFICIENCY AND OUTPUT

FUEL: CORDWOOD

TEST STANDARD: EPA (ASTM WK47329)

MODEL: FP-15A WOOD FIREPLACE

<u>Notice to reader</u>: Our FP-15A wood fireplace was tested as part of our HE350 Series firebox. Therefore, the HE350 Series is referenced throughout the attached test report.

Listing Report for Applicant Issued: Mar 13 2017 3:43PM

Inspection Tests And Evaluation Of

SBI - HE350 Solid Fuel Factory-Built Fireplace Emissions and efficiency (37849)

RENDERED TO Stove Builder International Inc. 250, rue de Copenhague St-Augustin-de-Desmaures, QC G3A 2H3 Canada

GENERAL:This Report gives the results of the inspection, tests and evaluation of the above for compliance with applicable requirements of the following standards : CSA B415.1 (2010) : ASTM E2515 (2010)

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Correlation for Multiple Listees

Applicant/Basic Listee:

Stove Builder International Inc. 250, rue de Copenhague St-Augustin-de-Desmaures, QC G3A 2H3 Canada

Applicant/Manufacturer(s):

Applicant/ManufacturerContactStove Builder International Inc.Contact: Claude Pare(Laguadeloupe)Phone: 418-878-3040 ext 255Fax: 418-878-3001E-Mail: cpare@sbi-international.com

Parties Authorized to Apply Mark:

Company

Contact

PRODUCT DESCRIPTION

Product Covered:

SBI - HE350 Solid Fuel Factory-Built Fireplace Emissions and efficiency

Product Description:

Product covered:

HE350 Series Factory Built Fireplace

Final emission results are as follows:

Model:	HE350 Series (FP-15 Waterloo, HE350, Horizon Units & Monaco XL, WFP100)		
Rated Output capacity:	43,000	BTU/h	
Average Efficiency:	64	% HHV	
Average Efficiency:	68	% LHV	
PM Emissions Rate:	1.6	g/h	
CO Emissions Rate:	157	g/h	
Test fuel:	Cordwood		

Testing was also run as per WK47329. See Appendix I of testing report.

<u>Attribute</u>	<u>Value</u>
Criteria	CSA B415.1 (2010)
Criteria	ASTM E2515 (2010)
CSI Code	10 30 00 Fireplaces and Stoves
Intertek Services	Certification
Listed or Inspected	LISTED
Listing Section	SOLID FUEL EMISSIONS AND EFFICIENCY
Report Number	102163747MTL-001

Spec ID	37849
Verification Testing	No

DRAWING INDEX

Certificate of Conformity - HE350 Solid Fuel Factory-Built Fireplace Emissions & Efficiency

Certificate of Conformity - HE350 Solid Fuel Factory-Built Fireplace Emissions & Efficiency

MANUFACTURING INFORMATION

Product Covered

The Series350 Solid Fuel Factory-Built Fireplaces is manufactured under various brand names owned by Stove Building International Inc.

The various version share the same basic constrution with some subtle esthetic modifications to the face plate and door design.

They will be produced as follows:

FP-15 Waterloo	under the	Valcourt brand name
Horizon	under the	Osburn Brand name
HE350	under the	Ventis Brand name
Monaco XL	under the	Flame Brand name
WFP100	under the	Hearthstone Brand name

Construction is described further in this report and is as follows:

The HE350 is a manually fed constructed of carbon steel with a fire chamber lined with refractory stones. The outer dimensions are 45-inches wide, 40.875-inches high and 28.875-inches deep. It has a firebox volume of 4.28 ft³. The unit has two front doors with viewing glass and a blower located under the firebox. (See product drawings and component description in Appendix D)

Testing of HE350 also qualifies the following units based on the fact that differences between them is only asthetic: FP-15 Waterloo , Horizon, HE350, Monaco XL

Drawings and manuals are reproduced in the testing section under different appendices.

SIGNATURE PAGE

Reported By:

n 6

Claude Pelland, P.Eng. Staff Engineer Intertek Lachine

Reviewed By:

ente

Rick Curkeet, P.E. Chief Engineer Building and Hearth Products Division

TESTING INFORMATION

Test Report 102163747MTL-001

The SBI HE350 has been found to be in compliance with the applicable performance requirements of the ASTM Work Item WK47329 "Standard Method for Determining Particulate Matter Emissions for wood Heaters using Cordwood Test Fuel".

Testing was also conducted as per requirements of WK47329 as per indications of EPA outlined in appendix I of the testing report.

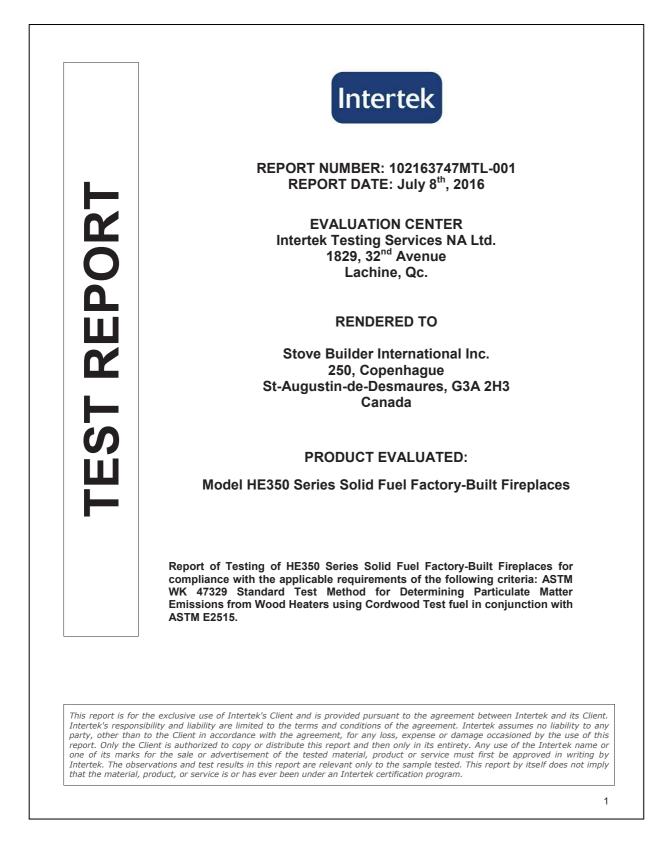
Three runs were conducted as per requirements of standard utilized. Run #2 and #3 were preceded by a high burn rate (similar to run #1)

Testing was performed at client's facility.

In March 2017, a similar unit to the existing ones was introduced. It is called WFP100 which will be branded under the Hearthstone brand name. No testing was deemed necessary for this unit as it is manufactured based on the same construction as the others with esthetical modifications.

SIGNATURE PAGE

Reported By:


Reviewed By:

DRAWING INDEX

000- 102163747MTL-001 Test Report
200- App-A Laboratory Operating Procedure
300- App-B Data and Calculation Forms
400- App-C Calibration Documents
501 App D-1 Drawings and manual
502 App D-2 Drawings and manual
503 App D-3 Drawings and manual
504 App D-4 Drawings and manual
505 App D-4 Drawings
600- App-E Dry Gas Meter CAlibration Data
700- App-F Unit Pre-Burn Documentation
800- App-G Stack Loss Efficiency data and Results
900- App-I EPA Correspondence
Quality Control Document

000- 102163747MTL-001 Test Report

000- 102163747MTL-001 Test Report (page 2 of 15)

	LE OF CONTENTS
	NTRODUCTION
А. В.	GENERAL
I. S	UMMARY OF TEST RESULTS4
A.	
	TEST STANDARD
II. S	UMMARY OF TEST RESULTS5
V. P	ROCESS DESCRIPTION
Α.	AIR SUPPLY SYSTEM8
В.	TEST FUEL PROPERTIES
	AMPLING SYSTEMS
А. В.	SAMPLING LOCATIONS
C.	STACK GAS SAMPLE TRAIN
D.	DILUTION TUNNEL SAMPLE SYSTEMS
VI. S	AMPLING METHODS
Α.	PARTICULATE SAMPLING 13
VII. Q	UALITY ASSURANCE
A.	INSTRUMENT CALIBRATION
В.	TEST METHOD PROCEDURES14
VIII. R	ESULTS AND OBSERVATIONS15
APPE	NDICES
	Laboratory Operating Procedure A
	Data and Calculation Forms B
	Calibration Documents
	Unit Drawings and Installation Manual D Dry Gas Meter Calibration Data E
	Unit Pre-burn Documentation
	Stack Loss Efficiency data/Results G
	Tunnel Cleaning and Test Load PhotographsH
	EPA Correspondence

000-102163747MTL-001 Test Report (page 3 of 15)

Report No. 102163747MTL-001Report Date: July 8th, 2016Client: Stove Builder International Inc.Model: HE350 Series

I. INTRODUCTION

Intertek Testing Services NA (Intertek) has conducted testing for Stove Builder International (SBI), on the HE350 Series Solid-Fuel Factory-Built Fireplaces¹ to evaluate compliance to the amended Standards of Performance for New Residential Wood Heaters (40 CFR Part 60, subpart AAA).

Page 3 of 15

A. GENERAL

Tests were conducted by Claude Pelland, the undersigned. Tests were conducted at the client facility in St-Augustin-de-Desmaures, Quebec located at 250 de Copenhague, St-Augustin-de-Desmaures, Quebec, G3A 2H3. The laboratory elevation is 213 feet above sea level.

Per Section §60.534 (a) (ii) of 40 CFR Part 60 Subpart AAA, a request was made and authorized by EPA to use ASTM work Item WK47329, titled "Standard Method for Determining Particulate Matter Emissions for Wood Heaters using Cordwood Test Fuel." with some caveat. (See approval letter found in Appendix I) CAN/CSA B415.1-2010 "Performance Testing of Solid-Fuel-Burning Heating Appliances" was used for determination of heat output, efficiency and CO emissions and ASTM E2515-11 "Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel" to measure particulate matter emissions. This evaluation was conducted from June 8th to June 10th, 2016.

Test program consisted in three (3) runs all of which started by a high burn rate test.

B. TEST UNIT DESCRIPTION

The HE350 Series is a factory-built fireplace manually fed constructed of carbon steel with a fire chamber lined with refractory stones. The outer dimensions are 45.125-inches wide, 40.875-inches high and 28.875-inches deep. It has a firebox volume of 4.28 ft³. The unit has two front doors with viewing glass and a blower located under the firebox. (See product drawings and component description in Appendix D)

The HE350 Series is comprised of four models which are the FP-15 – Waterloo (Valcourt brand), the Horizon (Osburn brand), the HE350 (Ventis brand) and the Monaco XL (Flame brand). They all share the same critical characteristics like firebox dimensions, air inlets and outlets, flue gas dimension and location, refractory dimensions and locations, etc. (See product drawings and component description in Appendix D)

They differ only by their faceplates and doors' designs.

Tests were conducted using the FP-15 unit as a reference representative of

1 Considered a built-in wood heater per Section 60.531 of 40 CFR Part 60, Subpart AAA

000-102163747MTL-001 Test Report (page 4 of 15)

Report No. 102163747MTL-001 Report Date: July 8th, 2016 Client: Stove Builder International Inc. Model: HE350 Series

Page 4 of 15

this model line.

II. SUMMARY OF TEST RESULTS

A. PRETEST INFORMATION

A sample was submitted to Intertek directly from the client. The sample was not independently selected for testing. The test unit was handed to the Intertek representative at client's facility in St-Augustin-de-Desmaures, Quebec. The unit was inspected upon receipt and found to be in good condition. The unit was set up following manufacturer's instructions without difficulty. Following assembly, the unit was placed on the test stand and instrumented with thermocouples in the specified locations.

Prior to beginning the emissions tests, the unit was operated for a minimum of 50 hours at medium burn rates to break in the heater in accordance with Appendix A-8 to Part 60 Test Methods 26 through 30B. (See data found in Appendix F). The unit was found to be operating satisfactory during this break-in.

Following the pre-burn break-in process the unit was allowed to cool. The unit's chimney system and laboratory dilution tunnels were cleaned using standard wire brush chimney equipment. On June 7th, 2016 the unit was ready for testing.

1. TEST STANDARD

From June 8th to June 10th, 2016, the HE350 Series factory-built fireplace particulate emission rate, burn-rate, heat output, efficiency and CO emission were evaluated using all applicable sections of ASTM WK47329, CSA B415.1-10 and ASTM E2515-11 standards.

2. DEVIATION FROM STANDARD METHOD

Deviations from ASTM WK 47329 and ASTM E2515-11 were performed but were in accordance with the requests made by EPA in the letter dated January 21^{st} , 2016 in Appendix I.

A deviation was performed for the measurement of first hour of particulate matter emissions. A third independent and complete sampling train was installed. During the development of ASTM WK47329, some labs observed that doing a filter switch on one of the sampling train ended most of the time in a deviation between the two filter trains. That is the rationale for using a third independent sampling train.

No other deviations from the standard were performed, however, only applicable sections of standards were used during all testing.

000-102163747MTL-001 Test Report (page 5 of 15)

Report No. 102163747MTL-001Report Date: July 8th, 2016Client: Stove Builder International Inc.Model: HE350 Series

Page 5 of 15

III. SUMMARY OF TEST RESULTS

RUN #1 (June 8th, 2016). Primary air control was set to fully open. Kindling, start-up fuel and fuel were loaded per manufacturer's instructions. (See owner's Manual Appendix D) Convection blower was on max speed for the full duration of the test. The total fuel load including kindling and start-up fuel weighed 62.88 lb. The main fuel load was loaded with a coal bed of 4.4 lb. Burn time was 320 minutes. The burn rate was 4.08 kg/hr. The particulate emissions were 2.89 g/h.

RUN #2 (June 9th, 2016). Primary air control was set to fully open for the first 7 minutes and completely closed for the remainder of the test. Fuel was loaded by 100 seconds. Convection blower was on max speed for the full duration of the test. The test load weighed 51.83 lb and was loaded with a coal bed of 6.56 lb. Burn time was 770 minutes. The burn rate was 1.49 kg/hr. The particulate emissions were 1.49 g/h. The control so set yielded a low burn-rate as defined by Clause 9.7.1 of WK47329 using the burn time criteria. The procedure described under Run #2 was conducted after a high burn rate like the one described under Run #1

RUN #3 (June 10th, 2016). Primary air control was set to fully open for the first 7 minutes. Following this period, the primary air control was completely closed and the auxiliary air control fully opened (See product drawings). Fuel was loaded by 60 seconds. Convection blower was on max speed for the full duration of the test. The test load weighed 51.38 lb and was loaded with a coal bed of 8.10 lb. Burn time was 680 minutes. The burn rate was 1.67 kg/hr. The particulate emissions were 1.08 g/h. The control so set yielded a medium burn-rate (below mid-point between low and maximum burn-rate). The procedure described under Run #3 was conducted after a high burn rate like the one described under Run #1

Intertek

000- 102163747MTL-001 Test Report (page 6 of 15)

I

HE350 Serie 4.276	es (FP-15)		
	-		
-			
83			
65	70	77	
87	90	89	
Minimum	Minimum Auxiliary Max	Maximum	
Minimum	Minimum	Maximum	
Maximum	Maximum	Maximum	
Beech	Beech	Beech	
0.67	0.67	0.67	
8088	8088	8088	
16	16	16	
7	7	6	
na	na	7.56	
na	na	17.5%	
na	na	10%	
na	na	3.12	
na	na	12.10	
na	na	28.0%	
na	na	20.9%	
na	na	4.54	
51.83	51.38	43.22	
23.1	23.4	21.78	
19.09	18.88	16.10	
12.12	12.02	10.11	
	87 Minimum Maximum Beech 0.67 8088 16 7 7 7 7 7 7 7 7 7 8088 16 7 7 7 7 8088 16 7 7 8088 16 7 7 8088 16 8081 80 80 80 80 80 80 80 80 80 80 80 80 80	2 3 2016-06-09 2016-06-10 L M 29.70 29.85 83 80 65 70 87 90 Minimum Minimum Minimum Minimum Maximum Maximum Maximum Maximum Beech Beech 0.67 0.67 8088 8088 16 16 7 7 Ima na na na na <td>2 3 1 2016-06-09 2016-06-10 2016-06-08 L M H 29.70 29.85 29.40 83 80 87 65 70 77 87 90 89 Minimum Minimum Maximum Maximum Maximum Maximum Beech Beech Beech 0.67 0.67 0.67 0.67 0.67 0.67 16 16 16 7 7 6 10 na na na na 1.12.10 na na 3.12 na na</td>	2 3 1 2016-06-09 2016-06-10 2016-06-08 L M H 29.70 29.85 29.40 83 80 87 65 70 77 87 90 89 Minimum Minimum Maximum Maximum Maximum Maximum Beech Beech Beech 0.67 0.67 0.67 0.67 0.67 0.67 16 16 16 7 7 6 10 na na na na 1.12.10 na na 3.12 na na

000-102163747MTL-001 Test Report (page 7 of 15)

Report No. 102163747MTL-001 Client: Stove Builder International Inc.

Report Date: July 8th, 2016 Model: HE350 Series

Page 7 of 15

1

6-8-16

Н

4.08

na

5.33

43000 18.28

12.55

15.415

18.6%

0.26

2.89

3.430

22%

911

SECTION 3 – Test Run Results Summary			
Model Name(s)/Number(s) HE350 Series (FP			15)
Usable Firebox Volume - ft ³	4.276		,
Convection Air Fan (No, Standard, Optional)	Standard		
Test Run #	2	:	3
Date Tested	6-9-16	6-1	0-16
Test Run Category	L		М
Burn Rate - kg/h DB	1.49	1.	.67
Burn Rate - As % of Low to High Midpoint	na	60	0%
Test Run Duration - h	12.83	11	.33
Heat Output - Btu/h	16600	19	100
Train 1 - g	19.37	11	.96
Train 2 - g	18.92	12	.57
Average	19.145	12.	265
PM Emission Train Precision - %	1.2%	-2.	.5%
PM Emission Train Precision - g/kg	0.02	-0	.03
PM Emission Rate - g/h	1.49	1.	.08
First Hour Emissions - g	11.440	14.	.400
First Hour Emissions - % of Total	60%	11	7%
Total CO Emissions - g	2125	13	343
CO Emissions Rate - g/h	166	1	19
Overall Efficiency - CSA B415.1-10			
% HHV Basis	63.5	6	5.1
% LHV Basis	68	69	9.7
SECTION 4 - Weighted Average Summary			
Model Name(s)/Number(s)	HE35) Serie	s (FP
Usable Firebox Volume - ft ₃	4.276		
Convection Air Fan (No, Standard, Optional)	Stand	ard	
Average for Each Test Run Category	l	-	
Burn Rate - kg/h DB	1.4	49	
PM Emission Rate - g/h	1.4	49	
CO Emissions Rate - g/h 165.6			1
Overall Efficiency - CSA B415.1-10			
% HHV Basis	63	.5	6
% LHV Basis	68	.0	(
Heat Output - Btu/h	166	500	19
Category Weighting	40)%	4
	-		

66	119		2	19	
3.5	6	5.1	62	2.4	
68	6	9.7	66	6.8	
HE35	0 Serie	s (FP-15	5)		
4.276					
Standard					
l	-	М		Н	
1.4	49	1.67		4.	08
1.4	49	1.0	8	2.89	
16	5.6	6 118.		21	8.7
63	1.5	65.1		62	2.4
68	0.0	69.	7	66	6.8
166	600	191	00	430	000
40)%	409	%	20)%

Intertek

000-102163747MTL-001 Test Report (page 8 of 15)

Report No. 102163747MTL-001Report Date: July 8th, 2016Client: Stove Builder International Inc.Model: HE350 Series

ASTM WK47329 Weighted Averages PM Emission Rate - g/h CO Emissions Rate - g/h Overall Efficiency - CSA B415.1-10 % HHV Basis % LHV Basis Heat Output Range - Btu/h

Page	8 of 15
------	---------

1.6			
157			
64			
68			
16600	to	43000	

IV. PROCESS DESCRIPTION

A. AIR SUPPLY SYSTEM

Primary and secondary combustion air enters on the bottom right side of the outer jacket. This air is then split and fed to two separate 3" diameter flexible pipes. One for primary air and one for secondary air. The primary air is routed to the top of the glass door and pushed down to the ember bed. The secondary air is routed behind the fire chamber and fed the secondary air tube located at the top of the firebox.

These two combustion air are linked together and controlled by one handle located at the bottom right of the faceplate. When not operating at maximum air setting, the system is also controlled by an internal thermostat (snap-disc) that close an electric circuit that is controlling a motor. Therefore, when the control handle is partially or completely closed and when the fireplace is warm enough, the thermostat closes a circuit that affect the position of the primary air control. Until it gets warm, even though the control handle is partially or completely closed, the primary air inlet will remain partially opened for a period of time.

This mechanism prevents the fire from polluting and choking after a reload with high humidity logs or low temperature coal.

B. TEST FUEL PROPERTIES

The species of fuel used was mainly beech. The fuel was split cordwood of nominal length of 16 inches. The fuel was dried in air to average moisture content between 18% and 28% on a dry basis. Cordwood fuel was loaded from front to back into the firebox per manufacturer's instructions.

Intertek

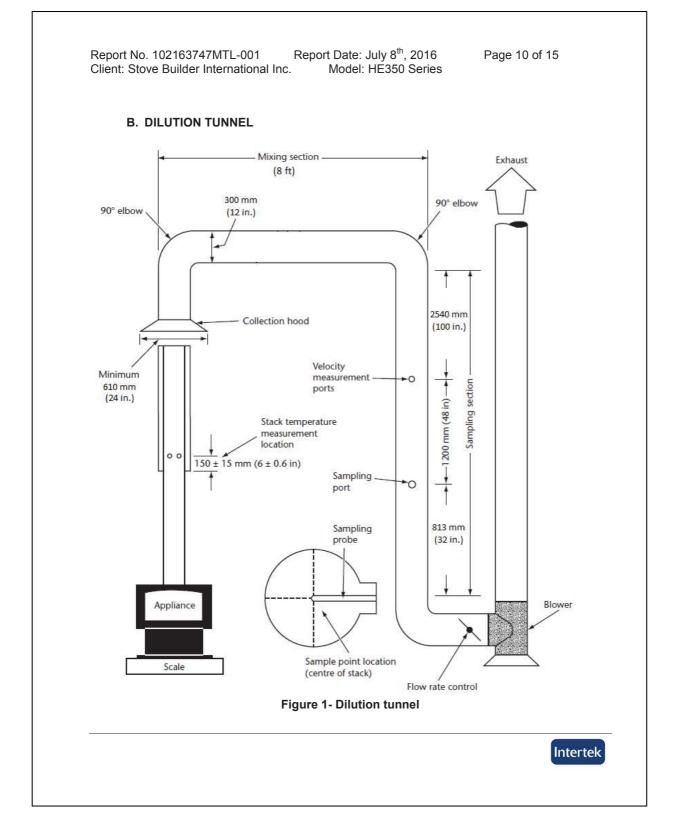
000-102163747MTL-001 Test Report (page 9 of 15)

Report No. 102163747MTL-001Report Date: July 8th, 2016Client: Stove Builder International Inc.Model: HE350 Series

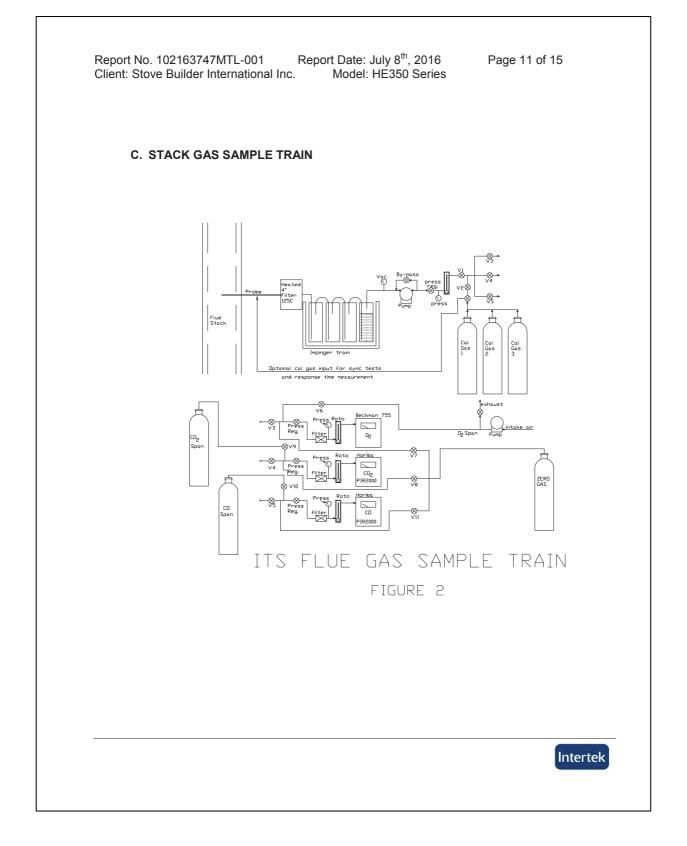
V. SAMPLING SYSTEMS

The sampling procedure used was as specified in ASTM WK47329 & ASTM E2515-11.

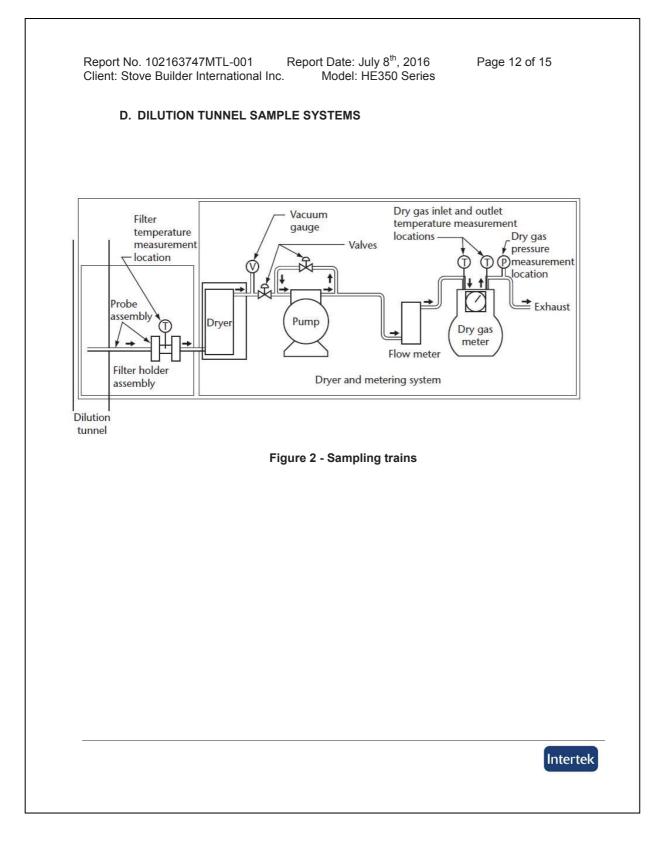
Page 9 of 15


A. SAMPLING LOCATIONS

Particulate samples are collected from the dilution tunnel at a point 20 feet from the tunnel entrance. The tunnel has two elbows ahead of the sampling section. (See Figure 1) The sampling section is a continuous 15-foot section of 8-inches diameter pipe straight over its entire length. Tunnel velocity pressure is determined by a Type "S" Pitot tube located 100 inches from the beginning of the sampling section. The dry bulb thermocouple is located six inches downstream from the Pitot tube. Tunnel samplers are located 48 inches downstream of the Pitot tube and 32 inches upstream from the end of this section. (See Figure 1.)


Stack gas samples are collected from the insulated steel chimney section 8 feet \pm 6 inches above the scale platform. (See Figure 2.)

Intertek


000-102163747MTL-001 Test Report (page 10 of 15)

000-102163747MTL-001 Test Report (page 11 of 15)

000-102163747MTL-001 Test Report (page 12 of 15)

Page 13 of 15

000-102163747MTL-001 Test Report (page 13 of 15)

Report No. 102163747MTL-001Report Date: July 8th, 2016Client: Stove Builder International Inc.Model: HE350 Series

VI. SAMPLING METHODS

A. PARTICULATE SAMPLING

Particulates were sampled in strict accordance with ASTM E2515-11. Sample filters used were Pall TX-40 as requested. The dryers used in the sample systems are filled with "Drierite" before each test run.

VII. QUALITY ASSURANCE

A. INSTRUMENT CALIBRATION

1. DRY GAS METERS

At the conclusion of each test program the dry gas meters are checked against a standard dry gas meter. Three runs are made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix E.

An integral part of the post test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressuring the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated every 12 months using a Spirometer designed by the EPA Emissions Measurement Branch. The process involves sampling the train operation for 1 cubic foot of volume. With readings made to .001 ft³, the resolution is 0.1%, giving an accuracy higher than the ±2% required by the standard.

2. STACK SAMPLE ROTOMETER

The stack sample rotameter is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotometer in series with one of the dry gas meters for 10 minutes with the rotometer at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

Intertek

000-102163747MTL-001 Test Report (page 14 of 15)

Report No. 102163747MTL-001 Report Date: July 8th, 2016 Client: Stove Builder International Inc. Model: HE350 Series

3. GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed. At the conclusion of a test, the instruments are checked again with zero, span and calibration gases. The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

Page 14 of 15

At the conclusion of each unit test program, a five-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

B. TEST METHOD PROCEDURES

1. LEAK CHECK PROCEDURES

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pre-test and post-test leak checks are conducted with a vacuum of 5 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During these tests no vacuum were observed. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.

2. TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.

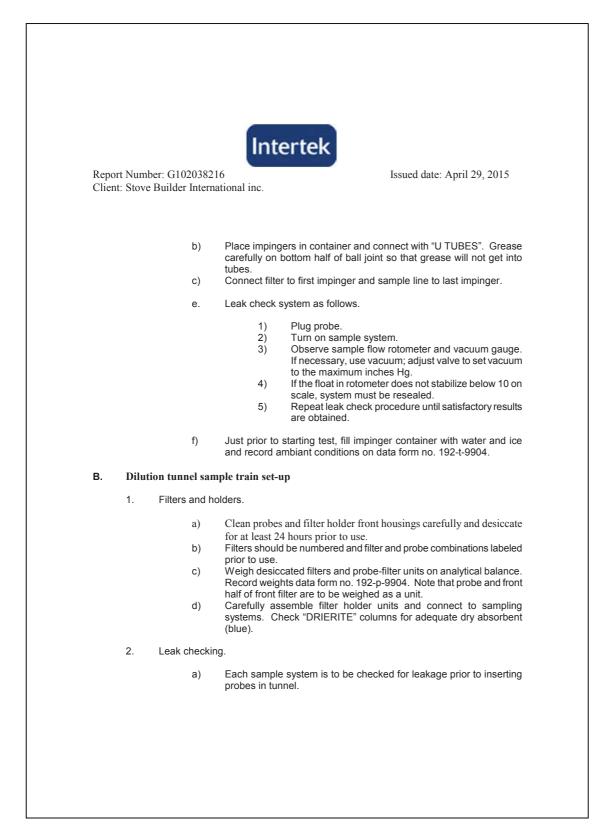
3. PM SAMPLING PROPORTIONALITY (ASTM E2515-11)

Proportionality was calculated in accordance with ASTM E2515-11. The data and results are included in Appendix B.

Intertek

000- 102163747MTL-001 Test Report (page 15 of 15)

SULTS AND OBSERVATIONS Stove Builder International Inc. model HE350 series Factory-built fireplace has been found to be in compliance with the applicable performance requirements of the following criteria: tandards of Performance for New Residential Wood Heaters (40 CFR Part 60, subpart AA) This standard requires that the weighted average particulate emission rate for an appliance not equipped with a catalytic combustor not exceed 4.5 g/h. The unit as tested produced a weighted average emission rate of 1.61 g/h and therefore met this limit. EX TESTING SERVICES NA by: <u>Martine Services NA</u> <u>Claude Pelland, Eng. Test Engineer</u>
 been found to be in compliance with the applicable performance requirements of the following criteria: tandards of Performance for New Residential Wood Heaters (40 CFR Part 60, subpart AA) This standard requires that the weighted average particulate emission rate for an appliance not equipped with a catalytic combustor not exceed 4.5 g/h. The unit as tested produced a weighted average emission rate of 1.61 g/h and therefore met this limit. EK TESTING SERVICES NA by: <u>Mark Mark Mark Mark Mark Mark Mark Mark </u>
 AA) This standard requires that the weighted average particulate emission rate for an appliance not equipped with a catalytic combustor not exceed 4.5 g/h. The unit as tested produced a weighted average emission rate of 1.61 g/h and therefore met this limit. EK TESTING SERVICES NA by: <u>mammatication methods</u> by: <u>mammatication methods</u> Claude Pelland, Eng. Description: Description:
an appliance not equipped with a catalytic combustor not exceed 4.5 g/h. The unit as tested produced a weighted average emission rate of 1.61 g/h and therefore met this limit. EK TESTING SERVICES NA by: $\underbrace{\mathcal{M}}_{Claude Pelland, Eng.}$
by: Claude Pelland, Eng.
Claude Pelland, Eng.
d by: Rick Curkeet P.E. Chief Engineer- Hearth Products

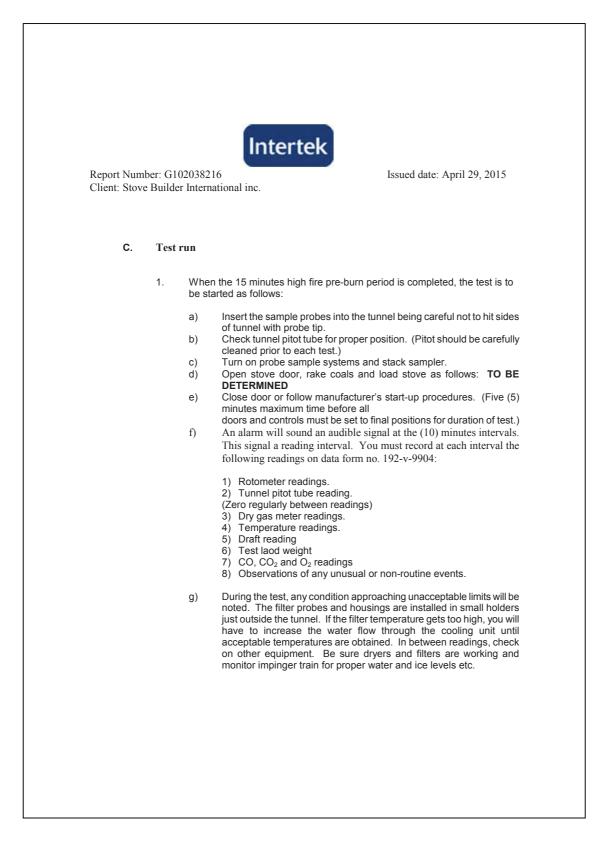

200- App-A Laboratory Operating Procedure

APPENDIX A Laboratory Operating Procedure

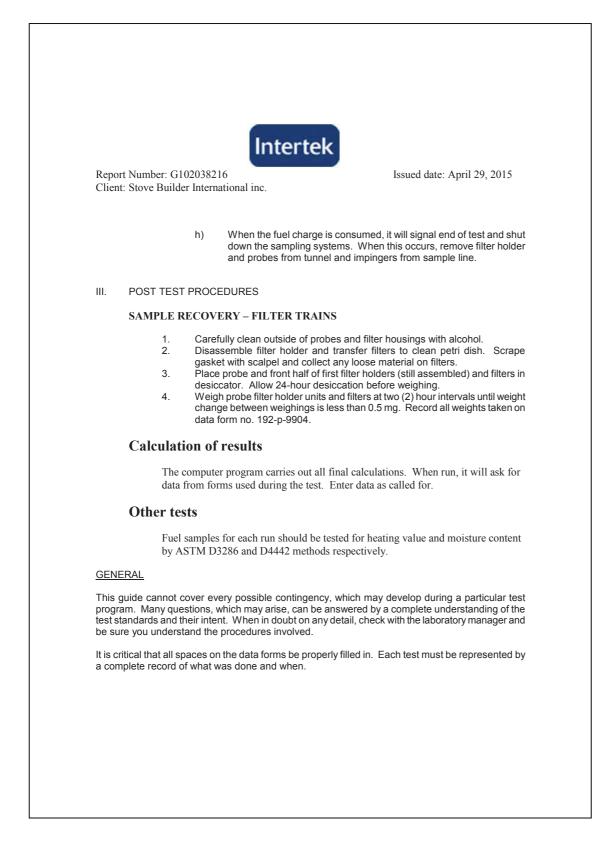
200- App-A Laboratory Operating Procedure (page 2 of 7)

		Intertek
Report Number:		
Client: Stove Bu	ulder Intern	ational inc.
	~ . ~	
	GAS ANAL	
1. Ir	nstruments s	should be turned on and allowed to warm up for one (1) hour minimum.
2. 0	Calibrate and	alyzers as follows:
Ν	NOTE :	Prior to proceeding with calibration, make sure to use NIST tracable
		calibration gas bottles. Adjust flow meter if necessary at each instrument to required flow value.
	a)	Using span gas, adjust span control to values specified on calibration
	b)	gas label. Using nitrogene, adjust zero controls to provide a 0.00 analyzer
		readout.
	c) d)	Repeat a) and b) until no further adjustment is required. Check readout vs. calibration gases (2) labels.
		CO analyzers are "ZEROED" on nitrogen. The O_2 analyzer is spanned at for 20.9%. It is zeroed on nitrogen as well.
3. 0	Check for res	sponse time synchronization.
	a)	With no fire in unit, allow reading to stabilize (O_2 should be 20.93, CO and CO ₂ should equal O).
	b)	Flow the calibration gas in the unit and start stop watch. Note the time required for each unit to reach .90 of the calibration gas bottle
		value. If all three analyzers reach this value within 15 seconds of each other, synchronization is adequate. If not, contact the
		laboratory manager. Synchronization is adjusted by internal instrument setting.
4. S	Set-up samp	le clean-up and water collection train as follows.
	a)	Load impingers as follows:
	,	Impinger #1: 100 ml distilled water and 5 ml H_2SO_4 Impinger #2: 100 ml distilled water and 5 ml H_2SO_4
		Impinger #3: Empty Impinger #4: 200 – 300 grams silica gel (dry)

200- App-A Laboratory Operating Procedure (page 3 of 7)


200- App-A Laboratory Operating Procedure (page 4 of 7)

Report Number: G102038 Client: Stove Builder Inte	
b)	Plug probes and start samplers, adjust pump bypass valve to produce a vacuum reading of 5 inches Hg. (NOTE: During test, vacuum must not exceed 5 inches unless posttest leak check shows acceptable results.)
c)	Allow vacuum indication to stabilize for two (2) minutes, then record time and dry gas (DGM ₁) and (DGM ₂) meter readings. Wait ten (10) minutes and record dry gas meter readings again (DGM ₃ , DGM ₄). NOTE: If mark, system is leaking too much and all seals should be checked.
d)	Calculate leakage rate as follows. 1) System 1: $(DGM_3 - DGM_1) = CFM_1$
	10 2) System 2: $(DGM_4 - DGM_2) = CFM_2$ 10
	If CFM ₁ or CFM ₂ is greater than .02 CFM, leakage is unacceptable and system must be resealed. If CFM ₁ or CFM ₂ is greater than 0.04 X sample rate, leakage is unacceptable. For most tests, the sample rate will be about 0.15 CFM, thus leakage rates in excess of 0.04 X 0.15 = 0.006 CFM are not acceptable.
e)	Once leakage check is satisfactory, unplug probe and set flow to appropriate rate for test. This should be done in the minimum amount of time necessary and with the probes in ambient air. Do not insert probes in tunnel until the start of the test run. When flow is established, replug probes to prevent contamination.


200- App-A Laboratory Operating Procedure (page 5 of 7)

		Intertek	
DemontN	1		
Report Num Client: Stove		D2038216Issued date: April 29, 2015r International inc.	
TEST CONI	лист		
A.	FUEI	L LOAD	
	1.	Determine optimum load weight by multiplying firebox volume in cubic feet by 7. This is the load weight on an as-fired basis.	
	2.	Determine piece size to obtain the requested load configuration and meet the	
		test load weight criteria. The load should consist of the following: TO BE DETERMINED	
	3.	Weigh out test load and adjust weight by shortening all pieces equally if necessary.	
	4.	Measure and record moisture content of each fuel piece using Delmhorst	
		moisture meter. Determine if fuel load moisture content is in required range.	
		If not, construct new load using wood with required moisture content. All wood in the humidity chamber should be within range. Contact project	
		manager if you cannot find suitable pieces.	
B.	Unit	start-up	
	1.	Before lighting a fire, turn on dilution tunnel and set flow rate to 140 SCFM if	
		burn rate is to be less than 3 kg/hr or to an appropriate rate from table provided in laboratory for higher burn rates. Record readings on data form	
	2.	no. 192-r-9904. Check draft imposed on cold stove with all inlets closed and a draft gauge in	
		the chimney. If draft is greater than 0.005 inches water column, adjust tunnel to stack gap until draft is less than 0.005.	
	3.	Check for ambient airflow around unit with hot wire anomometer. Must be	
	4.	less than 50 ft/min. Check all equipment for proper operation. Analyzers should be on and in	
		sample mode. Computer should be loaded with test program and awaiting test start command.	
	5.	Zero scale and start fire with uncolored newspaper and kindling representing 10 % of test load with the same type of fuel.	
	6.	Once kindling is burning well after 5 minutes, add splitted pieces having a bottom surface around 4 sg. inches and representing 25% of test load	
		weight. Operate at high fire for 15 minutes. Then adjust settings to intended	
	7.	test run levels as per the manufacturer's. Following addition of pretest fuel load (splitted pieces), start computer for	
		data logging.	

200- App-A Laboratory Operating Procedure (page 6 of 7)

200- App-A Laboratory Operating Procedure (page 7 of 7)

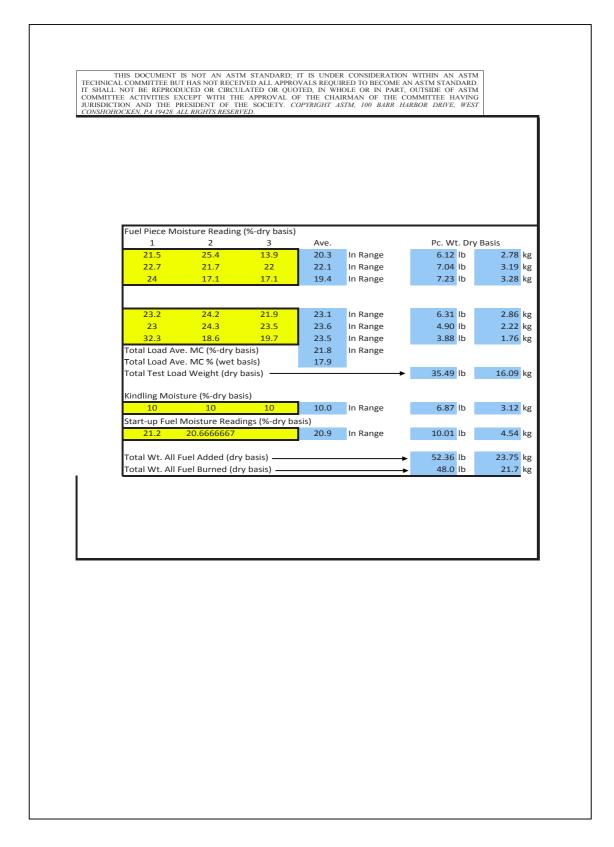
300- App-B Data and Calculation Forms

Appendix B

Data and calculation Forms

300- App-B Data and Calculation Forms (page 4 of 92)

	Intertek Testin	g Services						
Manufacturer: Model:	SBI HE350 Series	(FP-15)			RESULT	S		
Date: Run: Project #: Test Duration: (minutes)	1 QC20160608 60			Average emission rate:(gr/hr) Burn Rate (Dry kg/hr):			3.4 N/A	
PRESS	SURE FACTOR	0.98262	BARO	METRIC	PRESS	JRE Average:	29.4	
TEMPERATURE	FACTORS				ŀ	werage: Start:	29.4	
	DGM #3:	0.96605				End:	29.4	
			DRY C	GAS MET	FER VAL	JES		
VOLUMES SAMF					DGM #3		548.904	-
	DGM #3:	8.22709				Initial:	540.123	
TOTAL TUNNEL	VOLUME (scf):	23498						
SAMPLE RATIOS	\$		TEMPI	FRATUR	ES (DEC	. RANKIN	IJ	
	e Train 3:	2856.201				DGM #3:	546.556	
					FAOTOF	\ 0		
	TOTAL EMISSIONS Sample Train 3 (g):		CALIB	CALIBRATION FACTORS DGM #3:			0.9870	
	r o (g).	3.43			L	JOIVI #J.	0.3070	
EMISSION RATE		a 1a	TUNNE	EL FLOV	V RATE:		391.637	
Sample Train 3	o (g/m):	3.43	PARTI		CATCH	(ma)		
					al Sample		1.2	
			Filtor	and sea	al Sample	Train 3.	1.2	1
	MAX Allowed	N/A	1 11(01					
				Prob	e Sample	Train 3:	0	4
DE	VIATION:	N/A						
	Train 3			Room P	articulate	Correctio	n	
Cs	0.00014586			Mr		Milligram Ca		
Cr	0			Vmr		0	e Sampled (dscf)	
Et	3.43						(glass) at 100	
Et	AVERAGE		Grams E	mieeiona		flow rate is	0.12924 cfm	
EL	AVERAGE		Gians E	1115510115	2			


300- App-B Data and Calculation Forms (page 7 of 92)

		Intertek Testir	ng Services					
 			J					
 Manut	facturer:	SBI				RESULT	s	
Marra		HE350 Series	s (FP-15)			RECOL	0	
 	Date:			Aver	age emis	sion rate	e:(gr/hr)	2.9
Р	Run:	1 QC20160608			Burn Ra	te (Dry kg	ı/hr) [.]	4.085
	Juration:				Dunnta		<i>µ</i> '''' <i>)</i> .	4.000
	ninutes)							
 	PRESS	SURE FACTOR	0.98262	BAR		PRESSL	IRF	
 	TILOC		0.30202	DAIN			Average:	29.4
TEMPE	RATURE	FACTORS					Start:	29.4
 		DGM #1:	0.96039				End:	29.4
 		DGM #2:	0.96973					
VOLUNA				DRY	GAS ME	TER VAL		050.040
VOLUM	ES SAMF	DGM #1:	28.26803			DGM #1	Final: Initial:	950.848 921.072
		DGM #1.	28.43313				miliai.	921.072
		5 011 121				DGM #2	Final:	1113.538
TOTAL	TUNNEL	VOLUME (scf)	123057				Initial:	1083.788
CAMDU		<u></u>						N
SAWPL	E RATIOS Sampl	e Train 1:	4353.224		CRAIUP	RES (DEG) GM #1:	549.779
		e Train 2:	4327.946)GM #1:)GM #2:	544.481
	EMISSIO			CALI	BRATION	FACTOR		
	nple Trair		18.28)GM #1:	1.0060
 Sai	nple Trair	1 Z (Y).	12.55			L)GM #2:	1.0030
EMISSI	ON RATE	S		TUNN	EL FLOV	V RATE:		384.553
	le Train 1		3.43					
 Samp	le Train 2	2 (g/hr):	2.35	PAR		CATCH		
						al Sample al Sample		4.2
 				Filte		al Sample		2.9 3
		MAX Allowed	7.50%		er and sea	al Sample	Train 2:	2.9
						e Sample		1.2
 	DE	VIATION:	37.18%		Prob	e Sample	Train 2:	0
 		Train 1	Train 2		Room P	articulate	Correctio	n
 	Cs	0.00014858			Mr		Milligram C	
 	Cr	0	0		Vmr		•	e Sampled (dscf)
	Et	18.28	12.55				Rotometer	(glass) at 100
 	F 1		45.40	0			flow rate is	0.12924 cfm
	Et	AVERAGE	15.42	Grams I	Emissions	5		

300- App-B Data and Calculation Forms (page 8 of 92)

November 20 Adjunct to ASTM E XXXX Wood Heate	er Cordwoo	d Test N	lethod		
Cordwood Fuel Load Calculators - 10 lb/ft ³ Nominal	Load Dens	ity			
Core 45-65% of Total Load Weight, Remainder 35-5	5% of Total	Load W	eight		
Values to be input manually					
For All Usable Firebox Volumes - High Fire Test On	ly				
Nominal Required Load Density (wet basis)	10 lb	/ft ³			
Usable Firebox Volume	<mark>4.28</mark> ft	3			
Total Nom. Load Wt. Target	42.76 lb				
Total Load Wt. Allowable Range	40.60	to	44.90	lb	
Core Target Wt. Allowable Range	19.20	to	27.80	lb	
Remainder Load Wt. Allowable Range	15.00	to	23.50	lb	
-				_	Mid-Point
Core Load Pc. Wt. Allowable Range	6.40	to	10.70	lb	8.55
Remainder Load Pc. Wt. Allowable Range	4.30	to	23.50	lb	13.90
	Pc. #		_		
Core Load Piece Wt. Actual	1	7.36	b	In Range	
	2	8.60	<mark>)</mark> lb	In Range	
	3	8.63		In Range	
Core Load Total. Wt. Actual		24.59	b Ib	In Range	
	Pc. #		-		
Remainder Load Piece Wt.	1	7.73		In Range	
(1 to 3 Pcs.)	2	6.06		In Range	
	3	4.80	_	In Range	
Remainder Load Piece Weight Ratio - Small/Large	_	62%	-	In Range	≤ 67%
Remainder Load Tot. Wt. Act	_	18.63	-	In Range	
Total Load Wt. Actual	_	43.22		In Range	45 6504
Core % of Total Wt. Remainder % of Total Wt.		57% 43%		In Range	45-65% 35-55%
Actual Load % of Nominal Target		437		In Range In Range	95-105%
0			b/ft ³	III Kange	95-105%
Actual Fuel Load Density		10.1			
Kindling and Start-up Fuel		8.64	1 114		
Maximim Kindling Wt. (20% of Tot. Load Wt.)	_	8.6 ²		In Bango	17.59
Actual Kindling Wt.		12.97	-	In Range	17.55
Maximum Start-up Fuel Wt. (30% of Tot. Load Wt.) Actual Start-up Fuel Wt.	_	12.9		In Bango	28.09
Actual start-up Fuel Wt. Allowable Residual Start-up Fuel Wt. Range	4.3		8.6	In Range	Z8.0
	4.3	to 4.4(6.5
Actual Residual Start-up Fuel Wt.		62.87		In Range	0.5
Total Wt. All Fuel Added (wet basis) High Fire Test Run End Point Range	Low	02.87	-		Mid Daire
IN THE LEST KUN FUO POINT RANGE	Low		High		Mid-Poin

300- App-B Data and Calculation Forms (page 9 of 92)

300- App-B Data and Calculation Forms (page 10 of 92)

	Mar Sample II	t Number: nufacturer: Model: D Number: Test Date: n Number:	SBI HE350 S QC2016(8-Jun-16	eries)608				1	
	Calibrati Set meter to Set Temperat Set pin setting	ure to 70F		SI 12% 22%	BI-153				
2	Eq. ID No. Piece No.	: Length,	URN FUE Time: Weight,	9:35		78.9			
Pril.	4UN -	In.	Lb. 12.1	23.7	/9.1 19.1	20.8			
	4 5 6 7						-		
Icino	8 9 /1 - 10 11		7.557	7	- 107.		-		
	12 Total W Allowa	eight ible Fuel L	0.0 oad Range		age, %db 27	#DIV/0!	32.9		
	Eq. ID No.:		EST FUE		PROPERTI		200		
	Piece No.	Length,	Weigl			sture, %, Dry	Basis		
	1 2 3	In. 16 16 17	2x4 8.627 7.772	4x4	24.0	17.1 28.2	17.1 21.9		
	5 6	16/12	8.602 7.363 6.057 4.796		22.7 21.5 23.0 32.3	21.7 25.4 24.3 18.6	22.0 13.0 23.15 19.7		
	7 8								
	Total % of We		0.0 #DIV/0!	0.0 #DIV/0!					_
	Total weight Total weight		0.0 #DIV			loisture, dry loisture, wet			
9	Total weight	, ury, kg	#01	//0!	Average in	ioisture, wet	#DIV/0!		

300- App-B Data and Calculation Forms (page 11 of 92)

	n Tunnel Velocity Traverse EPA Method 5G-3
Project Number: G102163747 Manufacturer: SBI Model: HE 350 Series Sample ID Number: QC20160608 Test Date: 8-Jun-16 Test Run Number: 1	
Dilution Tunnel Square Delta P Temp,°F Square A1 0.115 74.9 0.0000 A2 0.141 74.8 0.0000 A3 0.132 74.8 0.0000 A3 0.132 74.8 0.0000 A4 0.035 77.75 0.0000 A Center 0.136 76.9 0.0000 B1 0.120 76.9 0.0000 B2 0.136 76.9 0.0000 B3 0.130 76.3 0.0000 B4 0.117 77.0 0.0000 B4 0.117 77.0 0.0000 Averages #DIV/01 #DIV/01 0.0000	Tunnel Diameter8.000inchesTunnel Static0.34907Ft2Tunnel Area0.34907Ft2Pitot Correction#DIV/0!factorBaro. Pressure29.40Pitot Factor0.84(0.99 for standard, 0.84 or Cal. For S-Type)Initial Velocity#DIV/0!Ft/ SecInitial Flow#DIV/0!Ft/ Smin
Test Engineer: $C. Rell_{p.1.d}$	Date: 8 Jan Nº 2016

300- App-B Data and Calculation Forms (page 21 of 92)

		Intertek Testin	g Services					
 Manut	facturer: Model:	SBI HE350 Series	(FP-15)			RESULT	S	
	Date:			Avera	age emis	sion rate	e:(gr/hr)	11.4
Р	Run:	2 QC20160208			Burn Da	te (Dry kg	ı/br):	N/A
	Juration:				Duiiira		<i>y</i> /11).	IWA
	ninutes)							
	PRESS	SURE FACTOR	0.99265	BARC	METRIC	PRESSL	JRE	
 						A	verage:	29.7
 TEMPE	RATURE	FACTORS DGM #3:	0.07464				Start: End:	29.6 29.8
		DGIVI #3.	0.97164				End.	29.8
				DRY	GAS ME	TER VALL	JES	
VOLUM	ES SAMF	PLED				DGM #3		557.308
		DGM #3:	7.99929				Initial:	548.905
			22888					
IUIAL		VOLUME (scf):	22000					
SAMPLE	E RATIOS	5		TEMF	PERATUR	RES (DEG	. RANKIN	1)
	Sampl	e Train 3:	2861.209				OGM #3:	543.411
	EMISSIO	NS		CALIE		FACTOR	2	
	nple Trair		11.44	0/1211) GM #3:	0.9870
FNICOL		~		T 1 N N				004 404
	ON RATE		11.44	IUNN	EL FLOV	V RATE:		381.461
Oamp		y (g/11).	11.77	PART	ICULATE	CATCH	(ma)	
						al Sample		4
						10- I	Tasi 0	0.0
				Filte	r and sea	al Sample	rain 3:	3.8
					Prob	e Sample	Train 3:	0.2
		T ^		_	D C		0	
	Cs	Train 3 0.00050004			Room P Mr	articulate	Correctio Milligram Ca	
		0.00050004			Vmr			e Sampled (dscf)
	Cr	v			• • • • •			(glass) at 100
	Cr Et	11.44						
	Cr Et Et	11.44 AVERAGE			missions			0.12924 cfm

300- App-B Data and Calculation Forms (page 26 of 92)

		Intertek Testir	g Services					
Manuf	acturer: Model:	SBI HE350 Series	(FP-15)			RESULT	S	
 	Date: Run:			Avera	ige emis	sion rate	e:(gr/hr)	1.5
Р		QC20160208			Burn Rat	te (Dry ko	g/hr):	1.467
 	uration:							
 (r	ninutes)							
 	DDEO		0.00005	DADO			IDE	
 	PRES	SURE FACTOR	0.99265	BAKO	METRIC		JRE Average:	29.7
 TEMPE	RATURE	FACTORS					Start:	29.6
 		DGM #1:	0.96545				End:	29.8
 		DGM #2:	0.97220					
VOLUMI				DRY	GAS MET	DGM #1		1019.206
VOLUIVII		DGM #1:	65.90085			DGIVI #1	Initial:	950.851
		DGM #2:	70.65781					
						DGM #2		1186.537
TOTAL	UNNEL	VOLUME (scf)	303865				Initial:	1113.539
SAMPLE	ERATIO	S		TEMP	ERATUR	ES (DEG	. RANKIN	1)
		e Train 1:	4610.936			[DGM #1:	546.898
	Sampl	e Train 2:	4300.510			C	DGM #2:	543.101
TOTAL F	EMISSIO	NS		CALIB	RATION	FACTOR	RS	
	nple Traii		19.37	0/ 1212			DGM #1:	1.0060
 San	nple Traii	n 2 (g):	18.92			E	DGM #2:	1.0030
EMISSI	ON RATE	<u>م</u>			EL FLOV			394.629
	le Train		1.51	TONIN				004.020
	le Train 2		1.47	PART	ICULATE			
						I Sample		4.2
 				Filter	r and sea	I Sample		4.4 3.7
 		MAX Allowed	7.50%		r and sea	I Sample	Train 2:	3.2
 				-		e Sample		0.5
 	DE	VIATION:	2.32%		Probe	e Sample	Train 2:	1.2
 		Train 1	Train 2		Room Pa	articulate	Correctio	on
 	Cs	6.3732E-05	6.2272E-05		Mr		Milligram Ca	
 	Cr	0	0		Vmr			e Sampled (dscf)
 	Et	19.37	18.92					(glass) at 100
 	Et	AVERAGE	19.14	Grams E	missions		now rate is	0.12924 cfm
	i							

300- App-B Data and Calculation Forms (page 27 of 92)

Ma Sample II	nufacturer Model D Number	HE350 S QC2016 10-Jun-1	eries 0608	~			
Calibrati Set meter to Set Tempera Set pin settin	ture to 70F		S 12% 22%	BI-153			
		BURN FUE				1	
Eq. ID No. Piece No.	: Length,	Time: Weight,	1	Temp.,°F		-	
1	In.	Lb.		isture, %, L		4	
2						1	
4							
5							
7							
8						-	
10						1	
11 12						-	
Total W	eight	0.0	Aver	age, %db	#DIV/0!		
Allowa	able Fuel L	oad Range	Э:	27	7 to	32.9	
		EST FUE	L LOAD I	PROPERTI			
Eq. ID No.		1 Woid	Time: ht, Lb.	07:55	Temp.,°F	7617	
Piece No.	Length, In.	2x4	4x4	Moi	sture, %, Dry	Basis	
1 2	16.5	7.110	-	24.6	24.6	21.9	
3	163/4	8.551	Si	22.3	33.5	26,3	
4	15 1/2	8.858		27.5	20.7	24.3	
6	16'14	7.821	-	21.3	16.0	19.1	
7 8	16114	5.707	-	21.5	21.4	24.2	
Tota	s	0.0	0.0				
% of W		#DIV/0!					
Total weight		0.0			Moisture, dry	#DIV/0!	
Total weight	l, dry, kg	#DI	V/U!	Average N	/loisture, wet	#DIV/0!	

300- App-B Data and Calculation Forms (page 28 of 92)

	Projec	t Number:	G102163	3747		7		
		nufacturer:	SBI					
		Number:	HE350 S QC2016	0608				
		Test Date: n Number:	9-Jun-16 2					
	Calibrati	on Referer	nce ID			7		
	Set meter to S				BI-153	4		
	Set Temperat			12% 22%	12.0			
		PRE-E	BURN FUE	L PROP	ERTIES		1	
	Eq. ID No.		-		Temp.,°F	76.6]	
. /1	Piece No.	Length, In.	Weight, Lb.	Mo	isture, %, E	Dry Basis		
Kidling:	- 1 - 2		7.717	24.3	22.3	20.4	1 17 07	7 (4pilees)
-1 -21			12.077		19.6	18.9	1 100.	
	4 5						-	
	6						-	
	7						1	
	8					_		
	<u>9</u> 10						-	
	11		-				-	
	12						1	
	Total W	eight	0.0	Avera	age, %db	#DIV/0!		T
	Allowa	ble Fuel L	oad Range	e:	2	7 to	32.9	
		Т	EST FUE	L LOAD I	PROPERTI	ES		
	Eq. ID No.:	SBI-229		Time:		Temp.,°F	76.6	
	Piece No.	Length, In.	Weigl 2x4	ht, Lb. 4x4	Moi	sture, %, Dry	Basis	
	1	17	8.615	484	23.5	17.6	28.6	
	2	17	8.827	~	24.0	25.8	24.5	
	3	1612	7.189	-	26.8	19.2	25.1	
	4 5	16314	6.359		26.0	21.4	19.0	
	6	17	4.782		20.5	18.4	17.8	
	7							
	8 Total	Ļ	0.0	0.0				
	% of We		#DIV/0!	0.0 #DIV/01				
	Total weight		0.0			Moisture, dry	#DIV/0!	
	Total weight		#DI			Noisture, wet		
							1	

300- App-B Data and Calculation Forms (page 29 of 92)

Dillution Project Number: G102163747 Manufacturer: SBI Model: HE350 Series Sample ID Number: QC20160608 Test Date: 9-Jun-16 Test Run Number: 2	n Tunnel Velocity Traverse EPA Method 5G-3
Dílution Tunnel Square Delta P Temp,°F Root A1 0,110 100.9 0.0000 A2 0,127 100.7 0.0000 A3 0,124 100.9 0.0000 A4 0,122 96.6 0.0000 A4 0,122 96.6 0.0000 A5 0,131 101.2 0.0000 B1 0,117 99.7 0.0000 B2 0,132 100.0 0.0000 B4 0,094.9 9.3 0.0000 B4 0,094.9 9.3 0.0000 B4 0,125 99.4 0.0000 B4 0,125 99.6 0.0000 Averages #DIV/0! #DIV/0! 0.0000	Tunnel Diameter8.000inchesTunnel Static0.148in. H2OTunnel Area0.34907Ft2Pitot Correction#DIV/0!factorBaro. Pressure29.40Pitot Factor0.84(0.99 for standard, 0.84 or Cal. For S-Type)Initial Velocity#DIV/0!Ft/ SecInitial Flow#DIV/0!Ft3/min
Test Engineer: M	Date: 9- Jun - 2016

300- App-B Data and Calculation Forms (page 51 of 92)

		Intertek Testin	g Services					
 Manu	facturer:	SBI				RESULT	S	
 	Model:	HE350 Series	(FP-15)					
 	Date: Run:	6-10-16 3		Aver	age emi	ssion rate	e:(gr/hr)	14.4
P		QC20160208			Burn Ra	ate (Dry ko	ı/hr):	N/A
	Ouration:							
 (1	minutes)							
 	PRESS	SURE FACTOR	0.99766	BARG	OMETRIC	PRESSU	JRE	
							verage:	29.85
 TEMPE	RATURE	FACTORS					Start:	29.8
 		DGM #3:	0.97408				End:	29.9
 				DRY	GAS ME	TER VALU	JES	
VOLUM	ES SAMF	PLED		BIG	0,10 1112	DGM #3		565.410
		DGM #3:	7.76444				Initial:	557.315
τοται		VOLUME (scf):	27266					
IUIAL			27200					
SAMPL	E RATIOS	3		TEM	PERATU	RES (DEG	. RANKIN	۱)
	Sampl	e Train 3:	3511.708			C	OGM #3:	542.051
TOTAL	EMISSIO	NS		CALI	BRATION	FACTOR	s	
Sar	mple Trair	n 3 (g):	14.40			C	OGM #3:	0.9870
FMISSI	ON RATE	S		TUNN		W RATE:		454.441
	ole Train 3		14.40					
 				PAR		E CATCH		
					Tot	al Sample	Train 3:	4.1
 				Filte	r and se	al Sample	Train 3:	3.2
		MAX Allowed	N/A					
 					Prot	e Sample	Train 3:	0.9
 	DE	VIATION:	N/A					
 		Train 3			Room F	articulate	Correctio	on
 	Cs	0.00052805			Mr		Milligram Ca	
 	Cr	0			Vmr			e Sampled (dscf)
 	Et	14.40						(glass) at 100
 	Et	AVERAGE		Grams I	Emission	s	TIOW rate is	0.12924 cfm
				0.01101		-		

300- App-B Data and Calculation Forms (page 56 of 92)

		Intertek Testin	g Services					
Manuf	acturer:					RESULT	S	
 	Model:	HE350 Series	(FP-15)					
	Date:	6-10-16		Aver	age emis	sion rate	e:(gr/hr)	1.1
	Run:					<u> </u>		4.040
	roject #: ouration:	QC20160208 680			Burn Rat	e (Dry kg	j/hr):	1.643
 	ninutes)							
 	PRESS	SURE FACTOR	0.99766	BARC	OMETRIC	PRESS	JRE	
 TE1 18-		F. 07050				A	Average:	29.85
 TEMPEI	RATURE	FACTORS DGM #1:	0.96551				Start: End:	29.8 29.9
 		DGM #1.	0.90331				Enu.	29.9
 				DRY	GAS MET	ER VALI	JES	
VOLUM	ES SAMF					DGM #1	Final:	1082.718
		DGM #1:	61.58495				Initial:	1019.165
		DGM #2:	60.75557			DGM #2	Final:	1249.071
TOTAL	TUNNEL	VOLUME (scf):	272829			Domine	Initial:	1186.692
SAMPLI	E RATIOS	S e Train 1:	4430.132	TEMF	PERATUR	· · · · · · · · · · · · · · · · · · ·	6. RANKII 0GM #1:	N) 546.860
		e Train 2:	4490.608				OGM #1:	542.463
	EMISSIO nple Traiı		11.96	CALI	BRATION		(S)GM #1:	1.0060
	nple Traii		12.57				OGM #2:	1.0030
FMOOL				T I IN IN				404.000
	ON RATE		1.06	IUNN	IEL FLOW	/ RATE:		401.220
Samp	le Train 2	2 (g/hr):	1.00	PART	ICULATE	CATCH	(mg)	
					Tota	I Sample	Train 1:	2.7
 				L. Ita		I Sample		2.8
 		MAX Allowed	7.50%		er and sea er and sea			<u>2.5</u> 2.7
 					Probe	e Sample	Train 1:	0.2
 	DE	VIATION:	4.99%		Probe	e Sample	Train 2:	0.1
 		Train 1	Train 2		Room Pa	articulate	Correctio	on
 	Cs	4.3842E-05	4.6086E-05		Mr	0	Milligram C	atch (mg)
 	Cr	0	0		Vmr			e Sampled (dscf)
 	Et	11.96	12.57					(glass) at 100 0.12924 cfm
 	Et	AVERAGE	12.27	Grams E	Emissions		now rate 18	0. 12027 UIII

300- App-B Data and Calculation Forms (page 57 of 92)

	Mar Sample IE	Nufacturer: Model: Number: Test Date:	HE350 S QC20160 10-Jun-1	eries)608					
		ure to 70F	ice ID	SI 12% 22%	BI-153				
		PRE-E	URN FUE	L PROP	ERTIES		1		
	Eq. ID No.:		Time:		Temp.,°F		1		
	Piece No.	Length, In.	Weight, Lb.	Mo	isture, %, D	ry Basis			
	1						1		
	2						-		
	4						1		
	5						-		
	7						1		
	8						-		
	10								
	<u>11</u> 12								
	Total W	eight	0.0	Aver	age, %db	#DIV/0!	-		
			oad Range		27	to	32.9	1	
			•		PROPERTIE			-	
	Eq. ID No.:			Time:	05:26		25.5	1	
	Piece No.	Length, In.	Weigh 2x4	nt, Lb. 4x4	Mois	ture, %, Dry	Basis		
-	1	16 1h	8.780	-	21.6	217	20.0	1	
8.021	2	16214	16:12	-	23.5	26.0	22.8		
	3 4	16314	8.546	-	24.0	23.5	25.3	1	
	5	16:14	6.695		28.4	24.2	23.5	1	
	6	1612	5.134 5.801		24.7	21.4	21.8	-	
	8				-			1	
	Total % of Wo		0.0	0.0					
1	% of We Total weight		#DIV/0! 0.0		Average M	loisture, dry	#DIV/0!	1	
	Total weight		#DI\			loisture, wet		1	
	i orai weight	, ury, rug	#01		Luverage IV	ioisture, wet		1	

300- App-B Data and Calculation Forms (page 58 of 92)

	Mar Sample IE	t Number: nufacturer: Model: D Number: Test Date: n Number:		eries 0608					
		on Referer Species 1 sure to 70F	ice ID	SI 12% 22%	BI-153 12.0 22.0				
	Eq. ID No. Piece No.		URN FUE Tíme: Weight, Lb.	A:10	ERTIES Temp.,°F: isture, %, Di				
Kindling Start-ug fuel	1 2 3 4	16	8.275	10					
start-up fuel		16 1/2 16 1/2	12.187	21.2 26.7	18.1 28.0	18. 3 21.8	-		
	9 10 11 12	-i ht			0/-11-				
	Total W Allowa	eight Ible Fuel L	0.0 bad Range	8.×	age, %db 27	#DIV/0!	32.9]	
	Eq. ID No.:		EST FUE	L LOAD I Time:	PROPERTIE	S Temp.,°F			
	Piece No.	Length,	Weig	nt, Lb.		ture, %, Dry		1	
	1	In.	2x4	4x4 6,401	26.1	26.4	22.3	62	
	23	161/2		4.817 8.683	18.6	19.2	25.7		
	4	161/2		6.031	18.5	21.8	24.2	9	
	5	173/4		6.980 8.796	21.3	24.8	23.4		
	7					and a			
	8 Total	s	0.0	0.0					
	% of We	eight	#DIV/0!	#DIV/0!					
	Total weight Total weight		0.0			loisture, dry	-		
		, ary, kg	#DI\	v/U!	Average M	loisture, wet	#DIV/0!	I	

300- App-B Data and Calculation Forms (page 59 of 92)

Intertek	n Tunnel Velocity Traverse EPA Method 5G-3
Project Number: G102163747 Manufacturer: SBI Model: HE350 Series Sample ID Number: QC20160608 Test Date: 10-Jun-16 Test Run Number: 3	
Dilution Tunnel Square Delta P Temp,°F Square In. H2O Temp,°F Root A1 Ø,1/6 97.3 0.0000 A2 Ø,1/2 97.7 0.0000	Tunnel Diameter 8.000 inches Tunnel Static 0.143 in. H2O Tunnel Area 0.34907 Ft2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pitot Correction #DIV/0! factor Baro. Pressure 29.50
B3 0,125 484 0.0000 B4 (),1)0 46.4 0.0000 B Center 0,133 49.3 0.0000 Averages #DIV/0! #DIV/0! 0.0000	Pitot Factor 0.84 (0.99 for standard, 0.84 or Cal. For S-Type) Initial Velocity #DIV/0! Ft/ Sec Initial Flow #DIV/0! Ft3/min
Test Engineer:	Date: 10- Ju 2016

400- App-C Calibration Documents

Appendix C

Calibration documents

400- App-C Calibration Documents (page 2 of 64)

1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER Accrédit	é par l'American Association :	for		ANS	ISO 9001 Register I/NCSL Z540-1 Accréd	
Laborato	ALIBRATION #1902.02					
CERTIC.		cat d'étalo	nnage			
Client						
Société :	SBI Fabricant De Poeles					
Adresse :	250 Rue de Copenhague					
Ville :	Saint-Augustin-De-Desma	aures <i>État/Pro</i>	vince :	Quebec		
Code postal :	G3A 2H3	Astea C	ustomer ID:	3002762	57	
Instrument						
Constructeur :	SARTORIUS	Modèle	de terminal :	N/A		
Modèle :	TE214S	# série d	du terminal:	N/A		
No de série :	25851066	# série d	# série de l'imprimant		N/A	
Capacité :	210 g		. .		N/A	
Résolution :	0,0001 g	Nbre de	Divisions:	2100000		
Classe :	1	Procédu	ire utilisée :	NIST Ha	ndbook 44	
No./ID d'inventaire:	SBI-206					
Procédure:	Le présent certificat est é l'A2LA, en vertu de la non laboratoire et la traçabilité	me ISO/IEC 17025. A2	LA a évalué la			
Date de calibrage :	1-avr-2016	Date, pr	ochaine Cal.	31-mars-	-2017	
Signataire autorisé (A2LA) :	Dany Careau	Signatu	re:	ELECTR	ONIC SIGNATURE	
Étalons de trava						
Retracabilité:	Les poids de test utilisés			nuarus and		
Jeu de poids no :	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étai		Date proch. étalonnag	
0718	M15-050	M1	22-avr-		22-avr-2016	
142	MT00997	F1	7-mai-		30-avr-2016	
Q1	1415126	M1	1-juin-	2015	1-juin-2016	

400- App-C Calibration Documents (page 3 of 64)

	onnage No.	CA000	03-509-040110	6		M	ETTLER	TOLEDO
Résultat	s de m	esure	•					
La température	9:	22 °C						
		Les con	ditions ambia	ntes ont é	té vérifiées afir	d'assurer l'exact	itude de l'étalonna	age.
Test de va	riation							
\square						Avant Réglag	e	
(• ₂ 3•		Poids	Appliqués	Po	osition	Valeur lue		
$\left \left \right ^{4} \right ^{4}$: 50 g	Pos	sition 1	50,0001 g		
			: 50 g	Pos	sition 2	50,0000 g		
		3	: 50 g	Pos	sition 3	50,0001 g		
		4	: 50 g	Pos	sition 4	50,0002 g		
		Erreur n	naximum :			0,0002 g		
		Max Err	eur Admissibl	e :		0,0003 g		
Linéarité								
					August vég	1000		
_	Poids Ap	oliaués	Valeur	lue	Avant rég E	rreur	Erreur	Dans la Toléranc
7		-	0.000	0 -	0.0000 -	0.4	admissible	0.11
Zero 1,00 2,00	0,000	-	0,000	-	0,0000 g	0 d 0 d	1 d 1 d	
3,00	0,100		0,100		0,0000 g -0,0001 g	1 d	1 d	OUI
4,00	10,000	-	9,999	-	-0,0001 g	1 d	2 d	OUI
5,00	50,000		50,000		0,0001 g	1 d	3 d	OUI
6,00	100,00		99,999		-0,0001 g	1 d	3 d	OUI
7,00	150,00		149,99	-	-0,0002 g	2 d	3 d	OUI
Max 8,00	200,00		200,00		0,0001 g	1 d	3 d	OUI
	de de subst			-			1	-
Un réglage de Si non, les rési				t aux résu	ultats tel que lai	ssé.		
			NON					
Version		10						D 0
Version Logicie	el: 4.6.2	10						Page 2 sur METTLER TOLED

400- App-C Calibration Documents (page 4 of 64)

Карр	ort d'étalonnage No.	CA0003-509-040116		METTLER TOLE	DO
Rép	étabilité				
Poids	s appliqués :10,00	00 g			
	Chargé	Vide	Différence		
1	9,9999 g	0,0000 g	9,9999 g		
2	10,0000 g	0,0000 g	10 g		
3	9,9999 g	0,0000 g	9,9999 g		
	Erreur maximale :	0,0001 g	1,0 d	_	
	Tolérance :	0,0002 g	2 d		
Ince	rtitude				
Mesi	ıre de l'incertitude =	0,00017 g			
Aucu	une.				

400- App-C Calibration Documents (page 5 of 64)

CALIBRATION CERTIFICATE Certificate no.:: 496310 Certificate inscued: Certificate issue: Coltober 14, 2015 Description: THERMO-HYGROMETER, AMPROBE TH-3 Interval: 12 months Munifacturer: AMPROBE Due date: October 14, 2015 Model no:: TH-3 Due date: October 14, 2016 Serial no:: 10100404 Environment: CLAS Type 2 Laboratory Temperature: 23 a 25% Metrologist: NFS Property of: SBI 23 25% RUE Description: Data 2000 The adhoname crysterios to the coopernHAGUE 23 a 25% RUE David Lorens, Quality Metrologist: NFS Property of: SBI 23 25 a 7LAUGUSTIN-DE-DESMOLES, QC 30A 213 Parovel bit: David Lorens, Quality Metrologistic Antaloname crysterios to intervences with the colonada (MRS), the National and Technology but which Canada have an equivalence agreement. David Lorens, Quality Metrologistics CallERATION STANDARDS See notes below. Metrologistic david and Technology but which Canada have an equivalence agreement. CallERATION Standard CallERATION DATA See notes below. Metrologistic david and thereset or exceeded all s		rich Métrologie inc. rich Metrology inc. (2, Côte-de-Liesse ntréal (Québec) H8T 1A1	Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca		ACCREDITATIO ISO 1702
Identification: SBI-213 Certificate issued: October 14, 2015 Description: THERMO-HYGROMETER, AMPROBE Interval: 12 months Manufacturer: AMPROBE Due date: October 14, 2016 Model no: TH-3 Procedure no: METICAL Serial no: 101004044 Environment: CLAS Type 2 Laboratory Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS NFS	CALIE	BRATIO	N CERTI	FICATE	
Description: THERMO-HYGROMETER, AMPROBE TH-3 Manufacturer: AMPROBE Model no: TH-3 Serial no: 101004044 Environment: CLAS Type 2 Laboratory Temperature: 23 ± 2*C Humidity: 33 ± 5*S Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Stratument results ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Ma The collowation configure is traued in accordines with the opplotide requirements of MORE 1703 and Ufrich Material DMA Restinge 9, Maanwanes reare results associated with the opplotide requirements of MORE 1703 and Ufrich Material DMA Restinge 9, Maanwanes reare reacting body with which Canada has an equivalance agreement. CALIBRATION STANDARDS See notes below, MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed (4:1 test uncertainty ratio) of the accoptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICA				Calibration date:	October 14, 2015
Manufacturer: AMPROBE Due date: October 14, 2016 Model no:: TH-3 Due date: October 14, 2016 Serial no:: 101004044 Environment: CLAS Type 2 Laboratory Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI SD RUE DE COPENHAGUE Due date: David Licrens, Quality Ma This calibration certificate is taxed in accordance with the applicable requirements of ISO/RC 17035 and Uhrich Metrology's public mamual QMA09 Revises 9. Maawress reare are traceable to either the Kinonal Research Country kipatery Manual Recognition Arrangement (MRA), or a calibration laboratory accrediate by an accrediate global with which Canada has an equivalance agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. Fr. refuse of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum).		5.54 (5.15)		Certificate issued:	October 14, 2015
Model no: TH-3 Serial no: 101004044 Procedure no: MET/CAL Environment: CLAS Type 2 Laboratory Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS	•		ETER, AMPROBE TH-3	Interval:	12 months
Serial no.: 101004044 Environment: CLAS Type 2 Laboratory Temperature: 23 ± 2'C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Mai This calibration calibration calibration biometer quarterness of MORE 17035 and Utloch Metrology's guality manual QM-09 Revision 9. Measurement results accordance (MRC) the Material Initiate of Standards and Technology (MST), a national laboratory duronest results accordance (MRC) and accordance with the applicable requirements of MORE 17035 and Utloch Metrology's guality manual QM-09 Revision 9. Measurement results accordance (MRC) and accordance with the applicable requirements of MORE 17035 and Utloch Metrology (MST), a national laboratory duronest recurst and required excellence (MRC) and accordance (MRC) and accordance biometer county signature Manual Recognition Arrangement (MRC) the Material PRO (MST), a national laboratory duronest recurst and required excellence (MRC) and accordance (MRC) and accordance biometer county signature Manual Recognition Arrangement (MRC), and accordance (MRC) and accordance biometer county signature for the measurement count counter county accordance by an accordance (MRC) and accordance and particular counter and particular counter counter accordance (MRC) and accordance (MRC				Due date:	October 14, 2016
Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Ma The calibration certificate it tested in accordance with the applicable requirements of ISO/IEC 17035 and Ufrich Menology's guilary menual QM-09 Berking 9. Measurements or are reaceable to either the National Reacarch Coundo (NRC), the National Initiate of Standards and Technology (NRT), a national laboratory of another country signatory Mahad Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. Fri measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.	Model no.:	TH-3		Procedure no.:	MET/CAL
Humidity: 35 - 55% RH. Metrologist: NFS Property of: SBI 260 RUE DE COPENHAGUE David Llorens, Quality Ma The calibration certificate is tissued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology? spating memal QM-09 Revision 9. Measurement reare traceable to either the National Research Council Canada (NRC), the National Initiate of Shandards and Technology (NST), a national laboratory of another country signatory Madual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Recourse in the source of 80% (reading of 75.1% instead of 77% minimum). Water in the difference (MBM) is out of tolerance (@80% (reading of 75.1% instead of 77% minimum). Water in the difference (%80% (reading of 75.1% instead of 77% minimum).	Serial no.:	101004044		Environment:	CLAS Type 2 Laboratory
Metrologist: NFS Property of: SBI 200 CUP DE DE OCOPENHAGUE David Liorens, Quality Ma This calibration certificate it issued in accordance with the apadicable requirement of 100/1EC 17025 and Ulrich Metrology 2000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and the corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and corract present for an econology 1000/100, and and and present for an econology 1000/100, and and and an equivalence agreement. CALIBRATION STANDARDS Bee notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. Fineses uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Note: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @800% (reading of 75.1% instead of 77% minimum). Water and the adjustrement form manufacturer. <td></td> <td></td> <td></td> <td>Temperature:</td> <td>23 ± 2°C</td>				Temperature:	23 ± 2°C
Property of: SBI 250 RUE DE COPENHAGUE David Liorens, Quality Ma Caluary and the experiment of the applicable requirements of ISO/IEC 17032 and Unick Metrology (MISD, an automal Laboratory and another country signators) This calibration certificate is tassed in accordance with the applicable requirements of ISO/IEC 17032 and Unick Metrology (MISD, an automal Laboratory and another country signators) This calibration of the the National Assessment (MIA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Requirement RECEIVED OUT OF SPECIFICATIONS: right humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). Waiguttment. No support from manufacturer.				Humidity:	35 - 55% RH
250 RUE DE COPENHAGUE David Llorens, Quality Ma 37-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Ma This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's guality manual QM-09 Revision 9. Measurement receives on the halonal laboratory of another country signators Mahad Recognition Arrangement (MRA), the National Institute of Standards and Technology (NRS), a national laboratory of another country signators CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Motes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: righ humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No support from manufacturer.				Metrologist:	NFS
250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Ma This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's guality manual QM-09 Revision 9. Measurement results are traceable to either the National Research Cauncel Caunada (NRC), the National Institute of Standards and Technology (NRS), a national laboratory of another country signatory Manual Recognition Attrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS Bee notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For neasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: tigh humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No support from manufacturer.					
ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Ma This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17035 and Utrich Metrology's quality manual QM-09 Revision 9. Measurement reaver traceable to either the National Research Council Canada (NRC), the National Interface of Standards and Technology (NST), a national laboratory of another country signatory Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceeded (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No support from manufacturer.	Property of:				0 1 11
This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC17025 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement receiver traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.		250 RUE DE COPEN	IHAGUE		Hand Ilorene
The recease is the relevance of the National Research Council Canada (NRC), the National Institute of Standards and Technology (NRS), a national laboratory of another country signatory dutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For neasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA Received for measurement results. Received for tolerance @80% (reading of 75.1% instead of 77% minimum). Received for measurement for manufacturer.		ST-AUGUSTIN-DE-D	ESMAURES, QC G3A 2H3	Approved by:	David Llorens, Quality Manager
(4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.	See notes below.				
See next page for measurement results. Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.	See notes below, MEASUREMENT UN The above listed instr	ICERTAINTY	s all specifications as stated	in the reference procedure,	unless noted otherwise. For
Notes: EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.	See notes below. MEASUREMENT UN The above listed instr measurement results	ICERTAINTY ument meets or exceed associated with the con	formance to a tolerance, the	uncertainty in the measurer	nent system did not exceed 25%
EQUIPMENT RECEIVED OUT OF SPECIFICATIONS: High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra	ICERTAINTY ument meets or exceed associated with the con atio) of the acceptable to	formance to a tolerance, the	uncertainty in the measurer	nent system did not exceed 25%
High humidity is out of tolerance @80% (reading of 75.1% instead of 77% minimum). No adjustment. No support from manufacturer.	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DATA	ICERTAINTY ument meets or exceed associated with the con atio) of the acceptable to	formance to a tolerance, the	uncertainty in the measurer	nent system did not exceed 25%
No adjustment. No support from manufacturer.	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DATA See next page for me	ICERTAINTY ument meets or exceed associated with the con atio) of the acceptable to	formance to a tolerance, the	uncertainty in the measurer	nent system did not exceed 25%
LIMITED CALIBRATION	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DAT/ See next page for me Notes:	ICERTAINTY ument meets or exceed associated with the con atio) of the acceptable to asurement results.	formance to a tolerance, the olerance for each characteris	uncertainty in the measurer	nent system did not exceed 25%
	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DAT/ See next page for me Notes: EQUIPMENT RECE High humidity is out	ICERTAINTY ument meets or exceed associated with the con atio) of the acceptable to asurement results. EIVED OUT OF SPEC t of tolerance @80% (formance to a tolerance, the olerance for each characteris CIFICATIONS: (reading of 75.1% instead	uncertainty in the measure tic calibrated, unless otherv	nent system did not exceed 25%
	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DAT/ See next page for me Notes: EQUIPMENT RECE High humidity is out	ICERTAINTY ument meets or exceed associated with the con atio) of the acceptable to asurement results. EIVED OUT OF SPEC t of tolerance @80% (formance to a tolerance, the olerance for each characteris CIFICATIONS: (reading of 75.1% instead	uncertainty in the measure tic calibrated, unless otherv	nent system did not exceed 2
	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DAT/ See next page for me Notes: EQUIPMENT RECE High humidity is out No adjustment. No a	ICERTAINTY rument meets or exceed associated with the con atio) of the acceptable to a asurement results. EIVED OUT OF SPEC t of tolerance @80% (support from manufac	formance to a tolerance, the olerance for each characteris CIFICATIONS: (reading of 75.1% instead	uncertainty in the measure tic calibrated, unless otherv	nent system did not exceed 25
	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DAT/ See next page for me Notes: EQUIPMENT RECE High humidity is out No adjustment. No a	ICERTAINTY rument meets or exceed associated with the con atio) of the acceptable to a asurement results. EIVED OUT OF SPEC t of tolerance @80% (support from manufac	formance to a tolerance, the olerance for each characteris CIFICATIONS: (reading of 75.1% instead	uncertainty in the measure tic calibrated, unless otherv	nent system did not exceed 25%
Copyright of this Calibration: Cartificale CE-633 is served by Ulrich Metrology Inc. and may not be reprodued other than in full except with the prior exproved of Ulrich Metrology Inc. 220673 L	See notes below. MEASUREMENT UN The above listed instr measurement results (4:1 test uncertainty ra CALIBRATION DAT/ See next page for me Notes: EQUIPMENT RECE High humidity is out No adjustment. No a	ICERTAINTY rument meets or exceed associated with the con atio) of the acceptable to a asurement results. EIVED OUT OF SPEC t of tolerance @80% (support from manufac	formance to a tolerance, the olerance for each characteris CIFICATIONS: (reading of 75.1% instead	uncertainty in the measure tic calibrated, unless otherv	nent system did not exceed 25%

400- App-C Calibration Documents (page 6 of 64)

CALIBRATION DATA Certificate no: 499310 Identification: THERMO-HYGROMETER Serial no:: 101004044 Procedure: Amprobe TH-3: 2500ST-LT-M CALIBRATION STANDARDS Identification CALIBRATION STANDARDS Identification Description Manufacturer Model no. Cal. Date Due Date 1904953 HUMIDITY GENERATOR MEASUREMENT RESULTS (Per METICAL) TEVE PRAMETER TRUE TEMPERATURE CALIBRATION 23.00 23°C 23.01 23°C 23.03 23°C 23.01 Colis 19.00 17.01 23.01 2056 RH 19.00 20.014 19.00 19.02 75.10 70.02 83.00 PASS 20.013 75.10 70.00 83.00 80.003 75.10 80.003 75.10 80.003 75.10 90.003 75.10	9912.	eb Métrologie inc. ch Metrology inc. , Côte-de-Liesse réal (Québec) H8T 1A1	Tél. (614) 631 Fax (614) 631 info@ulrich.ca www.ulrich	l-6122 a				
Identification:SBI-213 Description:Condition:FOUND-LEFTDescription:THERMO-HYGROMETER Serial no.:101004044 Procedure:Amprobe TH-3: 2500ST-LT-MCALIBRATION STANDARDSIdentificationDescriptionManufacturerModel no.Cal. DateDue Date1304953HUMIDITY GENERATORTHUNDER SCIENTIFIC2500ST-LT2015/06/192016/06/2MEASUREMENT RESULTS (Per MET/CAL)TRUETESTACCEPTANCE LIMITSPASS/ FAILPARAMETERVALUETESTACCEPTANCE LIMITSPASS/ FAILTURTEMPERATURE CALIBRATION 23°C 23.01degC23.3022.2123.81PASSRELATIVE HUMIDITY CALIBRATION AT 23°C 20.01%19.0017.0123.01PASS50% RH 50.02%48.4047.0253.02PASS80% RH 80.00%75.1077.0083.00FAIL	CALIBRA	ATION DATA						
IdentificationDescriptionManufacturerModel no.Cal. DateDue Date1304953HUMIDITY GENERATORTHUNDER SCIENTIFIC2500ST-LT2015/06/192016/05/3MEASUREMENT RESULTS (Per MET/CAL)TRUETESTACCEPTANCE LIMITSPASS/PARAMETERVALUERESULTLOWHIGHFAILTURTEMPERATURE CALIBRATION23°C23.3022.2123.81PASS23.01degC23.3022.2123.61PASSRELATIVE HUMIDITY CALIBRATION AT 23°C20% RH19.0017.0123.01PASS50% RH50.02%48.4047.0253.02PASS80% RH80.00%75.1077.0083.00FAIL	Identification: Description: Serial no.:	SBI-213 THERMO-HYGROMETI 101004044						
1304953 HUMIDITY GENERATOR THUNDER SCIENTIFIC 2500ST-LT 2015/06/19 2016/06/2 MEASUREMENT RESULTS (Per MET/CAL) TRUE TEST ACCEPTANCE LIMITS PASS/ PARAMETER TRUE TEST ACCEPTANCE LIMITS PASS/ TEMPERATURE CALIBRATION 23.00 22.21 23.81 PASS RELATIVE HUMIDITY CALIBRATION AT 23°C 23.01 9.00 17.01 23.01 PASS 50% RH 50.02% 48.40 47.02 53.02 PASS 80.00% 75.10 77.00 83.00 FAIL								
TRUETESTACCEPTANCE LIMITSPASS/PARAMETERVALUERESULTLOWHIGHFAILTURTEMPERATURE CALIBRATION23°C23.01degC23.3022.2123.81PASSRELATIVE HUMIDITY CALIBRATION AT 23°C20% RH20.01%19.0017.0123.01PASS50% RH50.02%48.4047.0253.02PASS80% RH80.00%75.1077.0083.00FAIL					NTIFIC			
TEMPERATURE CALIBRATION 23°C 23.01degC 23.30 22.21 23.81 PASS RELATIVE HUMIDITY CALIBRATION AT 23°C 20% RH 19.00 17.01 23.01 PASS 50% RH 50.02% 48.40 47.02 53.02 PASS 80.00% 75.10 77.00 83.00 FAIL	MEASUREMENT	RESULTS (Per MET/CAL)		TEST	ACCEPTA	NCE LIMITS	PASS/	
23°C 23.01degC 23.30 22.21 23.81 PASS RELATIVE HUMIDITY CALIBRATION AT 23°C 20% RH 20.01% 19.00 17.01 23.01 PASS 50% RH 50.02% 48.40 47.02 53.02 PASS 80% RH 80.00% 75.10 77.00 83.00 FAIL	PARAMETER		VALUE	RESULT	LOW	HIGH	FAIL	TUR
23.01degC 23.30 22.21 23.81 PASS RELATIVE HUMIDITY CALIBRATION AT 23°C 20% RH 19.00 17.01 23.01 PASS 50% RH 19.00 17.01 23.02 PASS 50.02% 48.40 47.02 53.02 PASS 80.00% 75.10 77.00 83.00 FAIL		LIBRATION						
20% RH 20.01% 19.00 17.01 23.01 PASS 50% RH 50.02% 48.40 47.02 53.02 PASS 80% RH 80.00% 75.10 77.00 83.00 FAIL				23.30	22.21	23.81	PASS	
20.01% 19.00 17.01 23.01 PASS 50% RH 50.02% 48.40 47.02 53.02 PASS 80% RH 75.10 77.00 83.00 FAIL	RELATIVE HUMID	ITY CALIBRATION AT 23	3°C					
50% RH 50.02% 48.40 47.02 53.02 PASS 80% RH 80.00% 75.10 77.00 83.00				19.00	17.01	23.01	PASS	
80% RH 80.00% 75.10 77.00 83.00 FAIL								
	80% RH							
	80.00%		Enc		77.00	83.00	FAIL	

400- App-C Calibration Documents (page 7 of 64)

1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER	é par l'American Association f	for		ANS	ISO 9001 Register I/NCSL Z540-1 Accréd	
Laborato	ALIBRATION #1902.02					
ULKI.O		cat d'étalo	nnage			
Client						
Société :	SBI Fabricant De Poeles					
Adresse :	250 Rue de Copenhague					
Ville :	Saint-Augustin-De-Desma	aures <i>État/Pro</i>	vince :	Quebec		
Code postal :	G3A 2H3	Astea C	ustomer ID:	3002762	57	
Instrument						
Constructeur :	Ohaus	Modèle	de terminal :	N/A		
Modèle :	FD15	# série	du terminal:	N/A		
No de série :	B144397174	# série	# série de l'imprimant		N/A	
Capacité :	15000 g		_		N/A	
Résolution :	1 g	Nbre de	Divisions:	15000		
Classe :		Procédu	ure utilisée :	NIST Ha	ndbook 44	
No./ID d'inventaire:	SBI-222					
Procédure:	Le présent certificat est ér l'A2LA, en vertu de la nom laboratoire et la traçabilité	me ISO/IEC 17025. A2	LA a évalué la			
Date de calibrage :	1-avr-2016	Date, pl	rochaine Cal.	31-mars-	-2017	
Signataire autorisé (A2LA) :	Dany Careau	Signatu	re:	ELECTR	ONIC SIGNATURE	
Étalons de trava	il					
Retracabilité:	Les poids de test utilisés :	se réfèrent au National	Institute of Sta	ndards and	I Technology.	
Jeu de poids no :	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étai	onnage :	Date proch. étalonnag	
0718	M15-050	M1	22-avr-	2015	22-avr-2016	
142	MT00997	F1	7-mai-	2014	30-avr-2016	
Q1	1415126	M1	1-juin-	2015	1-juin-2016	

400- App-C Calibration Documents (page 8 of 64)

Rapport d'étalonn	nage No. CA000	03-504-04011	6		Μ	ETTLER	TOLEDO
Résultats	de mesure)					
La température :	22 °C						
	Les con	ditions ambia	ntes ont é	té vérifiées afin	d'assurer l'exact	titude de l'étalonna	age.
Test de vari	ation						
	7				Avent Déalea		
□ _{1 2} □	Poids	Appliqués	Po	sition	Avant Réglag Valeur lue		
⁴ ³		5000 g		sition 1	5000 g		
		5000 g		sition 2	5000 g		
		5000 g		sition 3	5000 g		
		5000 g	Pos	sition 4	5000 g		
		naximum :	•		0 g		
	Max Err	eur Admissibl	e:		5 g		
Linéarité							
1							
	Defide Annelieurée	1/-1		Avant rég	-	5	Dana la Talénana
	Poids Appliqués	Valeur	lue		rreur	Erreur admissible	Dans la Tolérance
Zero 1,00	0 g	0 g		0 g	0 d	1 d	OUI
2,00	200 g	200	g	0 g	0 d	1 d	OUI
3,00	1000 g	1000		0 g	0 d	2 d	OUI
4,00	5000 g	5000		0 g	0 d	5 d	OUI
5,00	10000 g	1000	-	0 g	0 d	5 d	OUI
Max 6,00	15000 g	1500) g	0 g	0 d	5 d	OUI
Méthode	de substitution utili	sée					
Un réglage de la	balance a été requi ats "avant réglage"	s	t aux résu	lltats tel que lai	ssé.		
							Page 2 sur
Version Logiciel :	4.6.2.10					C	METTLER TOLED

400- App-C Calibration Documents (page 9 of 64)

	Rappo	ort d'étalonnage No.	CA0003-504-040116		METTLER TOLED)0
Chargé Vide Différence 1 5000 g 0 g 5000 g 2 5000 g 0 g 5000 g 3 5000 g 0 g 5000 g 3 5000 g 0 g 5000 g Erreur maximale : 0 g 0,0 d Tolérance : 5 g 5 d Incertitude	Répé	tabilité				
1 5000 g 0 g 5000 g 2 5000 g 0 g 5000 g 3 5000 g 0 g 5000 g Erreur maximale : 0 g 0,0 d Tolérance : 5 g 5 d Incertitude Mesure de l'incertitude =	Poids	appliqués : 5000 g	g			
2 5000 g 0 g 5000 g 3 5000 g 0 g 5000 g Erreur maximale : 0 g 0,0 d Tolérance : 5 g 5 d Incertitude Mesure de l'incertitude =		Chargé	Vide	Différence		
3 5000 g 0 g 5000 g Erreur maximale : 0 g 0,0 d Tolérance : 5 g 5 d Incertitude Mesure de l'incertitude =	1	5000 g	0 g	5000 g	-	
Erreur maximale : 0 g 0,0 d Tolérance : 5 g 5 d Incertitude Mesure de l'incertitude = 0,60 g L'incertitude de mesure représente les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du	2	5000 g	0 g	5000 g		
Tolérance : 5 g 5 d Incertitude Mesure de l'incertitude = 0,60 g L'incertitude de mesure représente les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude par l'article en étalonnage et d'effets indésirables causés par le transport du	3	5000 g	0 g	5000 g		
Incertitude Mesure de l'incertitude =		Erreur maximale :	0 g	0,0 d	_	
Mesure de l'incertitude =0,60 g L'incertitude de mesure représente les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du		Tolérance :	5 g	5 d		
Mesure de l'incertitude = 0,60 g L'incertitude de mesure représente les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du	Incor	titudo				
L'incertitude de mesure représente les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du	meer	liluue				
de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du	Mesur	e de l'incertitude =	0,60 g			
					ande que le GMC.	
					ande que le CMC.	

400- App-C Calibration Documents (page 10 of 64)

Rapport d'étalonnage No. CA0003-504-040116

METTLER TOLEDO

Certificat de Pesée Minimale

Incertitude de mesure élargie

U = Uo Ur1 = 1g

Exemple d'incertitudes élargies pour différentes valeurs de poids net :

Poids Net Affiché	Incertitude de	mesure élargie
15 g	1 g	4,00000 %
150 g	1 g	0,40000 %
1500 g	1 g	0,04000 %
7500 g	1 g	0,00800 %
15000 g	1 g	0,00400 %

Explication sur le tableau de pesée minimale

Les valeurs du poids net affiché indiquées dans le tableau suivant sont les valeurs des pesées minimales. Pour ces valeurs, l'incertitude élargie de mesure, multipliée par un Facteur de Sécurité (1, 2, 3 ou 5) est inférieure ou égale à <u>l'Erreur</u> Relative R

Tableau des Pesées Minimales pour différentes Erreurs Relatives et différents Facteurs de Sécurité

		Facteur de	e Sécurité FS	
Erreur Relative Requise	1x FS = 1	2x FS = 2	3x FS = 3	5x FS = 5
0.1 %	600 g	1200 g	1800 g	3000 g
0.2 %	300 g	600 g	900 g	1500 g
0.5 %	120 g	240 g	360 g	600 g
1 %	60 g	120 g	180 g	300 g
2 %	30 g	60 g	90 g	150 g
5 %	12 g	24 g	36 g	60 g

Remarques sur les valeurs de pesée minimale du tableau ci-dessus :

1. "N/A" est indiqué dans le tableau quand aucune valeur appropriée n'a pu être calculée.

2. Pour les instrument à étendues et échelons multiples, les valeurs indiquées dans le tableau ci-dessus s'appliquent à la plus petite étendue de mesure.

3. METTLER TOLEDO ne peut être tenu pour responsable du choix retenu concernant la sélection de l'Erreur

Relative Requise ou du Facteur de Sécurité

4. Le client veille à ce que les paramètres de réglage restent identiques à ceux utilisés pour l'établissement de ce

Constat de Vérification Standard.

 Le client veille à ce que l'environnement demeure identique aux conditions de travail retenues pour l'établissement de ce Constat de Vérification Standard.

Remarques

Aucune.

Version Logiciel : 4.6.2.10

Page 4 sur 4

© METTLER TOLEDO Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur.

400- App-C Calibration Documents (page 11 of 64)

ALIBRATI	ECISION ION INC.		22835 IN GRASS V	CISION CALIBRA DUSTRIAL PLAC /ALLEY CA 9594 10-268-1860	CE		ilac MR		REPUTED
		c	ertificate	of Calil	bratio	n	"Andadadadadad	Calibra	lion Laboratory RT # 935.01
Date: Jun 10, 2	2015					(Cert No. 2	22008122	545130
Customer:									
STOVE BUILDE	RS INTERN	ATIONAL INC.							
PORTES 11-12 250 DE COPENI	HAGUE								
SAINT-AUGUST		MAURES QC G	BA 2H3	Work Orde	er #:	SAC-70072	244		
				Purchase (Order #:	44831			
MPC Control #:	DA0649			Serial Num	nber:	160S-24A20	w		
Asset ID:	SBI-239			Departmen	nt:	N/A			
Gage Type:	PITOT ST	ATIC TUBE		Performed		BARRY MO	RRIS		
Manufacturer:	DWYER I	NSTRUMENTS,	INC.	Received (IN TOLERA			
Model Number:	160S-24			Returned C		IN TOLERA			
Size:	N/A			Cal. Date:		June 09, 20			
Temp/RH:	69°F / 41 9	%		Cal. Interva	al:	12 MONTHS			
Calibration No				Cal. Due D	ate:	June 09, 20	16		
1 Tested At:	scription	Standard 0.100	0.090	0.110	0.100	As Left 0.100	in/H20	Passed	Uncertainty 0.003
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: 5tandards Use I.D. AW3587	ed to Calib Descrij T MULTI-FUNC	0.100 0.200 0.300 0.400 orate Equipmen ption. IMER TION PRESSURE	0.090 0.190 0.290 0.390		0.100 0.200 0.300 0.400 Man			Passed Passed Passed Passed ate Tra	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: 5tandards Use I.D. AW3587	ed to Calib Descrij T MULTI-FUNC IND	0.100 0.200 0.300 0.400 orate Equipmen ption. MER TION PRESSURE ICATOR	0.090 0.190 0.290 0.390 nt Model N/A	0.110 0.210 0.310 0.410 Serial N/A	0.100 0.200 0.300 0.400 Man	0.100 0.200 0.300 0.400 ufacturer PORTLINE	in/H20 in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20	Passed Passed Passed Passed ate Tra	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use I.D. AW3587 AW4419 Procedures Use	ed to Calib Descrij T MULTI-FUNC IND	0.100 0.200 0.300 0.400 orate Equipmen ption. MER TION PRESSURE ICATOR	0.090 0.190 0.290 0.390 nt Model N/A DPI 145	0.110 0.210 0.310 0.410 Serial N/A 14501283	0.100 0.200 0.300 0.400 Man	0.100 0.200 0.300 0.400 ufacturer PORTLINE	in/H20 in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20	Passed Passed Passed Passed ate Tra	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use 1.D. AW3587 AW4419 Procedures Use Procedu	ed to Calib Descrij T MULTI-FUNC IND sed in this	0.100 0.200 0.300 0.400 orate Equipmen ption. MER TION PRESSURE ICATOR	0.090 0.190 0.290 0.390 nt Model N/A DPI 145	0.110 0.210 0.310 0.410 Serial N/A 14501283	0.100 0.200 0.300 0.400 Man SF	0.100 0.200 0.300 0.400 utacturer PORTLINE DRUCK	in/H20 in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20	Passed Passed Passed Passed ate Tra	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use 1.D. AW3587 AW4419 Procedures Use Procedu	ed to Calib Descrij T MULTI-FUNC IND sed in this	0.100 0.200 0.300 0.400 orate Equipmen ption. MER TION PRESSURE ICATOR	0.090 0.190 0.290 0.390 nt Model N/A DPI 145	0.110 0.210 0.310 0.410 Serial N/A 14501283	0.100 0.200 0.300 0.400 Man	0.100 0.200 0.300 0.400 utacturer PORTLINE DRUCK	in/H20 in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20	Passed Passed Passed Passed ate Tra	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use 1.D. AW3587 AW4419 Procedures Use Procedu	ed to Calib Descrij T MULTI-FUNC IND sed in this ure Name PC-00062	0.100 0.200 0.300 0.400 wrate Equipment ption. IMER TION PRESSURE ICATOR Event	0.090 0.190 0.290 0.390 nt Model N/A DPI 145	0.110 0.210 0.310 0.410 Serial N/A 14501283 scription Pressu	0.100 0.200 0.300 0.400 Man SF	0.100 0.200 0.300 0.400 ufacturer ORTLINE DRUCK	in/H20 in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20	Passed Passed Passed Passed ate Tra	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use I.D. AVV3587 AVV419 Procedures Use Procedu	ed to Calib Descrij T MULTI-FUNC IND sed in this ure Name PC-00062	0.100 0.200 0.300 0.400 wrate Equipment ption. IMER TION PRESSURE ICATOR Event	0.090 0.190 0.290 0.390 nt Model N/A DPI 145 Des	0.110 0.210 0.310 0.410 Serial N/A 14501283 scription Pressu	0.100 0.200 0.300 0.400 Man SF	0.100 0.200 0.300 0.400 ufacturer ORTLINE DRUCK	in/H20 in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20	Passed Passed Passed ate Tra 16 2220 015 200	0.003 0.003 0.003 0.003 ceability #
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use I.D. AVV3587 AVV419 Procedures Use Procedu	ed to Calib Descrip T MULTI-FUNC IND sed in this ure Name PC-00062 nician:	0.100 0.200 0.300 0.400 wrate Equipment ption. IMER TION PRESSURE ICATOR Event BARRY M BARRY M ement is stated as the st uncertainty of measure	0.090 0.190 0.290 0.390 nt Model N/A DPI 145 Des Des Des DRRIS	0.110 0.210 0.310 0.410 Serial N/A 14501283 Scription Pressu	0.100 0.200 0.300 0.400 Man SF ure and Vacu	0.100 0.200 0.300 0.400 utfacturer PORTLINE DRUCK	in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20 Nov 19, 21 Brian	Passed Passed Passed ate Tra 16 2220 015 200 Gold	0.003 0.003 0.003 0.003 ceability # 100122539735 18120226860
1 Tested At: 2 Tested At: 3 Tested At: 4 Tested At: Standards Use I.D. AW3587 AW4419 Procedures Us Procedu Mf Calibrating Techn	ed to Calib Descrip T MULTI-FUNC IND sed in this ure Name PC-00062 nician:	0.100 0.200 0.300 0.400 wrate Equipment ption. IMER TION PRESSURE ICATOR Event BARRY Multiple BARRY Multiple BARRY Multiple esubmilled/accounter of measure of uncertainty of uncertainty of measure of uncertainty of uncertaint	0.090 0.190 0.290 0.390 nt Model N/A DPI 145 De: De: DRRIS	0.110 0.210 0.310 0.410 Serial N/A 14501283 scription Pressu d in accordance with isomer purchase order	0.100 0.200 0.300 0.400 Man SF ure and Vacu	0.100 0.200 0.300 0.400 ufacturer PORTLINE DRUCK	in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20 Nov 19, 20 Dov 19, 20 Brian	Passed Passed Passed ate Tra 16 2220 015 200 Gold n corresponds 4 Edition, Serv	0.003 0.003
 Tested At: Tested At: Tested At: Tested At: Tested At: Tested At: Standards Use I.D. AV3587 AV4419 Procedures Us Procedures Us Calibrating Techn challbrating Techn challbrating of approximately more calibration cycles and result	ed to Calib Descrij T MULTI-FUNC IND sed in this ure Name PC-00062 nician: 95%. The standa 5, ANSI/NCSL 254 ting due dates were be based on frequ to SI through the N	0.100 0.200 0.300 0.400 wrate Equipment ption. IMER TION PRESSURE ICATOR Event BARRY MU BARRY MU ement is stated as the sti iourity of measure to uncertainty of the uncertainty	0.090 0.190 0.290 0.390 nt Model N/A DPI 145 Der Der Der Der Der Der Der Der Der Der	0.110 0.210 0.310 0.410 Serial N/A 14501283 Scription Pressu di naccordance with Nomer purchase order er of factors may cause er's established system	0.100 0.200 0.300 0.400 Man SF ure and Vacu QC Approv	0.100 0.200 0.300 0.400 Ufacturer PORTLINE DRUCK Jum Yal: Jactor k=2, which for a and NIST Technic to drift out of lolera The information on	in/H20 in/H20 in/H20 Cal. Due D Jun 4, 20 Nov 19, 20 Dun 4, 20 Dun 4, 20 Nov 19, 20 Dun 4, 20 Nov 19, 20 Dun 4, 20 Dun	Passed Passed Passed ate Tra 16 2220 015 200 015 200 Gold n corresponds 4 Edition. Serv xt scheduled of ns only to the la	0.003 0.003

400- App-C Calibration Documents (page 12 of 64)

ALIBRATI			GRASS V	ISION CALIBF USTRIAL PLA ALLEY CA 959 -268-1860	CE		Hac MR		
		Ce	ertificate	of Cal	ibratio	n	"haladahahaha		on Laboratory F # 935.01
Date: Jun 11, 2	2015					c	Cert No. 2	22008122	546708
Customer: STOVE BUILDE PORTES 11-12 250 DE COPENI SAINT-AUGUST	HAGUE	ATIONAL INC. MAURES QC G3A	2H3	Work Ord Purchase	der #: e Order #:	SAC-700722 44831	244		
MPC Control #:	DA0650			Serial Nu	mber:	1642545003	39		
Asset ID:	SBI-241			Departme	ent:	N/A			
Gage Type:	DIGITAL	ANE/HOT-WIRE	ANEMOMETER	Performe	d By:	BARRY MO	RRIS		
Manufacturer:	TPI, INC.			Received	Condition:	IN TOLERA	NCE		
Model Number:	575			Returned	Condition:	IN TOLERA	NCE		
Size:	N/A			Cal. Date		June 09, 20			
Temp/RH:	69°F / 41 9	6		Cal. Inter		12 MONTHS			
i omprivit.				Cal. Inter		June 09, 20			
Calibration No	tes:			Cal. Due	Date.				
2 Vane: 3 Vane: 4 Vane 5 Velocity (Hot W 6 Hot Wire: 7 Hot Wire: 8 Hot Wire: 9 Temperature: 10 Temperature: Standards Use		400 600 800 200 400 600 800 68.00 100.00 rate Equipment	389 585 781 187 377 567 757 66.30 98.00	411 615 819 213 423 633 843 69.70 102.00	402 604 804 203 405 608 807 68.00 100.20	402 604 804 203 405 608 807 68.00 100.20	ft/min ft/min ft/min ft/min ft/min ft/min Deg F Deg F	Passed Passed Passed Passed Passed Passed Passed Passed	0.13 0.2 0.26 0.07 0.13 0.2 0.26 0.01 0.01
I.D.	Descri	otion.	Model	Serial	Mar	ufacturer	Cal. Due D	ate Tra	ceability #
CJ5100 W	IND TUNNEL	WITH CONTROLLER		375/305		ERACTIVE	Nov 21, 2		081223175
Calibrating Techr	nician:	Barry	morris		QC Appro	val:	3:1-	Sels	2
		BARRY MO	RRIS				Brian	Gold	
probability of approximately	95%. The standa	ement is stated as the stan rd uncertainty of measurem	nent has been determine	d in accordance w	ith EA's Publication	factor k=2, which fo on and NIST Technic	r normal distributi al Note 1297, 19	on corresponds 94 Edition. Serv	to a coverage ices rendered
Calibration cycles and resul	lting due dates we	40-1, MPC Quality Manual, re submitted/approved by IP iency of use, environmental	ne customer. Any numb	er of factors may c	ause an instrume	nt to drift out of toler . The information or	ance before the n n this report, perta	ext scheduled c ains only to the	alibration. Instrument
	to SI through the Muction and are we	lational Institute of Standar manted for no less than third	ds and Technology (NIS ly (30) days. This report	T) and/or recogniz may not be reprod	ed national or inte uced in part or in	ernational standards a whole without the	laboratories. Ser prior written appro	vices rendered	include proper ng MPC lab.
Il standards are traceable nanufacturer's service instr									-

400- App-C Calibration Documents (page 13 of 64)

ALIBRATION INC.	22835 INDU GRASS VAI	ION CALIBRATION STRIAL PLACE LLEY CA 95949 268-1860		AC MEA	20
C	ertificate	of Calibrat	ion	Maladalah .	Calibration Laboratory CERT # 935.01
Date: Jun 11, 2015				Cert No. 22200	8122546708
AE2821 ANEMOMETER AV5000 ENVIRONMENTAL CHAMBER CL7456 STANDARD PLATINUM RESISTANCE THERMOMETER	AM-4822 BTX-475 5681	N272316 0612421 1595	INSTRUMENTS LANDTEK ESPEC FLUKE	Nov 12, 2015 Dec 15, 2015 Dec 4, 2015	22008120219788 22200812234288 A7B16006
PROBE Procedures Used in this Event					
Procedure Name	Desc	ription			
MPC-00132	2000	Anemometers Calibr	ation Procedure		
Calibrating Technician:	Man.	QC Ap	proval:	BA	lQ
	morris		C	5	
BARRY MO				Brian Gol	
The reported expanded uncertainty of measurement is stated as the sta probability of approximately 95%. The standard uncertainty of measure comply with ISO 17025:2005, ANSI/NCSL 2540-1, MPC Quality Manua	ment has been determined	In accordance with EA's Pub	lication and NIST Tec		
Calibration cycles and resulting due dates were submitted/approved by Recalibration cycles should be based on frequency of use, environment dentified.	the customer. Any number lal conditions and customer	of factors may cause an Insi 's established systematic acc	rument to drift out of to uracy. The informatio	plerance before the next sch n on this report, pertains on	eduled calibration. y to the instrument
venumeu. All standards are traceable to SI through the National Institute of Stands manufacturer's service instruction and are warranted for no less than th	ards and Technology (NIST Irty (30) days. This report m Page 2 o	ay not be reproduced in part	or international standa or in a whole without t	rds laboratories. Services r the prior written approval of	endered include proper the issuing MPC lab. (CERT, Rev 3)

400- App-C Calibration Documents (page 14 of 64)

				"databo	CALIBRATION CERT #2260.01
Procedure: D	wyer MS-121-LCD (0 to 0.1;0.25;0.5 inH2O/752	0lp 8845A: Rev.1.0.A		Page 1 of 4
<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer MS-121-LCD E52U0100523 SBI-250 Digital Pressure	Gauge	Calibration Report No.: Adjusted: Condition: Calibration Date:	AC15081457-E52U0100 No Out of Tolerance 3-Sep-2015	523
<u>Customer</u>	250 RUE DE CC	R INTERNATIONAL INC. PENHAGUE DESMAURES, QC	Environment Temperature: Humidity:	25.3°C 58%RH	
Instrumentation I and in compliance	nc. certifies this instru- ic with ISO/IEC-17025	a normal distribution correspon- ment was calibrated on the dat 2005 and ANSI/NCSL Z540-1.	nds to a coverage probabi e shown using standards	ed as the standard measurement ility of approximately 95 percent. traceable to NIST/NRC or accept	Alpha Controls & ed intrinsic standards
Any statement of tolerance only. The tolerance only and the tolerance only and the tolerance only and the tolerance of t	f compliance is made v he customer must ens	without taking measurement un ure equipment calibrated meet	certainty into account and s the intended use.	d is based on UUT performance a	gainst required
Tolerance is base	ed on manufacturer sp	ecification if not stated otherwi	se. Calibration results rela	ate to items calibrated only.	
		ecification if not stated otherwi			
This report shall I					
This report shall i STANDARDS					Recall Date
	not be reproduced exc	ept in full without written appro	val of Alpha Controls and	Instrumentation Inc.	Recall Date 1-Oct-2015 16-Jan-2016
This report shall i STANDARDS Instrument Low Pressure Ca Multimeter	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall i STANDARDS Instrument Low Pressure Ca Multimeter REMARKS:	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall i STANDARDS Instrument Low Pressure Ca Multimeter REMARKS:	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall i STANDARDS Instrument Low Pressure Ca Multimeter REMARKS:	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall i STANDARDS Instrument Low Pressure Ca	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall instrument Low Pressure Ca Multimeter	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall i STANDARDS Instrument Low Pressure Ca Multimeter REMARKS:	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall instrument Low Pressure Ca Multimeter	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall instrument Low Pressure Ca Multimeter	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall instrument Low Pressure Ca Multimeter	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015
This report shall instrument Low Pressure Ca Multimeter	not be reproduced exc	ept in full without written appro Model Ruska 7250LP	val of Alpha Controls and ID No./Serial No. PRE-CAL-06	Instrumentation Inc. Traceability No. 1500171325/15000171326	1-Oct-2015

400- App-C Calibration Documents (page 15 of 64)

CONTROLS EINSTRUMENTATION	ĸe		of Calibra As Found	ation	ilac	MRA	ACCREDITED CALIBRATION CERT #2260.01
Procedure: Dwyer MS-121-LCD 0	to 0.1;0.25;0.5	inH2O/7520)lp 8845A: Rev.1.0.4	N			Page 2 of 4
UUT Wade by: Dwyer Model: MS-121-LCD Serial No.: E52U0100523 D No.: SBI-250 Description: Digital Pressure (Gauge		Calibration Report No.: Adjusted: Condition: Calibration Date:	AC1508 No Out of To 3-Sep-20		100523	
Test Description	STD	UUT	Error	Tolerance	<u>Units</u>	<u>P/F</u>	Uncertainty
Range: 0 to 0.1 inH2O Output signal: 4 to 20 mA PRESSURE TEST Display Reading		-0.0076					
Output @ 0.0000 inH2O, mA		3.497					
0.000 inH2O Display Reading Output @ 0.025 inH2O, mA	0.0000	-0.0031 0.0176 6.831	-0.0031	±0.0020	inH2O	Fail	1,5e-04
0.025 inH2O Display Reading Output @ 0.050 inH2O, mA	0.0250	0.0183 0.0430 10.934	-0.0067	±0.0020	inH2O	Fail	1.5e-04
0.050 inH2O Display Reading	0.0500	0.0433 0.0684	-0.0067	±0.0020	inH2O	Fail	1.5e-04
Output @ 0.075 inH2O, mA 0.075 inH2O Display Reading	0.0750	14.954 0.0685 0.0938	-0.0065	±0.0020	inH2O	Fail	1.5e-04
Output @ 0.100 inH2O, mA 0.100 inH2O Display Reading	0.1000	19.018 0.0939 0.0688	-0.0061	±0.0020	inH2O	Fail	1.5e-04
Output @ 0.075 inH2O, mA 0.075 inH2O Display Reading	0.0750	15.027 0.0689 0.0439	-0.0061	±0.0020	inH2O	Fail	1.5e-04
Output @ 0.050 inH2O, mA 0.050 inH2O Display Reading	0.0500	11.003 0.0438 0.0186	-0.0062	±0.0020	inH2O	Fail	1.5e-04
Output @ 0.025 inH2O, mA 0.025 inH2O Display Reading	0.0250	6.986 0.0187 0.0063	-0.0063	±0.0020	inH2O	Fail	1.5e-04
Output @ 0.0000 inH2O, mA 0.000 inH2O	0.0000	3.497 -0.0031	-0.0031	±0.0020	inH2O	Fail	1.5e-04
Range: 0 to 0.25 inH2O Output signal: 4 to 20 mA PRESSURE TEST		0.0000					
Display Reading Output @ 0.0000 inH2O, mA 0.0000 inH2O Display Reading	0.0000	-0.0063 3.582 -0.0000	0.0000	±0.0025	inH2O	Pass	1.5e-04
Display Reading Output @ 0.0625 inH2O, mA 0.0625 inH2O Display Reading	0.0625	0.0562 7.613 0.0565 0.1182	-0.0060	±0.0025	inH2O	Fail	1.5e-04
Display Reading Output @ 0.1250 inH2O, mA 0.1250 inH2O	0.1250	0.1182 11.595 0.1187	-0.0063	±0.0025	inH2O	Fail	1.5e-04

400- App-C Calibration Documents (page 16 of 64)

CONTROLS A INSTRUMENTAT	ON	-	of Calibra		lac	1	ACCREDITED CALIBRATION CERT #2260.01
Procedure: Dwyer MS-121-	LCD 0 to 0.1;0.25;0.5	inH2O/7520	lp 8845A: Rev.1.0.A	4			Page 3 of 4
UUT Made by: Dwyer Model: MS-121-LC Serial No.: E52U0100 ID No.: SBI-250 Description: Digital President			Calibration Report No.: Adjusted: Condition: Calibration Date:	No	1457-E52U0 olerance 015	100523	
Test Description	STD	UUT	Error	Tolerance	Units	P/E	Uncertainty
Display Reading		0.1824					
Output @ 0.1875 inH2O, r 0.1875 inH2O Display Reading	0.1875	15.648 0.1820 0.2456	-0.0055	±0.0025	inH2O	Fail	1.5e-04
Output @ 0.2500 inH2O, r 0.2500 inH2O Display Reading	0.2500	19.714 0.2455 0.1829	-0.0045	±0.0025	inH2O	Fail	1.5e-04
Output @ 0.1875 inH2O, r 0.1875 inH2O Display Reading	0.1875	15.699 0.1828 0.1196	-0.0047	±0.0025	inH2O	Fail	1.5e-04
Output @ 0.1250 inH2O, r 0.1250 inH2O Display Reading Output @ 0.0625 inH2O, r	0.1250	11.681 0.1200 0.0566 7.665	-0.0050	±0.0025	inH2O	Fail	1.5e-04
0.0625 inH2O Display Reading Output @ 0.0000 inH2O, r	0.0625	0,0573 -0.0056 3.651	-0.0052	±0.0025	inH2O	Fail	1.5e-04
0.0000 inH2O	0.0000	-0.0055	-0.0055	±0.0025	inH2O	Fail	1.5e-04
Range: 0 to 0.5 inH2O Output signal: 4 to 20 mA PRESSURE TEST							
Display Reading Output @ 0.0000 inH2O, r	nA	-0.0056 3.822					
0.0000 inH2O Display Reading Output @ 0.1250 inH2O, r	0.0000	-0.0056 0.1184 7.822	-0.0056	±0.0050	inH2O	Fail	1.5e-04
0.1250 inH2O Display Reading Output @ 0.2500 inH2O, r	0.1250	0.1194 0.2446 11.855	-0.0056	±0.0050	inH2O	Fail	1.5e-04
0.2500 inH2O Display Reading Output @ 0.3750 inH2O, r	0.2500	0.2455 0.3721 15.942	-0.0045	±0.0050	inH2O	Pass	1.5e-04
0.3750 inH2O Display Reading Output @ 0.5000 inH2O, r	0.3750	0.3732 0.4995 20.028	-0.0018	±0.0050	inH2O	Pass	1.5e-04
0.5000 inH2O Display Reading	0.5000	0.5009 0.3752 16.028	0.0009	±0.0050	inH2O	Pass	1.5e-04
Output @ 0.3750 inH2O, r 0.3750 inH2O Display Reading Output @ 0.2500 inH2O, r	0.3750	0.3759 0.2485 11.975	0,0009	±0.0050	inH2O	Pass	1.5e-04
Output @ 0.2500 inH2O, r 0.2500 inH2O	0.2500	0.2492	-0.0008	±0.0050	inH2O	Pass	1.5e-04

400- App-C Calibration Documents (page 17 of 64)

Procedure: Dwv	MS-121-LCD 0	to 0 1·0 25·0 5	inH20/7520	lp 8845A: Rev.1.0.4	۵			Page 4 of 4
		10 0.1,0.23,0.3	111120/1 520		-			
Model: Serial No.: ID No.:	Dwyer MS-121-LCD E52U0100523 SBI-250 Digital Pressure (Gauge		Calibration Report No.: Adjusted: Condition: Calibration Date:	No	1457-E52U0 olerance 015	100523	
Test Description		STD	UUT	Error	Tolerance	Units	<u>P/F</u>	Uncertainty
Display Readin	-		0.1213					
Output @ 0.12 0.1250 inH2O	50 inH2O, mA	0.1250	7.908 0.1221	-0.0029	±0.0050	inH2O	Pass	1.5e-04
Display Readir Output @ 0.00	-		-0.0034 3.891					
0.000 inH2O	00 111 120, 111	0.0000	-0.0034	-0.0034	±0.0050	inH2O	Pass	1.5e-04

400- App-C Calibration Documents (page 18 of 64)

Procedure: D			As Left	The Contraction	CALIBRATION CERT #2260.01
Flocedule. D	wyer MS-121-LCD 0 t	o 0.1;0.25;0.5 inH2O/7	520lp 8845A: Rev.1.0.A		Page 1 of 4
UUT Made by: Model: Serial No.: ID No.: Description:	Dwyer MS-121-LCD E52U0100523 SBI-250 Digital Pressure G	auge	<u>Calibration</u> Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC15081457-E52U0100 Yes In Tolerance 3-Sep-2015 3-Sep-2016	523
<u>Customer</u>	STOVE BUILDER 250 RUE DE COP ST-AUSTIN-DE-DI G3A 2H3		Environment Temperature: Humidity:	25.9°C 56%RH	
and in compliand Any statement o tolerance only. T Tolerance is bas	ce with ISO/IEC-17025:20 f compliance is made wit he customer must ensur ed on manufacturer spec	005 and ANSI/NCSL Z540 hout taking measurement e equipment calibrated me cification if not stated othe	-1. uncertainty into account an eets the intended use.	traceable to NIST/NRC or accep d is based on UUT performance a ate to items calibrated only. I Instrumentation Inc.	
STANDARDS		Model	ID No./Serial No.	Traceability No.	Recall Date
Low Pressure C Multimeter	alibrator	Ruska 7250LP Fluke 8845A	PRE-CAL-06 ELC-MTR-04	1500171325/15000171326 AC14121527-9366020	1-Oct-2015 16-Jan-2016
REMARKS: Adjusted trim po Calibrated in ver					

400- App-C Calibration Documents (page 19 of 64)

CONTROLS	NETROMENTATION	Re	port d	of Calibra As Left	ation	ilac	MRA	ACCREDITED CALIBRATION CERT #2260.01
Procedure: Dw	yer MS-121-LCD 0	to 0.1;0.25;0.5	inH2O/7520	Ip 8845A: Rev.1.0./	A			Page 2 of 4
<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer MS-121-LCD E52U0100523 SBI-250 Digital Pressure C	Gauge		Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1508 Yes In Tolera 3-Sep-2 3-Sep-2	015	100523	
Test Descriptio	ם	STD	UUT	Error	Tolerance	<u>Units</u>	P/E	Uncertainty
Range: 0 to 0.1 in	1H2O							
Output signal: 4 t								
PRESSURE TES			0.000-					
Display Rea	ding 0000 inH2O, mA		0.0005 4.08					
0.000 inH2O		0.0000	0.0005	0.0005	±0.0020	inH2O	Pass	1.5e-04
Display Read			0.0251					
. +	025 inH2O, mA		8.030					
0.025 inH2O		0.0250	0.0252	0.0002	±0.0020	inH2O	Pass	1.5e-04
Display Read	aing 050 inH2O, mA		0.0503 12.099					
0.050 inH2O		0.0500	0.0506	0.0006	±0.0020	inH2O	Pass	1.5e-04
Display Read			0.0757					
Output @ 0.0	075 inH2O, mA		16.135					
0.075 inH2O		0.0750	0.0758	0.0008	±0.0020	inH2O	Pass	1.5e-04
Display Read	-		0.0994 20.048					
0.100 inH2O	100 inH2O, mA	0.1000	0.1003	0.0003	±0.0020	inH2O	Pass	1.5e-04
Display Read		0.1000	0.0754	0.0000	10.0010		1 400	1.00 04
Output @ 0.0)75 inH2O, mA		16.029					
0.075 inH2O		0.0750	0.0752	0.0002	±0.0020	inH2O	Pass	1.5e-04
Display Read	-		0.0503					
0.050 inH2O	050 inH2O, mA	0.0500	12.063 0.0504	0.0004	±0.0020	inH2O	Pass	1.5e-04
Display Read		0.0000	0.0254	0.0004	10.0020	111120	F 455	1.56-04
	025 inH2O, mA		8.03					
0.025 inH2O		0.0250	0.0252	0.0002	±0.0020	inH2O	Pass	1.5e-04
Display Read	•		0.0005					
Output @ 0.0 0.000 inH2O	0000 inH2O, mA	0.0000	4,08 0.0005	0.0005	±0.0020	inH2O	Pass	1.5e-04
0,000 INH20		0.0000	0.0005	0.0005	10.0020	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	rd55	1.56-04
Range: 0 to 0.25	inH2O							
Output signal: 4 to								
PRESSURE TES			0.0005					
Display Read	ling)000 inH2O, mA		0.0005 4.028					
0.0000 inH20		0.0000	4.028	0.0004	±0.0025	inH2O	Pass	1.5e-04
Display Read		0.0000	0.0623	0.0004				
	0625 inH2O, mA		7,996					
0.0625 inH20		0.0625	0.0624	-0.0001	±0.0025	inH2O	Pass	1.5e-04
Display Read	•		0.1233					
Output @ 0.1 0.1250 inH20	1250 inH2O, mA	0.1250	11.907 0.1235	-0.0015	±0.0025	inH2O	Pass	1.5e-04
0.1200 111120	-	0.1200	0.1200	0.0010	20.0020		1 433	1.00 04

400- App-C Calibration Documents (page 20 of 64)

	Re	port o	of Calibra As Left	ation	lac	MRA	ACCREDITED CALIBRATION CERT #2250.01
Procedure: Dwyer MS-121-LCD 0	to 0.1;0.25;0.5	inH2O/7520	Ip 8845A: Rev.1.0./	A			Page 3 of 4
UUT Made by: Dwyer Model: MS-121-LCD Serial No.: E52U0100523 ID No.: SBI-250 Description: Digital Pressure	Gauge		Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1508 Yes In Tolera 3-Sep-2 3-Sep-2	015	100523	
Test Description	STD	UUT	Error	Tolerance	<u>Units</u>	P/F	Uncertainty
Display Reading		0.1853					
Output @ 0.1875 inH2O, mA		15.874					
0.1875 inH2O	0.1875	0.1855	-0.0020	±0.0025	inH2O	Pass	1.5e-04
Display Reading		0.2476					
Output @ 0.2500 inH2O, mA		19.873					
0.2500 inH2O	0.2500	0.2480	-0.0020	±0.0025	inH2O	Pass	1.5e-04
Display Reading		0.1853					
Output @ 0.1875 inH2O, mA		15.892				_	
0.1875 inH2O	0.1875	0.1858	-0.0017	±0.0025	inH2O	Pass	1.5e-04
Display Reading		0.1243					
Output @ 0.1250 inH2O, mA	0 1250	11.958	0.0007	0.0005	inU20	Basa	1 50 04
0.1250 inH2O Display Reading	0.1250	0.1243 0.0627	-0.0007	±0.0025	inH2O	Pass	1.5e-04
Output @ 0.0625 inH2O, mA		8.065					
0.0625 inH2O	0.0625	0.0635	0.0010	±0.0025	inH2O	Pass	1.5e-04
Display Reading	0.0010	0.0007	0.0010	20.0020			
Output @ 0.0000 inH2O, mA		4.046					
0.0000 inH2O	0.0000	0.0007	0.0007	±0.0025	inH2O	Pass	1.5e-04
Range: 0 to 0.5 inH2O Output signal: 4 to 20 mA PRESSURE TEST Display Reading		0.0005					
Output @ 0.0000 inH2O, mA		4.011					
0.0000 inH2O	0.0000	0.0003	0.0003	±0.0050	inH2O	Pass	1.5e-04
Display Reading		0.1233					
Output @ 0.1250 inH2O, mA		7.960					
0.1250 inH2O	0.1250	0.1238	-0.0012	±0.0050	inH2O	Pass	1.5e-04
Display Reading		0.2468					
Output @ 0.2500 inH2O, mA		11.924					4 5- 64
0.2500 inH2O	0.2500	0.2476	-0.0024	±0.0050	inH2O	Pass	1.5e-04
Display Reading		0.3735					
Output @ 0.3750 inH2O, mA	0 2750	15.978	-0.0007	+0.0050	inH2O	Pass	1.5e-04
0,3750 inH2O Diaplay Boading	0.3750	0.3743 0.4995	-0.0007	±0.0050	ιιπzU	rass	1.56-04
Display Reading Output @ 0.5000 inH2O, mA		20.031					
0.5000 inH2O, mA	0.5000	0.5010	0.0010	±0,0050	inH2O	Pass	1.5e-04
Display Reading	0.0000	0.3752	0.0010	10,0000	111 120	. 455	
Output @ 0.3750 inH2O, mA		16.029					
0.3750 inH2O	0.3750	0.3759	0.0009	±0.0050	inH2O	Pass	1.5e-04
Display Reading		0.2488					
Output @ 0.2500 inH2O, mA		11.958					
0.2500 inH2O	0.2500	0.2487	-0.0013	±0.0050	inH2O	Pass	1.5e-04

400- App-C Calibration Documents (page 21 of 64)

	INSTRUMENTATION			of Calibra As Left		lac	WRA	ACCREDITED CALIBRATION CERT #2260.01
Procedure: Dv	vyer MS-121-LCD 0	to 0.1;0.25;0.5	inH2O/7520	lp 8845A: Rev.1.0.4	A			Page 4 of 4
<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer MS-121-LCD E52U0100523 SBI-250 Digital Pressure	Gauge		Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1508 Yes In Tolera 3-Sep-2 3-Sep-2	015	100523	
Test Description	on	STD	UUT	Error	Tolerance	Units	<u>P/F</u>	Uncertainty
Display Rea Output @ 0 0.1250 inH2 Display Rea	.1250 inH2O, mA 2O	0.1250	0.1252 8.012 0.1254 0.0010	0.0004	±0.0050	inH2O	Pass	1.5e-04
Output @ 0 0.000 inH20	.0000 inH2O, mA D	0.0000	4.028 0.0009	0.0009	±0.0050	inH2O	Pass	1.5e-04
		11						

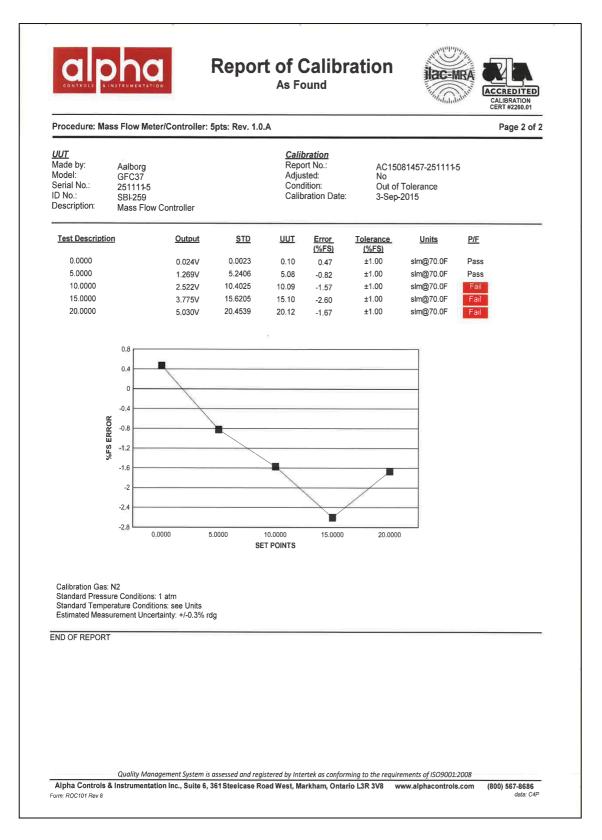
400- App-C Calibration Documents (page 22 of 64)

	INSTRUMENTATION	- As F	of Calibra ound / As Left		ACCREDITED CALIBRATION CERT #2260.01
Procedure: Dr	wyer MS-121-LCD	0 to 0.1;0.25 inH2O/7520lp	8845A: Rev.1.0.A		Page 1 of
UUT Made by: Model: Serial No.: ID No.: Description: Customer		e Gauge ER INTERNATIONAL INC.	Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC16031301-E51U0100 No In Tolerance 18-Mar-2016 18-Mar-2017	3612
	250 RUE DE CO ST-AUSTIN-DE G3A 2H3	OPENHAGUE -DESMAURES, QC	Temperature: Humidity:	20.9°C 29%RH	
Tolerance is base	ed on manufacturer s	sure equipment calibrated meet	se. Calibration results rela	ate to items calibrated only.	
This report shall of STANDARDS	not be reproduced ex	cept in full without written appro			
	not be reproduced ex	Model	ID No./Serial No.	Traceability No.	Recall Date
STANDARDS Instrument Low Pressure Ca Multimeter REMARKS:	alibrator			Traceability No. 1500188474/1500188475 AC15121397-9366020	Recall Date 29-Sep-2016 13-Jan-2017
STANDARDS Instrument Low Pressure Ca Multimeter	alibrator	Model Ruska 7250LP	ID No./Serial No. PRE-CAL-06	1500188474/1500188475	29-Sep-2016

400- App-C Calibration Documents (page 23 of 64)

	NETRUMENTATION		As Fo	ound / As Left			- Andrews	ACCREDITED CALIBRATION CERT #2260.01
Procedure: Dw	/yer MS-121-LCD 0 t	o 0.1;0.25 inH	12O/7520lp 8	845A: Rev.1.0.A				Page 2 of 3
<u>UUT</u> Made by: Model: Serial No.: D No.: Description:	Dwyer MS-121-LCD E51U01003612 SBI-253 Digital Pressure G	auge		Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1603 No In Tolera 18-Mar-2 18-Mar-2	016	1003612	
Test Description	n	STD	UUT	Error	Tolerance	Units	<u>P/F</u>	Uncertainty
Range: 0 to 0.1 i Output signal: 4 PRESSURE TES Display Rea	to 20 mA ≩T ding		0.0000					
0.000 inH20 Display Rea	ding	0.0000	3.998 0.0000 0.0244	0.0000	±0.0020	inH2O	Pass	1.5e-04
0.025 inH20 Display Rea		0.0250	7.894 0.0243 0.0488 11.803	-0.0007	±0.0020	inH2O	Pass	1.5e-04
0.050 inH2C Display Rea)	0.0500	0.0488 0.0737 15.802	-0.0012	±0.0020	inH2O	Pass	1.5e-04
0.075 inH2C Display Rea)	0.0750	0.0738 0.0991 19.905	-0.0012	±0.0020	inH2O	Pass	1.5e-04
0.100 inH20 Display Rea Output @ 0.		0.1000	0.0994 0.0735 15.755	-0.0006	±0.0020	inH2O	Pass	1.5e-04
0,075 inH2C Display Rea Output @ 0.		0.0750	0.0735 0.0491 11.891	-0.0015	±0.0020	inH2O	Pass	1.5e-04
	ding 025 inH2O, mA	0.0500	0.0493 0.0247 7.947	-0.0007	±0.0020	inH2O	Pass	1.5e-04
	ding 0000 inH2O, mA	0.0250	0.0247 0.0000 3.999	-0.0003	±0.0020	inH2O	Pass	1.5e-04
0.000 inH2C Range: 0 to 0.25 Output signal: 4 t PRESSURE TES Display Rea Output @ 0.	inH2O o 20 mA i T	0.0000	0.0000 0.0002 3.999	0.0000	±0.0020	inH2O	Pass	1.5e-04
0.0000 inH2 Display Rea	0	0.0000	0.0000 0.0620 7.964	0.0000	±0.0025	inH2O	Pass	1.5e-04
	ding 1250 inH2O, mA	0.0625	0.0619 0.1243 11.942	-0.0006	±0.0025	inH2O	Pass	1.5e-04
0.1250 inH2	0	0.1250	0.1241	-0.0009	±0.0025	inH2O	Pass	1.5e-04

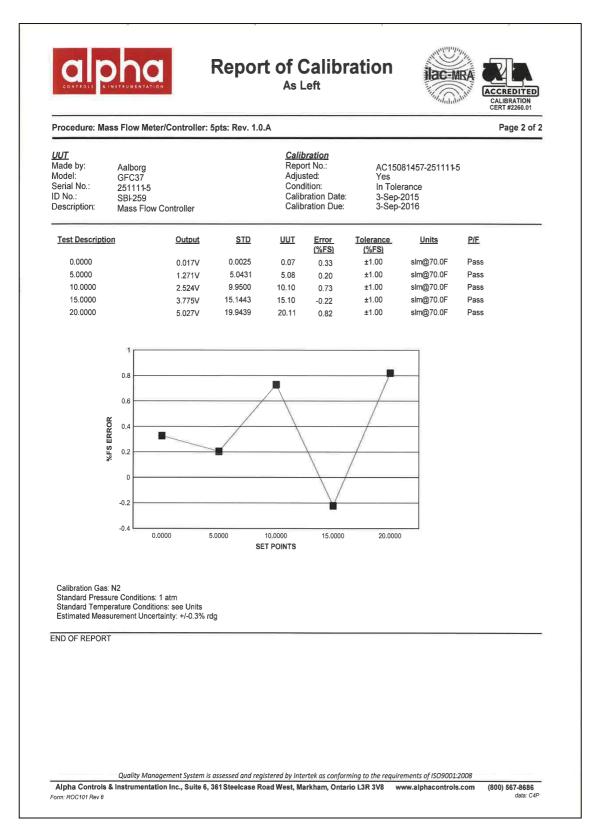
400- App-C Calibration Documents (page 24 of 64)


Procedure:	wyer MS-121-LCD 0	to 0.1;0.25 inH	20/7520lp 88	45A: Rev.1.0.A				Page 3 o
<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer MS-121LCD E51U01003612 SBI-253 Digital Pressure	Gauge		Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1603 No In Tolera 18-Mar-2 18-Mar-2	2016	1003612	
Test Descrip	tion	STD	UUT	Error	Tolerance	Units	P/F	Uncertainty
0.1875 in Display Re	0.1875 inH2O, mA H2O eading	0.1875	0.1860 15.906 0.1860 0.2490	-0.0015	±0.0025	inH2O	Pass	1.5e-04
0.2500 in Display Re		0.2500	19.940 0.2491 0.1868 15.959	-0.0009	±0.0025	inH2O	Pass	1.5e-04
	eading 0.1250 inH2O, mA	0.1875	0.1869 0.1245 11.960	-0.0006	±0.0025	inH2O	Pass	1.5e-04
0.1250 in Display Re Output @ 0.0625 in	eading 0.0625 inH2O, mA	0.1250	0.1244 0.0618 7.943 0.0616	-0.0006 -0.0009	±0.0025 ±0.0025	inH2O inH2O	Pass	1.5e-04
Display Re	eading 0.0000 inH2O, mA	0.0000	0.0000 3.998 0.0000	0.0000	±0.0025	inH2O	Pass	1.5e-04

400- App-C Calibration Documents (page 25 of 64)

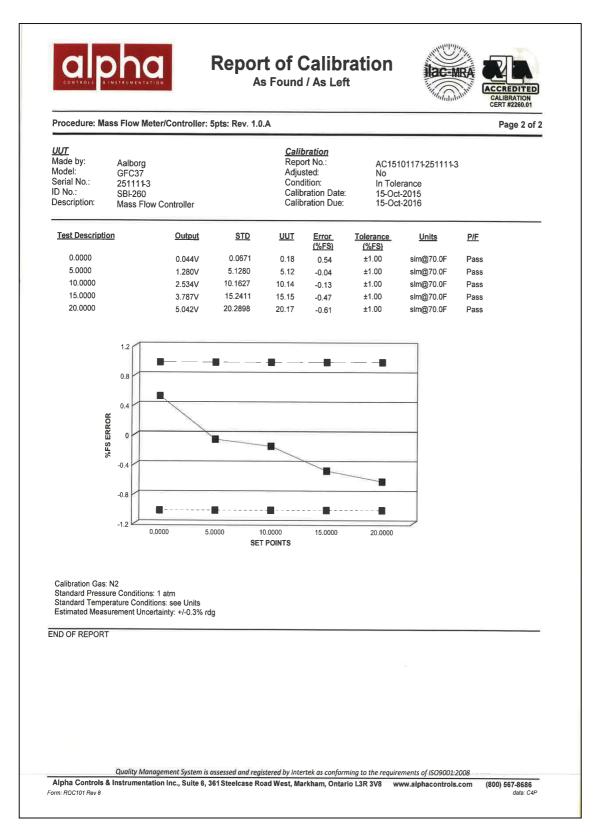
400- App-C Calibration Documents (page 26 of 64)

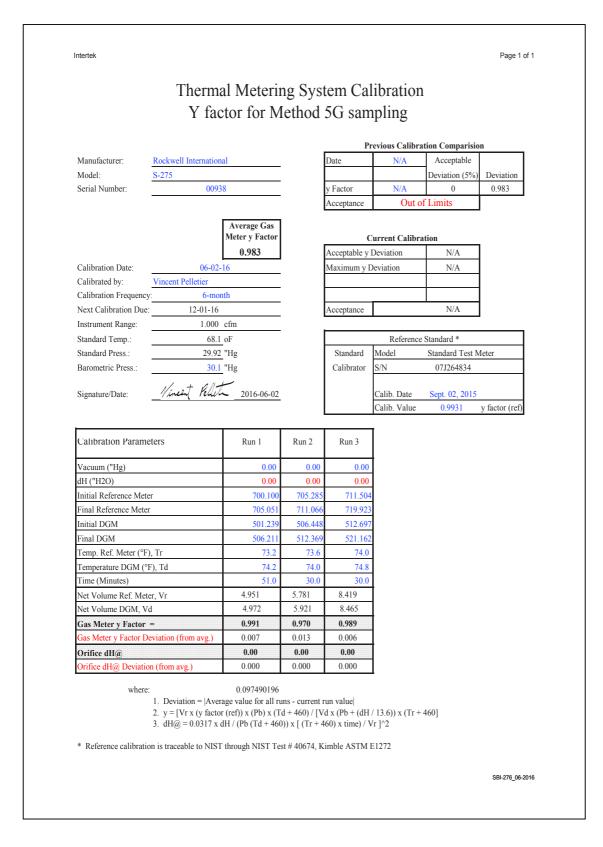
TTOUEGUIE, Ma	ass Flow Meter/Co	ntroller: 5pts: Rev. 1.0.A			Page 1 of 2
-		•			
UUT Made by: Model: Serial No.: ID No.: Description:	Aalborg GFC37 251111-5 SBI-259 Mass Flow Contr	roller	<u>Calibration</u> Report No.: Adjusted: Condition: Calibration Date:	AC15081457-251111-5 No Out of Tolerance 3-Sep-2015	
<u>Customer</u>	250 RUE DE CO	R INTERNATIONAL INC. IPENHAGUE DESMAURES, QC	<u>Environment</u> Temperature: Humidity:	25.7°C 58%RH	
by the coverage f Instrumentation I	factor K = 2, which for Inc. certifies this instru	a normal distribution correspon	nds to a coverage probabi te shown using standards	ed as the standard measuremer liity of approximately 95 percent. traceable to NIST/NRC or accep	Alpha Controls &
		without taking measurement ur sure equipment calibrated meet		d is based on UUT performance	against required
Tolerance is bas				to to itama calibrated ank	
Processing 19 ng20	ed on manufacturer sp	pecification if not stated otherwi	ise. Calibration results rela	ate to items calibrated only.	
		pecification if not stated otherwin cept in full without written appro			
This report shall					
					Recall Date
This report shall	not be reproduced exc	ept in full without written appro	oval of Alpha Controls and	Instrumentation Inc.	Recall Date
This report shall i STANDARDS Instrument Molbloc-L Lamin Molbloc-L Lamin	not be reproduced exc nar Element nar Element	mept in full without written appro Model Fluke 3E4 Fluke 3E4	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02	Instrumentation Inc. Traceability No. 1500183748 1500183749	26-Jun-2016 27-Jun-2016
This report shall i STANDARDS Instrument Molbloc-L Lamin Molbloc-L Lamin Process Calibrat	not be reproduced exc nar Element nar Element	mept in full without written appro Model Fluke 3E4 Fluke 3E4 Fluke 3E4 Fluke 744	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02 ELC-CAL-02	Instrumentation Inc. Traceability No. 1500183748 1500183749 AC14101571-8223003	26-Jun-2016 27-Jun-2016 10-Nov-2015
This report shall STANDARDS Instrument Molbloc-L Lamin Molbloc-L Lamin	not be reproduced exc nar Element nar Element tor	mept in full without written appro Model Fluke 3E4 Fluke 3E4	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02	Instrumentation Inc. Traceability No. 1500183748 1500183749	26-Jun-2016 27-Jun-2016
This report shall i STANDARDS Instrument Molbloc-L Lamin Process Calibral Multimeter Mass Flow Term REMARKS:	not be reproduced exc nar Element nar Element tor	Model Fluke 3E4 Fluke 3E4 Fluke 3E4 Fluke 744 Fluke 87 V Fluke Molbox1+	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02 ELC-CAL-02 ELC-MTR-05	Instrumentation Inc. Traceability No. 1500183748 1500183749 AC14101571-8223003 AC15031661-96010221	26-Jun-2016 27-Jun-2016 10-Nov-2015 25-Mar-2016


400- App-C Calibration Documents (page 27 of 64)

400- App-C Calibration Documents (page 28 of 64)

Procedure: Ma	ass Flow Meter/Co	ontroller: 5pts: Rev. 1.0.A			CERT #2260.01 Page 1 of 2
-					
UUT Made by: Model: Serial No.: ID No.: Description:	Aalborg GFC37 251111-5 SBI-259 Mass Flow Cont	troller	<u>Calibration</u> Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC15081457-251111-5 Yes In Tolerance 3-Sep-2015 3-Sep-2016	
<u>Customer</u>	250 RUE DE CO	ER INTERNATIONAL INC. DPENHAGUE -DESMAURES, QC	<u>Environment</u> Temperature: Humidity:	26.1°C 53%RH	
by the coverage Instrumentation I	factor K = 2, which fo Inc. certifies this instru	r a normal distribution correspo	nds to a coverage probabi te shown using standards	ed as the standard measuremer lilty of approximately 95 percent. traceable to NIST/NRC or accep	Alpha Controls &
		without taking measurement ur sure equipment calibrated meet		l is based on UUT performance	against required
Tolerance is base		pecification if not stated otherwi	ise. Calibration results rela	ate to items calibrated only.	
	ed on manufacturer s	pecification if not stated otherw		-	
This report shall	ed on manufacturer s			-	
	ed on manufacturer s			-	Recall Date
This report shall STANDARDS Instrument Molbloc-L Lamir	ed on manufacturer s not be reproduced ex nar Element	ccept in full without written appro Model Fluke 3E4	ID No./Serial No.	Instrumentation Inc. Traceability No. 1500183748	26-Jun-2016
This report shall STANDARDS Instrument Molbloc-L Lamir Molbloc-L Lamir	ed on manufacturer s not be reproduced ex nar Element nar Element	ccept in full without written appro Model Fluke 3E4 Fluke 3E4	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02	Instrumentation Inc. Traceability No. 1500183748 1500183749	26-Jun-2016 27-Jun-2016
This report shall STANDARDS Instrument Molbloc-L Lamir	ed on manufacturer s not be reproduced ex nar Element nar Element	ccept in full without written appro Model Fluke 3E4	ID No./Serial No.	Instrumentation Inc. Traceability No. 1500183748	26-Jun-2016
This report shall STANDARDS Instrument Molbloc-L Lamir Molbloc-L Lamir Process Calibra	ed on manufacturer s not be reproduced ex nar Element nar Element tor	ccept in full without written appro Model Fluke 3E4 Fluke 3E4 Fluke 744	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02 ELC-CAL-02	Instrumentation Inc. Traceability No. 1500183748 1500183749 AC14101571-8223003	26-Jun-2016 27-Jun-2016 10-Nov-2015
This report shall STANDARDS Instrument Molbloc-L Lamir Process Calibra Multimeter Mass Flow Term REMARKS:	eed on manufacturer s not be reproduced ex nar Element nar Element tor minal	Model Fluke 3E4 Fluke 3E4 Fluke 3E4 Fluke 744 Fluke 744 Fluke 87 V Fluke Molbox1+	ID No./Serial No. FLOW-3E4-01 FLOW-3E4-02 ELC-CAL-02 ELC-MTR-05	Instrumentation Inc. Traceability No. 1500183748 1500183749 AC14101571-8223003 AC15031661-96010221	26-Jun-2016 27-Jun-2016 10-Nov-2015 25-Mar-2016


400- App-C Calibration Documents (page 29 of 64)


400- App-C Calibration Documents (page 30 of 64)

<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Aalborg GFC37 251111-3				
	SBI-260 Mass Flow Cont	roller	<u>Calibration</u> Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC15101171-251111-3 No In Tolerance 15-Oct-2015 15-Oct-2016	
<u>Customer</u>	250 RUE DE CO	R INTERNATIONAL INC. DPENHAGUE DESMAURES, QC	<u>Environment</u> Temperature: Humidity:	22.4⁰C 34%RH	
by the coverage fa Instrumentation In	ctor K = 2, which for c. certifies this instru	a normal distribution correspor	nds to a coverage probab e shown using standards	ted as the standard measureme illfy of approximately 95 percent traceable to NIST/NRC or acce	Alpha Controls &
Any statement of o tolerance only. Th	compliance is made e customer must en	without taking measurement un sure equipment calibrated meets	certainty into account an	d is based on UUT performance	against required
		pecification if not stated otherwis		ate to items calibrated only	
		cept in full without written appro-			
			var of Aprila Controls and	matumentation me.	
STANDARDS		Model	ID No./Serial No.	Traceability No.	Recall Date
Thermohygromet Mass Flow Termi		Hart Scientific 2626-S Fluke Molbox1+	TRH-PRB-02 FLOW-CAL-01	AC14121193-A71035 1500183843	6-Jan-2016 30-Jun-2016
REMARKS:					
None					
	Æ	2		ed by: <u>Anthon</u>	M

400- App-C Calibration Documents (page 31 of 64)

400- App-C Calibration Documents (page 32 of 64)

400- App-C Calibration Documents (page 33 of 64)

	CERTIFICAT	D'ANALYSE	
MONTREAL SPECIALT 11201 RAY LAWSON MONTREAL QC H1J 1M6	Y GAS PLANT	Client: QUEBEC 2230 BOUL. (QUEBEC QUI G1N 2G3 CA	
Date d'analyse: Code de produit: Qualité: Taille: Raccord de sortie du rob	03/05/2016 SPG-4MX0024334 CERTIFIE 7AL inet:CGA 590	No de série: No d`ordre de fabricatio Pression: Volume: Date d'expiration:	SG-140107-A on: 16-SGM-1725 6750 kPa (15°C) 1000 psi (21°C) 0,485 m3 03/05/2019
COMPOSANTS MONOXYDE DE CARBO	DNF	CONCENTRATION NOMINALE 0,8 % molaire	RÉSULTAT D'ANALYSE 0,798 % molaire
OXYGÈNE		20 % molaire	19,8 % molaire
AZOTE DIOXYDE DE CARBONI		40 % molaire	BALANCE 39,5 % molaire
Canada. Selon les besoins,on cho La teneur en oxygène est mesurée PRÉCISION ANALYTIQUE:	ur le principe de la chromatographie en pr si préférentiellement un détecteur FID ou à l'aide d'un analyseur d'oxygène Servomex	nase gazeuse comme décrit dans les Instru TCD avec une colonne capillaire ou une col sultuants en concentration supérieure à 0.5% se est indiquée en pourcentage du constituar des constituants du mélange.	unie jeupie.
www.airliquide.ca			Page 1 de 1 C16-SGM-1725-1 13/06/2016

400- App-C Calibration Documents (page 34 of 64)

<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>				
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>				AIR LIQUIDE
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	CER	TIFICAT D'	ANALYSE	
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>	11201 RAY LAWSON MONTREAL QC		2230 BOUL, C QUEBEC QUE	EBEC
<text><text><text><text><text><text><text></text></text></text></text></text></text></text>				
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>				
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	Taille: 7AL			
	Raccord de sortie du robinet:CGA 350			N (*1998) (1998) - 400
Nomination Damains Damains Andres 0.8 % molairs 0.70 % molairs Action Balance Balance			Date d'expiration:	03/05/2019
AZOTE BALANCE BALANCE Analyse réalisée par. BALANCE BALANCE Analyse réalisée par. BALANCE BALANCE FREDERIC GAGNON B.SC. BALANCE BALANCE MENDE DANALYSE Balance BALANCE Bredenie de analyse et all ség indice de la chromatographie an phase gozuise comme derit dans les instructions d'Opérations de Air Liquide Castes de la constituent en déletique FID ou "CD avec une colonne capiliere ou une colonne remplie" Précision NAULYTIQUE Basedont in liferaure 0.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration infereure 2.5%, Sauf indication contraire la précision d'analyse est indicate en consentration de la nature, du nomine est de la concentration des constituents du métage. Page 1 de 1 C16-SGM-17118-1 1306/2016 1306/2016	COMPOSANTS			
Analyse réalisée par Arabyse par de la sée se se ur le principe de la chromatographie en plase gazeuse comme déal dans les Instructions d'Opérations de Air Llaude Bradie de la nature, du nombre et le la concentration de la nature, du nombre et de la concentration de sconstituants du mélanger Arabyse par de la nature, du nombre et de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants du mélanger Arabyse par de la concentration de sconstituants	MONOXYDE DE CARBONE		0,8 % molaire	0,770 % molaire
FREDERIC GAGNON B.Sc. METHODE D'ANALYSE: La méthode d'analyse est basée sur le principe de la chromatographie en phase gazeuse comme décrit dans les Instructions d'Opérations de Air Liquide Canada. Selon les besoins, on chois i préférentiellement un détecteur FID ou TCD avec une colonne capitlaire ou une colonne remplie. PRÉCISION ANALYTIQUE: Les spécifications pour les concentrations rapportées sont: +1. 2% pour les constituants en concentration supérieure à 0.5% et +1. 5% pour les constituants en concentration inférieure 0.5%. Sauf indication contraire, la précision d'analyse est indiquée en pourcentage du constituant. Dans certains cas, les valeurs peuvent changer en fonction de la nature, du nombre et de la concentration des constituants du mélange. Page 1 de 1 C16-SGM-1718-1 13/06/2016	AZOTE		BALANCE	BALANCE
peuvent changer en fonction de la nature, du nombre et de la concentration des constituants du mélange. Page 1 de 1 C16-SGM-1718-1 WWW.airliquide.ca 13/06/2016	FREDERIC GAGNON B.Sc. MÉTHODE D'ANALYSE: La méthode d'analyse est basée sur le principe de la c Canada. Selon les besoins, on choisi préférentiellement PRÉCISION ANALYTIQUE: Les spécifications pour les concentrations rapportées so	un détecteur FID ou TCD ave	c une colonne capillaire ou une color en concentration supérieure à 0.5% e	ne remplie. t +/- 5% pour les constituants en
		de la concentration des const	ltuants du mélange,	C16-SGM-1718-1 13/06/2016

400- App-C Calibration Documents (page 35 of 64)

		CERTIFICAT D	'ANALYSE	
	MONTREAL SPECIALTY 11201 RAY LAWSON MONTREAL QC H1J 1M6	GAS PLANT	Client: QUEBEC 2230 BOUL. (QUEBEC QUI G1N 2G3 CA	
	Date d'analyse: Code de produit: Qualité: Taille:	03/05/2016 SPG-2MX0024331 CERTIFIE 7AL	No de série: No d`ordre de fabricatio Pression:	13500 kPa (15°C) 2000 psi (21°C)
	Raccord de sortie du robin	et:CGA 350	Volume: Date d'expiration:	812,0 L 03/05/2019
	COMPOSANTS		CONCENTRATION	RÉSULTAT D'ANALYSE
	MONOXYDE DE CARBON	IE	8 % molaire	7,97 % molaire
1	AZOTE		BALANCE	BALANCE
	Canada. Selon les besoins,on choisi	le principe de la chromatographie en phase gaz préférentiellement un détecteur FID ou TCD av ons rapportées sont; +/- 2% pour les constituants ndication contraire, la précision d'analyse est in fuire, du nombre et de la concentration des cons	ec une colonne capillaire ou une colo	nne remplie. et +/, 5% pour les constituants en
	www.airliquide.ca		τ.	Page 1 de 1 C16-SGM-1727-1 13/06/2016

400- App-C Calibration Documents (page 36 of 64)

,			
	CERTIFICAT E	O'ANALYSE	
MONTREAL SPECIALTY 11201 RAY LAWSON MONTREAL QC H1J 1M6	GAS PLANT	Client: QUEBEC 2230 BOUL, (QUEBEC QU G1N 2G3 CA	
Date d'analyse: Code de produit: Qualité: Taille: Raccord de sortie du robin	03/05/2016 SPG-2MX0024332 CERTIFIE 7AL iet:CGA 580	No de série: No d`ordre de fabricatio Pression: Volume:	SG090157A pr: 16-SGM-1726 7571,5 kPa (15°C) 1121 psi (21°C) 886,0 L
COMPOSANTS		Date d'expiration: CONCENTRATION NOMINALE 40 % molaire	03/05/2019 RÉSULTAT D'ANALYSE 39,4 % molaire
AZOTE		BALANCE	BALANCE
2			~
Analyse réalisée par: SAMIA AMRANLB-Sc:			
MÉTHODE D'ANALYSE: La méthode d'analyse est basée sur Canada. Selon les besoins,on choisi	le principe de la chromatographie en phase gr préférentiellement un délecteur FID ou TCD a	zeuse comme décrit dans les instruct vec une colonne capillaire ou une colo	ions d'Opérations de Air Liquide nne remplie.
concentration inférieure 0.5%. Sauf in	ons rapportées sont: +/- 2% pour les constituan dication contraire, la précision d'analyse est i lure, du nombre et de la concentration des cor	ndiquée en pourcentage du constituant	t +/- 5% pour les constituants en . Dans certains cas, les valeurs
www.airliquide.ca			Page 1 de 1 C16-SGM-1726-1 13/06/2016

400- App-C Calibration Documents (page 37 of 64)

	CERTIFICAT	D'ANALYSE	i
MONTREAL SPEC 11201 RAY LAWS MONTREAL QC H1J 1M6	CIALTY GAS PLANT ON	Client: QUEBEC 2230 BOUL. (QUEBEC QU G1N 2G3 CA	
Date d'analyse: Code de produit: Qualité: Taille: Raccord de sortie d	02/05/2016 SPG-2MX0007686 CERTIFIE 7AL Ju robinet:CGA 580	No de série: No d`ordre de fabricatio Pression: Volume: Date d'expiration:	S980151E pn: 16-SGM-1717 13500 kPa (15°C) 2000 psi (21°C) 860,337 L 02/05/2019
COMPOSANTS		CONCENTRATION NOMINALE	RÉSULTAT D'ANALYSE
DIOXYDE DE CAR	BONE	8 % molaire	8,08 % molaire
AZOTE		BALANCE	BALANCE
Analyse realisée pa SAMÍA AMRANI BS MÉTHODE D'ANALYSE: La méthode d'analyse est b Canada. Selon les besoins, PRÉCISION ANALYTIQUE:		e gazeuse comme décrit dans les Instruc D'avec une colonne capillaire ou une colo	ions d'Opérations de Air Liquide nne remplie.
Les spécifications pour les c concentration inférieure 0.5% peuvent changer en fonction	oncentrations rapportées sont: +/- 2% pour les constitu %. Sauf indication contraire, la précision d'analyse et du la nature, du nombre et de la concentration des	Jants en concentration supérieure à 0.5% st indiquée en pourcentage du constituant constituants du mélange.	. Dans certains cas, les valeurs Page 1 de 1
www.airliquide.ca			C16-SGM-1717-1 09/06/2016

Page 213 of 705

Date: 2016-02-04

Equipment: Test bench #4 T2 (Ambiant) Temperature: Accuracy: 0.01 R.H.: Reference: SBI-096

68 F

18%

S.D.	0.00	%	
R.M.U.	0.01	%	
0.M.U	0.59	%	
	Ave A.D.	0.29	%
Standard	Reading	A.D.	
70.0	69.79	0.30	
70.0	69.80	0.29	
70.0	69.75	0.36	

S.D.	0.00	%	
R.M.U.	0.01	%	
0.M.U	0.28	%	
	Ave A.D.	0.14	%
Standard	Reading	A.D.	
200.0	199.73	0.14	
200.0	199.72	0.14	
200.0	199.64	0.18	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.03	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
600.0	599.89	0.02	
600.0	599.92	0.01	
600.0	599.86	0.02	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.01	%	
	Ave A.D.	0.01	%
Standard	Reading	A.D.	
1000.0	1000.08	0.01	
1000.0	1000.04	0.00	
1000.0	1000.05	0.01	

Vincent	Pellit
Vincent Pelle	tier

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.02	%	
	Ave A.D.	0.01	%
Standard	Reading	A.D.	
1400.0	1400.12	0.01	
1400.0	1400.13	0.01	
1400.0	1400.08	0.01	

400- App-C **Calibration Documents (page 38 of 64)**

	Date:	2016-02-04				
	Equipment:	Test bench #4 T3 (Dilution tu		Temperature:	68 F	
	Accuracy:	0.01		R.H.:	18%	
	Reference:	SBI-096				
_						_
I	S.D.	0.01	%			S
1	D M II	0.01	0/			

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	0.98	%	
	Ave A.D.	0.49	%
Standard	Reading	A.D.	
70.0	69.64	0.51	
70.0	69.67	0.47	
70.0	69.70	0.43	

S.D.	0.00	%	
R.M.U.	0.01	%	
O.M.U	0.44	%	
	Ave A.D.	0.22	%
Standard	Reading	A.D.	
200.0	199.56	0.22	
200.0	199.56	0.22	
200.0	199.56	0.22	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.09	%	
	Ave A.D.	0.04	%
Standard	Reading	A.D.	
600.0	599.76	0.04	
600.0	599.73	0.04	
600.0	599.75	0.04	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.02	%	
	Ave A.D.	0.01	%
Standard	Reading	A.D.	
1000.0	999.92	0.01	
1000.0	999.93	0.01	
1000.0	999.91	0.01	

Vincent	Pellit
Vincent Pellet	tier

S.D.	0.00	%	
R.M.U.	0.00	%	
D.M.U	0.01	%	
	Ave A.D.	0.00	%
Standard	Reading	A.D.	
1400.0	1399.96	0.00	
1400.0	1399.96	0.00	
1400.0	1399.90	0.01	

Page 215 of 705

Date: 2016-02-04

Equipment: Test bench #4 T4 (Firebox top) Temperature: Accuracy: 0.01 R.H.: Reference: SBI-096

68 F

18%

S.D.	0.01	%	
R.M.U.	0.01	%	
0.M.U	1.16	%	
	Ave A.D.	0.58	%
Standard	Reading	A.D.	
70.0	69.58	0.60	
70.0	69.61	0.56	
70.0	69.61	0.56	

S.D.	0.00	%	
R.M.U.	0.01	%	
O.M.U	0.48	%	
	Ave A.D.	0.24	%
Standard	Reading	A.D.	
200.0	199.53	0.24	
200.0	199.51	0.25	
200.0	199.54	0.23	

%

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.10	%	
	Ave A.D.	0.05	%
Standard	Reading	A.D.	
600.0	599.70	0.05	
600.0	599.70	0.05	
600.0	599.72	0.05	1

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.03	%	
	Ave A.D.	0.01	%
Standard	Reading	A.D.	
1000.0	999.84	0.02	
1000.0	999.87	0.01	
1000.0	999.88	0.01	

S.D.	0.00	%
R.M.U.	0.00	%
0.M.U	0.02	%
	Ave A.D.	0.01
Standard	Reading	A.D.
1400.0	1399.89	0.01
1400.0	1399.88	0.01
1400.0	1399.89	0.01

Vincent Velletin Vincent Pelletier

Page 216 of 705

Date: 2016-02-04

Equipment: Test bench #4 T5 (Firebox back) Temperature: Accuracy: 0.01 R.H.: Reference: SBI-096

68 F

18%

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	1.29	%	
	Ave A.D.	0.64	%
Standard	Reading	A.D.	
70.0	69.53	0.67	
70.0	69.57	0.62	
70.0	69.60	0.57	

S.D.	0.00	%	
R.M.U.	0.01	%	
O.M.U	0.54	%	
	Ave A.D.	0.27	%
Standard	Reading	A.D.	
200.0	199.45	0.27	
200.0	199.46	0.27	
200.0	199.42	0.29	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.13	%	
	Ave A.D.	0.06	%
Standard	Reading	A.D.	
600.0	599.63	0.06	
600.0	599.60	0.07	
600.0	599.60	0.07	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.05	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1000.0	999.77	0.02	
1000.0	999.77	0.02	
1000.0	999.78	0.02	

Vincent	Pellit
Vincent Pelle	tier

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.03	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1400.0	1399.80	0.01	
1400.0	1399.76	0.02	
1400.0	1399.82	0.01	

Date:	2016-02-04			
Equipment: Accuracy:	Test bench #4 T6 (Firebox right) 0.01	Temperature: R.H.:	68 F 18%	
Reference:	SBI-096			

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	1.57	%	
	Ave A.D.	0.79	%
Standard	Reading	A.D.	
70.0	69.43	0.81	
70.0	69.47	0.76	
70.0	69.48	0.75	

S.D.	0.00	%	
R.M.U.	0.01	%	
0.M.U	0.62	%	
	Ave A.D.	0.31	%
Standard	Reading	A.D.	
200.0	199.36	0.32	
200.0	199.40	0.30	
200.0	199.38	0.31	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.14	%	
	Ave A.D.	0.07	%
Standard	Reading	A.D.	
600.0	599.57	0.07	
600.0	599.57	0.07	
600.0	599.55	0.07	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.06	%	
	Ave A.D.	0.03	%
Standard	Reading	A.D.	
1000.0	999.73	0.03	
1000.0	999.72	0.03	
1000.0	999.72	0.03	

Vincent	Pellit
Vincent Pell	etier

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.04	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1400.0	1399.73	0.02	
1400.0	1399.73	0.02	
1400.0	1399.73	0.02	

400- App-C Calibration Documents (page 42 of 64)

2016-02-04				
Test bench #4 T7 (Firebox le 0.01 SBI-096		Temperature: R.H.:	68 F 18%	
0.01	%		I I	S.D
0.01	%			R.N
4.55		I	1	

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	1.55	%	
	Ave A.D.	0.78	%
Standard	Reading	A.D.	
70.0	69.50	0.71	
70.0	69.41	0.84	
70.0	69.41	0.85	

S.D.	0.00	%	
R.M.U.	0.01	%	
D.M.U	0.67	%	
	Ave A.D.	0.33	%
Standard	Reading	A.D.	
200.0	199.36	0.32	
200.0	199.31	0.35	
200.0	199.33	0.34	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.17	%	
	Ave A.D.	0.09	%
Standard	Reading	A.D.	
600.0	599.48	0.09	
600.0	599.48	0.09	
600.0	599.49	0.08	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.07	%	
	Ave A.D.	0.03	%
Standard	Reading	A.D.	
1000.0	999.66	0.03	
1000.0	999.67	0.03	
1000.0	999.68	0.03	

Vincent	Pellit
Vincent Pelle	etier

Date: Equipment: Accuracy: Reference:

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.05	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1400.0	1399.66	0.02	
1400.0	1399.65	0.02	
1400.0	1399.68	0.02	

400- App-C Calibration Documents (page 43 of 64)

Date:	2016-02-04				
Equipment:	Test bench #4 T8 (Firebox bo		Temperature:	68 F	
Accuracy:	0.01	,,	R.H.:	18%	
Reference:	SBI-096				
S D	0.01	%	1	1	S

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	1.74	%	
	Ave A.D.	0.87	%
Standard	Reading	A.D.	
70.0	69.37	0.89	
70.0	69.41	0.85	
70.0	69.53	0.67	

S.D.	0.00	%	
R.M.U.	0.01	%	
D.M.U	0.71	%	
	Ave A.D.	0.35	%
Standard	Reading	A.D.	
200.0	199.29	0.35	
200.0	199.30	0.35	
200.0	199.24	0.38	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.18	%	
	Ave A.D.	0.09	%
Standard	Reading	A.D.	
600.0	599.47	0.09	
600.0	599.45	0.09	
600.0	599.42	0.10	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.08	%	
	Ave A.D.	0.04	%
Standard	Reading	A.D.	
1000.0	999.61	0.04	
1000.0	999.62	0.04	
1000.0	999.62	0.04	

100010	33310E	
Vincent	Pellit	
Vincent Pellet	ier	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.06	%	
	Ave A.D.	0.03	%
Standard	Reading	A.D.	
1400.0	1399.62	0.03	
1400.0	1399.60	0.03	
1400.0	1399.62	0.03	

400- App-C Calibration Documents (page 44 of 64)

Date:	2016-02-04		
Equipment:	Test bench #4 T11 (Probe temp 1)	Temperature:	68 F
Accuracy:	0.01	R.H.:	18%
Reference:	SBI-096		

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	2.05	%	
	Ave A.D.	1.02	%
Standard	Reading	A.D.	
70.0	69.27	1.05	
70.0	69.30	1.00	
70.0	69.31	0.99	

S.D.	0.00	%	
R.M.U.	0.01	%	
0.M.U	0.80	%	
	Ave A.D.	0.40	%
Standard	Reading	A.D.	
200.0	199.21	0.39	
200.0	199.20	0.40	
200.0	199.19	0.40	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.20	%	
	Ave A.D.	0.10	%
Standard	Reading	A.D.	
600.0	599.41	0.10	
600.0	599.39	0.10	
600.0	599.36	0.11	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.09	%	
	Ave A.D.	0.05	%
Standard	Reading	A.D.	
1000.0	999.54	0.05	
1000.0	999.52	0.05	
1000.0	999.53	0.05	

Vincent	Pellit
Vincent Pellet	ier

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.07	%	
	Ave A.D.	0.03	%
Standard	Reading	A.D.	
1400.0	1399.55	0.03	
1400.0	1399.54	0.03	
1400.0	1399.54	0.03	

400- App-C Calibration Documents (page 45 of 64)

Date:	2016-02-04				
Equipment:	Test bench #4 T14 (Probe ter		Temperature:	68 F	
Accuracy:	0.01		R.H.:	18%	
Reference:	SBI-096				
				_	_
C D	0.01	0/			c

S.D.	0.01	%	
R.M.U.	0.01	%	
O.M.U	1.95	%	
	Ave A.D.	0.98	%
Standard	Reading	A.D.	
70.0	69.35	0.93	
70.0	69.29	1.02	
70.0	69.29	1.02	

S.D.	0.00	%	
R.M.U.	0.01	%	
O.M.U	0.79	%	
	Ave A.D.	0.40	%
Standard	Reading	A.D.	
200.0	199.21	0.40	
200.0	199.21	0.40	
200.0	199.21	0.40	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.21	%	
	Ave A.D.	0.10	%
Standard	Reading	A.D.	
600.0	599.37	0.10	
600.0	599.38	0.10	
600.0	599.35	0.11	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.10	%	
	Ave A.D.	0.05	%
Standard	Reading	A.D.	
1000.0	999.55	0.04	
1000.0	999.41	0.06	
1000.0	999.55	0.05	

Vincent	Pellit
Vincent Pellet	ier

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.06	%	
	Ave A.D.	0.03	%
Standard	Reading	A.D.	
1400.0	1399.57	0.03	
1400.0	1399.57	0.03	
1400.0	1399.36	0.05	

400- App-C Calibration Documents (page 46 of 64)

Page 222 of 705

Date: 2016-02-04

Equipment: Test bench #4 T15 (Spare 1) Temperature: Accuracy: 0.01 R.H.: Reference: SBI-096

68 F

18%

S.D. 0.01 % R.M.U. 0.01 % O.M.U 1.75 % Ave A.D. 0.87 % Standard Reading A.D. 70.0 69.37 0.90 70.0 69.41 0.85 70.0 69.37 0.89

S.D.	0.00	%	
R.M.U.	0.01	%	
O.M.U	0.70	%	
	Ave A.D.	0.35	%
Standard	Reading	A.D.	
200.0	199.29	0.35	
200.0	199.31	0.35	
200.0	199.29	0.35	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.18	%	
	Ave A.D.	0.09	%
Standard	Reading	A.D.	
600.0	599.45	0.09	
600.0	599.48	0.09	
600.0	599.46	0.09	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.07	%	
	Ave A.D.	0.04	%
Standard	Reading	A.D.	
1000.0	999.64	0.04	
1000.0	999.62	0.04	
1000.0	999.62	0.04	

Vincent	Relit
Vincent Pellet	tier

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.05	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1400.0	1399.65	0.02	
1400.0	1399.65	0.02	
1400.0	1399.62	0.03	

400- App-C

Calibration Documents (page 47 of 64)

Page 223 of 705

Date: 2016-02-04

 Equipment:
 Test bench #4 T2 (Spare 2)
 Temperature:

 Accuracy:
 0.01
 R.H.:

 Reference:
 SBI-096

68 F

18%

S.D.	0.01	%	
R.M.U.	0.01	%	
0.M.U	1.33	%	
	Ave A.D.	0.66	%
Standard	Reading	A.D.	
70.0	69.51	0.69	
70.0	69.56	0.63	
70.0	69.61	0.56	

S.D.	0.00	%	
R.M.U.	0.01	%	
0.M.U	0.55	%	
	Ave A.D.	0.27	%
Standard	Reading	A.D.	
200.0	199.46	0.27	
200.0	199.45	0.28	
200.0	199.47	0.27	

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.13	%	
	Ave A.D.	0.06	%
Standard	Reading	A.D.	
600.0	599.63	0.06	1
600.0	599.60	0.07	
600.0	599.64	0.06	

S.D.	0.00	%	
R.M.U.	0.00	%	
0.M.U	0.08	%	
	Ave A.D.	0.04	%
Standard	Reading	A.D.	
1000.0	999.77	0.02	
1000.0	999.48	0.05	
1000.0	999.81	0.02	

	000.01	
Vincent	Relit	
Vincent Pellet	ier	

S.D.	0.00	%	
R.M.U.	0.00	%	
D.M.U	0.03	%	
	Ave A.D.	0.01	%
Standard	Reading	A.D.	
1400.0	1399.81	0.01	
1400.0	1399.84	0.01	
1400.0	1399.83	0.01	

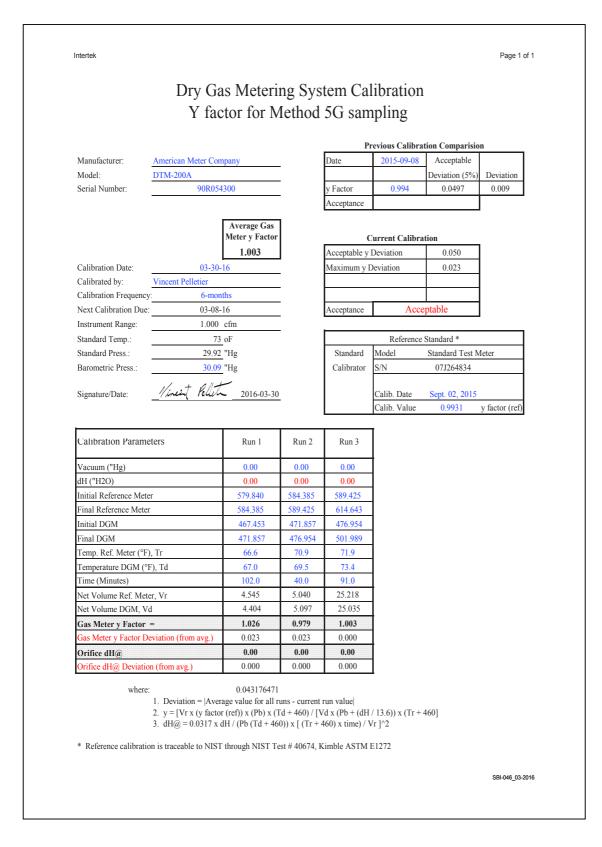
400- App-C

Calibration Documents (page 48 of 64)

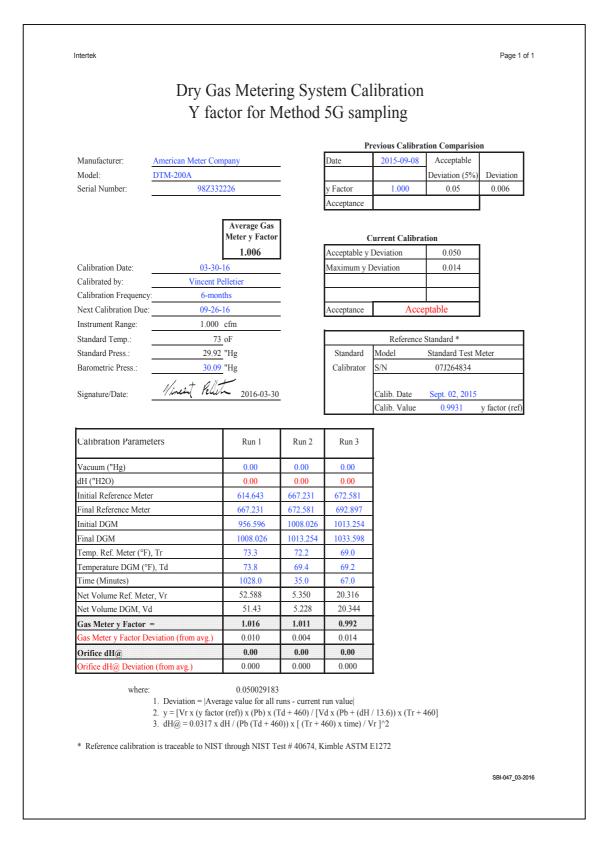
400- App-C Calibration Documents (page 49 of 64)

	é par l'American Association	for		ANS	ISO 9001 Register I/NCSL Z540-1 Accréa	
	ory Accreditation (A2LA) ALIBRATION #1902.02					
	Certifi	cat d'étalo	nnage			
Client						
Société :	SBI Fabricant De Poeles					
Adresse :	250 Rue de Copenhague					
Ville :	Saint-Augustin-De-Desma	aures <i>État/Pro</i>	vince :	Quebec		
Code postal :	G3A 2H3	Astea C	ustomer ID:	3002762	57	
Instrument						
Constructeur :	Weigh-Tronix	Modèle	de terminal :	IND560		
Modèle :	DSL 4848-05	# série d	# série du terminal:		00927386KL	
No de série :	B00927386KL	# série o	# série de l'imprimant		N/A	
Capacité :	500 kg				N/A	
Résolution :	0,02 kg	Nbre de	Nbre de Divisions: 25000			
Classe :		Procédu	ire utilisée :	NIST Ha	ndbook 44	
No./ID d'inventaire:	SBI-014					
Procédure:	Le présent certificat est én l'A2LA, en vertu de la norn laboratoire et la traçabilité	me ISO/IEC 17025. A2	LA a évalué la			
Date de calibrage :	1-avr-2016	Date, pr	ochaine Cal.	31-mars-	-2017	
Signataire autorisé (A2LA) :	Dany Careau	Signatu	Signature: ELECT		ONIC SIGNATURE	
Étalons de trava	il					
Retracabilité:	Les poids de test utilisés s	se réfèrent au National	Institute of Sta	ndards and	I Technology.	
Jeu de poids no :	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étai	onnage :	Date proch. étalonnag	
0718	M15-050	M1	22-avr-	2015	22-avr-2016	
142	MT00997	F1	7-mai-	2014	30-avr-2016	
Q1	1415126	M1	1-juin-:	2015	1-juin-2016	

400- App-C Calibration Documents (page 50 of 64)


Rapport d'étalonnage	No. CA000	3-506-040116	3		METTLER TOLEDO			
Résultats de	mesure)						
La température :	22 °C							
	Les cond	ditions ambian	ntes ont ét	é vérifiées afin	d'assurer l'exactit	ude de l'étalonn	age.	
T (.)								
Test de variation	on							
					Avant Réglage		Après Réglage	
	Poids	Appliqués	Po	sition	Valeur lue		Valeur lue	
	1: 1	100 kg	Pos	ition 1	99,92 kg		99,96 kg	
<u> </u>	2: 7	100 kg		ition 2	99,98 kg		100,04 kg	
		100 kg		ition 3	99,94 kg		99,98 kg	
		100 kg	Pos	ition 4	99,94 kg		99,98 kg	
		aximum : eur Admissible			0,08 kg 0,10 kg		0,08 kg 0,1 kg	
					.,		., 5	
	s Appliqués	Valeur			rreur	Erreur admissible	Dans la Tolérai	
),00 kg	0,00 k	-	0,00 kg	0 d	1 d	OUI	
	0,00 kg	40,00	-	0,00 kg	0 d	2 d	OUI	
	0,00 kg 20,00 kg	79,98 119,96	-	-0,02 kg -0,04 kg	1 d 2 d	3 d 5 d		
	60,00 kg	159,96	-	-0,04 kg	2 d	5 d	OUI	
Max 6,00 20	00,00 kg	199,94	kg	-0,06 kg	3 d	5 d	OUI	
	ubstitution utilis							

400- App-C Calibration Documents (page 51 of 64)


Γ

Rapport	d'étalonnage No.	CA0003-506-040116		M	ETTLER	TOLEDO		
		Après réglage						
	Poids Appliq	ués Valeur lue	Erre	ur	Erreur admissible	Dans la Tolérano		
Zero 1,	00 0,00 kg	0,00 kg	0,00 kg	0 d	1 d	OUI		
2,00	40,00 kg	40,00 kg	0,00 kg	0 d	2 d	OUI		
3,00	80,00 kg	80,00 kg	0,00 kg	0 d	3 d	OUI		
4,00	120,00 kg	g 120,00 kg	0,00 kg	0 d	5 d	OUI		
5,00	160,00 kg	g 160,00 kg	0,00 kg	0 d	5 d	OUI		
Max 6,	00 200,00 kg	g 200,00 kg	0,00 kg	0 d	5 d	OUI		
Répéta								
Poids ap	pliqués : 100,00	kg		1				
	Chargé	Vide	Différence					
1	100,00 kg	0,00 kg	100 kg					
2	100,00 kg	0,00 kg	100 kg					
3	100,00 kg	0,00 kg	100 kg					
	reur maximale :	0,00 kg	0,0 d	_				
To	lérance :	0,10 kg	5 d					
Incerti	tude de l'incertitude =	0,012 kg						
de confia	nce approximatif de age, d'incertitude inc	sente les incertitudes éten 95 %. Des dispositions do duite par l'article en étalonr cteurs pourraient entraîner	ivent être prises en ma nage et d'effets indésir	atière d'enviro ables causés	nnement au lieu par le transport du			

400- App-C Calibration Documents (page 52 of 64)

400- App-C Calibration Documents (page 53 of 64)

400- App-C Calibration Documents (page 54 of 64)

CALIBRATION CLEAR TICON CERTIFICATE Calibration date: April 07, 2016 Identification: SBI-096 Description: CALIBRATOR, OMEGA CL23A Size: TC K/UT Manufacturer: OMEGA Bedia no: CL23A Brite: TZ S0137 Property of: SBI 250 RUE DE COPENHAGUE Turinities CALIBRATION STANDARDS State: The calibration carbines with the applicable requirements of R07EC 17135 and Utrich Metrology and proved by: David Liorens, Quality Manage The calibration carbines with the applicable requirements of R07EC 17135 and Utrich Metrology and proved by: David Liorens, Quality Manage The calibration carbines with the applicable requirements of R07EC 17135 and Utrich Metrology and proved by: David Liorens, Quality Manage The calibration carbines with the applicable requirements of R07EC 17135 and Utrich Metrology and proved by: David Liorens, Quality Manage The calibration carbines with the applicable requirements of R07EC 17135 and Utrich Metrology and proved by: David Liorens, Province and Reace A Councel Canada (R02), With Nucle Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated		Ulrich Métrologie inc. Ulrich Metrology Inc. 9912, Côte-de-Liesse Montréal (Québec) H8T 1A1	Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca	1	CLAS NHC DNHC	ISO 1702
Certificate no:: 525294 Calibration date:: April 07, 2016 Description: CALIBRATOR, OMEGA CL23A Interval:: 12 months Size: TC K/UT Due date:: April 07, 2017 Manufacturer: OMEGA Due date:: April 07, 2017 Manufacturer: OMEGA Due date:: April 07, 2017 Model no:: Cl23A Environment:: CLAS Type 2 Laboratory. Serial no:: T-256137 Environment:: CLAS Type 2 Laboratory. Metrologist: YUK Property of: SBI Str. AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lorens, Quality Manago The raboration configure as tissued in accordnew with the appleable requirements of MOTEC 1703 and Utrich Metrology? submanual QM-00 Revision 9 Metromenter results are reaceable on the National Research Councel Council Metrol, by analysis of and the National Research Councel Council Metrol, by analysis of and the National Research Councel Council Metrol, by analysis of and the National Research Councel Council Metrol, by an accediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted of thenvise. For measurement results associated with the conformance to a				FICATE		SCC Scope Number
Identification: SBI-096 Certificate issued: April 07, 2016 Description: CALIBRATOR, OMEGA CL23A Interval: 12 months Size: TC KJJT Due date: April 07, 2017 Manufacturer: OMEGA Due date: April 07, 2017 Mondel no: CL23A Due date: April 07, 2017 Serial no: T-256137 Environment: CLAS Type 2 Laboratory. Property of: SBI 250 RUE DE COPENHAGUE Environment: CLAS Type 2 Laboratory. This calibration certificate issued: April 07, 2016 Interval: 3 5 - 55% RH Metrologist: YUK YUK Property of: SBI Sa - 55% RH 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Liorens, Quality Manage This calibration certificate is tasked in accordance with the applicable requirements of ISO/IEC 17023 and Ultrich Metrolog's quite manual QM-69 Research Current Camade (RK), the August Approved by: David Liorens, Quality Manage Makaa Recognition Arrangement (MR4, or a calibration laboratory accridited by an accriditing body with which Camada has an equivalence agreement. Calibration taboratory accridited by an accriditing body with which Camada has an equivalence agreement. CALIBRATION STA					April 07, 20	16
Size: TC K/J/T Manufacturer: OMEGA Model no: CL23A Serial no: T-256137 Berlan no: T-256137 Property of: SBI 250 RUE DE COPENHAGUE Temperature: 250 RUE DE COPENHAGUE During and another country series of the series of						
Manufacturer: OMEGA Procedure no:: MET/CAL Model no:: CL23A Environment:: CLAS Type 2 Laboratory Serial no:: T-256137 Temperature:: 23 ± 2°C Humidity: 35 - 55% RH Metrologist:: YUK Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Manag The adbration extificities to issued in accordance with the applicable requirements of RO/IEC/1025 and Ulrich Marslogy multip, manual DM-09 Revisions 9. Measurement reads to a retracement reads to the application of RO/IEC/1025 and Ulrich Marslogy multip, and alboratory accordited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MeASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 22 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes: Notes:	Description:	CALIBRATOR, OME	EGA CL23A	Interval:	12 months	
Model no.: CL23A Serial no.: T-256137 Temperature: 23 ± 2'C Humidity: 35 - 55% RH Metrologist: YUK Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Managi The calibration certificate to issued in accordance with the applicable requirements of ISO/IEC 17033 and Ulrich Metrology? quality manual QM-09 Revision 9. Measurement enables of standards and Technology (MST), a national laboratory of another country signatory to the Measurement (MR4), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:	Size:	TC K/J/T		Due date:	April 07, 20)17
Serial no.: T-256137 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: YUK Property of: SBI 250 RUE DE COPENHAGUE Duild Lorens, Quality Manago ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: Duild Lorens, Quality Manago This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17055 and Ulrich Metrology 6 quality manual QM-09 Revision 9. Measurement results are receded to either the National Research Council Canada (NRC), the National Institute of Standardi and Technology (NIST), a national laboratory of another country signatory to the Multial Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:	Manufacturer:	OMEGA		Procedure no.:	MET/CAL	
Humidity: 35 - 55% RH Metrologist: YUK Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Manag This calibration certificate is tassed in accordance with the applicable requirement of DRUE(1) transformed for the National Institute of Standard, and Technology (NIST), a national Liboratory of another country signatory to the Multicher the National Rearach Council Cauda (NRC), the National Institute of Standard, and Technology (NIST), a national Liboratory of another country signatory to the Multicher the National Cauda (NRC), the National Institute of Standard, and the Chandaga has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 24 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:	Model no.:	CL23A		Environment:	CLAS Type	e 2 Laboratory
Metrologist: YUK Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Manag This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement results or are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBERATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results sociated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBERATION DATA See next page for measurement results. Nets:	Serial no.:	T-256137		Temperature:		
Property of: SBI 260 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: Duid Llorens, Quality Manage This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17035 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement results are raceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the Matual Recognition Arrangement (MRA), or a calibration tabaratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For greeasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Nets:				Humidity:	35 - 55% R	Н
250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Manag This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ultrich Metrology's quality manual QM-OP Revision 9. Measurement results is are raceable to erither the National Research Council, the National Statute of Standards and Technology (Statu), an antional down and the measurement results is metraceable to erither the National Research Council, the National Statute of Standards and Technology (Statu), an antional down and the measurement results is and interface and the second Council Canada (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:				Metrologist:	YUK	
250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Llorens, Quality Manage This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's guality manual QM-OP Revision 9. Measurement results a reaceable there the National Research Council Canada (Not), the National Institute of Shandards and Technology (Strugithy manual QM-OP Revision 9. Measurement results a retraceable there the National Research Council Canada (Not), the National Institute of Shandards and Technology (Strugithy manual QM-OP Revision 9. Measurement results a retraceable to estimate the National Research Council Canada (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:						
ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Liorens, Quality Manage This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Urich Metrology (StyD), and and a marked to another the National Research Council Canada (MCR), the Nationadris and Technology (NIST), an anional laboratory of another country signatory to the Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:	Property of:				0.	1 11
This calibration certificate is issued in accordance with the applicable requirements of ISO/EC 17025 and Ulrich Metrology's quality manual QM-09 Revision 9. Measurement results p are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement. CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report. CALIBRATION DATA See next page for measurement results. Notes:				A	Jame	C Llorens
See next page for measurement results. Notes:	MEASUREMENT U					
Notes:	The above listed in measurement resul	strument meets or exceed	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
	The above listed in measurement resui (4:1 test uncertainty CALIBRATION DA	strument meets or exceents associated with the constraint of the acceptable of the a	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
9V battery replaced.	The above listed in measurement resul (4:1 test uncertainty CALIBRATION DA	strument meets or exceents associated with the constraint of the acceptable of the a	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
	The above listed in measurement resul (4:1 test uncertaint) CALIBRATION DA See next page for r Notes:	strument meets or exceents associated with the co y ratio) of the acceptable NTA measurement results.	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
	The above listed in measurement resul (4:1 test uncertainty CALIBRATION DA See next page for r Notes:	strument meets or exceents associated with the co y ratio) of the acceptable NTA measurement results.	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
	The above listed in measurement resul (4:1 test uncertaint) CALIBRATION DA See next page for r Notes:	strument meets or exceents associated with the co y ratio) of the acceptable NTA measurement results.	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
	The above listed in measurement resul (4:1 test uncertainty CALIBRATION DA See next page for r Notes:	strument meets or exceents associated with the co y ratio) of the acceptable NTA measurement results.	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25
	The above listed in measurement resu (4:1 test uncertainty CALIBRATION DA See next page for r Notes:	strument meets or exceents associated with the co y ratio) of the acceptable NTA measurement results.	nformance to a tolerance, the	uncertainty in the measur	ement systen	n did not exceed 25

400- App-C Calibration Documents (page 55 of 64)

Ukich 9912, (Metrology inc. Fax (61 Côte-de-Liesse info@ul	4) 631-6663 4) 631-6122 Irich.ca ulirich.ca				
CALIBRA	TION DATA					
Certificate no.: Identification: Description: Serial no.: Procedure:	525294 SBI-096 CALIBRATOR THERMOMETEI T-256137 Omega CL23A: 5520A-M	R		esult: PAS condition: FO		
CALIBRATION STA	NDARDS					
Identification	Description	Manufacturer		Model no.	Cal. Date	Due Da
7870009	CALIBRATOR	FLUKE		5520A	2016/01/06	2017/01/
MEASUREMENT RE	ESULTS (Per MET/CAL)				1962	
PARAMETER Temperature meas electrical simus	TRUE VALU surements are performed b lation.	E RESULT	ACCEPTANC LOW	E LIMITS HIGH	PASS/ FAIL	TUR
DISPLAY CALIBRA Did all segment: Result of Opera	s of the display illumina	te?			PASS	
THERMOMETER CAL: K Type Thermocou						
-200.0degF	ubie	-200.1	-201.0	-199.0	PASS	1.7
-60.0degF		-59.9	-61.0	-59.0	PASS	3.1
-40.0degF		-40.0	-40.5	-39.5	PASS	1.5
32.0degF		31.9 1240.0	31.5 1239.5	32.5 1240.5	PASS PASS	$1.7 \\ 1.1$
		1240.0	1259.5	1240.5	PASS	1.1
1240.0degF 1260.0degF				2501.0	PASS	1.4
1240.0degF 1260.0degF 2500.0degF		2500.0	2499.0	2501.0		
1260.0degF 2500.0degF J Type Thermocou	uple	2500.0				
1260.0degF 2500.0degF J Type Thermocou -200.0degF	ple	2500.0	-201.0	-199.0	PASS	2.1
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF	lple	2500.0				3.5
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF	ple	2500.0 -200.3 -60.0	-201.0 -61.0	-199.0 -59.0	PASS PASS	
1260.0degF 2500.0degF -200.0degF -200.0degF -60.0degF -40.0degF 32.0degF 1240.0degF	lple	2500.0 -200.3 -60.0 -40.1 31.9 1239.9	-201.0 -61.0 -40.5 31.5 1239.5	-199.0 -59.0 -39.5 32.5 1240.5	PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF -40.0degF 32.0degF	uple	2500.0 -200.3 -60.0 -40.1 31.9	-201.0 -61.0 -40.5 31.5	-199.0 -59.0 -39.5 32.5	PASS PASS PASS PASS	3.5 1.7 2.0
1260.0degF 2500.0degF -00.0degF -60.0degF -40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou		2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6	PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF -40.0degF 32.0degF 1240.0degF 1240.0degF 1400.0degF T Type Thermocou -200.0degF		2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6	PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8
1260.0degF 2500.0degF J Type Thermocou -200.0degF -40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou -200.0degF -60.0degF		2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF -40.0degF 1240.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou -200.0degF -60.0degF -40.0degF		2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8 -40.0	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0 -40.5	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0 -39.5	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3 1.2
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF -40.0degF 1240.0degF 1260.0degF 1260.0degF 1400.0degF T Type Thermocou -200.0degF -60.0degF		2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3
1260.0degF 2500.0degF J Type Thermocou -200.0degF -40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou -200.0degF -40.0degF -40.0degF -32.0degF -50.0degF 750.0degF CALIBRATOR CALIF	pple SRATION	2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8 -40.0 32.0	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0 -40.5 31.5	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0 -39.5 32.5	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3 1.2 1.7
1260.0degF 2500.0degF J Type Thermocou -200.0degF -40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou -200.0degF -60.0degF -40.0degF 32.0degF 750.0degF CALIBRATOR CALIF K Type Thermocou	pple SRATION	2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8 -40.0 32.0 749.9	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0 -40.5 31.5 749.5	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0 -39.5 32.5 750.5	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3 1.2 1.7 2.0
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF -40.0degF 1240.0degF 1240.0degF 1240.0degF 1400.0degF T Type Thermocou -200.0degF -60.0degF -40.0degF -40.0degF -50.0degF 750.0degF CALIBRATOR CALIE K Type Thermocou -200.0degF	pple SRATION	2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8 -40.0 32.0 749.9 -199.7	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0 -40.5 31.5 749.5	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0 -39.5 32.5 750.5	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3 1.2 1.7 2.0
1260.0degF 2500.0degF J Type Thermocou -200.0degF -60.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou -200.0degF -60.0degF -40.0degF 32.0degF	pple SRATION	2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8 -40.0 32.0 749.9	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0 -40.5 31.5 749.5	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0 -39.5 32.5 750.5	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3 1.2 1.7 2.0
1260.0degF 2500.0degF J Type Thermocou- -200.0degF -60.0degF -40.0degF 1240.0degF 1240.0degF 1260.0degF 1400.0degF T Type Thermocou- -200.0degF -60.0degF -60.0degF -32.0degF 750.0degF CALIBRATOR CALIF K Type Thermocou- -200.0degF -60.0degF	pple SRATION	2500.0 -200.3 -60.0 -40.1 31.9 1239.9 1259.9 1399.8 -199.9 -59.8 -40.0 32.0 749.9 -199.7 -59.9	-201.0 -61.0 -40.5 31.5 1239.5 1259.5 1399.4 -201.0 -61.0 -40.5 31.5 749.5	-199.0 -59.0 -39.5 32.5 1240.5 1260.5 1400.6 -199.0 -59.0 -39.5 32.5 750.5	PASS PASS PASS PASS PASS PASS PASS PASS	3.5 1.7 2.0 1.6 1.6 1.8 2.3 2.3 1.2 1.7 2.0

400- App-C Calibration Documents (page 56 of 64)

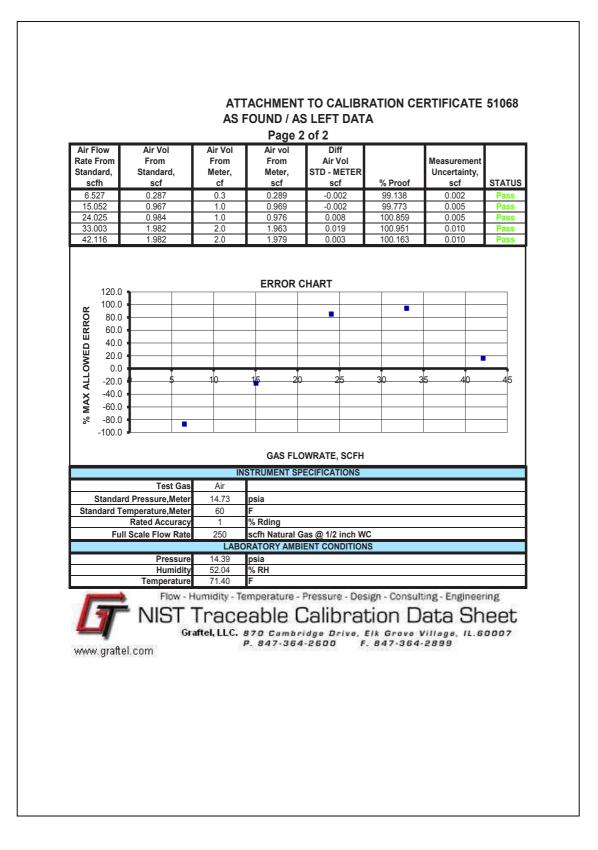
Ulrich Métrologie inc. Ulrich Metrology inc. 9912, Côte-de-Uesse Motnéal (Québec) H9T 1A1	Tél. (614) 631-(Fax (614) 631-(info@ulrich.ca wrany.ulrich .					
	TRUE	TEST	ACCEPTANC		PASS/	
PARAMETER	VALUE	RESULT	LOW	HIGH	FAIL	TU
1240.0degF		1240.2	1239.5	1240.5	PASS	1.
1260.0degF		1260.2	1259.5	1260.5	PASS	1.
2500.0degF		2500.5	2499.0	2501.0	PASS	1.
J Type Thermocouple						
-200.0degF		-200.2	-201.0	-199.0	PASS	2.
-60.0degF		-60.2	-61.0	-59.0	PASS	3.
-40.0degF		-40.1	-40.5	-39.5	PASS	1.
32.0degF		31.8	31.5	32.5	PASS	2.
1240.0degF 1260.0degF		1240.1	1239.5	1240.5	PASS	1.
1400.0degF		1260.1 1399.9	1259.5 1399.4	1260.5 1400.6	PASS PASS	1. 1.
' Type Thermocouple 200.0degF		-200.3	-201.0	-199.0	PASS	2.3
-60.0degF		-60.3	-61.0	-59.0	PASS	2.
40.0degF		-40.1	-40.5	-39.5	PASS	1.2
32.0degF		31.7	31.5	32.5	PASS	1.
750.0degF		749.8	749.5	750.5	PASS	2.0

400- App-C Calibration Documents (page 57 of 64)

MICRO PRECISION CALIBRATION 22835 INDUSTRIAL PLACE **CRO PRECISION GRASS VALLEY CA 95949** ALIBRATION INC. 530-268-1860 ACCREDITED **Certificate of Calibration** Calibration Laborator CERT # 935,01 Cert No. 222200812318776 Date: Apr 22, 2016 Customer: STOVE BUILDERS INTERNATIONAL INC. **PORTES 11-12** 250 DE COPENHAGUE SAINT-AUGUSTIN-DE-DESMAURES QC G3A 2H3 Work Order #: SAC-70078354 Purchase Order #: REWORK MPC Control #: DA5991 Serial Number: 79977 Asset ID: SBI-097 Department: N/A Gage Type: ANEMOMETER Performed By: ERICK CONKLIN Manufacturer: EUROTRON INSTRUMENTS Received Condition: IN TOLERANCE Model Number: VT 50 Returned Condition: IN TOLERANCE Size: N/A Cal. Date: April 22, 2016 68.0°F/43.0% 12 MONTHS Temp/RH: Cal. Interval: Cal. Due Date: April 22, 2017 **Calibration Notes: Test Points** UOM Result Uncertainty Standard Tolerance - Tolerance + As Found As Left Seq. Description 1 Temperature Tested at:(Deg F) -4.0 -4.7 -3.3 -3.7 -3.7 Deg F Passed 0.05 45.0 43.5 2 Tested at: (Deg F) 45.9 45.9 Deg F Passed 0,05 46.5 3 Tested at: (Deg F) 90.0 87.6 92.4 91.2 91.2 Deg F Passed 0.05 Deg F Passed 4 Tested at: (Deg F) 135.0 131.7 138.3 133.2 133.2 0.05 176.0 Passed 171.8 180.1 173.4 173.4 Deg F 0.05 5 Tested at: (Deg F) 6 Air Velocity Tested At: 500 473 527 489 489 Fpm Passed 14.5 Passed 1070 982 982 29 7 Air Velocity Tested At: 1,000 930 Fpm . 1900 1,984 Passed 2.000 2100 1,984 58 8 Air Velocity Tested At: Fpm 2,952 2870 2.952 Passed 9 Air Velocity Tested At: 3.000 3130 Fpm 87 4,020 Passed 10 Air Velocity Tested At: 4.000 4160 4,020 Fpm 80 4.879 4.879 Passed 11 Air Velocity Tested At: 5.000 4810 5190 Fpm 100 12 Air Velocity Tested At: 6,000 5780 6220 5.963 5.963 Fpm Passed 120 Erich Conkli QC Approval: Robert & Means Calibrating Technician: ERICK CONKLIN Robert Means The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EAX Publication and NIST Technical Note 1297, 1994 Edition. Services rendered comply with ISO 1705:2005, NANIXOSL Z540-1, MPC Coality Menual, MPC CSD and with locationer purchase order instructions. Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of loterance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrumen identified. All standards are traceable to SI through the National institute of Standards and Technology (NIST) and/or recognized national or international standards taboratories. Services rendered include proper manufacturer's service instruction and are warranted for no less than thirfy (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab. (CERT, Rev 3) Page 1 of 2

400- App-C Calibration Documents (page 58 of 64)

MICRO PRECISION CALIBRATION 22835 INDUSTRIAL PLACE GRASS VALLEY CA 95949 CRO PRECISION ALIBRATION INC. 530-268-1860 ACCREDITED **Certificate of Calibration** libration Laboratory CERT # 935.01 Date: Apr 22, 2016 Cert No. 222200812318776 Standards Used to Calibrate Equipment Manufacturer Cal. Due Date Traceability # LD. Model Serial Description. THUNDER SCIENTIFIC Aug 7, 2016 222008122801952 CR6800 HUMIDITY GENERATOR/ 2500 0012263 ENVIRONMENTAL CHAMBER STANDARD PLATINUM CORPORATION CL7456 5681 1595 FLUKE Dec 4, 2016 A7B16006 RESISTANCE THERMOMETER PROBE A07486/A07485/A0 HART SCIENTIFIC, INC. Nov 2, 2016 222008122718022 CL7223 BLACK STACK 1560/2560 7728 INTERACTIVE Oct 29, 2016 222008122715516 CJ5100 WIND TUNNEL WITH CONTROLLER JS-500 375/305 INSTRUMENTS Oct 29, 2016 222008122715506 ANEMOMETER LANDTEK AE2821 AM-4822 N272316 **Procedures Used in this Event** Procedure Name Description CUSTOMER SPECIFICATIONS Customer Specifications QC Approval: Robert & Means Calibrating Technician: Erick Grkli ERICK CONKLIN Robert Means The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA's Publication and NIST Technical Note 1297, 1994 Edition. Services rendered comply with ISO 170523005, ANRINOSL 2540-1, MPC Coality Manual, MPC CSD and with customer purchase order instructions. Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified. All standards are traceable to SI through the National Institute of Standards and Tachnology (NIST) and/or recognized national or international standards laboratories. Services rendered include proper manufacture's service instruction and are warranted for no less than thirty (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab. (CERT, Rev 3) Page 2 of 2


Stove Builder International Inc. | 37849 | Rev: Mar 13 2017 3:43PM | Uncontrolled Copy

400- App-C Calibration Documents (page 59 of 64)

		Calibration	Certificate	No: 51068	j.	LABORAT	ORY
			Customer Inf	formation		ACCREDIT BUREAU	
	Custon	ner: SBI St-Augustin	I			ACCREDIT	ED ISO/IEC 1702
	Addres	s: 250, De Copenh Doors 11-12 St-Augustin-de-	Cust Desmaures	tomer PO #: 45864	Ū	Certificate # L2115-1 Calib	ration
Proc	edure ID:	GTP FLOW_INDI	Revision	#: 7	Revision I	Date: 1/6/2013	
		(Calibration Stand	dards Information			
	aftel ID 10126	Manufacturer Graftel	<u>Model #</u> N/A	Description LFE-D System	<u>CAL</u> 7/6/2		
10)126-T	Graftel	9202	Temperature Sensor	8/17/	2018	
4	51202	Paroscientific	760-100A	Pressure, 100 Psia	8/17/		
1	10127	Furness	352	Delta P	7/6/2	2016	
6	50030	Paroscientific	760-100A	Pressure, 100 psia	5/7/2	2016	
	10159	НОВО	U12-011	Environment Monitor Sys	stem 11/18	/2015	
	ID#: SBI	-103	2	250 scfh	5	: Functional	
	rer: Ameri DTM-200A		Description: G Rated Accuracy			Jsed: Laminar Specified By: Am	ericanMeter
	7J264834		-		Condition	i. Tunctional	
Co	mments: C	alibration Date: 09/0	2/2015				
Technology confidence l Graftel, LLC 2001: 2008. and with the	(NIST) or co level of 95% 2. Quality As All results c written con ed value whe	ompared to nationally o (k=2). A calibration un surance System compl contained within this cel	r internationally reco certainty ratio of 4:1 ies with applicable r tificate relate only to cceptance Criteria p atement is made.	gainst standards traceable ognized consensus standar was maintained unless rec requirements of ISO/IEC-17 o item(s) calibrated. This c oper Simple Acceptance Rule c: 9/2/2015	ds. The report uired uncertai 025-2005, AN ertificate shall	ed calibration uncerta nty is supported by a SI/NCSL Z540-I-1994 not be reproduced ex	iinty has a nalysis. I and ISO ccept in full
			D	ge 1 of 2			

Stove Builder International Inc. | 37849 | Rev: Mar 13 2017 3:43PM | Uncontrolled Copy

400- App-C Calibration Documents (page 60 of 64)

Date: 2016-04-19

 Equipment:
 SBI-153
 Temperature:
 70.2°F

 Accuracy:
 0.001
 1 R.H.:
 32.7%

 Reference:
 SBI-194
 SBI-194
 SBI-194

S.D.	0.00	%	
R.M.U.	0.09	%	
0.M.U	0.58	%	
	Ave A.D.	0.27	%
Standard	Reading	A.D.	
MΩ			
1.100	1.097	0.27	
1.100	1.097	0.27	
1.100	1.097	0.27	

S.D.	0.01	%	
R.M.U.	0.83	%	
0.M.U	2.00	%	
	Ave A.D.	0.56	%
Standard	Reading	A.D.	
120	119	0.83	
120	120	0.00	
120	119	0.83	

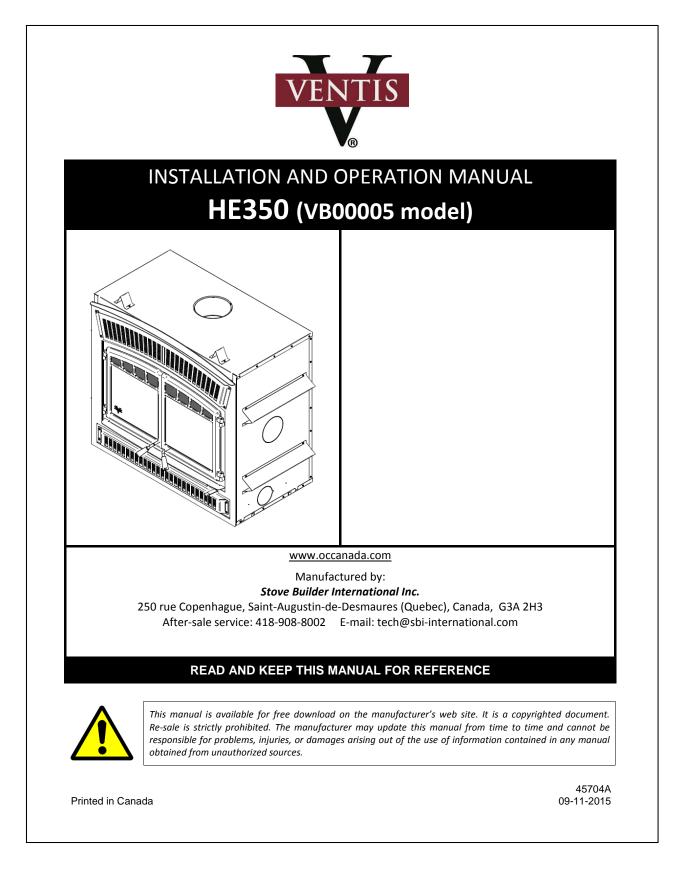
Vincent Pelletic Technician: Vincent Pelletier

Report prepared for: Guillaume Thibodeau-Fortin (Stove Builder International Inc.) on 3/14/2017 12:34:21 PMSpec DIRECT POWERED BY Internet Direct Powered By

400- App-C Calibration Documents (page 62 of 64)

Cartificate no.: 525229 Identification: SBI-194 Description: MULTIMETER, RADIO SHACK 22-168A Manufacturer: RADIO SHACK Model no.: 22-168A Serial no.: FC388201 Procedure no.: MET/CAL Environment: CLAS Type 2 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS	912, Côte-de-L	logie inc. logy inc. Liesse	Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca	1	CLAS	ACCREDITATI
Certificate no.: 525229 Calibration date: April 07, 201 Identification: SBI-194 Certificate issued: April 07, 201 Description: MULTIMETER, RADIO SHACK Due date: April 07, 201 Manufacturer: RADIO SHACK Due date: April 07, 201 Model no.: 22-168A Due date: April 07, 201 Serial no: FC388201 Environment: CLAS Type 2 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE Approved by: David Lioren This calibration certificate is usued in accordince with the applicable requirements of ISO/IEC 17023 and Ulrich Metrology quality manufacility): a national laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless otherwise noted in easurement esults associated with the conformance to a tolerance, the uncertainty in the measurement system of (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in easurement results. Notes: Se		,	www.ulrich.ca		clas tess of	SCC Scope Number
Identification: SBI-194 Certificate issue: April 07, 201 Description: MULTIMETER, RADIO SHACK Due date: April 07, 201 Model no:: 22-168A Due date: April 07, 201 Serial no:: FC388201 Procedure no:: MET/CAL Serial no:: FC388201 Environment: CLAS Type 2 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE David Lloren This calibration certificate is tasked in accordance with the applicable requirements of ISO/IBC 17035 and Ulrich Metrology (subty) manual (MAPR & proved by: David Lloren This calibration certificate is tasked in accordance with the applicable requirements of ISO/IBC 17035 and Ulrich Metrology (SUB), a national laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless otherwise noted in the calibrate is to characteristic calibrated, unless otherwise noted in the calibrate is uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibrate is uncertainty ratio) of the acceptable tolerance for each characteristic cali	BRA	TIO	N CERTIF	ICATE		
Description: MULTIMETER, RADIO SHACK 22-168A Interval: 12 months Manufacturer: RADIO SHACK Due date: April 07, 201 Model no.: 22-168A Procedure no.: MET/CAL Serial no: FC388201 Environment: CLAS Type 2 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE David Lloren Str-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IBC 17025 and Ulich Metrology's quality manual QM-09 R David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IBC 17025 and Ulich Metrology's quality manual QM-09 R David Lloren The calibration Arrangement (MR-0, or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless otherwise noted in the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the transment results associated with the conformance to a tolerance, the uncertainty in the measurement system of (4:1 test uncerta					•	
Manufacturer: RADIO SHACK Due date: April 07, 201 Model no.: 22-168A Procedure no.: MET/CAL Serial no.: FC388201 Environment: CLAS Type 2 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE David Lloren ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's gualty manual QM-40 R David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's gualty manual QM-40 R David Lloren Proved or traceable is either the National Research Council Canada (IRCA), the National Institute of Standards and Technology (INST), a national laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless otherwise noted in the measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of (4:1 test uncertainty ratio) of the acceptable tolerance f			O SHACK 22-168A			10
Model no.: 22-168A Procedure no.: MET/CAL Serial no.: FC388201 Environment: CLAS Type 2 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren. This calibration comfictes is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology quity manual QM-60 R, Standards and Technology (NIST), a national laboration to the CIPM Mutual Recognition Arrangement (MBA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibrated unless otherwise noted in the calibrated and the calibrated and theading the calibrated and theading the calib			10 011AGR 22-100A			117
Serial no.: FC388201 Environment: CLAS Type 3 Serial no.: FC388201 Environment: CLAS Type 3 Temperature: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Temperature: 23 ± 2°C Humidity: 23 ± 2°C Humidity: 35 - 55% RH Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren David Lloren David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Utrich Metrology's quality manual QM-609 R Provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboration of the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIERATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted in the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the A:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibration baracteristic calibrated and unless otherwise noted in the acceptable tolerance for each characteristic calibrated and unless otherwise noted in the acceptable tolerance for each characteristic calibrated and unless otherwise noted in the acceptable tolerance for each characteristic calibrated and unless otherwise noted in the acceptable tolerance for each characteristic calibrated and unless otherwise noted in the acceptable toleranc						2 Laboratory
Humidity: 35 - 55% RH Metrologist: NFS Property of: SI 250 RUE DE COPENHAGUE David Lloren ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 R rovided are traceable to other the National Research Council Canada (NRC), the National Institute of Standards and Technology (MST), a national laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted neasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibrated procedure and the set of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibration barder and procedure and the set of the acceptable tolerance for each characteristic calibrated and unless otherwise noted in the calibrated procedure and the set of the acceptable tolerance for each characteristic calibrated and unless otherwise noted in the calibrated and the set of the acceptable tolerance for each characteristic calibrated and the set of the acceptable tolerance for each characteristic calibrated and the set of the acceptable t	1 00002	201			• ·	5 Z Laboratory
Metrologist: NFS Property of: SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lioren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 R David Lioren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 R David Lioren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 R David Lioren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology's quality manual QM-09 R David Lioren This calibration for the National Research Council Canada (NRC), the National Isbiance of Standards and Technology (MIST), a national Isbiance of the CIPM Manual Recognition Arrangement (MRR), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS Metasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of 4.1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibration of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibration of the acceptable tolerance for each characteristic calibrated in unless otherwise noted in the calibratinty ratio) of the acceptable tolerance for each						н
Property of: SH 250 RUE DE COPENHAGUE David Lioren Charles Contraction destriction destrictin				•		
250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and/Utich Metrology (17), a national laboration to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted neasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in terms CALIBRATION DATA See next page for measurement results. Notes:				metrologist.		
ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3 Approved by: David Lloren This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Methology (1913), a national laborato to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibration barta CALIBRATION DATA See next page for measurement results. Notes:	SBI				0	A . D A
This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and Ulrich Metrology (NIST), a national laboration of the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agro CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted neasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the CALIBRATION DATA See next page for measurement results. Notes:	250 RU	JE DE COPEN	IHAGUE		Havie	L Ilorens
rovided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laborator in the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agree CALIBRATION STANDARDS See notes below. MEASUREMENT UNCERTAINTY The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted neasurement results associated with the conformance to a tolerance, the uncertainty in the measurement system of 4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the calibration DATA the next page for measurement results.	ST-AU	GUSTIN-DE-D	ESMAURES, QC G3A 2H3	Approved by:	David Llore	ens, Quality Manag
See next page for measurement results.		eete or exceed	le all specifications as stated in	the reference precedure		d othonwing For
Notes:	strument me Its associate	ed with the cor	nformance to a tolerance, the u	incertainty in the measur	ement systen	n did not exceed 2
	strument me Its associate y ratio) of the	ed with the cor	nformance to a tolerance, the u	incertainty in the measur	ement systen	n did not exceed 2
1.5A fuse was received blown. It was replaced.	strument me ts associate y ratio) of the TA	ed with the cor e acceptable t	nformance to a tolerance, the u	incertainty in the measur	ement systen	n did not exceed 25
	strument me ts associate y ratio) of the TA	ed with the cor e acceptable t	nformance to a tolerance, the u	incertainty in the measur	ement systen	n did not exceed 25
	strument me Its associate y ratio) of the TA neasuremen	ed with the con- e acceptable t	formance to a tolerance, the u olerance for each characteristi	incertainty in the measur	ement systen	n did not exceed 2
	strument me Its associate y ratio) of the TA neasuremen	ed with the con- e acceptable t	formance to a tolerance, the u olerance for each characteristi	incertainty in the measur	ement systen	n did not exceed 25
	strument me Its associate y ratio) of the TA neasuremen	ed with the con- e acceptable t	formance to a tolerance, the u olerance for each characteristi	incertainty in the measur	ement systen	n did not exceed 25
	strument me Its associate y ratio) of the TA neasuremen	ed with the con- e acceptable t	formance to a tolerance, the u olerance for each characteristi	incertainty in the measur	ement systen	n did not exceed 25
	strument me Its associate y ratio) of the TA neasuremen	ed with the con- e acceptable t	formance to a tolerance, the u olerance for each characteristi	incertainty in the measur	ement systen	n did not exceed 25
The CHRMID Liberatory Assessment Service (CLAS) of the National Research Council of Canada (NICL) has assessed and another beyonds addressing and the inductional system of Units (SG) or its assessed for a based based on the standard council of Canada (SCO) Habiter CLAS has SEC guarantee the accountry of inclusional and and and addressing and addressing and addressing and addressing ad	strument me Its associate y ratio) of the TA neasuremen	ed with the con- e acceptable t	formance to a tolerance, the u olerance for each characteristi	incertainty in the measur	ement systen	n did not exceed 25

Stove Builder International Inc. | 37849 | Rev: Mar 13 2017 3:43PM | Uncontrolled Copy


400- App-C Calibration Documents (page 63 of 64)

9912. C	Métrologie inc. Metrology inc. ôfaeda-liesse I (Québeo) H8T 1A1	Tél. (614) 63 Fax (514) 63 info@ulrich.c www.ulric l	a				
CALIBRA	TION DATA						
Certificate no.: Identification: Description: Serial no.: Procedure:	525229 SBI-194 MULTIMETER FC388201 MICRONTA 22-168A:	5520A-M			Result: PA Condition: FO	SS UND-LEFT	
CALIBRATION STAI							
Identification	Description		Manufacturer		Model no.	Cal. Date	Due Da
8608002	CALIBRATOR		FLUKE		5520A	2016/03/02	2017/03/
MEASUREMENT RE	SULTS (Per MET/CAL						
PARAMETER		TRUE VALUE	TEST RESULT	ACCEPTA LOW	NCE LIMITS HIGH	PASS/ FAIL	TUR
DC VOLTAGE CALIE	BRATION						
200 mV Range			10	4.0			
190.0mV 2V Range			189.9	187.8	192.2	PASS	
1.900V			1.898	1.878	1.922	PASS	
-1.900V			-1.897	-1.922	-1.878	PASS	
20V Range							
19.00V			18.99	18.78	19.22	PASS	
200V Range 190.0V			190.1	187.8	192.2	DICC	
1000V Range			120.1	T01.9	192.2	PASS	
950V			950	938	962	PASS	
AC VOLTAGE CALIB	RATION						
200 mV Range							
190.0mV @ 60Hz			187.3	185.8	194.2	PASS	
2V Range 1.900V @ 60Hz			1.872	1.858	1.942	PASS	
20V Range					2.5716		
19.00V @ 60Hz			18.73	18.58	19.42	PASS	
200V Range			107 6	105 0	104.0	DAGG	
190.0V @ 60Hz 750V Range			187.6	185.8	194.2	PASS	
700V @ 60Hz			691	678	723	PASS	
FREQUENCY CALIBR 1.900kHz @ 5V	ATION		1.904	1 000	1 000	DNCC	
71200 VII7 6 91			1.904	1.809	1.990	PASS	
RESISTANCE CALIB	RATION						
200 Ohm Range							
190.0 Ohm			190.3	186.8	193.2	PASS	
2 kOhm Range 1.900 kOhm			1.900	1.870	1.930	PASS	
20 kOhm Range			1.900	1.0/0	1.230	1000	
19.00 kOhm			18.98	18.70	19.30	PASS	
200 kOhm Range							
190.0 kOhm 2 MOhm Range			190.1	187.0	193.0	PASS	

400- App-C Calibration Documents (page 64 of 64)

ULRICH	Ulrich Métrologie inc. Ulrich Metrology inc. 9912, Côte-de-Liesse Motnréal (Québec) H8T 1A1	Tél. (514) 631- Fax (514) 631- info@ulrich.ca www.ulrich.ca	6122				
		TRUE	TEST	ACCEPTANC	E LIMITS	PASS/	
PARAMETER		VALUE	RESULT	LOW	HIGH	FAIL	J
1.900 MO 20 MOhm R			1.901	1.870	1.930	PASS	
19.00 MO			19.01	18.50	19.50	PASS	
2000 MOhm 1100 MOhr	•		1107	935	1266	PASS	
	Y CALIBRATION						
	eper on when 30 Ohms r Operator Evaluation	esistance is	applied?			PASS	
Is the be	eper off when 100 Ohms	resistance i	s applied?				
Result of	Operator Evaluation					PASS	
DC CURREN	I CALIBRATION						
200 µA Rai	nge		100 7	105 0	100.0	53.66	
190.0uA 2 mA Range	e		189.7	187.0	193.0	PASS	
1.900mA			1.899	1.870	1.930	PASS	
20 mA Ran 19.00mA	ge		19.06	18.47	19.54	PASS	
200 mA Rai	nge						
190.0mA 20 A Range	~		191.7	184.7	195.3	PASS	
10.00A	-		9.89	9.30	10.70	PASS	
	I CALIBRATION						
200 μA Rai 190.0uA (187.0	184.8	195.2	PASS	
2 mA Range	e						
1.900mA (20 mA Rang			1.897	1.848	1.952	PASS	
19.00mA (18.80	18.15	19.85	PASS	
200 mA Rai			188.9	181.5	198.5	PASS	
190.0mA (20 A Range			188.9	181.5	198.5	PASS	
10.00A @			9.92	8.98	11.02	PASS	
	CE CALIBRATION						
200 nF Rai 190.0nF	nge		188.8	180.9	199.1	PASS	
20 µF Rang	Je		100.0	100.9	199.1	1100	
19.00uF			18.48	17.30	20,70	PASS	
200 µF Ran 190.0uF	ige		183.6	172.9	207.1	PASS	
		End	of Test Data				

504 App D-4 Drawings and manual

504 App D-4 Drawings and manual (page 2 of 44)

THANK YOU FOR CHOOSING THIS VENTIS WOOD FIREPLACE

As one of North America's largest and most respected wood stove and fireplace manufacturers, Stove Builder International takes pride in the quality and performance of all its products. We want to help you get maximum satisfaction as you use this product.

In the pages that follow you will find general advice on wood heating, detailed instructions for safe and effective installation, and guidance on how to get the best performance from this fireplace as you build and maintain fires, and maintain your wood heating system.

We recommend that our wood burning hearth products be installed and serviced by professionals who are certified in the United States by NFI (National Fireplace Institute[®]) or in Canada by WETT (Wood Energy Technology Transfer) or in Quebec by APC (Association des Professionnels du Chauffage).

Congratulations on making a wise purchase.

If this fireplace is not properly installed, combustible materials near it may overheat. To reduce the risk of fire, follow the installation instructions in this manual exactly. Contact local building or fire officials about restrictions and installation inspection requirements in your area.

Please read this entire manual before you install and use your new fireplace. You may need to get a building permit for the installation of this fireplace and the chimney that it is connected to. Consult your municipal building department or fire department before installation. We recommend that you also inform your home insurance company to find out if the installation will affect your policy.

This heating unit is designed to serve as a supplementary heat source. We recommend that a primary heat source also be available in the home. The manufacturer cannot be responsible for costs associated with the use of another heating system.

<u>CAUTION</u>: Do not attempt to modify or alter the construction of the fireplace or its components. Any modification or alteration of construction may void the warranty, listings and approvals of this system. In that case, Stove Builder International (SBI) will not be responsible for damages. Install the fireplace only as described in these instructions.

2

504 App D-4 Drawings and manual (page 3 of 44)

PAR1	A - OPERATION AND MAINTENANCE
1 Sa	fety Information
1.1	Summary of Operation and Maintenance Cautions and Warnings
2 Ge	eneral Information
2.1	HE350 Specifications Erreur ! Signet non défin
2.2	Zone Heating and How to Make it Work for You1
2.3	The Benefits of Low Emissions and High Efficiency1
2.4	The Olympia Chimney Commitment to You and the Environment
2.4.1	
3 Fu	ıel14
3.1	Materials That Should Not be Burned1
3.2	How to Prepare or Buy Good Firewood1
3.2.1	
3.2.2	
3.2.3	
3.2.4	
3.2.5	6 How to Dry Firewood1
3.2.6	Judging Firewood Moisture Content1
3.3	Manufactured Logs1
4 Or	perating Your Fireplace1
4.1	The use of a fire screen Érreur ! Signet non défin
4.2	Your First Fires
4.3	Lighting Fires1
4.3.1	
4.3.2	2 The Top Down Fire1
4.3.3	Two Parallel Logs1
4.3.4	Using Fire Starters1
4.4	Maintaining Wood Fires1
4.4.1	General Advice1
4.4.2	2 Ash Removal2
4.4.3	8 Raking Charcoal2
4.4.4	Firing Each New Load Hot2
4.4.5 4.4.6	

HE350 - Installation and Operation Manual

3

504 App D-4 Drawings and manual (page 4 of 44)

5.1 Fireplace Maintenance	
5.1.1 Plated Finish Maintenance 5.1.2 Glass Door Cleaning	
5.1.2 Glass Door Cleaning 5.1.3 Door Adjustment	
5.1.4 Door Alignment	
5.1.5 Replacing the Door Gasket	
5.1.6 Cleaning and Painting the Fireplace	
5.2 Chimney and Chimney Liner Maintenance	
5.2.1 Why Chimney Cleaning is Necessary	
5.2.2 How Often Should You Clean the Chimney?	
5.2.3 Cleaning the Chimney	
5.2.4 Fire Baffle Removal Prior to Cleaning the Chimney	
5.2.5 Chimney Fire	-
•	
ART B – INSTALLATION	29
Safety InformationErr	eur ! Signet non défini.
6.1 Summary of Installation Cautions and Warnings	Erreur ! Signet non défini.
6.2 Regulations Covering Fireplace Installation	Erreur ! Signet non défini.
6.3 Fireplace Installation	•
6.3.1 Locating the HE350	-
	_
6.3.2 Minimum Heart Extension Requirements	Erreur ! Signet non défini.
6.3.2 Minimum Heart Extension Requirements6.3.3 Framing, Facing, Mantel, and Combustible Shelf	Erreur ! Signet non défini. Erreur ! Signet non défini.
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 	Erreur ! Signet non défini Erreur ! Signet non défini eur ! Signet non défini.
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 	Erreur ! Signet non défini Erreur ! Signet non défini eur ! Signet non défini.
 6.3.2 Minimum Heart Extension Requirements	Erreur ! Signet non défini Erreur ! Signet non défini eur ! Signet non défini. Erreur ! Signet non défini.
 6.3.2 Minimum Heart Extension Requirements	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label. The Venting System 3.1 General 3.2 Suitable Chimneys 3.3 Minimum Chimney Height. 3.4 The Relationship Between the Chimney and the House 	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. 30 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height 8.4 The Relationship Between the Chimney and the Hout 8.4.1 Why the chimney should penetrate the highest heat 	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label. The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height. 8.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height 8.5 Chimney Installation Notes 	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height 8.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height. 8.5 Chimney Installation Notes 8.6 Chimney Installation Instructions 	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err Clearances to Combustible Material.Err Locating the Certification Label. The Venting System 3.1 General 3.2 Suitable Chimneys 3.3 Minimum Chimney Height. 3.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height 3.5 Chimney Installation Notes 3.6 Chimney Installation Instructions 8.6.1 Examples of Typical Chimney Installation 	Erreur ! Signet non défini. Erreur ! Signet non défini. reur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height 8.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height 8.5 Chimney Installation Notes 8.6 Chimney Installation Instructions 8.6.1 Examples of Typical Chimney Installation 	Erreur ! Signet non défini. Erreur ! Signet non défini. reur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf. Clearances to Combustible Material.Err 7.1 Locating the Certification Label. The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height. 8.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height 8.5 Chimney Installation Notes 8.6 Chimney Installation Instructions 8.6.1 Examples of Typical Chimney Installation 8.7 Angled Wall Radiation Shield. 	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label. The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height. 8.4 The Relationship Between the Chimney and the Hout 8.4.1 Why the chimney should penetrate the highest heit 8.5 Chimney Installation Notes 8.6.1 Examples of Typical Chimney Installation 8.6.2 Offset Chimney Installation 8.8 Chimney Support Installation 8.8.1 Universal Roof Support. 	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label. The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height. 8.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height 8.6 Chimney Installation Notes 8.6.1 Examples of Typical Chimney Installation 8.6.2 Offset Chimney Installation 8.6.3 Chimney Support Installation 8.6.1 Universal Roof Support. 8.8.2 Universal Offset Support. 	Erreur ! Signet non défini. Erreur ! Signet non défini. eur ! Signet non défini. Erreur ! Signet non défini. 30
 6.3.2 Minimum Heart Extension Requirements 6.3.3 Framing, Facing, Mantel, and Combustible Shelf Clearances to Combustible Material.Err 7.1 Locating the Certification Label. The Venting System 8.1 General 8.2 Suitable Chimneys 8.3 Minimum Chimney Height 8.4 The Relationship Between the Chimney and the Hou 8.4.1 Why the chimney should penetrate the highest height 8.5 Chimney Installation Notes 8.6.1 Examples of Typical Chimney Installation 8.7 Angled Wall Radiation Shield 8.8.1 Universal Roof Support. 	Erreur ! Signet non défini. Erreur ! Signet non défini. 'eur ! Signet non défini. 'eur ! Signet non défini. Erreur ! Signet non défini.

504 App D-4 Drawings and manual (page 5 of 44)

Appendix 2	Blower Maintenance or Replacement41
Appendix 3 défini.	: Installing the Optional Door OverlayErreur ! Signet non
Appendix 4 défini.	: Installing the Fresh Air Intake Kit Erreur ! Signet non
Appendix 5 Signet no	: Installing the Optional Fire Screen (AC01560)Erreur ! on défini.
Appendix 6 Signet no	: Installation of Secondary Air Tubes and BaffleErreur ! on défini.
Appendix 7 défini.	: Exploded Diagram and Parts ListErreur ! Signet non
VENTIS LIN	NITED LIFETIME WARRANTY44
	AITED LIFETIME WARRANTY44
VENTIS LIN	AITED LIFETIME WARRANTY44
VENTIS LIN	
VENTIS LIN	REGISTER YOUR WARRANTY ONLINE To receive full warranty coverage, you will need to show evidence of the date you purchased your unit. Keep your sales invoice. We also recommend that you register your warranty online at http://www.occanada.com/en/service-support/warranty- registration Registering your warranty online will help us track rapidly the
VENTISLIN	REGISTER YOUR WARRANTY ONLINE To receive full warranty coverage, you will need to show evidence of the date you purchased your unit. Keep your sales invoice. We also recommend that you register your warranty online at http://www.occanada.com/en/service-support/warranty- registration Registering your warranty online will help us track rapidly the
VENTISLIN	REGISTER YOUR WARRANTY ONLINE To receive full warranty coverage, you will need to show evidence of the date you purchased your unit. Keep your sales invoice. We also recommend that you register your warranty online at http://www.occanada.com/en/service-support/warranty- registration Registering your warranty online will help us track rapidly the
VENTIS LIN	REGISTER YOUR WARRANTY ONLINE To receive full warranty coverage, you will need to show evidence of the date you purchased your unit. Keep your sales invoice. We also recommend that you register your warranty online at http://www.occanada.com/en/service-support/warranty- registration Registering your warranty online will help us track rapidly the
VENTISLIN	REGISTER YOUR WARRANTY ONLINE To receive full warranty coverage, you will need to show evidence of the date you purchased your unit. Keep your sales invoice. We also recommend that you register your warranty online at http://www.occanada.com/en/service-support/warranty- registration Registering your warranty online will help us track rapidly the
VENTISLIN	REGISTER YOUR WARRANTY ONLINE To receive full warranty coverage, you will need to show evidence of the date you purchased your unit. Keep your sales invoice. We also recommend that you register your warranty online at http://www.occanada.com/en/service-support/warranty- registration Registering your warranty online will help us track rapidly the

504 App D-4 Drawings and manual (page 6 of 44)

PART A - OPERATION AND MAINTENANCE

Please see Part B for installation instructions.

1 SAFETY INFORMATION

- 1.1 Summary of Operation and Maintenance Cautions and Warnings
- HOT WHILE IN OPERATION, KEEP CHILDREN, CLOTHING AND FURNITURE AWAY. CONTACT MAY CAUSE SKIN BURNS. GLOVES MAY BE NEEDED FOR FIREPLACE OPERATION.
- USING A FIREPLACE WITH CRACKED OR BROKEN COMPONENTS, SUCH AS GLASS OR FIREBRICKS OR BAFFLES MAY PRODUCE AN UNSAFE CONDITION AND MAY DAMAGE THE FIREPLACE.
- OPERATE ONLY WITH DOOR FULLY CLOSED. IF DOOR IS LEFT PARTLY OPEN, GAS AND FLAME MAY BE DRAWN OUT OF THE OPENING, CREATING RISKS FROM BOTH FIRE AND SMOKE.
- OPEN THE AIR CONTROL FULLY BEFORE OPENING THE LOADING DOOR.
- DO NOT INSTALL THE FIREPLACE OUTDOORS.
- THE FIREPLACE AND CHIMNEY MUST BE IN AN ENCLOSURE UP TO THE ATTIC.
- NEVER USE GASOLINE, LANTERN FUEL (NAPHTHA), FUEL OIL, MOTOR OIL, KEROSENE, CHARCOAL LIGHTER FLUID, OR SIMILAR LIQUIDS OR AEROSOLS TO START A FIRE IN THIS FIREPLACE. KEEP ALL SUCH LIQUIDS OR AEROSOLS WELL AWAY FROM THE FIREPLACE WHILE IT IS IN USE.
- DO NOT STORE FUEL WITHIN HEATER MINIMUM INSTALLATION CLEARANCES.
- BURN ONLY SEASONED NATURAL FIREWOOD.
- DO NOT BURN:
 - GARBAGE OF ANY KIND,
 - COAL OR CHARCOAL,
 - TREATED, PAINTED OR COATED WOOD,
 - PLYWOOD OR PARTICLE BOARD,
 - FINE PAPER, COLORED PAPER OR CARDBOARD,
 - SALT WATER DRIFTWOOD,
 - MANUFACTURED LOGS CONTAINING WAX OR CHEMICAL ADDITIVES,
 - RAILROAD TIES OR
 - LIQUIDS SUCH AS KEROSCENE OR DIESEL FUEL TO START A FIRE.
- THIS APPLIANCE SHOULD BE MAINTAINED AND OPERATED AT ALL TIMES IN ACCORDANCE WITH THESE INSTRUCTIONS.
- DO NOT ELEVATE THE FIRE BY MEANS OF GRATES, ANDIRONS OR OTHER MEANS.
- SOME JURISDICTIONS IN THE USA REQUIRE A SUPPLY OF OUTDOOR COMBUSTION AIR FOR THE FIREPLACE. IN CANADA, AN OUTDOOR AIR SUPPLY IS NOT REQUIRED, IF A CARBON MONOXIDE (CO) DETECTOR/ALARM IS LOCATED IN THE ROOM IN WHICH THE FIREPLACE IS INSTALLED. THE CO

6

504 App D-4 Drawings and manual (page 7 of 44)

DETECTOR WILL PROVIDE WARNING IF FOR ANY REASON THE WOOD FIREPLACE FAILS TO FUNCTION CORRECTLY. IF YOU ARE REQUIRED TO INSTALL AN OUTDOOR AIR SUPPLY, WE RECOMMEND THAT YOU ALSO INSTALL A CO DETECTOR/ALARM TO PROVIDE WARNING IF SMOKE SPILLAGE FROM THE FIREPLACE OCCURS. CAUTION: KEEP COMBUSTIBLE MATERIALS AT LEAST 48 INCHES AWAY FROM THE FRONT OF THE FIREPLACE OPENING. DO NOT USE A FIREPLACE INSERT AND OTHER PRODUCTS NOT SPECIFIED FOR USE WITH CAUTION: THIS FIREPLACE. CAUTION: DO NOT OBSTRUCT AIR INTLETS. THIS FIREPLACE NEEDS AIR FOR ITS GOOD OPERATION. DO NOT BLOCK THE HOT AIR VENTS TO THE FIREPLACE AS THIS WILL CAUSE THE FIREPLACE CAUTION: TO OVERHEAT. DO NOT USE MATERIALS OTHER THAN THOSE LISTED IN THE REPLACEMENT PARTS WARNING: SECTION DURING INSTALLATION AS THEY MAY BE SAFETY HAZARDS AND A FIRE COULD RESULT. WARNING: THIS FIREPLACE HAS NOT BEEN TESTED WITH AN UNVENTED OR VENTED GAS LOG SET. TO REDUCE RISK OF FIRE OR INJURY, DO NOT INSTALL AN UNVENTED GAS LOG SET INTO THIS FIREPLACE. **CAUTION:** DO NOT INSTALL IN A MOBILE HOME (CANADA) OR MANUFACTURED HOME* (USA). * The US department of Housing and Urban Development describes "manufactured homes" better known as "mobile home" as followed; Buildings built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. PLEASE NOTE THAT THE PICTURES SHOWN IN THIS MANUAL ARE GENERIC AND MAY NOT MATCH EXACTLY THE LOOK OF YOUR FIREPLACE.

HE350 - Installation and Operation Manual

7

504 App D-4 Drawings and manual (page 8 of 44)

2 GENERAL INFORMATION

2.1 Appliance performance⁽¹⁾

Fuel type	Dry cordwood		
Recommended heating area ^[*]	500 to 2,800 ft ² (47 to 195 m ²)		
Firebox volume	4.3 ft ³ (0.122 m ³)		
Maximum burn time ^[*]	12 h		
Maximum heat output ⁽²⁾ (dry cordwood)	95,000 BTU/h (27.8 kW)		
Overall heat output rate (min. to max.) ⁽²⁾⁽³⁾	16,600 BTU/h to 43,000 BTU/h	1 (4.9 kW to 12.6 kW)	
Average overall efficiency ⁽³⁾ - Dry cordwood	63.9% (HHV ⁽⁴⁾)	68.4% (LHV ⁽⁵⁾)	
Optimum efficiency ⁽²⁾⁽⁶⁾	69.7%		
Average particulate emissions rate ⁽⁷⁾	1.6 g/h (EPA / CSA B415.1-10)		
Average CO ⁽⁸⁾	157.4 g/h (CSA B415.1-10)		

^(*) Recommended heating area and maximum burn time may vary subject to location in home, chimney draft, heat loss factors, climate, fuel type and other variables. The recommended heated area for a given appliance is defined by the manufacturer as its capacity to maintain a minimum acceptable temperature in the designated area in case of a power failure.

⁽¹⁾ Values are as measured per test method, except for the recommended heating area, firebox volume, maximum burn time and maximum heat output.

(2) The maximum heat output (dry cordwood) is based on a loading density varying between 15 lb/ft³ and 20 lb/ft³. Other performances are based on a fuel load prescribed by the standard. The specified loading density varies between 7 lb/ft³ and 12 lb/ft³. The moisture content is between 19% and 25%.

⁽³⁾ As measured per CSA B415.1-10 stack loss method.

⁽⁴⁾ Higher Heating Value of the fuel.

⁽⁵⁾ Lower Heating Value of the fuel.

⁽⁶⁾ Optimum overall efficiency at a specific burn rate (LHV).

⁽⁷⁾ This appliance is officially tested and certified by an independent agency.

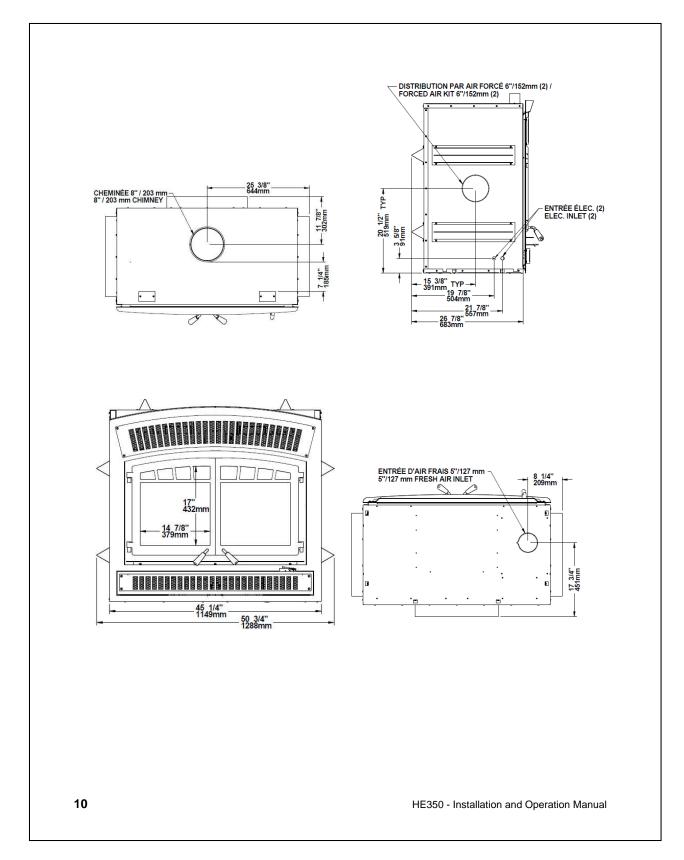
⁽⁸⁾ Carbon monoxide

8

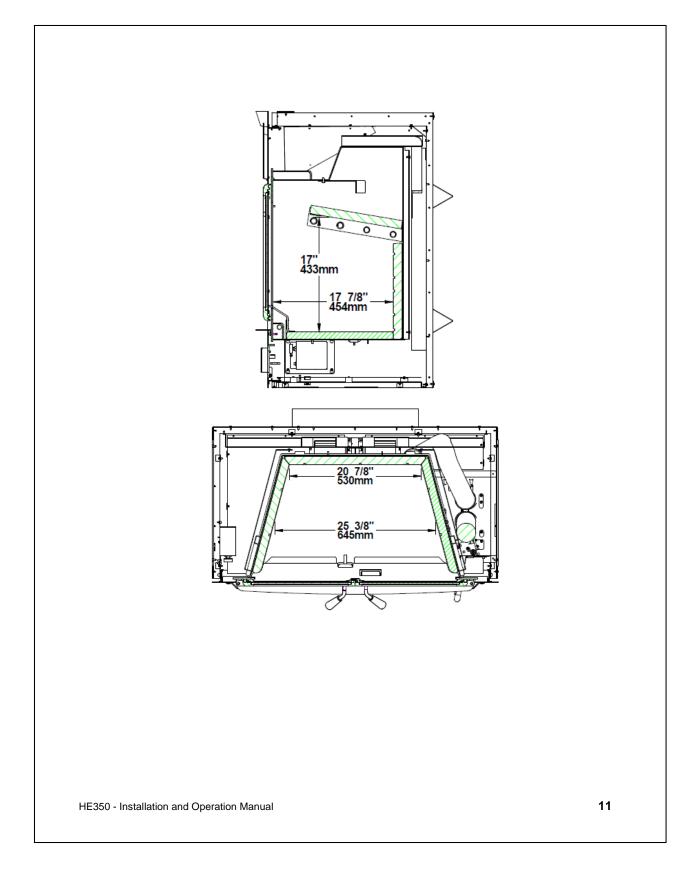
504 App D-4 Drawings and manual (page 9 of 44)

2.2 General Feature

Recommended log length	16 po (406 mm) north-south**
Flue outlet diameter	8 in (203 mm)
Chimney diameter	8 in (203 mm) See section 8.6: Chimney Installation Instructions
Type of chimney	CAN/ULC S604, UL 103 (1700 °F) CAN/ULC S629, UL 103 HT (2100 °F)
Baffle material	C-cast
Approved for alcove installation	Not approved
Approved for mobile home installation [‡]	Not approved
Shipping weight (without option)	510 lb (232 kg)
Type of door	Double, glass, with cast iron frame
Type of glass	Ceramic glass
Blower	Included (up to 176 CFM)
Particulate emission standard	ASTM WK 47329
USA standard (safety)	UL 127
Canadian standard (safety)	ULC-S610


" East-west: through the door you see the longitudinal sides of the logs; north-south: through the door you see the tips of the logs.

^t Mobiles homes are buildings made (or substantially made) in a factory and transported to another location. They include both homes built on fixed wheels and those transported on temporary wheels/axles and set on a permanent foundation. Travel trailers and recreational vehicles not intended to be permanently located on site are considered RV's and are not considered mobile homes. Also, a house for which the walls and other components would be manufactured in a factory to be then assembled on site would not be considered a manufactured home since it would not be substantially made in a factory.


HE350 - Installation and Operation Manual

9

504 App D-4 Drawings and manual (page 11 of 44)

504 App D-4 Drawings and manual (page 12 of 44)

2.3 Zone Heating and How to Make it Work for You

Your new HE350 wood fireplace is a space heater, which means it is intended to heat the area it is installed in, as well as spaces that connect to that area, although to a lower temperature. This is called zone heating and it is an increasingly popular way to heat homes or spaces within homes.

Zone heating can be used to supplement another heating system by heating a particular space within a home, such as a basement family room or an addition that lacks another heat source.

Houses of moderate size and relatively new construction can be heated with a properly sized and located wood fireplace. Whole house zone heating works best when the fireplace is located in the part of the house where the family spends most of its time. This is normally the main living area where the kitchen, dining and living rooms are located. By locating the fireplace in this area, you will get the maximum benefit of the heat it produces and will achieve the highest possible heating efficiency and comfort. The space where you spend most of your time will be warmest, while bedrooms and basement (if there is one) will stay cooler. In this way, you will burn less wood than with other forms of heating.

Although the fireplace may be able to heat the main living areas of your house to an adequate temperature, we strongly recommend that you also have a conventional oil, gas or electric heating system to provide backup heating.

Your success with zone heating will depend on several factors, including the correct sizing and location of the fireplace, the size, layout and age of your home and your climate zone. Three-season vacation homes can usually be heated with smaller fireplaces than houses that are heated all winter.

2.4 The Benefits of Low Emissions and High Efficiency

The low smoke emissions produced by the special features inside the HE350 firebox mean that your household will release up to 90 percent less smoke into the outside environment than if you used an older conventional stove. But there is more to the emission control technologies than protecting the environment.

The smoke released from wood when it is heated contains about half of the energy content of the fuel. By burning the wood completely, your fireplace releases all the heat energy from the wood instead of wasting it as smoke up the chimney. Also, the features inside the firebox allow you to reduce the air supply to control heat output, while maintaining clean and efficient flaming combustion, which boosts the efficient delivery of heat to your home.

The emission control and advanced combustion features of your fireplace can only work properly if your fuel is in the correct moisture content range of 15 to 20 percent. See **Section 3: Fuel** of this manual for suggestions on preparing fuelwood and judging its moisture.

12

504 App D-4 Drawings and manual (page 13 of 44)

2.5 The Olympia Chimney Commitment to You and the Environment

The Olympia Chimney team is committed to protecting the environment, so we do everything we can to use only materials in our products that will have no lasting negative impact on the environment.

2.5.1 What is Your New Fireplace Made Of?

The <u>body</u> of your fireplace, which is most of its weight, is carbon steel. Should it ever become necessary many years in the future, almost the entire fireplace can be recycled into new products, thus eliminating the need to mine new materials.

The <u>paint</u> coating on your fireplace is very thin. Its VOC content (Volatile Organic Compounds) is very low. VOCs can be responsible for smog, so all the paint used during the manufacturing process meets the latest air quality requirements regarding VOC reduction or elimination.

The air tubes are stainless steel, which can also be recycled.

The C-Cast <u>baffle</u> is made of an aluminosilicate fibre material that is compressed with a binder to form a rigid board. C-Cast can withstand temperatures above 2,000 °F. It is not considered hazardous waste. Disposal at a landfill is recommended.

<u>Moulded refractory bricks</u> are mainly composed of silicon dioxide, also known as silica, a product processed from a mined mineral. It is most commonly found in nature in the form of sand and clay. Disposal at a landfill is recommended. The steel mesh contained in some refractory bricks can be recycled.

The door and glass <u>gaskets</u> are fibreglass which is spun from melted sand. Black gaskets have been dipped into a solvent-free solution. Disposal at a landfill is recommended.

The door <u>glass</u> is a 5 mm thick ceramic material that contains no toxic chemicals. It is made of natural raw materials such as sand and quartz that are combined in such a way to form a high temperature glass. Ceramic glass cannot be recycled in the same way as normal glass, so it should not be disposed of with your regular household products. Disposal at a landfill is recommended.

504 App D-4 Drawings and manual (page 14 of 44)

FUEL

3.1 Materials That Should Not be Burned

- GARBAGE OF ANY KIND,
- COAL OR CHARCOAL,
- TREATED, PAINTED OR COATED WOOD,
- PLYWOOD OR PARTICLE BOARD,
- FINE PAPER, COLORED PAPER OR CARDBOARD,
- SALT WATER DRIFTWOOD,
- MANUFACTURED LOGS CONTAINING WAX OR CHEMICAL ADDITIVES,
- RAILROAD TIES,
- LIQUIDS SUCH AS KEROSENE OR DIESEL FUEL TO START A FIRE.
- WARNING: DO NOT POKE OR STIR THE LOGS WHILE THEY ARE BURNING. USE ONLY FIRELOGS THAT HAVE BEEN TESTED FOR USE IN FIREPLACES (SEE ULC/ORD-C127, COMPOSITE FIRELOGS) AND PRIOR TO USE, REFER TO FIRELOG WARNINGS AND CAUTIONS MARKINGS ON PACKAGING.

3.2 How to Prepare or Buy Good Firewood

3.2.1 What is Good Firewood?

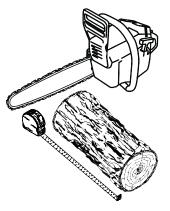
Good firewood has been cut to the correct length for the fireplace, split to a range of sizes and stacked in the open until its moisture content is reduced to 15 to 20 per cent.

3.2.2 Tree Species

The tree species the firewood is produced from is less important than its moisture content. The main difference in firewood from various tree species is the density of the wood. Hardwoods are denser than softwoods. People who live in the coldest regions of North America usually have only spruce, birch and poplar, other low-density species to burn and yet they can heat their homes successfully.

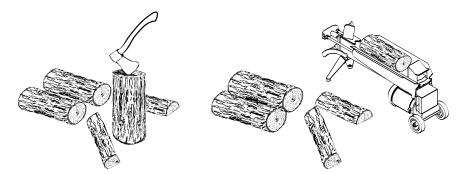
Homeowners with access to both hardwood and softwood fuel sometimes use both types for different purposes. For example, softer woods make good fuel for relatively mild weather in spring and fall because they light quickly and produce less heat Softwoods are not as dense as hardwoods so a given volume of wood contains less energy. Using softwoods avoids overheating the house, which can be a common problem with wood heating in moderate weather. Harder woods are best for colder winter weather when more heat and longer burn cycles are desirable.

Note that hardwood trees like oak, maple, ash and beech are slower growing and longer lived than softer woods like poplar and birch. That makes hardwood trees more valuable. The advice that only hardwoods are good to burn is outdated. Old, leaky cast iron stoves wouldn't hold a fire overnight unless they were fed large pieces of hardwood. That is no longer true. You can successfully heat your home by using the less desirable tree species and give the forest a break at the same time.


14

504 App D-4 Drawings and manual (page 15 of 44)

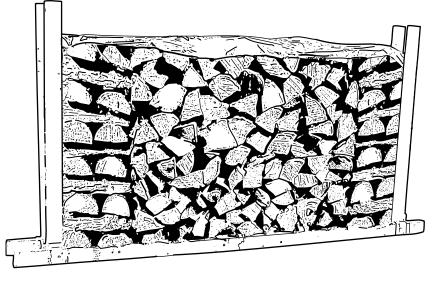
3.2.3 Log Length


Logs should be cut at least 1'' (25 mm) shorter than the firebox so they fit in easily. Pieces that are even slightly too long make loading the fireplace very difficult. The most common standard length of firewood is 16'' (406 mm).

The pieces should be a consistent length, with a maximum of 1'' (25 mm) variation from piece to piece.

3.2.4 Piece Size

Firewood dries more quickly when it is split. Large unsplit rounds can take years to dry enough to burn. Even when dried, unsplit logs are difficult to ignite because they don't have the sharp edges where the flames first catch. Logs as small as 3" (75 mm) should be split to encourage drying.



Wood should be split to a range of sizes, from about 3" to 6" (75 mm to 150 mm) in cross section. Having a range of sizes makes starting and rekindling fires much easier. Often, the firewood purchased from commercial suppliers is not split finely enough for convenient stoking. It is sometimes advisable to resplit the wood before stacking to dry.

504 App D-4 Drawings and manual (page 16 of 44)

3.2.5 How to Dry Firewood

Firewood that is not dry enough to burn is the cause of most complaints about wood fireplaces. Continually burning green or unseasoned wood produces more creosote and involves lack of heat and dirty glass door. See **Section 5**: *Maintaining your wood heating system* for concerns about creosote.

Here are some things to consider in estimating drying time:

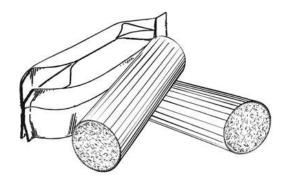
- firewood takes a long time to dry
- firewood bought from a dealer is rarely dry enough to burn, so it is advisable to buy the wood in spring and dry it yourself
- drying happens faster in dry weather than in damp, maritime climates
- drying happens faster in warm summer weather than in winter weather
- small pieces dry more quickly than large pieces
- split pieces dry more quickly than unsplit rounds
- softwoods take less time to dry than hardwoods
- softwoods like pine, spruce, and poplar/aspen can be dry enough to burn after being stacked in the open for only the summer months
- hardwoods like oak, maple and ash can take one, or even two years to dry fully, especially if the pieces are big
- firewood dries more quickly when stacked in the open where it is exposed to sun and wind; it takes much longer to dry when stacked in a wood shed
- firewood that is ready to burn has a moisture content between15 and 20% by weight and will allow your fireplace to produce its highest possible efficiency

16

504 App D-4 Drawings and manual (page 17 of 44)

3.2.6 Judging Firewood Moisture Content

You can find out if some firewood is dry enough to burn by using these guidelines:


- cracks form at the ends of logs as they dry
- as it dries in the sun, the wood turns from white or cream colored to grey or yellow,
- · bang two pieces of wood together; seasoned wood sounds hollow and wet wood sounds dull,
- dry wood is much lighter in weight than wet wood,
- split a piece, and if the fresh face feels warm and dry it is dry enough to burn; if it feels damp, it is too
 wet,
- burn a piece; wet wood hisses and sizzles in the fire and dry wood does not.

You could buy a wood moisture meter to test your firewood.

3.3 Manufactured Logs

Do not burn manufactured logs made of wax impregnated sawdust or logs with any chemical additives. Manufactured logs made of 100% compressed sawdust can be burned, but use caution in the number of these logs burned at one time. Start with one manufactured log and see how the fireplace reacts. Never use more than two manufactured logs at a time.

HE350 - Installation and Operation Manual

17

504 App D-4 Drawings and manual (page 18 of 44)

OPERATING YOUR FIREPLACE

4.1 Your First Fires

Two things will happen as you burn your first few fires; the paint cures and the internal components of the fireplace are conditioned.

As the paint cures, some of the chemicals vaporize. The vapors are not poisonous, but they do smell bad. Fresh paint fumes <u>can</u> also cause false alarms in smoke detectors. So, when you first light your fireplace, be prepared by opening doors and/or windows to ventilate the house. As you burn hotter and hotter fires, more of the painted surfaces reach the curing temperature of the paint. The smell of curing paint does not disappear until you have burned one or two very hot fires.

Burn one or two small fires to begin the curing and conditioning process. Then build bigger and hotter fires until there is no longer any paint smell from the fireplace. Once the paint smell disappears, your fireplace is ready for serious heating.

4.2 Lighting Fires

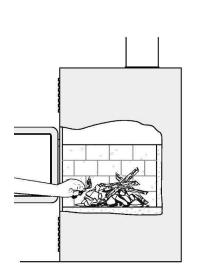
Each person who heats with wood develops their own favorite way to light fires. Whatever method you choose, your goal should be to get a hot fire burning quickly. A fire that starts fast produces less smoke and deposits less creosote in the chimney. Here are three popular and effective ways to start wood fires.

4.2.1 BEST PRACTICE: The Top Down Fire

The top down fire starting method solves two problems with the conventional method: first, it does not collapse and smother itself as it burns; and second, it's cleaner. The top down method only works properly if the wood is well-seasoned.

Start by crisscrossing around 10 finely split and dry kindling (0.5 to 1 in) leaving air space between the pieces. Then put at least 5 news paper sheets to the top of the pieces. The best way to have your ignition clean and environmentally friendly is to roll the news papers to make a long cylinder, then to make 2 knots with it. The goal is to have the news papers as compact as possible to make it burn slowly. After the ignition of the news paper, let the door open of 1 in for 5-10 minutes. The air control should be open.

When you have a small coal bed, it's the time to crisscross three or four medium-sized split pieces (2-3 in) of dry firewood in the firebox. You can close the door as soon as you loaded the pieces. Let burn until you have a good coal bed. You are now ready for the main load.


18

504 App D-4 Drawings and manual (page 19 of 44)

4.2.2 Conventional Fire Starting

The conventional way to build a wood fire is to bunch up 5 to 10 sheets of plain newspaper and place them in the firebox. Next, place 10 or so pieces of fine kindling on the newspaper. This kindling should be very thin; less than 1" (25 mm). Next, place some larger kindling pieces on the fine kindling. Open the air control fully and light the newspaper. Once the fire has ignited, close the door and leave the air control fully open.

A conventional kindling fire with paper under finely split wood.

DO NOT LEAVE THE FIREPLACE UNATTENDED WHEN THE DOOR IS SLIGHTLY OPENED. ALWAYS CLOSE AND LATCH THE DOOR AFTER THE FIRE IGNITES.

After the kindling fire has mostly burned, you can add standard firewood pieces until you have a fire of the right size for the conditions.

<u>CAUTION</u>: PLACE THE WOOD LOGS IN THE NORTH-SOUTH POSITION TO ALLOW PROPER PRIMARY AIR FLOW (FROM THE FRONT TO THE BACK OF THE STOVE).

4.2.3 Two Parallel Logs

Place two split logs in the firebox in a north-south orientation. Place a few sheets of twisted newspaper between the logs. Now place some fine kindling across the two logs and some larger kindling across those, log cabin style. Light the newspaper.

4.2.4 Using Fire Starters

Many people like to use commercial fire starters instead of newspaper. Some of these starters are made of sawdust and wax and others are specialized flammable solid chemicals. Follow the package directions for use.

Gel starter may be used but only if there are no hot embers present. Use only in a cold firebox to start a fire.

DO NOT USE FLAMMABLE LIQUIDS SUCH AS GASOLINE, NAPHTHA, FUEL OIL, MOTOR OIL, OR AEROSOLS TO START OR REKINDLE THE FIRE.

4.3 Maintaining Wood Fires

4.3.1 General Advice

Wood heating with a space heater is very different than other forms of heating. There will be variations in the temperature in different parts of the house and there will be variations in temperature throughout the day and night. This is normal, and for experienced wood burners these are advantages of zone heating with wood.

504 App D-4 Drawings and manual (page 20 of 44)

Do not expect steady heat output from your fireplace. It is normal for its surface temperature to rise after a new load of wood is ignited and for its temperature to gradually decline as the fire progresses. This rising and falling of temperature can be matched to your household routines. For example, the area temperature can be cooler when you are active, such as when doing housework or cooking, and it can be warmer when you are inactive, such as when reading or watching television.

IMPORTANT: Wood burns best in cycles. A cycle starts when a new load of wood is ignited by hot coals and ends when that load has been consumed down to a bed of charcoal about the same size as it was when the wood was loaded. Do not attempt to produce a steady heat output by placing a single log on the fire at regular intervals. Always place at least 5 to 8 pieces on the fire at a time in the North-South orientation so that the heat radiated from one piece helps to ignite the pieces next to it. Each load of wood should provide several hours of heating. The size of each load can be matched to the amount of heat needed.

When you burn in cycles, you rarely need to open the fireplace's loading door while the wood is flaming. This is an advantage because there is more chance that smoke will leak from the fireplace when the door is opened as a full fire is burning.

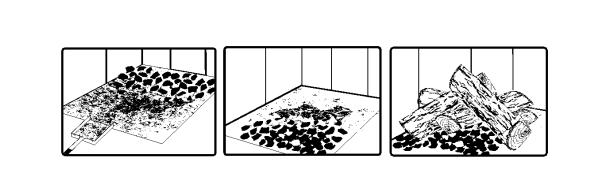
IF YOU MUST OPEN THE DOOR WHILE THE FUEL IS FLAMING, OPEN THE AIR CONTROL FULLY FOR A FEW MINUTES, THEN UNLATCH AND OPEN THE DOOR SLOWLY.

4.3.2 Ash Removal

Ash should be removed from the firebox every two or three days of full time heating. Do not let the ash build up in the firebox because it will interfere with proper fire management.

The best time to remove ash is after an overnight fire when the fireplace is relatively cool, but there is still some chimney draft to draw the ash dust into the fireplace and prevent it from coming into the room.

After ashes have been removed from the fireplace and <u>placed in a tightly covered metal container</u>, they should be taken outside immediately. The closed container of ashes should be placed on a non-combustible floor or on the ground well <u>away from all combustible materials pending final disposal</u>. Ashes normally contain some live charcoal that can stay hot for several days. If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be retained in the closed container until all cinders have thoroughly cooled. Other waste should not be placed in this container.


NEVER STORE ASHES INDOORS OR IN A NON-METALIC CONTAINER OR ON A WOODEN DECK.

4.3.3 Raking Charcoal

Rekindle the fire when you notice that the room temperature has fallen. You will find most of the remaining charcoal at the back of the firebox, furthest from the door. Rake these coals towards the door before loading. There are two reasons for this raking of the coals. First, it concentrates them near where most of the combustion air enters the firebox and where they can ignite the new load quickly, and second, the charcoal will not be smothered by the new load of wood. If you were to simply spread the charcoal out, the new load will smoulder for a long time before igniting.

20

504 App D-4 Drawings and manual (page 21 of 44)

Remove ash first, and then rake charcoal towards the front of the firebox before loading so that it will ignite the new load.

4.3.4 Firing Each New Load Hot

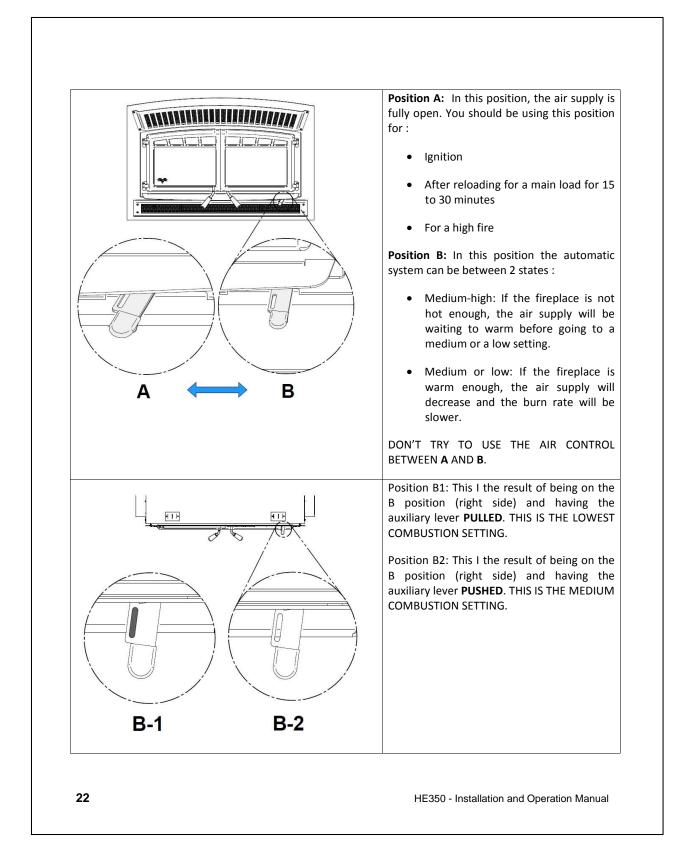
Place the new load of wood on and behind the charcoal, and not too close to the glass. Close the door and open the air control fully. Leave the air control fully open until the firebox is full of flames, the wood has charred to black and its edges are glowing red. Firing each load of wood hot accomplishes a few things:

- drives the surface moisture from the wood,
- · creates a layer of char on the wood, which slows down its release of smoke,
- heats the firebox components so they reflect heat back to the fire, and
- heats the chimney so it can produce strong, steady draft for the rest of the cycle.

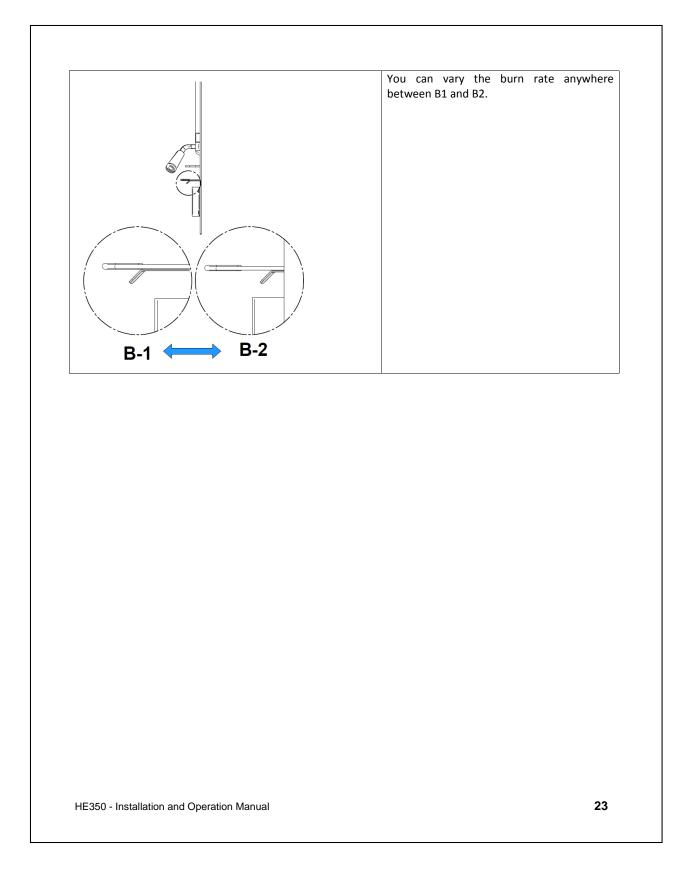
DO NOT LEAVE THE FIREPLACE UNATTENDED WHILE A NEW LOAD IS BEING FIRED HOT.

DO NOT OVERFIRE.

When you burn a new load of wood hot to heat up the wood, the fireplace and the chimney, the result will be a surge of heat from the fireplace. This heat surge is welcome when the room temperature is a little lower than desirable, but not welcome if the space is already warm. Therefore, allow each load of wood to burn down so that the space begins to cool off a little before loading. Letting the space cool before loading is one of the secrets to clean burning and effective zone heating.


4.3.5 Turning Down the Air Supply

Once the firewood, firebox and chimney are hot, you can begin to reduce the air supply for a steady burn.


As you reduce the air supply to the fire, two important things happen. First, the firing rate slows down to spread the heat energy in the fuel over a longer period of time. Second, the flow rate of exhaust through the fireplace and flue pipe slows down, which gives more time for the transfer of heat from the exhaust. You will notice that as you reduce the air setting, the flames slow down. This is your indication that the fireplace is burning at its peak efficiency.

This fireplace comes with an automatic air supply control that will prevent the air supply to be closed too early. You can gradually slow the burn rate by closing the air supply even before the automatic system is engaged. The system is electronic and will close a second air intake when the temperature of the fireplace is warm enough.

504 App D-4 Drawings and manual (page 22 of 44)

504 App D-4 Drawings and manual (page 23 of 44)

504 App D-4 Drawings and manual (page 24 of 44)

4.3.6 Building Different Fires for Different Needs

Using the air control is not the only way to match the fireplace's heat output to the heat demand. Your house will need far less heat in October than in January to be kept at a comfortable temperature. If you fill the firebox full in fall weather, you will either overheat the space or turn the fireplace down so much that the fire will be smoky and inefficient.

4.3.6.1 Maximum Burn Cycle Times

The burn cycle time is the period between loading wood on a coal bed and the consumption of that wood back to a coal bed of the same size. The flaming phase of the fire lasts for roughly the first half of the burn cycle and the second half is the coal bed phase during which there is little or no flame. The length of burn you can expect from your fireplace, including both the flaming and coal bed phases, will be affected by a number of things, such as:

- firebox size,
- the amount of wood loaded,
- the species of wood you burn,
- the wood moisture content,
- the size of the space to be heated,
- the climate zone you live in, and
- the time of year.

The table below provides a very general indication of the maximum burn cycle times you are likely to experience, based on firebox volume.

FIREBOX VOLUME	MAXIMUM BURN TIME
<1.5 cubic feet	3 to 5 hours
1.5 c.f. to 2.0 c.f	5 to 6 hours
2.0 c.f. to 2.5 c.f.	6 to 8 hours
2.5 c.f. to 3.0 c.f.	8 to 9 hours
>3.0 c.f.	9 to 10 hours

Long burn times are not necessarily an indication of efficient fireplace operation. When you are home during the day and able to tend the fire, it is preferable to build a smaller fire that might provide three or four hours of heating than to fully load the firebox for a much longer burn. Shorter burn cycles make it easier to match the heat output of the fireplace to the heat demand of the space.

4.3.6.2 How to place the logs

In fireboxes that are roughly square, wood can be loaded so that looking through the glass door you see the ends of the logs (north-south) or the sides of the logs (east-west). This fireplace is designed to burn efficiently in the **north-south** orientation.

5 MAINTAINING YOUR WOOD HEATING SYSTEM

5.1 Fireplace Maintenance

Your new fireplace will give many years of reliable service if you use and maintain it correctly. Some of the internal components of the firebox, such as firebricks, baffles and air tubes, will wear over time under intense heat. You should always replace defective parts with original parts. Firing each load hot to begin a cycle as described above will not cause premature deterioration of the fireplace. However, letting the fireplace run with the air control fully open for the entire burn cycles can cause damage over time. The

24

504 App D-4 Drawings and manual (page 25 of 44)

hotter you run the fireplace throughout burn cycles, the more quickly its components will deteriorate. For that reason, **never leave the fireplace unattended while a new load is being fired hot**.

5.1.1 Plated Finish Maintenance

If your appliance has a plated finish, use a metal polish and a soft cloth to clean it. Do not use abrasives such as steel wool, steel pads or an abrasive cleaner for they may scratch the finish.

5.1.2 Glass Door Cleaning

Under normal conditions, your door glass should stay relatively clear. If your firewood is dry enough and you follow the operating instructions in this manual, a whitish, dusty deposit will form on the inside of the glass after a week or so of use. This is normal and can be easily removed when the fireplace is cool by wiping with a damp cloth or paper towel and then drying. **Never try to clean the glass when the fireplace is hot.**

In spring and fall when the fireplace is run at lower temperatures, you may see some light brown stains forming, especially at the lower corners of the glass. This indicates that the fire has been smoky and some of the smoke has condensed on the glass. When the weather is mild, you may find that letting the fire go out is better than trying to maintain a continuous fire. Use the technique described above for building a fire to take the chill off the house.

If you do get brown stains on the glass you can remove them with special cleaners for wood heater glass doors. **Do not use abrasives to clean your fireplace's door glass.**

The deposits that form on the glass are the best indication of the quality of your fuel and how well you are doing in operating the fireplace. Your goal should be clear glass with no brown stains. If you continue to see brown stains on the glass, something about your fuel and operating procedure needs to be changed. Stains on the glass indicate incomplete combustion of the wood, which also means more smoke emissions and faster formation of creosote in the chimney.

If you see brown streaks coming from the edge of the glass, it is time to replace the gasket around the glass. Visit your fireplace retailer to get the self-adhesive glass gasket and follow the instructions below for installation.

Do not abuse the glass door by striking or slamming shut. Do not use the fireplace if the glass is broken.

504 App D-4 Drawings and manual (page 26 of 44)

5.1.3 Cleaning and Painting the Fireplace

Do not attempt to clean or paint the fireplace when the unit is hot. Painted surfaces can be wiped down with a damp cloth. Plated surfaces may be scratched by abrasive cleaners. To maintain the finish at its original brilliance, use only a damp soft cloth to clean plated surfaces.

If the paint becomes scratched or damaged, you can give your wood fireplace a brand new look by repainting it with heat-resistant paint. Before painting, roughen the surface with fine sand paper, wipe it down to remove dust, and apply two thin coats of paint. For best results, use the same paint that was originally used on the fireplace, which is available in spray cans. See your dealer for details.

5.2 Chimney and Chimney Liner Maintenance

5.2.1 Why Chimney Cleaning is Necessary

Wood smoke can condense inside the chimney liner and chimney, forming a combustible deposit called creosote. If creosote is allowed to build up in the venting system it can ignite when a hot fire is burned in the fireplace and a very hot fire can progress to the top of the chimney. Severe chimney fires can damage even the best chimneys. Smouldering, smoky fires can quickly cause a thick layer of creosote to form. When you avoid smouldering so the exhaust from the chimney is mostly clear, creosote builds up more slowly. Your new fireplace has the right characteristics to help you to burn clean fires with little or no smoke, resulting in less creosote in the chimney.

5.2.2 How Often Should You Clean the Chimney?

It is not possible to predict how much or how quickly creosote will form in your chimney. It is important, therefore, to check the build-up in your chimney monthly when getting used to the new fireplace until you determine the rate of creosote formation. Even if creosote forms slowly in your system, the chimney should be cleaned and inspected at least once each year. Do not allow more than 1/8" (3 mm) creosote buildup in the chimney.

It is recommended to clean thoroughly the chimney system at the end of every heating season. During summer, the air is damper and with minimal air circulation within the stove or furnace, it can mix with creosote and/or sooth deposits in the chimney system to form an acid that could accelerate the corrosion process and induce premature decay of the steel. Corrosion damages are not covered under warranty. Have your chimney system cleaned by a professional chimney sweep. Use a plastic or steel brush.

Contact your local municipal or provincial fire authority for information on how to handle a chimney fire. Have a clearly understood plan to handle a chimney fire.

26

504 App D-4 Drawings and manual (page 27 of 44)

5.2.3 Cleaning the Chimney

Chimney cleaning can be a difficult and dangerous job. If you don't have experience cleaning chimneys, you might want to hire a professional chimney sweep to clean and inspect the system for the first time. After having seen the cleaning process, you can decide if it is a job you would like to take on.

The most common equipment used are fibreglass rods with threaded fittings and stiff plastic brushes. The brush is forced up and down inside the chimney flue to scrub off the creosote.

The chimney should be checked regularly for creosote build-up. Inspection and cleaning of the chimney can be facilitated by removing the baffle.

Do not expect chemical cleaners to keep your chimney clean.

The rain cap can be removed for inspection and/or cleaning of the chimney.

The chimney should be swept following these steps:

- 1) Remove the fire baffle and air tubes.
- 2) Remove the rain cap.
- 3) Sweep the chimney.
- 4) Clean the inside of the firebox.
- 5) Re-install the baffle, the air tubes and the rain cap.

CAUTION: OPERATION OF YOUR HE350 WITHOUT THE BAFFLE MAY CAUSE UNSAFE AND HAZARDOUS TEMPERATURE CONDITIONS AND WILL VOID THE WARRANTY.

5.2.4 Fire Baffle Removal Prior to Cleaning the Chimney

Before starting to clean your chimney, we recommend that you remove the fire baffle to avoid creosote dust collection on top of the baffle. Follow the steps below to remove the fire baffle:

- 1. Remove the front air tube by pulling out the cutter pin on the side of the tube. They are located at the top, underneath the baffle.
- 2. Lift the baffle assembly and slide it out of the fireplace. You now have access to the chimney.

504 App D-4 Drawings and manual (page 28 of 44)

5.2.5 Chimney Fire

Regular chimney maintenance and inspection can prevent chimney fires. If you have a chimney fire, follow these steps:

- 1. Close the fireplace door and the air intake controls;
- 2. Alert your family of the possible danger;
- 3. If you require assistance, alert your fire department;
- 4. If possible, use a dry chemical fire extinguisher, baking soda or sand to control the fire. Do not use water as it may cause a dangerous steam explosion;
- 5. Check outside to ensure that sparks and hot embers coming out of the chimney are not igniting the roof;
- 6. Do not use the fireplace again until your chimney and fireplace have been inspected by a qualified chimney sweep or a Fire Department Inspector;

504 App D-4 Drawings and manual (page 29 of 44)

PART B - INSTALLATION

Install the fireplace only as described in these instructions and using only components from the chimney manufacturers listed in table 2.

Parts Required

- HE350 Fireplace
- Insulated chimney made by the manufacturers listed in table 2, with the corresponding specifications :
 - Chimney lengths
 - Elbows (where necessary)
 - Associated components as per these installation instructions.

Additional Equipment (optional)

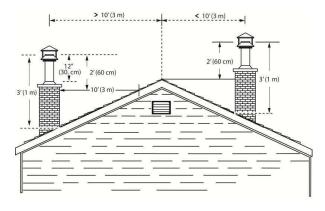
• Forced Air Distribution Kit

504 App D-4 Drawings and manual (page 30 of 44)

5 THE VENTING SYSTEM

6.1 General

The venting system, <u>acts as the engine</u> that drives your wood heating system. Even the best fireplace will not function safely and efficiently as intended if it is not connected to a suitable chimney.


The heat in the flue gases that pass from the fireplace into the chimney is not waste heat. This heat is what the chimney uses to make the draft that draws in combustion air, keeps smoke inside the fireplace and safely vents exhaust to outside. You can think of heat in the flue gas as the fuel the chimney uses to make draft.

6.2 Suitable Chimneys

Your wood fireplace will provide optimum efficiency and performance when connected to a 8-inch diameter chimney.

6.3 Minimum Chimney Height

The top of the chimney should be tall enough to be above the air turbulence caused when wind blows against the house and its roof. The chimney must extend at least 1 m (3 ft.) above the highest point of contact with the roof, and at least 60 cm (2 ft.) higher than any roof line or obstacle within a horizontal distance of 3 m (10 ft.).

6.4 The Relationship Between the Chimney and the House

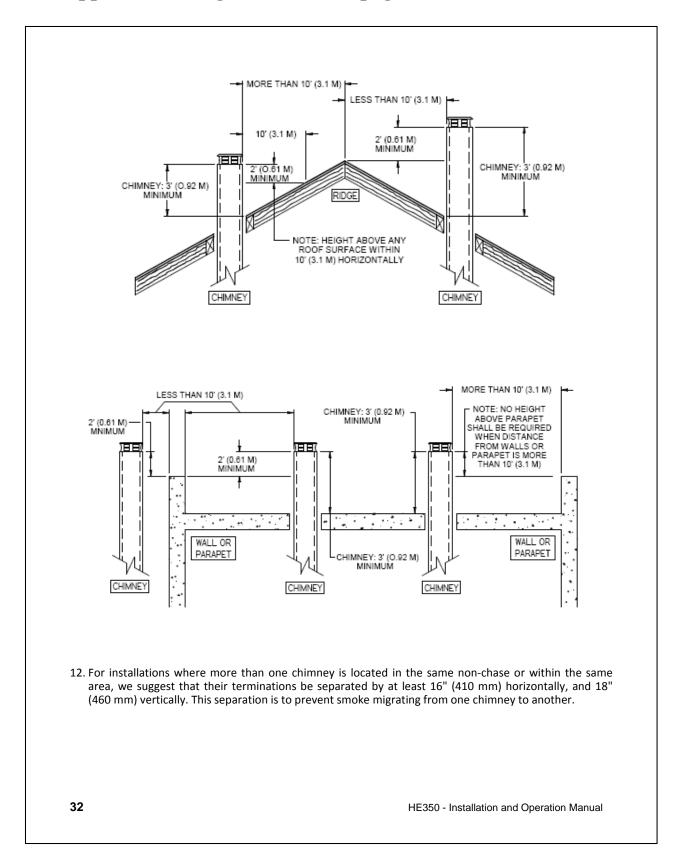
Because the venting system is the engine that drives the wood heating system, it must have the right characteristics. The signs of bad system design are cold backdrafting when there is no fire in the fireplace, slow kindling of new fires, and smoke roll-out when the door is opened for loading.

6.4.1 Why the chimney should penetrate the highest heated space

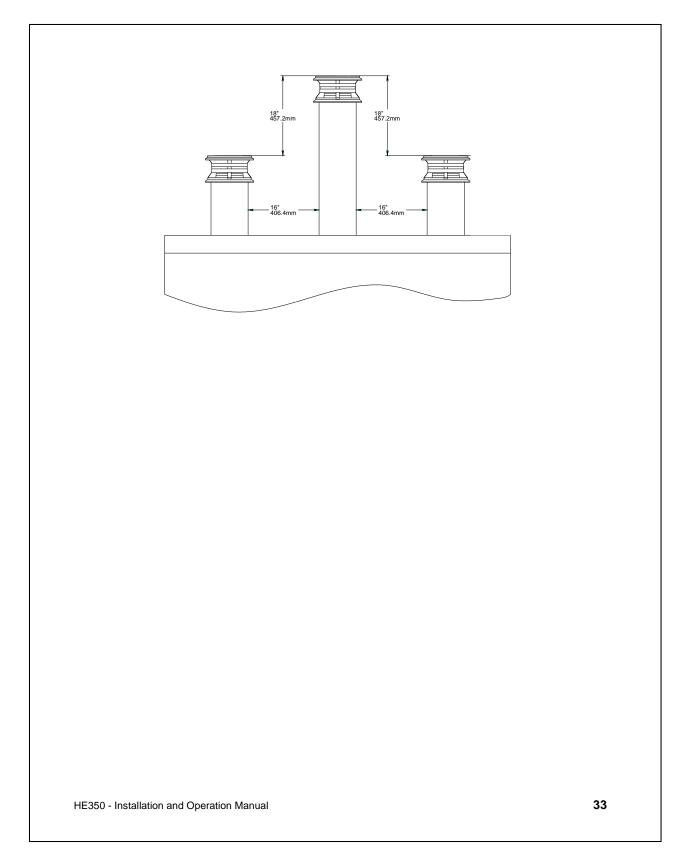
When it is cold outside, the warm air in the house is buoyant so it tends to rise. This tendency of warm air to rise creates a slight pressure difference in the house. Called 'stack effect', it produces a slightly negative pressure low in the house (relative to outside) and a slightly positive pressure zone high in the house. If there is no fire burning in a heater connected to a chimney that is shorter than the warm space inside the house, the slight negative pressure low in the house pressure low in the house will compete against the desired upward flow in the chimney.

30

504 App D-4 Drawings and manual (page 31 of 44)

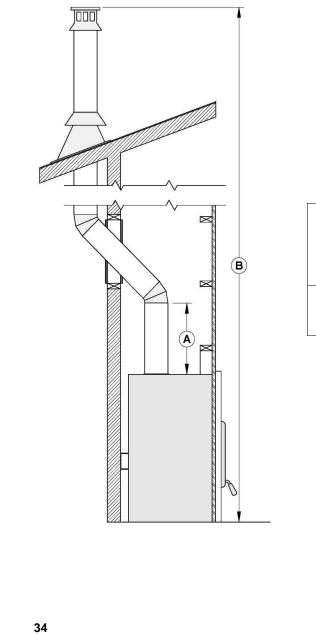

There are two reasons why the chimney in the house at right will cold backdraft when it is cold outside and there is no fire burning in the fireplace. First, the chimney runs up the outside of the house, so the air in it is colder and denser than the warm air in the house. And second, the chimney is shorter than the heated space of the house, meaning the negative pressure low in the house will pull outside air down the chimney, through the fireplace and into the room. Even the finest fireplace will not work well when connected to this chimney.

6.5 Chimney Installation Notes


- 1. If possible, install an interior chimney as it will provide better performance. In areas with continuous temperatures below -18° C (0° F), the use of an exterior chimney increases the likelihood of operating problems such as low draft, high rate of creosoting, and poor start-up characteristics. Exterior chimneys are also prone to down-drafting and flow reversal. Installations, which are located on lower floors in the house, such as in a basement, in combination with outside chimney, are especially prone to flow reversal.
- 2. The HE350 is listed only with chimney systems described in table 1.
- 3. A chimney venting a fireplace shall not vent any other appliance.
- 4. The minimum chimney system height for a straight installation is 15 ft. (4,6 m).
- 5. <u>All chimney installations must include at least one support</u>. Reducing the amount of chimney weight on the fireplace will help avoid the noise created when the fireplace expands. This can be achieved by having the chimney supported by the supports. The maximum chimney length that should be supported by the fireplace is 9 ft. (2.75 m) for 2" Solid Pack Chimney and 12 ft. (3.7 m) for 1" Solid Pack Chimney.
- 6. The chimney must extend at least 3 ft. (92 cm) above its point of contact with the roof and at least 2 ft. (61 cm) higher than any wall, roof or building within 10 ft. (3.1 m) of it. See the figures on point 11 bellow to determine the configuration that applies to your roof (flat or sloped roof and the distance between the chimney and the highest point of the roof and/or the nearest chimney).
- 7. Deviations should be avoided whenever possible, especially the most pronounced. Each deviation adds some restriction to the chimney system and may lead to draft problems.
- 8. If the chimney extends higher than 5 ft. (1.5 m) above its point of contact with the roof, it must be secured using a roof brace.
- 9. A rain cap must be installed on top of the chimney. Failure to install a rain cap may cause corrosion problems.
- 10. Cut and frame square holes in all floors, ceilings, and roof that the chimney will go through to provide a 2" (50 mm) minimum clearance between the chimney and any combustible materials. Do not fill this 2" space with insulation or any other combustible material.
- 11. Portions of the chimney which may extend through accessible spaces must be enclosed to avoid contact with combustible materials or damage the chimney.

HE350 - Installation and Operation Manual

504 App D-4 Drawings and manual (page 32 of 44)

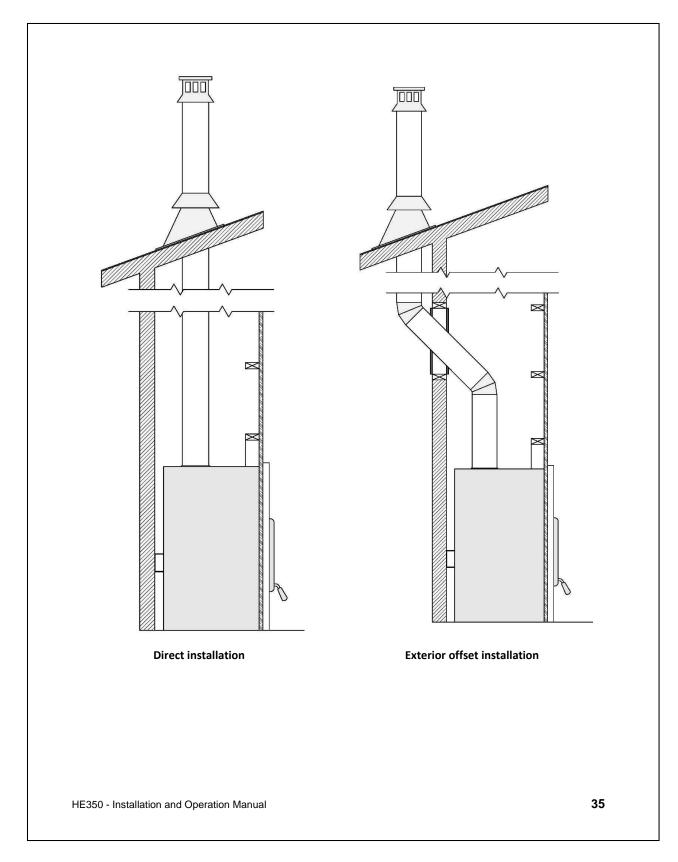


504 App D-4 Drawings and manual (page 34 of 44)

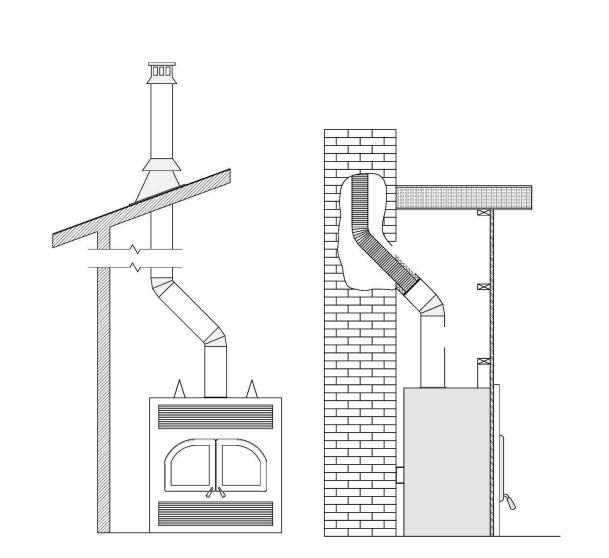
6.6 Chimney Installation Instructions

Always refer to the chimney manufacturer's Installation manual to ensure a safe installation. Some nonillustrated parts may be required.

6.6.1 Examples of Typical Chimney Installation



A	To insure a good draft, it is recommended to have a length of 18 inches from the top of the unit to the first offset. However, starting using a 30° or 45° elbow is also approved.
в	Mandatory measure of 15 ft. from the bottom of the fireplace to the top of


HE350 - Installation and Operation Manual

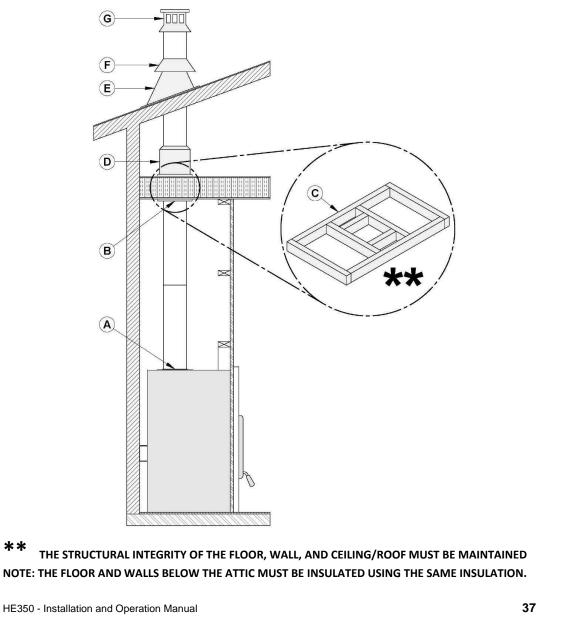
the outside chimney.

Interior offset installation

Connection to a masonry chimney

- 1. Cut and frame the holes in the ceiling, floor and roof where the chimney will pass. Use a plumb bob to line up the center of the holes. Make sure that the size of the floor and ceiling holes are in accordance with the chimney manufacturer's instructions.
- 2. From below, install a firestop (B) supplied by the chimney manufacturer in each ceiling/floor separation through which the chimney will pass. At the attic level, install a radiation shield from above (C).
- 3. Follow the chimney's manufacturers' instructions and place the first chimney length on the fireplace. For all chimneys, you must use an anchor plate (A) supplied by the chimney manufacturer before installing the first chimney length. Continue installing chimney lengths making sure to lock each length in place.
- 4. Every time the chimney passes through a ceiling or a wall, install the appropriate firestop. When you reach the desired height, install the roof support (not illustrated). (Refer to instructions included with the support).

36


HE350 - Installation and Operation Manual

504 App D-4 Drawings and manual (page 37 of 44)

- 5. Then, put the roof flashing (D) in place and seal the joint between the roof and the flashing with roofing pitch. For sloping roofs, place the flashing under the upper shingles and on top of the lower shingles. Nail the flashing to the roof, using roofing nails.
- 6. Place the storm collar (E) over the flashing, and tighten it with the bolt supplied. Finally, seal the joint between the storm collar and the chimney, using silicone caulking.
- 7. Install the chimney cap (G).

**

8. When a ventilated roof flashing is installed, precautions are to be taken not to caulk or seal the ventilating openings.

504 App D-4 Drawings and manual (page 38 of 44)

6.6.2 Offset Chimney Installation

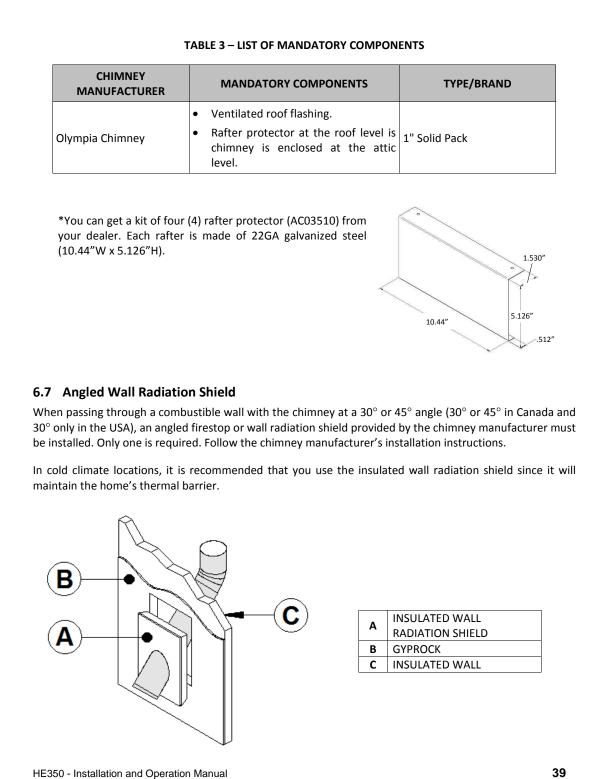
Fireplace model	HE350
Chimney model	All models
Vertical installation	15 ft. (4.6 m)
Two (2) elbows	15 ft. (4.6 m)
Four (4) elbows	17 ft. (5.2 m)

TABLE 1 - THE MINIMUM SYSTEM HEIGHT WHEN USING ELBOWS IS:

After reaching the location requiring the elbow, proceed as follows:

- Install the first elbow; turn it in the required direction. Secure it to the chimney according to the chimney manufacturer's instructions. In many cases, it is recommended to secure connections with three (3) ½" (12 mm) metal screws.
- Install the necessary chimney lengths to achieve the required offset. Lock the chimney lengths together according to the chimney manufacturer's instructions. In many cases, it is recommended to use three (3) ½" (12 mm) screws. If the offset length is made of two (2) chimney lengths or more, many chimney manufacturers may require that you use an offset or roof support halfway up the offset. If penetrating a wall, install a wall radiation shield supplied by the chimney manufacturer.
- 3. Use another elbow to turn the chimney vertically. Secure the elbow.
- 4. Use a plumb bob to line up the centre of the hole. Cut a hole for the chimney in the ceiling/floor. Frame this hole as described previously.
- 5. From below, install a firestop supplied by the chimney manufacturer (see preceding figure).
- 6. A support must be used on the first 15' section (4.6 m).
- 7. Continue with the regular installation.

TABLE 2 - LISTED CHIMNEYS FOR YOUR HE350


CHIMNEY MANUFACTURER	BRAND	ТҮРЕ	INNER DIAMETER
Olympia Chimney	Ventis	1" Solid Pack	8" (20 cm)

WARNING: IN EVERY CASE, THE CHIMNEY MUST START WITH A 8" DIAMETER ANCHOR PLATE SECURED TO THE FIREPLACE.

38

HE350 - Installation and Operation Manual

504 App D-4 Drawings and manual (page 39 of 44)

39

504 App D-4 Drawings and manual (page 40 of 44)

6.8 Chimney Support Installation

6.8.1 Universal Roof Support

This support has three possible uses:

- 1. It must be used on a roof to support the chimney.
- 2. It may be used on a floor, ceiling or roof above an offset to support the chimney above the offset.
- 3. It may be used on a floor, ceiling or roof as a supplementary support.

For roof support installation, refer to the instructions provided with the support by the chimney manufacturer. Many manufacturers will provide the maximum height of chimney that can be supported by the support. Make sure you respect those parameters.

6.8.2 Universal Offset Support

This support is used to support the chimney above an offset. When the chimney offset is used to pass through a wall, this support may be used on the wall to support the chimney. For offset support installation, refer to the instructions provided with the support by the chimney manufacturer. Many manufacturers will provide the maximum height of chimney that can be supported by the support. Make sure you respect those parameters.

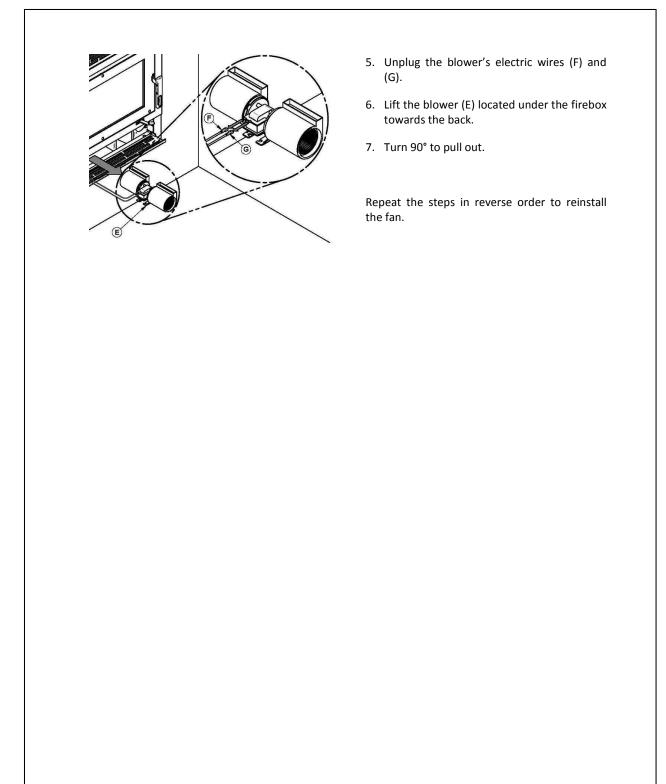
6.9 Supply of Combustion Air

In Canada, wood fireplaces are not required to have a supply of combustion air from outdoors because research has shown that these supplies do not give protection against house depressurization and may fail to supply combustion air during windy weather. However, to protect against the risk of smoke spillage due to house depressurization, **a carbon monoxide (CO) detector/alarm is required** in the room in which the fireplace is installed. The CO detector will provide warning if for any reason the wood fireplace fails to function correctly.

6.9.1 Air Supply in Conventional Houses


The safest and most reliable supply of combustion air for your wood fireplace is from the room in which it is installed. Room air is already preheated so it will not chill the fire, and its availability is not affected by wind pressures on the house. Contrary to commonly expressed concerns, almost all tightly-sealed new houses have enough natural leakage to provide the small amount of air needed by the fireplace. The only case in which the wood fireplace may not have adequate access to combustion air is if the operation of a powerful exhaust device (such as a kitchen range exhaust) causes the pressure in the house to become negative relative to outdoors.

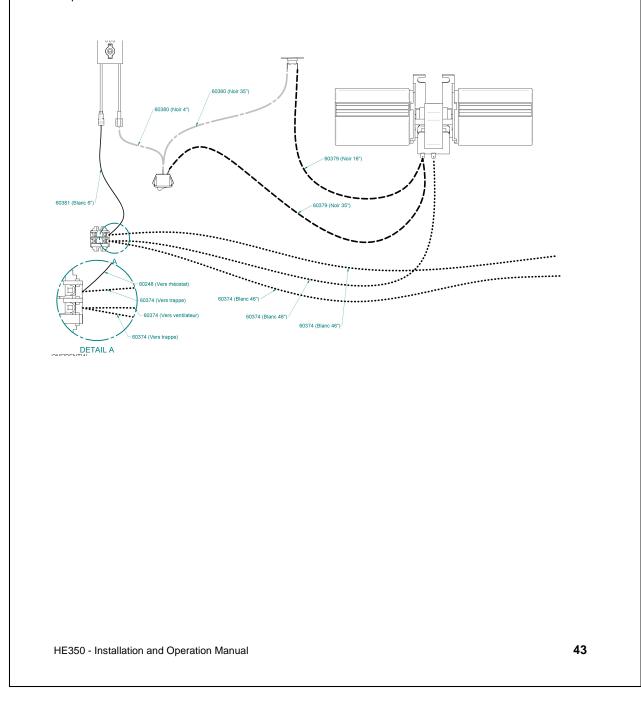
If you do install an air supply through the wall of the house, be aware that its pressure can be affected during windy weather. If you notice changes in wood fireplace performance in windy weather, and in particular if smoke puffs from the fireplace, you should disconnect the outdoor air duct from the fireplace and remove the duct. In some windy conditions, negative pressure at the duct weatherhood outside the house wall may draw hot exhaust gases from the fireplace backwards through the duct to outdoors. Check the outdoor air duct for soot deposits when the full system is cleaned and inspected at least once each year.


40

HE350 - Installation and Operation Manual

504 App D-4 Drawings and manual (page 41 of 44)

504 App D-4 Drawings and manual (page 42 of 44)



HE350 - Installation and Operation Manual

504 App D-4 Drawings and manual (page 43 of 44)

Blower connection

Have the wiring installed by a qualified electrician. Connect the wires from the power outlet to the terminal block, making sure that the white wire matches the white wire on the terminal. Connect the black wire with the black wire of the terminal block. The ground (green or skinned wire) must be attached to the fireplace metal frame.

504 App D-4 Drawings and manual (page 44 of 44)

VENTIS LIMITED LIFETIME WARRANTY

The warranty of the manufacturer extends only to the original consumer purchaser and is not transferable. This warranty covers brand new products only, which have not been altered, modified nor repaired since shipment from factory. Products covered under this warranty must have been manufactured after the revision date indicated below. Proof of purchase (dated bill of sale), model name and serial number must be supplied when making any warranty claim to your VENTIS dealer.

This warranty applies to normal residential use only. Damages caused by misuse, abuse, improper installation, lack of maintenance, over firing, negligence or accident during transportation, power failures, downdrafts, or venting problems are not covered by this warranty.

This warranty does not cover any scratch, corrosion, distortion, or discoloration. Any defect or damage caused by the use of unauthorized parts or others than original parts void this warranty. An authorized qualified technician must perform the installation in accordance with the instructions supplied with this product and all local and national building codes. Any service call related to an improper installation is not covered by this warranty.

The manufacturer may require that defective products be returned or that digital pictures be provided to support the claim. Returned products are to be shipped prepaid to the manufacturer for investigation. If a product is found to be defective, the manufacturer will repair or replace such defect. Transportation fees to ship the product back to the purchaser will be paid by the manufacturer. Repair work covered by the warranty, executed at the purchaser's domicile by an authorized qualified technician requires the prior approval of the manufacturer. Labour cost and repair work to the account of the manufacturer are based on predetermined rate schedule and must not exceed the wholesale price of the replacement part. All parts and labour costs covered by this warranty are limited according to the table below.

The manufacturer at its discretion may decide to repair or replace any part or unit after inspection and investigation of the defect. The manufacturer may, at its discretion, fully discharge all obligations with respect to this warranty by refunding the wholesale price of any warranted but defective parts. The manufacturer shall in no event be responsible for any special, indirect, consequential damages of any nature, which are in excess of the original purchase price of the product. A one-time replacement limit applies to all parts benefiting from a lifetime coverage. This warranty applies to products purchased after October 1st, 2011.

DECONDICAL	WARRANTY A	APPLICATION
DESCRIPTION	PARTS	LABOUR
Combustion chamber (welds only), castings, convector air-mate, ceramic glass (thermal breakage only*), and secondary air tubes*.	Lifetime	4 years
Plating* (defective manufacture) – subject to limitations above.	Lifetime	n/a
Stainless steel firebox components, surrounds and heat shields, ash drawer, steel legs, pedestal, trims (aluminum extrusions), C-Cast baffle*, and vermiculite baffle*.	5 years	3 years
Carbon steel firebox components, glass retainers, and handle assembly.	3 years	2 years
Blowers, heat sensors, switches, rheostat, wiring, and other controls.	2 years	1 year
Paint (peeling), gaskets, insulation, firebrick, and ceramic fibre blankets.	1 year	n/a

*Pictures required

Shall your unit or a components be defective, contact immediately your **VENTIS** dealer. Prior to your call make sure you have the following information necessary to your warranty claim treatment:

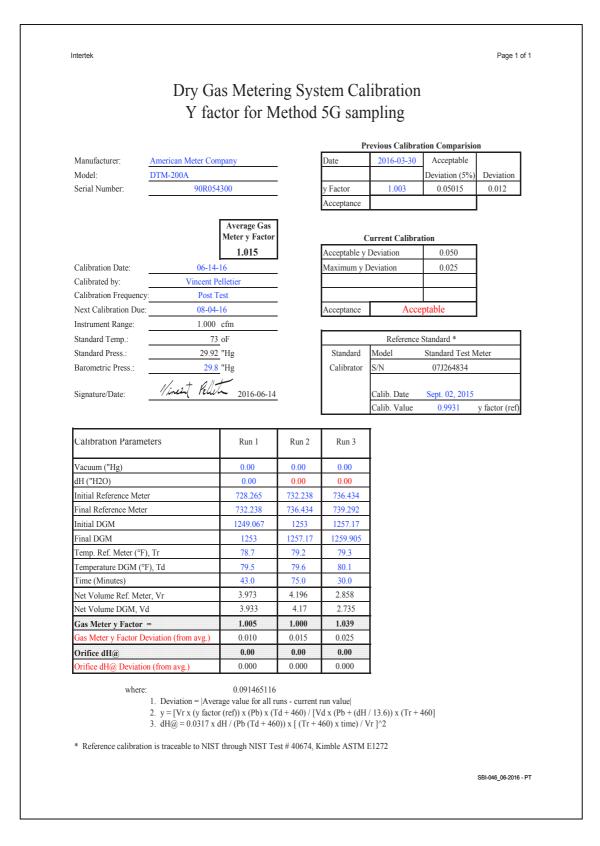
- Your name, address and telephone number;
- Serial number and model name as indicated on the nameplate fixed to the back of your unit;
- Bill of sale and dealer's name;
- Nature of the defect and any relevant information.

Before shipping your unit or defective component to our plant, you must obtain from your VENTIS dealer an Authorization Number. Any merchandise shipped to our plant without authorization will be refused automatically and returned to sender.

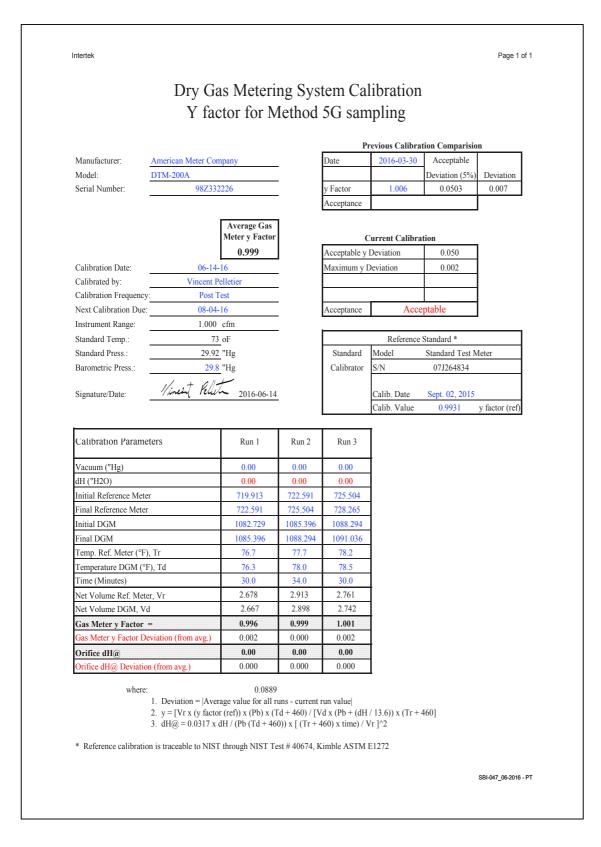
44

HE350 - Installation and Operation Manual

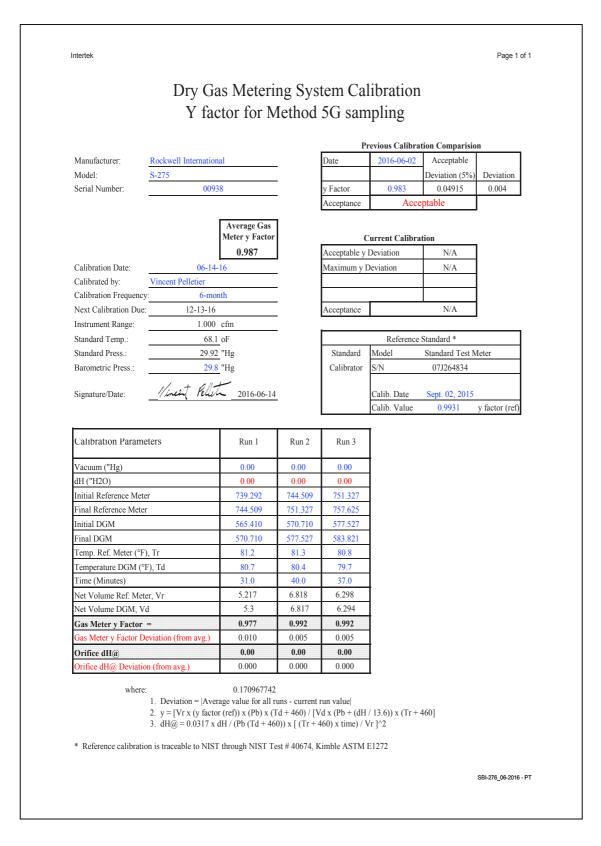
Report prepared for: Guillaume Thibodeau-Fortin (Stove Builder International Inc.) on 3/14/2017 12:34:21 PMSpec DIRECT POWERED BY Intertex


600- App-E Dry Gas Meter CAlibration Data

Appendix E


Dry Gas meter Calibration Data

Stove Builder International Inc. | 37849 | Rev: Mar 13 2017 3:43PM | Uncontrolled Copy


600- App-E Dry Gas Meter CAlibration Data (page 2 of 4)

600- App-E Dry Gas Meter CAlibration Data (page 3 of 4)

600- App-E Dry Gas Meter CAlibration Data (page 4 of 4)

Report prepared for: Guillaume Thibodeau-Fortin (Stove Builder International Inc.) on 3/14/2017 12:34:21 PMSpec DIRECT POWERED BY Intertex

700- App-F Unit Pre-Burn Documentation

Appendix F

Unit Pre-Burn documentation

Stove Builder International Inc. | 37849 | Rev: Mar 13 2017 3:43PM | Uncontrolled Copy

May 26th, 2016

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
0	374.80	78.59	108.19	362.69	419.93	490.36	449.78	413.41	7.13
10	652.57	78.71	149.20	641.25	409.48	484.63	448.22	405.47	53.58
20	722.49	80.58	154.64	753.26	439.60	471.97	435.77	443.36	48.47
30	741.92	83.01	158.66	820.59	465.06	469.61	419.39	465.05	44.03
40	749.28	85.93	163.11	859.36	485.21	470.89	403.27	473.06	39.85
50	758.02	86.68	166.29	881.74	502.78	473.88	390.45	481.46	35.72
60	754.23	86.79	165.39	883.82	518.50	479.88	382.63	495.88	31.89
70	742.28	88.26	163.53	903.03	527.35	487.69	377.16	509.66	28.41
80	737.61	88.08	162.42	912.96	534.94	496.22	375.90	525.85	25.25
90	708.95	89.48	157.61	866.59	540.13	505.67	375.30	541.46	22.54
100	679.86	89.21	153.48	820.84	539.12	516.35	376.69	552.14	20.39
110	642.17	88.62	147.92	761.13	537.54	529.48	379.92	557.32	18.60
120	599.99	89.33	142.31	708.45	533.75	545.20	383.33	557.90	17.23
130	561.27	88.17	136.83	652.99	525.16	558.00	387.89	551.54	16.26
140	524.34	87.20	132.48	584.64	513.40	566.25	394.18	543.19	15.58
150	490.16	86.99	128.04	528.87	500.85	567.26	400.90	532.38	15.04
160	467.16	86.71	125.20	492.11	486.83	562.90	405.89	520.87	14.56
170	451.34	86.54	122.89	468.56	467.56	556.71	409.10	509.98	14.15
180	439.57	85.94	121.15	455.19	451.47	550.12	411.52	499.88	13.68
190	427.70	85.22	119.62	441.03	437.81	542.37	412.70	490.83	13.28
200	419.54	85.15	118.17	430.07	426.24	534.40	413.48	481.36	12.90
210	412.13	85.10	117.30	419.55	416.80	527.60	413.62	473.07	12.55
220	401.86	84.72	115.98	404.76	409.98	521.29	413.41	465.84	12.18
230	393.65	84.64	114.91	394.82	404.44	514.33	411.14	460.01	11.85
240	389.97	84.62	114.17	390.24	398.72	507.61	408.91	453.63	11.48
250	382.66	84.23	113.34	382.82	394.54	501.20	406.69	447.41	11.15
260	378.22	84.03	112.41	375.81	391.46	494.36	404.69	442.45	10.83
270	372.57	83.52	111.77	368.82	388.43	486.24	402.50	437.19	10.50
280	367.14	83.55	111.11	365.47	384.67	477.36	399.81	432.04	10.18

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
290	363.35	83.65	110.65	362.82	381.12	470.43	397.25	421.73	9.85
300	357.11	83.40	109.95	356.02	378.19	464.21	394.02	408.97	9.58
310	352.31	83.60	109.36	348.39	373.37	457.46	390.05	398.36	9.30
320	345.43	83.42	108.45	339.37	369.50	450.68	385.00	388.08	9.04
330	339.76	83.53	107.72	331.40	365.19	444.06	379.89	379.35	8.80
340	332.27	83.39	106.88	321.23	360.06	437.45	374.73	370.22	8.56
350	324.73	82.66	106.03	310.65	353.44	430.21	367.44	362.24	8.35
360	319.69	82.67	105.24	302.91	345.12	422.98	360.88	353.12	8.14
370	313.80	82.68	104.62	295.55	336.65	416.46	353.48	346.54	7.95
380	305.72	82.53	103.62	287.69	328.68	410.34	347.55	338.43	7.76
390	298.74	82.33	102.82	279.19	320.32	404.09	341.96	330.78	7.59
400	292.16	82.43	102.13	271.25	313.19	397.73	336.81	322.93	7.42
410	285.81	82.29	101.29	264.79	306.29	391.17	332.32	314.90	7.26
420	280.43	81.98	100.65	259.34	299.48	384.82	327.75	307.85	7.11
430	275.37	81.85	99.95	253.74	292.89	378.68	323.04	300.57	6.95
440	271.40	81.60	99.25	248.24	286.46	372.59	319.05	293.73	6.80
450	266.12	81.47	98.74	243.06	280.94	366.95	315.25	286.63	6.67
460	260.83	81.41	98.14	237.82	275.59	361.52	311.75	280.09	6.53
470	255.42	81.22	97.47	232.17	270.20	355.77	308.87	274.52	6.41
480	250.68	81.12	96.81	226.85	264.89	349.78	305.63	268.75	6.30
490	245.64	80.98	96.38	222.00	259.96	343.77	302.64	262.96	6.18
500	240.45	80.78	95.62	216.58	255.45	337.75	299.54	257.06	6.08
510	235.92	80.63	94.98	211.08	250.79	331.69	296.45	250.78	5.98
520	229.66	80.66	94.35	205.68	245.93	325.61	293.67	244.82	5.88
530	223.24	80.39	93.63	199.66	240.86	319.03	290.30	239.54	5.80
540	218.66	80.29	92.98	194.78	235.62	312.21	286.68	232.77	5.71
550	213.83	80.11	92.31	190.22	230.53	305.65	284.46	226.82	5.64
560	208.18	79.97	91.76	185.26	225.73	299.30	281.97	220.87	5.55
570	201.37	79.81	91.08	179.54	221.07	292.83	278.43	215.23	5.50
580	194.48	79.52	90.39	173.78	216.27	285.68	276.09	209.74	5.42
590	188.80	79.45	89.78	168.48	210.99	278.03	273.39	204.07	5.37

700- App-F Unit Pre-Burn Documentation (page 3 of 13)

Elapsed Time	Flue temp	Room temp	Tunnel dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
600	183.47	79.31	89.21	163.83	205.59	270.25	270.28	197.90	5.31
610	179.05	79.26	88.62	159.86	203.39	262.89	267.58	197.50	5.27
620	179.03	79.20	88.02	159.80	195.78	255.89	264.61	192.38	5.22
630	174.50	79.04	87.63	150.15	195.78	233.89	262.12	187.22	5.18
640	166.56	78.95	87.03	132.72	191.11	249.29	259.26	177.95	5.14
650	163.10	78.79	86.76	149.74	180.03	243.10	256.48	173.85	5.09
660	155.10	78.86	86.36	140.49	182.70	237.23	256.48	169.84	5.05
670	159.18	78.92	85.97	143.51	175.56	231.74	254.05 251.79	165.97	5.04
680	156.04	78.92	85.61	140.90	175.56	220.59	249.33	162.32	5.02
690	152.57	78.84 78.82	85.81	138.08	172.26	221.18	249.33	158.95	5.03
690 700		78.82	85.27 84.90	135.38	165.74	216.04	246.39		4.99
	145.86							155.89	
710	142.79	78.50	84.63	130.42	162.55	206.01	241.79	152.86	4.97
720	139.89	78.53	84.30	128.07	159.31	201.17	239.17	149.96	4.95
730	137.09	78.45	83.97	125.87	156.23	196.41	236.90	146.95	4.94
740	134.40	78.47	83.72	123.76	153.22	191.91	234.40	144.22	4.92
750	132.06	78.38	83.47	121.86	150.47	187.58	231.83	141.66	4.92
760	129.69	78.20	83.20	120.02	147.88	183.45	228.76	139.16	4.90
770	127.68	78.27	83.00	118.36	145.27	179.47	226.37	136.78	4.89
780	125.55	78.24	82.75	116.79	143.01	175.75	223.81	134.48	4.88
790	123.74	78.22	82.58	115.38	140.62	172.24	221.35	132.26	4.86
800	122.14	78.07	82.34	114.05	138.44	168.91	219.06	130.28	4.86
810	120.57	77.95	82.15	112.78	136.54	165.82	216.77	128.44	4.84
820	118.96	77.92	81.97	111.61	134.66	162.92	214.48	126.74	4.84
830	117.36	77.89	81.76	110.44	132.95	160.18	212.46	125.00	4.82
840	116.06	77.86	81.57	109.33	131.22	157.58	210.48	123.39	4.81
850	114.93	77.74	81.45	108.32	129.75	155.13	208.46	121.96	4.80
860	113.62	77.60	81.20	107.36	128.15	152.80	206.42	120.49	4.80
870	112.52	77.62	81.10	106.44	126.82	150.62	204.38	119.12	4.77
880	111.02	77.47	80.66	105.63	125.55	148.58	202.42	117.91	4.77
890	109.86	77.41	80.37	104.95	124.35	146.79	200.19	116.59	4.75
900	108.78	77.38	80.10	104.20	123.07	145.06	198.10	115.50	4.75

700- App-F Unit Pre-Burn Documentation (page 4 of 13)

Elapsed Time (min)	Flue temp °F	Room temp °F	Tunnel dry bulb °F	top °F	back °F	right °F	left °F	bottom °F	scale lbs
910	107.97	77.32	79.93	103.48	122.05	143.35	195.67	114.46	4.74
920	107.10	77.19	79.78	102.83	121.00	141.74	193.36	113.43	4.72
930	106.26	77.25	79.74	102.19	119.95	140.21	191.30	112.44	4.72
940	105.46	77.12	79.66	101.59	119.13	138.77	189.17	111.51	4.71
950	104.74	77.14	79.54	101.06	118.39	137.45	187.11	110.66	4.70
960	104.20	77.10	79.45	100.54	117.65	136.24	185.06	109.85	4.69
970	103.60	76.98	79.35	100.06	116.90	135.20	183.13	109.14	4.68
980	103.01	76.94	79.29	99.71	116.25	134.31	181.45	108.48	4.67

May 30th, 2016

Elapsed Time	Flue temp	Room temp	Tunnel dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
0	264.85	76.85	92.48	294.09	320.45	401.60	370.63	335.70	7.63
10	515.17	75.82	121.35	522.31	309.56	393.50	357.99	322.24	56.75
20	658.28	79.23	139.92	766.38	322.11	381.22	345.47	346.86	52.89
30	722.15	85.93	150.31	833.33	357.18	391.10	332.16	385.36	48.64
40	740.33	85.52	154.84	842.20	396.51	407.12	320.83	412.27	44.58
50	744.70	87.54	156.55	865.19	427.18	422.17	313.26	428.38	40.83
60	624.21	88.76	133.25	806.77	442.03	433.10	311.72	430.42	38.23
70	594.09	89.74	134.08	807.28	434.81	431.76	311.33	416.87	36.13
80	586.75	86.71	132.87	812.49	426.48	426.49	308.97	407.80	34.04
90	577.98	86.42	131.68	807.70	420.53	424.80	307.01	403.21	32.02
100	572.89	85.38	131.09	809.36	419.30	426.18	304.05	402.84	30.03
110	576.79	87.16	130.98	820.52	419.36	429.73	302.74	405.34	28.06
120	567.86	87.20	130.09	814.43	421.75	435.01	299.46	408.44	26.16
130	540.94	87.02	127.67	740.89	420.28	440.77	296.55	410.79	24.51
140	514.10	87.00	124.88	674.32	415.58	448.27	292.42	410.50	23.10
150	496.88	87.20	122.99	646.44	413.13	455.01	289.85	408.26	21.77
160	487.19	87.03	121.65	623.33	412.73	459.33	289.90	408.00	20.53

700- App-F Unit Pre-Burn Documentation (page 5 of 13)

Flue temp °F	Room temp	Tunnel						
	tomn						_	
		dry bulb	top	back	right	left	bottom	scale
-	°F	°F	°F	°F	°F	°F	°F	lbs
467.30	86.99	119.76	583.97	411.90	462.55	288.98	407.70	19.47
								18.58
456.99	86.57				462.31	288.29		17.81
443.69	86.32	116.43	535.40	395.48	459.45	290.26	405.23	17.13
429.63	86.36	114.79	510.09	386.93	457.51	293.75	404.66	16.57
395.33	86.05	112.15	470.77	378.59	455.05	297.85	401.54	16.18
376.45	85.59	110.24	439.84	371.15	448.57	299.98	396.39	15.85
358.86	85.51	108.63	417.28	363.68	441.31	302.59	391.33	15.56
343.52	85.28	107.13	396.93	355.81	435.00	306.04	386.30	15.28
334.13	84.99	106.11	384.28	347.51	430.17	310.11	381.10	15.02
326.38	84.83	105.13	373.65	339.92	426.40	313.82	376.65	14.75
320.51	84.76	104.46	364.78	333.10	423.59	317.10	372.88	14.50
315.52	84.57	103.80	357.48	328.01	421.57	320.70	368.66	14.23
310.10	84.31	103.31	352.04	322.45	419.69	322.44	366.04	13.98
305.76	84.26	102.80	346.98	318.42	417.76	324.22	363.31	13.72
303.35	84.18	102.36	343.47	314.85	415.69	325.25	360.90	13.48
301.71	84.14	102.04	340.93	311.07	413.55	326.55	358.11	13.24
298.04	83.72	101.75	337.93	308.31	411.60	327.06	356.47	13.01
295.75	83.80	101.40	334.77	305.25	409.98	327.73	354.42	12.78
								12.54
								12.30
								12.07
								11.84
								11.62
								11.42
								11.22
								11.04
								10.86
								10.68
								10.08
								10.31
	429.63 395.33 376.45 358.86 343.52 334.13 326.38 320.51 315.52 310.10 305.76 303.35 301.71	456.9986.57443.6986.32429.6386.36395.3386.05376.4585.59358.8685.51343.5285.28334.1384.99326.3884.83320.5184.76315.5284.57310.1084.31305.7684.26303.3584.18301.7184.14295.7583.63295.7583.67294.2083.62292.7583.68292.0983.59289.1083.37284.1583.26279.3683.64272.8983.04268.8282.85	456.9986.57117.46443.6986.32116.43429.6386.36114.79395.3386.05112.15376.4585.59110.24358.8685.51108.63343.5285.28107.13334.1384.99106.11326.3884.83105.13320.5184.76104.46315.5284.57103.80310.1084.31103.31305.7684.26102.80303.3584.18102.36301.7184.14102.04295.7583.63101.13295.7583.67100.98294.2083.62100.81292.7583.68100.71292.0983.59100.52289.1083.37100.26284.1583.2699.84279.3683.3699.42276.0183.2498.98272.8983.0498.60268.8282.8598.18	456.9986.57117.46553.62443.6986.32116.43535.40429.6386.36114.79510.09395.3386.05112.15470.77376.4585.59110.24439.84358.8685.51108.63417.28343.5285.28107.13396.93334.1384.99106.11384.28326.3884.83105.13373.65320.5184.76104.46364.78315.5284.57103.80357.48310.1084.31103.31352.04305.7684.26102.80346.98303.3584.18102.36343.47301.7184.14102.04340.93295.7583.67100.98331.95294.2083.62100.81328.66292.7583.68100.71327.39292.0983.59100.52325.99289.1083.37100.26321.73284.1583.2699.84312.92279.3683.3699.42305.52276.0183.2498.98299.66272.8983.0498.60295.05268.8282.8598.18290.00	456.9986.57117.46553.62404.34443.6986.32116.43535.40395.48429.6386.36114.79510.09386.93395.3386.05112.15470.77378.59376.4585.59110.24439.84371.15358.8685.51108.63417.28363.68343.5285.28107.13396.93355.81334.1384.99106.11384.28347.51326.3884.83105.13373.65339.92320.5184.76104.46364.78333.10315.5284.57103.80357.48328.01310.1084.31103.31352.04322.45305.7684.26102.80346.98318.42303.3584.18102.36343.47314.85301.7184.14102.04340.93311.07298.0483.72101.75337.93308.31295.7583.67100.98331.95301.37294.2083.62100.81328.66300.44292.7583.68100.71327.39299.24292.0983.59100.52325.99297.80289.1083.37100.26321.73296.97284.1583.2699.84312.92293.48276.0183.2498.98299.66290.74272.8983.0498.60295.05288.32266.8282.8598.18 <t< td=""><td>456.9986.57117.46553.62404.34462.31443.6986.32116.43535.40395.48459.45429.6386.36114.79510.09386.93457.51395.3386.05112.15470.77378.59455.05376.4585.59110.24439.84371.15448.57358.8685.51108.63417.28363.68441.31343.5285.28107.13396.93355.81435.00334.1384.99106.11384.28347.51430.17326.3884.83105.13373.65339.92426.40320.5184.76104.46364.78333.10423.59315.5284.57103.80357.48328.01421.57310.1084.31103.31352.04322.45419.69305.7684.26102.80346.98318.42417.76303.3584.18102.36343.47314.85415.69301.7184.14102.04340.93311.07413.55298.0483.72101.75337.93308.31411.60295.7583.63101.13333.33303.02408.65295.7583.67100.9831.95301.37407.73294.2083.62100.81328.66300.44407.82292.7583.68100.71327.39299.24408.16292.0983.59100.52325.99297.80<</td><td>456.9986.57117.46553.62404.34462.31288.29443.6986.32116.43535.40395.48459.45290.26429.6386.36114.79510.09386.93457.51293.75395.3386.05112.15470.77378.59455.05297.85376.4585.59110.24439.84371.15448.57299.98358.8685.51108.63417.28363.68441.31302.59343.5285.28107.13396.93355.81435.00306.04334.1384.99106.11384.28347.51430.17310.11326.3884.83105.13373.65339.92426.40313.82320.5184.76104.46364.78333.10423.59317.10310.1084.31103.31352.04322.45419.69322.44305.7684.26102.80346.98318.42417.76324.22303.3584.18102.36343.47314.85415.69325.25301.7184.14102.04340.93311.07413.55326.55298.0483.72101.75337.93308.31411.60327.06295.7583.67100.81328.66300.44407.82328.23295.7583.67100.98331.95301.37407.73328.56294.2083.62100.71327.39299.24408.60327.36</td><td>456.9986.57117.46553.62404.34462.31288.29404.08443.6986.32116.43535.40395.48459.45290.26405.23429.6386.36114.79510.09386.93457.51293.75404.66395.3386.05112.15470.77378.59455.05297.85401.54376.4585.59110.24439.84371.15448.57299.98396.39388.8685.51108.63417.28363.68441.31302.59391.33343.5285.28107.13396.93355.81430.17310.11381.10326.3884.83105.13373.65339.92426.40313.82376.65320.5184.76104.46364.78333.10423.59317.10372.88315.5284.57103.80357.48328.01421.57320.70366.66310.1084.31103.31352.04322.45419.69322.44366.04305.7684.26102.80346.98318.42417.76324.22363.31303.3584.18102.36343.47314.85415.69325.25360.90301.7184.14102.04340.93311.07413.55326.55358.11298.0483.72101.75337.93308.31411.60327.06352.43295.7583.62100.81328.66300.44407.82328.56350.61</td></t<>	456.9986.57117.46553.62404.34462.31443.6986.32116.43535.40395.48459.45429.6386.36114.79510.09386.93457.51395.3386.05112.15470.77378.59455.05376.4585.59110.24439.84371.15448.57358.8685.51108.63417.28363.68441.31343.5285.28107.13396.93355.81435.00334.1384.99106.11384.28347.51430.17326.3884.83105.13373.65339.92426.40320.5184.76104.46364.78333.10423.59315.5284.57103.80357.48328.01421.57310.1084.31103.31352.04322.45419.69305.7684.26102.80346.98318.42417.76303.3584.18102.36343.47314.85415.69301.7184.14102.04340.93311.07413.55298.0483.72101.75337.93308.31411.60295.7583.63101.13333.33303.02408.65295.7583.67100.9831.95301.37407.73294.2083.62100.81328.66300.44407.82292.7583.68100.71327.39299.24408.16292.0983.59100.52325.99297.80<	456.9986.57117.46553.62404.34462.31288.29443.6986.32116.43535.40395.48459.45290.26429.6386.36114.79510.09386.93457.51293.75395.3386.05112.15470.77378.59455.05297.85376.4585.59110.24439.84371.15448.57299.98358.8685.51108.63417.28363.68441.31302.59343.5285.28107.13396.93355.81435.00306.04334.1384.99106.11384.28347.51430.17310.11326.3884.83105.13373.65339.92426.40313.82320.5184.76104.46364.78333.10423.59317.10310.1084.31103.31352.04322.45419.69322.44305.7684.26102.80346.98318.42417.76324.22303.3584.18102.36343.47314.85415.69325.25301.7184.14102.04340.93311.07413.55326.55298.0483.72101.75337.93308.31411.60327.06295.7583.67100.81328.66300.44407.82328.23295.7583.67100.98331.95301.37407.73328.56294.2083.62100.71327.39299.24408.60327.36	456.9986.57117.46553.62404.34462.31288.29404.08443.6986.32116.43535.40395.48459.45290.26405.23429.6386.36114.79510.09386.93457.51293.75404.66395.3386.05112.15470.77378.59455.05297.85401.54376.4585.59110.24439.84371.15448.57299.98396.39388.8685.51108.63417.28363.68441.31302.59391.33343.5285.28107.13396.93355.81430.17310.11381.10326.3884.83105.13373.65339.92426.40313.82376.65320.5184.76104.46364.78333.10423.59317.10372.88315.5284.57103.80357.48328.01421.57320.70366.66310.1084.31103.31352.04322.45419.69322.44366.04305.7684.26102.80346.98318.42417.76324.22363.31303.3584.18102.36343.47314.85415.69325.25360.90301.7184.14102.04340.93311.07413.55326.55358.11298.0483.72101.75337.93308.31411.60327.06352.43295.7583.62100.81328.66300.44407.82328.56350.61

700- App-F Unit Pre-Burn Documentation (page 6 of 13)

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
480	258.74	82.73	97.22	276.86	279.52	383.45	305.99	317.33	10.20
490	256.51	82.61	96.86	273.09	276.83	379.40	303.18	312.01	10.04
500	254.08	82.50	96.54	269.89	274.45	374.73	301.07	307.53	9.89
510	251.43	82.38	96.33	266.42	272.32	369.87	298.20	303.31	9.75
520	248.02	82.46	95.97	262.12	270.14	364.94	296.09	299.86	9.61
530	245.77	82.25	95.63	258.98	267.64	359.78	293.23	295.51	9.47
540	242.99	82.07	95.35	255.50	264.88	354.97	290.30	291.85	9.34
550	240.11	82.10	94.97	251.11	262.03	350.32	287.63	288.18	9.20
560	236.74	81.96	94.65	247.23	258.81	345.65	284.08	285.12	9.08
570	234.28	81.88	94.30	243.29	256.10	341.06	281.45	282.41	8.96
580	230.92	81.81	93.90	239.37	252.68	336.37	278.72	279.20	8.82
590	228.60	81.71	93.51	235.67	249.28	331.79	276.08	276.45	8.70
600	225.86	81.66	93.38	232.18	246.20	327.55	273.53	273.70	8.60
610	222.98	81.32	93.00	228.22	242.63	323.36	271.08	270.06	8.50
620	219.69	81.40	92.64	224.55	239.48	319.21	269.24	266.03	8.39
630	215.60	81.31	92.28	219.63	236.26	314.91	266.88	262.00	8.30
640	211.83	81.13	91.85	214.49	232.68	310.43	264.84	257.40	8.20
650	208.56	80.99	91.53	210.37	229.16	305.73	261.66	252.82	8.11
660	205.44	80.91	91.16	206.96	225.77	301.12	258.21	248.37	8.01
670	203.16	80.69	90.86	204.04	222.62	296.81	254.58	244.44	7.94
680	201.08	80.65	90.61	201.81	219.61	293.09	250.42	240.94	7.84
690	197.97	80.54	90.24	198.65	217.03	289.79	247.73	237.72	7.76
700	195.51	80.54	89.95	195.22	214.16	286.50	245.17	234.00	7.69

700- App-F Unit Pre-Burn Documentation (page 7 of 13)

Page 636 of 705

May 31st, 2016

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
0	374.80	78.59	108.19	362.69	419.93	490.36	449.78	413.41	7.13
10	652.57	78.71	149.20	641.25	409.48	484.63	448.22	405.47	53.58
20	722.49	80.58	154.64	753.26	439.60	471.97	435.77	443.36	48.47
30	741.92	83.01	158.66	820.59	465.06	469.61	419.39	465.05	44.03
40	749.28	85.93	163.11	859.36	485.21	470.89	403.27	473.06	39.85
50	758.02	86.68	166.29	881.74	502.78	473.88	390.45	481.46	35.72
60	754.23	86.79	165.39	883.82	518.50	479.88	382.63	495.88	31.89
70	742.28	88.26	163.53	903.03	527.35	487.69	377.16	509.66	28.41
80	737.61	88.08	162.42	912.96	534.94	496.22	375.90	525.85	25.25
90	708.95	89.48	157.61	866.59	540.13	505.67	375.30	541.46	22.54
100	679.86	89.21	153.48	820.84	539.12	516.35	376.69	552.14	20.39
110	642.17	88.62	147.92	761.13	537.54	529.48	379.92	557.32	18.60
120	599.99	89.33	142.31	708.45	533.75	545.20	383.33	557.90	17.23
130	561.27	88.17	136.83	652.99	525.16	558.00	387.89	551.54	16.26
140	524.34	87.20	132.48	584.64	513.40	566.25	394.18	543.19	15.58
150	490.16	86.99	128.04	528.87	500.85	567.26	400.90	532.38	15.04
160	467.16	86.71	125.20	492.11	486.83	562.90	405.89	520.87	14.56
170	451.34	86.54	122.89	468.56	467.56	556.71	409.10	509.98	14.15
180	439.57	85.94	121.15	455.19	451.47	550.12	411.52	499.88	13.68
190	427.70	85.22	119.62	441.03	437.81	542.37	412.70	490.83	13.28
200	419.54	85.15	118.17	430.07	426.24	534.40	413.48	481.36	12.90
210	412.13	85.10	117.30	419.55	416.80	527.60	413.62	473.07	12.55
220	401.86	84.72	115.98	404.76	409.98	521.29	413.41	465.84	12.18
230	393.65	84.64	114.91	394.82	404.44	514.33	411.14	460.01	11.85
240	389.97	84.62	114.17	390.24	398.72	507.61	408.91	453.63	11.48
250	382.66	84.23	113.34	382.82	394.54	501.20	406.69	447.41	11.15
260	378.22	84.03	112.41	375.81	391.46	494.36	404.69	442.45	10.83
270	372.57	83.52	111.77	368.82	388.43	486.24	402.50	437.19	10.50
280	367.14	83.55	111.11	365.47	384.67	477.36	399.81	432.04	10.18

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	۰F	°F	°F	°F	°F	°F	lbs
290	363.35	83.65	110.65	362.82	381.12	470.43	397.25	421.73	9.85
300	357.11	83.40	109.95	356.02	378.19	464.21	394.02	408.97	9.58
310	292.24	84.23	100.99	325.64	348.19	404.28	313.15	323.77	12.35
320	288.63	84.16	100.60	322.20	344.81	401.64	311.52	321.88	12.14
330	285.02	83.85	100.15	317.92	341.38	398.94	310.11	320.35	11.92
340	283.35	83.86	99.84	311.06	338.20	396.00	308.25	317.79	11.72
350	281.51	83.90	99.52	306.62	335.94	393.55	305.90	314.57	11.52
360	280.50	83.47	99.25	303.24	333.02	391.93	303.94	310.88	11.32
370	278.95	83.45	99.05	300.40	330.48	390.57	301.60	307.38	11.12
380	276.53	83.31	98.64	299.21	327.96	389.32	300.39	304.04	10.92
390	275.77	83.15	98.40	297.35	325.50	387.95	299.02	301.48	10.74
400	273.53	83.00	98.20	294.38	323.67	386.47	297.37	298.18	10.55
410	272.65	82.84	98.07	292.68	322.21	385.25	295.75	294.56	10.34
420	271.73	82.76	97.86	290.19	321.75	384.26	294.05	291.19	10.17
430	270.22	82.82	97.52	287.73	321.35	383.35	292.61	288.16	9.98
440	269.14	82.87	97.45	285.10	319.85	382.25	289.47	285.30	9.81
450	267.15	82.75	97.01	282.66	319.08	380.55	287.54	282.63	9.66
460	265.80	82.51	96.92	280.05	317.21	378.65	284.83	280.13	9.49
470	261.81	82.55	96.60	277.44	314.56	376.55	282.09	277.50	9.33
480	257.25	82.22	96.17	271.27	310.64	373.69	279.60	274.79	9.19
490	253.16	82.36	95.74	265.44	305.16	369.56	276.92	271.93	9.05
500	250.05	82.25	95.40	260.33	299.91	364.84	273.68	268.59	8.91
510	246.16	82.13	94.94	255.59	295.35	360.10	270.88	266.11	8.76
520	242.08	81.95	94.58	250.41	290.45	355.38	268.20	263.11	8.64
530	239.20	81.80	94.24	246.30	285.24	350.72	265.98	259.91	8.50
540	236.71	81.80	93.88	242.67	280.98	346.38	263.44	256.84	8.39
550	233.55	81.69	93.53	238.93	276.05	342.34	260.96	253.71	8.27
560	230.51	81.53	93.12	235.17	271.60	338.26	258.99	250.65	8.15
570	228.01	81.06	92.82	232.22	267.86	334.16	257.41	247.95	8.03
580	226.63	81.36	92.56	230.08	264.15	330.41	256.02	245.70	7.91
590	224.78	80.93	92.32	227.50	260.64	326.94	254.03	244.18	7.79

700- App-F Unit Pre-Burn Documentation (page 9 of 13)

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
600	222.14	81.10	91.98	224.09	256.74	323.43	252.64	242.66	7.69
610	220.11	80.71	91.84	221.82	252.59	320.20	251.08	240.92	7.58
620	217.42	80.60	91.48	218.83	248.40	316.99	249.68	238.96	7.46
630	214.97	80.79	91.22	215.94	244.90	313.73	248.76	236.91	7.36
640	212.69	80.63	90.90	212.91	241.40	310.34	247.37	234.59	7.26
650	210.88	80.33	90.69	210.17	238.00	306.86	245.90	232.61	7.17
660	209.48	80.31	90.46	208.33	234.78	303.59	244.97	230.50	7.06
670	207.85	80.27	90.26	207.68	232.24	300.40	243.29	228.54	6.97
680	204.37	80.18	89.87	204.02	229.45	296.70	241.82	225.89	6.88

June 2nd, 2016

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
0	257.07	79.25	90.99	260.76	291.62	366.80	344.69	301.64	5.71
10	718.72	80.07	106.94	747.45	290.29	367.86	333.09	299.74	52.51
20	753.83	81.72	109.59	874.94	326.56	378.71	324.39	349.74	47.36
30	728.65	82.74	108.61	857.37	358.06	391.78	320.93	378.49	43.49
40	753.46	83.64	108.90	879.90	382.62	400.08	318.02	401.87	39.39
50	757.36	83.50	109.29	882.87	410.37	410.91	314.26	425.13	35.33
60	754.74	84.34	109.54	872.87	435.87	422.95	313.67	447.11	31.49
70	758.33	84.98	110.30	891.53	459.77	437.36	316.37	468.64	27.82
80	644.64	85.05	102.94	833.26	479.63	453.89	324.12	487.82	24.74
90	571.04	83.65	99.92	800.59	470.43	454.40	337.54	476.77	23.09
100	539.78	83.59	97.13	780.40	450.53	448.37	345.51	455.24	21.65
110	519.57	83.29	96.77	749.10	435.13	447.51	348.13	440.23	20.23
120	489.25	83.73	95.16	647.45	425.20	451.44	347.80	428.36	18.97
130	484.27	83.69	94.19	633.41	408.83	453.26	347.06	424.93	17.79
140	464.08	83.10	94.02	609.45	396.41	455.76	344.90	424.18	16.70
150	441.94	82.82	93.81	562.74	388.14	459.17	345.29	416.97	15.82

Elapsed Time	Flue temp	Room temp	Tunnel dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
160	427.06	82.69	92.52	535.07	382.29	459.75	344.66	411.28	15.05
170	376.08	82.60	91.57	469.56	375.25	461.42	344.00	399.75	14.58
180	350.11	82.08	90.21	437.13	368.17	459.61	344.67	385.89	14.24
190	330.16	81.98	89.80	406.12	361.37	452.40	346.31	374.31	13.96
200	317.73	81.65	88.50	387.58	354.22	444.72	346.89	364.79	13.73
210	306.96	81.57	88.22	373.30	347.67	438.09	347.69	356.44	13.48
220	299.26	81.20	88.13	361.95	341.79	433.08	348.64	350.24	13.24
230	292.31	80.64	87.45	351.96	335.90	429.32	349.51	344.18	13.02
240	287.34	80.76	87.15	344.53	331.02	426.53	350.11	339.39	12.78
250	285.15	80.89	86.91	340.31	326.52	425.28	351.08	334.60	12.55
260	279.89	80.96	86.76	332.76	323.30	423.63	350.63	331.42	12.33
270	274.86	80.64	86.79	325.80	319.36	420.17	347.25	328.59	12.11
280	272.25	80.67	86.28	320.88	315.70	416.66	341.90	324.50	11.91
290	268.20	80.74	85.82	316.03	311.75	413.04	336.53	320.47	11.70
300	265.18	80.53	85.48	311.80	307.84	409.53	332.15	317.16	11.51
310	262.75	80.67	85.89	307.16	304.68	406.05	328.27	312.68	11.32
320	259.39	80.39	85.49	303.23	301.45	402.62	324.95	309.14	11.13
330	257.83	80.27	85.61	299.88	298.56	399.46	321.94	305.30	10.95
340	256.46	80.34	85.31	297.27	294.61	396.46	319.78	302.67	10.77
350	255.06	80.11	85.50	294.66	291.68	393.56	316.67	299.94	10.58
360	252.81	80.23	84.94	291.70	287.65	390.78	315.17	298.30	10.42
370	250.90	80.15	85.23	286.79	284.54	388.15	314.25	296.07	10.25
380	248.25	80.13	84.78	282.63	281.54	385.94	311.32	293.80	10.09
390	246.90	79.80	84.64	279.38	278.87	383.57	307.08	291.22	9.92
400	245.51	79.97	84.72	277.14	276.86	380.96	304.20	288.42	9.75
410	244.50	80.00	84.52	274.71	274.96	378.38	301.93	286.40	9.59
420	242.18	80.12	84.33	272.36	273.83	375.82	300.17	284.21	9.44
430	240.72	79.89	84.32	269.85	271.95	373.65	297.80	282.31	9.27
440	239.67	79.67	84.10	267.44	269.58	371.77	295.43	280.55	9.13
450	238.76	79.67	84.09	265.53	267.53	369.86	292.79	278.83	8.96
460	237.79	79.63	83.62	263.64	265.57	368.08	289.86	277.14	8.82

700- App-F Unit Pre-Burn Documentation (page 11 of 13)

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
470	236.74	79.73	83.91	262.22	263.85	366.42	285.68	275.41	8.67
480	235.36	79.60	83.65	260.14	261.76	364.57	281.33	273.80	8.53
490	233.31	79.56	83.49	257.40	259.61	362.26	277.50	271.94	8.39
500	231.86	79.51	83.65	254.49	257.57	358.99	274.66	270.41	8.25
510	230.21	79.51	82.86	251.69	255.36	355.54	271.71	269.26	8.12
520	227.36	79.32	83.60	246.48	253.46	352.07	268.61	267.31	7.99
530	224.57	78.93	82.98	241.92	249.95	348.12	264.92	265.41	7.88
540	222.46	79.29	82.83	238.23	245.81	343.65	261.09	263.63	7.77
550	217.97	79.21	82.97	233.49	242.63	338.22	257.96	261.43	7.66
560	212.45	79.22	82.45	226.45	238.90	331.18	255.10	258.25	7.59
570	207.12	79.16	82.72	219.64	234.81	322.87	251.88	254.75	7.50
580	202.58	78.81	82.21	213.70	230.04	314.49	249.42	250.48	7.42
590	198.78	78.79	82.30	208.61	225.33	306.52	246.97	246.02	7.35
600	195.27	78.71	82.27	204.66	220.66	299.31	245.22	241.66	7.27
610	191.98	78.78	81.97	200.74	216.31	292.76	242.99	237.35	7.20
620	189.05	78.62	81.36	197.49	212.09	286.72	240.41	233.43	7.12
630	186.63	78.65	81.35	194.40	208.09	281.30	237.77	229.68	7.05
640	184.28	78.67	81.94	191.92	204.06	276.41	235.72	226.29	6.98
650	182.28	78.49	81.43	189.35	200.62	272.08	233.81	222.51	6.90
660	180.47	78.44	81.46	187.25	196.77	268.11	231.91	219.21	6.83
670	178.66	78.42	81.41	184.84	193.72	264.43	230.11	216.29	6.77
680	176.57	78.47	80.81	182.39	190.49	260.96	228.18	213.26	6.72
690	174.29	78.41	81.14	179.58	187.67	257.68	226.46	210.06	6.64
700	171.91	78.29	81.14	176.15	184.76	254.57	224.71	206.71	6.59
710	168.65	78.14	80.94	172.58	181.95	251.26	223.36	203.16	6.54
720	166.32	78.14	80.93	169.73	179.21	248.05	221.99	198.62	6.49
730	163.95	78.19	80.42	166.94	176.57	244.83	221.05	194.14	6.44
740	161.55	78.05	80.75	164.33	173.89	241.28	219.98	190.41	6.39
750	159.13	77.84	80.68	161.73	171.44	237.61	218.46	186.59	6.35
760	156.78	77.77	80.44	159.17	168.86	233.98	217.40	182.79	6.31
770	154.41	77.64	79.75	156.92	166.58	230.47	216.23	179.65	6.27

700- App-F Unit Pre-Burn Documentation (page 12 of 13)

Elapsed	Flue	Room	Tunnel						
Time	temp	temp	dry bulb	top	back	right	left	bottom	scale
(min)	°F	°F	°F	°F	°F	°F	°F	°F	lbs
780	152.79	77.61	80.02	155.25	164.28	227.06	214.91	176.49	6.23
790	150.70	77.70	81.86	153.65	162.33	223.82	213.62	174.05	6.19
800	150.30	77.81	81.58	153.75	160.43	221.11	212.28	171.44	6.14
810	148.65	77.70	81.56	152.44	159.08	218.81	211.36	169.31	6.09
820	146.04	77.71	81.14	149.32	157.77	216.32	210.28	167.02	6.06
830	143.01	77.67	80.98	146.17	155.90	213.14	209.00	164.50	6.03
840	140.36	77.72	80.97	143.16	153.53	209.50	207.96	161.93	6.01
850	137.54	77.74	80.78	140.66	151.41	205.68	207.06	159.01	5.98
860	135.55	77.62	80.50	138.34	149.12	201.97	206.23	156.25	5.96
870	133.16	77.51	80.39	135.98	146.89	198.37	205.39	153.78	5.93
880	130.85	77.53	80.15	133.64	144.80	194.78	204.70	151.41	5.92
890	128.67	77.40	80.06	131.40	142.70	191.26	203.77	149.04	5.91
900	126.52	77.38	79.91	129.18	140.70	187.82	203.00	146.58	5.89
910	124.49	77.34	79.72	127.18	138.76	184.48	202.30	144.33	5.87
920	122.53	77.32	79.68	125.24	136.88	181.26	201.55	142.34	5.86
930	120.81	77.31	79.56	123.43	135.15	178.20	200.82	140.18	5.84
940	119.22	77.38	79.45	121.71	133.47	175.28	200.03	138.07	5.83
950	117.44	77.39	79.28	120.10	131.86	172.50	199.41	136.24	5.82
960	115.97	77.46	79.15	118.58	130.36	169.85	198.89	134.50	5.81
970	114.49	77.46	79.13	117.21	128.90	167.36	198.09	132.85	5.80
980	113.21	77.52	79.26	115.89	127.55	165.00	197.33	131.29	5.79
990	112.05	77.68	79.27	114.88	126.32	162.80	196.23	129.58	5.78

700- App-F Unit Pre-Burn Documentation (page 13 of 13)

Report prepared for: Guillaume Thibodeau-Fortin (Stove Builder International Inc.) on 3/14/2017 12:34:21 PMSpec DIRECT POWERED BY Intertex

800- App-G Stack Loss Efficiency data and Results

Appendix G

Stack Loss Efficiency Data/Results

Stove Builder International Inc. | 37849 | Rev: Mar 13 2017 3:43PM | Uncontrolled Copy

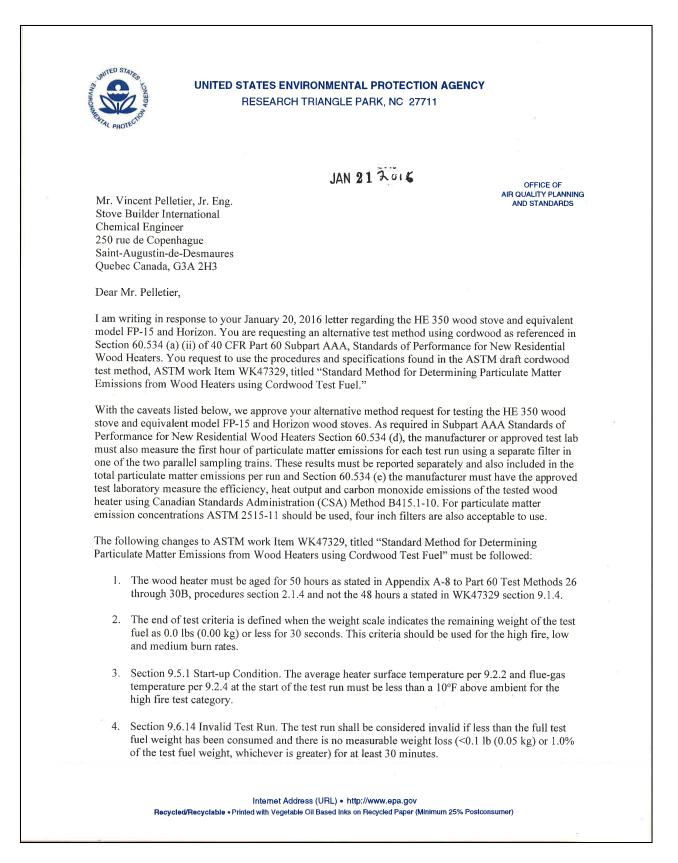
800- App-G Stack Loss Efficiency data and Results (page 6 of 16)

	Intertek T	esting Serv	ices NA, Inc.		
	IIILEILEK I	esting Serv	ICES NA, IIIC.		
Manufacturer: Model:	SBI FP-15 Series		Technicians:	Claude Pelland	
Date:					
Run:					
Control #: Test Duration:	QC20160608 680				
Output Category:					
Test Results in <i>i</i>	Accordance wit	h CSA B415.1-10			
	HHV Basis	LHV Basis			
Overall Efficiency	65.1%	69.7%			
Combustion Efficiency	94.9%	94.9%			
Heat Transfer Efficiency	69%	73.5%			
Output Rate (kJ/h)	20 095	19 062	(Btu/h)		
Burn Rate (kg/h)	1.64	3.62	(lb/h)		
Input (kJ/h)	30 886	29 299	(Btu/h)		
Test Load Weight (dry kg)	18.62	41.04	dry lb		
MC wet (%)	20.13				
MC dry (%) Particulate (g)					
CO (g)					
Test Duration (h)	11.33				
Emissions	Particulate	CO			
g/MJ Output	0.05	5.90			
g/kg Dry Fuel g/h		72.14 118.52			
Ib/MM Btu Output		13.71			
Air/Fuel Ratio (A/F)	18.04	I			
VERSION: 2.4	2010-04-15	l de la constante de la consta			
VERSION. 2.4	2010-04-15				

800- App-G Stack Loss Efficiency data and Results (page 11 of 16)

		Intertek T	esting Serv	vices NA Inc.	
	Manufacturer:	SBI		Technicians:	Claude Pelland
	Model: Date:	FP-15 Series 06-08-16			
	Run:	1		—	
		QC20160608		_	
	Test Duration: Output Category:	250 High			
		-			
	Test Results in A				
,		HHV Basis	LHV Basis		
	Overall Efficiency Combustion Efficiency	62.4% 95.9%	66.8% 95.9%		
	Heat Transfer Efficiency	95.9% 65%	69.7%		
-					
	Output Rate (kJ/h)	45 352	43 021	(Btu/h)	
	Burn Rate (kg/h) Input (kJ/h)	3.87 72 695	8.52 68 959	(lb/h) (Btu/h)	
	· · · ·				
	Test Load Weight (dry kg)	16.11	35.51	dry lb	
	MC wet (%) MC dry (%)	17.84 21.71			
·	Particulate (g)	15.415			
	CO (g)	911			
l	Test Duration (h)	4.17			
[Emissions	Particulate	со		
	g/MJ Output	0.08	4.82		
	g/kg Dry Fuel g/h	0.96 3.70	56.56 218.69		
	Ib/MM Btu Output	0.19	11.21		
]	Air/Fuel Ratio (A/F)	12.81			
VERSION:	2.4	2010-04-15			

800- App-G Stack Loss Efficiency data and Results (page 16 of 16)


	Intertek 7	Festing Serv	vices NA, Inc
	SBI FP-15 Series		Technicians: Claude Pelland
Date: Run:			
Control #:	QC20160608		
Test Duration: Output Category:			
Test Results in <i>i</i>	Accordance wit	h CSA B415.1-10	
	HHV Basis	LHV Basis	1
Overall Efficiency	63.5%	68.0%	
Combustion Efficiency Heat Transfer Efficiency	91.7% 69%	91.7% 74.1%	
			(D+1/h)
Output Rate (kJ/h) Burn Rate (kg/h)	17 510 1.47	16 610 3.23	(Btu/h) (Ib/h)
Input (kJ/h)	27 587	26 170	(Btu/h)
Test Load Weight (dry kg)	18.83	41.51	dry lb
MC wet (%)	19.92		
MC dry (%) Particulate (g)	24.88 19.145		
CO (g)	2 125		
Test Duration (h)	12.83	l	
Emissions		CO	
g/MJ Output g/kg Dry Fuel	0.09	9.46 112.86	
g/h Ib/MM Btu Output	1.49 0.20	165.61 21.98	
			L
Air/Fuel Ratio (A/F)	18.24	ļ	
VERSION: 2.4	2010-04-15		

A10- App-I EPA Correspondence

Appendix I

EPA Correspondence

A10- App-I EPA Correspondence (page 2 of 8)

A10- App-I EPA Correspondence (page 3 of 8)

2 5. Coal bed conditions prior to loading test fuel. The coal bed should a level plane without valleys or ridges for all test runs in the high fire, low and medium burn rate categories. 6. The pre burn cycle burn rate category, leading into a test run, should be the same as the attempted burn rate category of the actual test. Example: If a low burn category is the desired test, the preburn should be at a low burn setting and likewise for the medium low, medium high and high burn rate categories. The following changes to ASTM E2515-11 "Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel" must be followed: 1. The filter temperature must be maintained between 80 and 90 degree F during testing. 2. A glass cyclone must be used between the sampling probe and filter holders when the total particulate catch is expected to exceed 100 mg or when water droplets are present in the stack gas. This cyclone and its contents must be included in the pre-test weighing and post-test desiccation and weighing. 3. Filters must be weighed in pairs to reduce weighing error propagation. See ASTM E2515-11 Section 10.2.1 Analytical Procedure. 4. Sample filters must be Pall TX-40 or equivalent Teflon coated glass fiber, and of 47 mm, 90 mm, 100 mm or 110 mm. 5. Only one point is allowed outside the +/-10% proportionality range per test run. Please include this approval in your certification test report. If you have additional questions regarding these decisions, please contact Michael Toney of my staff at (919) 541-5247. Sincerely Steffan Johnson, Group Leader Measurement Technology Group Michael Toney, EPA/AQAD (143-02) cc: Rafael Sanchez, EPA/OECA (2227A) Adam Baumgart-Getz, EPA/OID (C311M) David Cole, EPA/OID (C311M) Amanda Aldridge, EPA/OID (C311M)

A10- App-I EPA Correspondence (page 4 of 8)

Fabricant de poélés international inc.	
Stove Builder International Inc.	
April 21 st , 2016	
Air Branch/Wood Heater Program Lead Monitoring, Assistance, and Media Programs Division Office of Compliance U.S. EPA	
1200 Pennsylvania Ave., NW MS:2227A Washington, DC 20004 Attn: Rafael Sanchez	
Subject: 30 days notice for certification of model line name HE350	
Dear Mr. Sanchez	
The model line HE350 and equivalent model FP-15 and Horizon are affected wood heaters und the amended U.S. Environmental Protection Agency 40 CFR Part 60 Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnace Final Rule, Subpart AAA §60.530.	ce
Under section §60.534 (g), Stove Builder International Inc. ("SBI") is required to provide a 3 days' notice before the date of certification testing to begin. We would therefore like to notify you that we intend to start a certification program on the model line stated above on May 30 2016. This certification program is planned to end on June 3 rd , 2016.	fy
On January 20 th , 2016 SBI requested to use an alternative test method using cordwood a referenced in Section 60.534 (a) (ii) of 40 CFR Part 60 Subpart AAA, Standards of Performance for New Residential Wood Heaters for certification of this model line. In a letter dated Januar 21 st , 2016 you approved the use of ASTM work item WK47329, titled "Standard Method for Determining Particulate Matter Emissions from Wood Heaters using Cordwood Test Fuel" with caveats. (See letter attached)	ce ry or
We would therefore like to inform you that we'll be using ASTM work item WK47329 is conjunction with ASTM 2515-11 and CSA B415.1-10 for certification of this model line.	in
I would like to inform you that we'll be adding two additional model names to this certification which are the Monaco XL and Kozy Heat. Just like the FP-15 and the Horizon, these models with only be aesthetically different compared to the HE350.	
The accredited laboratory performing the test will be a division of Intertek Testing NA Lt located at:	d
250, rue De Copenhague, Saint-Augustin-de-Desmaures, Qc G3A 2H3 • Tél. : 418 878-3040 • Fax : 418 878-3001	

A10- App-I EPA Correspondence (page 5 of 8)

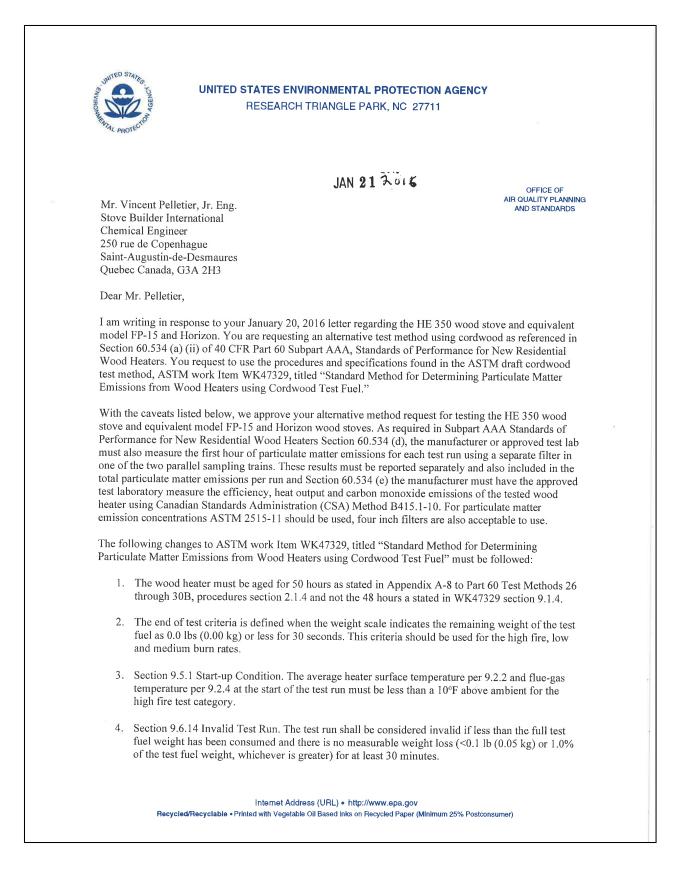
1829, 32nd Avenue, Lachine Quebec, Canada, H8T 3J1

And contact information at Intertek will be the following:

Claude Pelland, Eng claude.pelland@intertek.com

Current address of Stove Builder International Inc. can be found at the bottom of this document and contact information at SBI will be:

Vincent Pelletier, Jr. Eng. vpelletier@sbi-international.com


Should you need additional documents, please let us know.

Sincerely,

Vincent Pellet

Vincent Pelletier, Jr. Eng. Chemical Engineer Stove Builder International Inc.

A10- App-I EPA Correspondence (page 6 of 8)

A10- App-I EPA Correspondence (page 7 of 8)

2 5. Coal bed conditions prior to loading test fuel. The coal bed should a level plane without valleys or ridges for all test runs in the high fire, low and medium burn rate categories. 6. The pre burn cycle burn rate category, leading into a test run, should be the same as the attempted burn rate category of the actual test. Example: If a low burn category is the desired test, the preburn should be at a low burn setting and likewise for the medium low, medium high and high burn rate categories. The following changes to ASTM E2515-11 "Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel" must be followed: 1. The filter temperature must be maintained between 80 and 90 degree F during testing. 2. A glass cyclone must be used between the sampling probe and filter holders when the total particulate catch is expected to exceed 100 mg or when water droplets are present in the stack gas. This cyclone and its contents must be included in the pre-test weighing and post-test desiccation and weighing. 3. Filters must be weighed in pairs to reduce weighing error propagation. See ASTM E2515-11 Section 10.2.1 Analytical Procedure. 4. Sample filters must be Pall TX-40 or equivalent Teflon coated glass fiber, and of 47 mm, 90 mm, 100 mm or 110 mm. 5. Only one point is allowed outside the +/- 10% proportionality range per test run. Please include this approval in your certification test report. If you have additional questions regarding these decisions, please contact Michael Toney of my staff at (919) 541-5247. Sincerely Steffan Johnson, Group Leader Measurement Technology Group cc: Michael Toney, EPA/AQAD (143-02) Rafael Sanchez, EPA/OECA (2227A) Adam Baumgart-Getz, EPA/OID (C311M) David Cole, EPA/OID (C311M) Amanda Aldridge, EPA/OID (C311M)

A10- App-I EPA Correspondence (page 8 of 8)

SBI Notre PASS In Advient source d'énergie Into Energy
May 24 th , 2016
Air Branch/Wood Heater Program Lead Monitoring, Assistance, and Media Programs Division Office of Compliance U.S. EPA 1200 Pennsylvania Ave., NW
MS:2227A Washington, DC 20004 Attn: Rafael Sanchez
Subject: Start of program certification of model line name HE350 delayed
Dear Mr. Sanchez
In a letter dated April 21 st , SBI informed EPA that we wanted to start a test program on May 3 2016 on the model line HE350 .
We would like to inform EPA that this program has to be delayed due to an outstanding evo My wife very recently gave birth earlier than expected and I will be not be at work for the n two weeks and will have limited access to my e-mails.
We have another test program for which we have notified EPA with a 30-days' notice that we start on June 6^{th} and we would like the test program of the model line HE350 to follow the certification.
The accredited laboratory and contact person will remain the same and they have already be informed of that delay.
Should you need additional documents, please let me know.
Sincerely,
Vincent Pellit
Vincent Pelletier, Jr. Eng. Chemical Engineer Stove Builder International Inc.

Quality Control Document

Fireplace HE350 # VB00005 JOB: // 20	Quality Control Created : 18-juil-16 Modified: 18-juil-16 Rév.: 0				Fabri	Fabricant de poèles international Stove Builder International		
	1: 18-juli-16 Mid			Rév.: (
INSPECTION POINTS		SERIA			ISPECTED	PRODI		
VISUAL ASPECT OF THE STOVE MEET SBI REQUIREMENTS (PAINT, ASSEMBLY)								
BOTH PRIMARY AND SECONDAIRE AIR INTAKE TUBE ARE 3" INNER DIAMETER								
DOORS ARE AIRTIGHT								
COMBUSTION CHAMBER DIMENSIONS RESPECT THE DRAFT AND NO MAJOR REVISIO SINCE JULY 18TH 2016	N WAS DONE							
FAN NUMBER 44122 CLASS H IS INSTALLED								
ROBAX CARDBOARD (#45411) IS ON THE HANDLE								
BRICKS ARE INSTALLED AND FREE OF CRACKS								
SECONDARY AIR TUBES HAVE HOLES OF : 0.141"; 0.125"; 0.109"; 0.101" FROM FRON FRONT TUBES HAS HOLES ON 2 SIDES.	Г ТО ВАСК.							
A C-CAST BAFFLE IS INSTALLED								
PILOT ASSEMBLY IS INSTALLED AND ITS TUBE INNER DIAMETER IS 0.25"								
THE USER MANUAL IS INSIDE OF THE COMBUSTION CHAMBER.								
THE DESICCANT IS INSIDE THE COMBUSION CHAMBER								
THE 5" FRESH AIR ADAPTOR IS INCLUDED.								
5 SPACERS ARE PUT INSIDE OF COMBUSTION CHAMBER								
AIR CONTROL WORKS PROPERLY AND COVERS THE FULL RANGE								
THE RUBBER HANDLE IS INSTALLED								
THE SPRINGS ARE INSTALLED								
THE NAME PLATE IS INSTALLED								
THE FAN STICKER IS INSTALLED								
THE ELECTRIC PART ARE PROPERLY WIRED AND SNAP DISC WORK FINE.								
PAINT THICKNESS VARIES FROM 0.4 TO 0.7 MILS ON THE FACE PLATE								
THE SERIAL NUMBER IS THE SAME ON THE BAG, THE USERMANUAL AND THE NAME I	PLATE							
THE FIREPLACE IS SCREWED ON THE CRATE.							+	
INSPECTED BY:		I	D	ATE:	/_	/:	20	

COMPONENTS

ETL Mark Minimum Labeling Requirements (new Intertek Mark)

MINIMUM MARKING REQUIREMENTS FOR PRODUCTS BEARING THE ETL MARK

The ETL Listing Mark consists of the following four items:

- 1. The ETL Certification Mark with "US" and/or "C" as identifiers. The letter "C" adjacent and to the lower left side of the ETL Certification Mark indicates that the product complies with a Canadian standard. The letters "US" adjacent and to the lower right side of the ETL Certification Mark indicates that the product complies with a US standard. The required minimum size of the identifiers is 2 mm.
- 2. The word, "Listed" or "Classified" or "Recognized Component" (whichever is appropriate). The word, "Listed" is to be incorporated into the ETL Certification Mark. If upon reduction, the word "listed" is not legible as part of the trademark, it shall also appear separately.
- 3. The Control Number issued by Intertek Testing Services. This five to eleven digit number is unique to the manufacturing site for each applicant.
- 4. A standard description, which refers to the national standard used for certification shall be used. Example:
 - For US standards, the words, "Conforms to" shall appear with the standard number along with the word, "Standard" or "Std." Example: "Conforms to ANSI/UL Std. XX."
 - For Canadian standards, the words "Certified to CAN/CGA Standard CXX No. XX", shall be used, or abbreviated, "Cert. to CAN/CSA Std CXX No. XX".
 - i If the manufacturer wishes, they may use the standard title, example "Telephone Equipment."

Nothing selected Nothing selected

Listing Report General Information

LISTING REPORT GENERAL INFORMATION

The Applicant have agreed to produce, test and label Intertek Listed products in accordance with the requirements of this Report. The Applicant has also agreed to notify Intertek and request authorization prior to using alternate parts, components or materials.

INSTRUCTIONS FOR USE

- One copy of this Report is submitted to the Applicant and used by the Intertek Field Representative for Follow-up Service Inspections; and
- One copy is retained in files at the Intertek Regional Certification Center.

The Applicant is to use this Report as a guide for the operation of the certification program, and will manufacture the Listed product(s) in accordance with the specifications information stated herein.

The Intertek Field Representative shall determine that the product is manufactured in accordance with this Report and that certification procedures are followed.

In the case where a discrepancy exists between the product and this Report, this Report will be considered correct, and therefore the Applicant has the responsibility for making the necessary corrections so that the product will meet the specifications stated herein.

COMPONENTS

Components used shall be those itemized in this Intertek Report covering the product, including any amendments and/or revisions.

CERTIFICATION MARK

The Intertek Certification Mark applied to the products shall either be separable in form, such as labels purchased from Intertek, or on a product nameplate or other media only as specifically authorized by Intertek. Use of the Intertek Certification Mark is subject to the control of Intertek.

MANUFACTURING AND PRODUCTION TESTS

Manufacturing and Production Tests shall be performed as required in this Report.

FOLLOW-UP SERVICE

Periodic unannounced Follow-up Service Inspections of the manufacturing facility shall be conducted by Intertek. A Follow-up Service Inspection Report shall be issued after each visit. Special attention will be given to the following:

- 1. Conformance of the manufactured product to the descriptions in this Report.
- 2. Conformance of the use of the Intertek Certification Mark with the requirements of this Report and the Intertek Certification Agreement.
- 3. In-plant quality control procedures and personnel.
- 4. Manufacturing processes and changes.
- 5. Performance of specified manufacturing and production tests.

In the event that the Intertek Field Representative identifies variance(s) to any provision of this Report, the Applicant shall take one or more of the following actions:

- 1. Correct the non-conformance.
- 2. Remove the Intertek Certification Mark from non-conforming product.
- 3. Contact the Intertek office that issued this Report for additional instructions.

GENERAL REQUIREMENTS AND DEFINITIONS

<u>Accepted</u> - Accepted by Intertek. All inquiries regarding change to Listed products must be presented to Intertek in writing for consideration and acceptance.

Authorized - Authorized by Intertek. All inquiries regarding change to Listed products must be

presented to Intertek in writing for consideration and approval.

C.S.A. - Canadian Standards Association.

<u>Certified</u> - Equipment or material included in a list published by a nationally recognized certification agency that conducts periodic inspections of production of Listed equipment or materials and whose listing stated either that the equipment or material meets recognized standards or has been tested and found suitable for use in a specified manner.

Construction Details - For specific construction details, reference should be made to the following photographs and descriptions. All dimensions are approximate unless specified as exact or within a tolerance. In addition to the specific construction details described in this Report, the following general requirements may also apply as applicable.

Discrepancy - A difference between this Report and a product described in this Report. This will result in the filing of a Variance Report on which a management level decision for the corrective action will be based.

Installation, Operating and Safety Instructions - Instructions for installation and use of this product are provided by the Manufacturer as required by the standard.

Listed - Equipment or materials included in a list published by a nationally recognized certification agency that conducts periodic inspections of production of listed equipment of materials, and whose listing states either that the equipment or materials meets nationally recognized standards, or has been tested and found suitable for use in a specified manner.

<u>Listed Component</u> - Identifies any product covered under the Listing or Certification service of an NRTL (US) or a CO (Canada).

<u>Markings</u> - The Intertek Certification Mark shall be visible after installation. Other markings may be required as identified in this Report. If evaluated to a Canadian standard, the products may be required to have markings in both French and English. If so, it is the responsibility of the Applicant to determine any such requirement and provide bilingual markings, where applicable, in accordance with the Provincial Regulatory Authorities.

N.F.P.A. - National Fire Protection Association.

<u>**Production Test Requirements</u>** - When applicable, the Manufacturer shall have the necessary test facilities to carry out production tests on the Listed product.</u>

<u>**Products**</u> - The product as described under "Authorization to Mark" is eligible to carry the Intertek Certification Mark.

<u>**Recognized Component</u></u> - Identifies any component, part or sub-assembly, covered under the recognition service of an NRTL (US) or a CO (Canada), and intended for use in Intertek Listed, Intertek Classified, or Intertek Recognized products.</u>**

<u>Records</u> - Records of the use of the Intertek Certification Mark must be maintained by the Applicant and must be available for review during normal business hours.

Shipping - As practically as possible, each Listed product is to be shipped completely assembled and incorporate the necessary safety and installation instructions.

<u>Standards</u> - The Manufacturer shall have in his possession all the current standards/specifications for the Listed product.

- U.L. Underwriters Laboratories Inc.
- ULC Underwriters' Laboratories of Canada.

<u>Unlisted Component</u> – Because unlisted components are uncontrolled, and they do not fall under a third party follow up program, ITS may require these components to be tested and/or evaluated at least once annually, more often for certain components, as part of the independent certification process.

<u>Use of Mark</u> - The Components containing the Intertek Certification Mark (i.e. ink stamps, labels) must be kept in a secure area, preferably locked and must not leave the designated manufacturing plant(s) location(s) unless authorized by Intertek. Records on the use of the mark are to be maintained up-to-date. The Intertek Certification Mark and associated product identification must be clearly visible and legible when applied to the finished product. Products to be marked must have successfully passed the production tests and scrutiny of the quality control personnel, determining that the product complies with the specifications stated in this Report. Failure to comply with procedures constitutes ground for withdrawal of Intertek authorization to use the Intertek Certification Mark.

Ordering Labels - It is the responsibility of the Applicant to ensure that an adequate stock of labels is maintained. Label quantities in stock are indicated on all packing slips issued by Intertek.

Modification Procedure - Intertek may approve modifications of a product based on an additional evaluation or tests. Fees are charged for this service. If modifications are desired, such as substituting a different material, changing the cosmetic appearance, changing the rating, altering a component to simplify the manufacturing or improve the product, or any other change, the following procedure must be followed:

- 1. Write the Intertek office that issued this Report requesting an evaluation of the modification required. Include a clear description and detailed drawings if required showing exactly what is involved, and state your reason for wanting to make the modifications.
- 2. Wait until written authorization is received from Intertek complete with additional or revised pages to be inserted into your Report. Only after written authorization is received may the Applicant proceed with the modification.

INITIAL FACTORY AUDIT

<u>Purpose</u> - The purpose of this audit is to ensure the following:

- 1. The Plant Manager, Foreman and Quality Control Personnel are familiar with this Report.
- 2. The Plant Quality Control Program will assure that the product is manufactured to the requirements in this Report.
- 3. Key personnel are familiar with and recognize the need for Follow-up Service Inspections as well as proper handling of the Intertek Certification Mark and the use of log sheets, where

applicable.

4. The duties of the Controller of the Intertek Certification Mark are properly understood.

Equipment or Supplies Needed

- 1. Applicable Specifications.
- 2. Applicable Standards.
- 3. Supply of log sheets where applicable.
- 4. Intertek Certification Mark Controller instruction sheet with sample log sheet.
- 5. Supply of open stock/custom labels or stamp, etc.

Initial Factory Audit Procedures - The initial inspection (pre-arranged with date and time agreeable to both the Applicant and the Intertek Field Representative) will consist of an initial meeting with the Plant Manager, Plant Foreman, Quality Control Manager and other key personnel. The initial meeting will cover a complete review of the Report and production facilities.

INTERTEK FOLLOW-UP SERVICE INSPECTIONS

The Intertek Field Representative shall determine that the product is manufactured in accordance with this Report, and that label procedures are followed.

Label Control - Record serial numbers of labels if applicable, in the plant. Inspect label log sheets. The following information should be recorded in the label log sheets by the manufacturer:

- 1. Label numbers, date labeled or shipped, product labeled, and destination.
- 2. Labels removed from, returned, freight damage, or rejected products should be picked up.

Examination of Product - At each Follow-up Service Inspection the Intertek Field Representative shall determine that the product which is intended to bear the Intertek Certification Mark is manufactured in accordance with the specified standards as per the test program and stated herein. The Intertek Field Representative shall pay special attention to the following:

- 1. Materials used must be free from defects that could affect the performance of the product.
- 2. Suitable protective packaging.
- 3. Complete safety and installation instructions are supplied with each product. No modification to these instructions shall be made without Intertek authorization.

Examination of Applicant's Inspection Programs - At each Follow-up Service Inspection, the Intertek Field Representative shall determine that the Applicant's methods of inspection conform to the specifications included in the quality control procedures. The Intertek Field Representative will pay attention to:

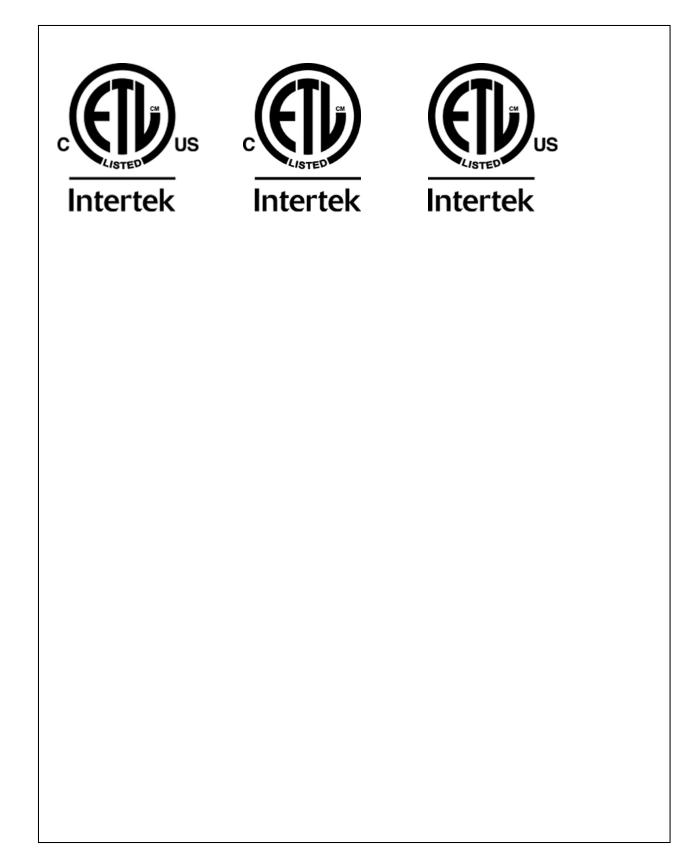
- 1. The Applicant's quality control report is complete and conforms to the procedure accepted by Intertek and included in this Report.
- 2. The equipment used for inspection conforms to the specification in the quality control procedure. The work area is suitable for a good quality control program.
- 3. Regular manufacturing production line tests are carried out by the Applicant.

Discrepancies - The Intertek Field Representative shall complete his Follow-up Service Inspection sheet detailing the discrepancy and issue a Variance Report. A signature on the Intertek Field Representative's copy shall be obtained from the Applicant's representative, giving evidence that they were issued a copy. Copies shall be forwarded to the Intertek Regional Certification Office.

The Intertek Field Representative shall require that the Applicant remove the Intertek Certification Mark from all products which do not meet the conformance requirements of this Report, and advise the Applicant not to use the Intertek Certification Mark until further advised.

In the case of minor cosmetic changes the Intertek Field Representative will note the variance on his Follow-up Services Inspection Report and determine the action to be taken by the Applicant. Actions may be to have the Applicant apply to Intertek for an evaluation of the variance and if approved, the subsequent modification of this Report, or to have the Applicant agree to correct the variance on all affected units.

On subsequent routine Follow-up Service Inspections, the Intertek Field Representative will pay special attention to any variances listed in previous Follow-up Inspection Reports. If it is found that a variance has not been corrected as agreed to by the Applicant, the Intertek Field Representative will contact Intertek Regional Certification Center for appropriate instructions. In extreme cases, service could be immediately suspended.


In the case of a difference existing between this Report and the product that could result in a safety hazard, the Intertek Field Representative will fill out a Variance Report. The determination of what constitutes a variance is left to the discretion of the Intertek Field Representative, but any modification or change that could affect the operating characteristics of a product must be reported. The action taken by Intertek will be:

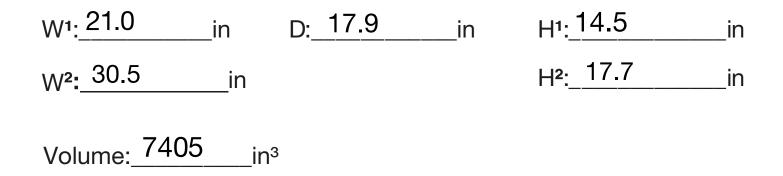
- 1. Removal of all labels or the Intertek Certification Mark or halting the shipping of the affected product until the Applicant corrects the variance, or has an evaluation carried out by Intertek, the modification approved, and this Report updated.
- 2. For units already shipped, procedures must be taken per Intertek SOP 7.14.2.

ADDITIONAL REQUIREMENTS DRAWING INDEX

Intertek ETL Certification Marks

Intertek ETL Certification Marks

QUALITY CONTROL INFORMATION


This section intentionally left blank.

Firebox Volume For Fireplace

Serie: HE350

Model: HE350, FP-15 Waterloo ,FP-15A Waterloo, Horizon, Monaco XL and WFP100

Volume: 4.29 ft³