

TEST REPORT

SCOPE: EMISSIONS, EFFICIENCY AND OUTPUT

FUEL: EPA TEST FUEL (CRIBS)

TEST STANDARD: EPA

MODEL: OSBURN 900 WOOD STOVE

<u>Notice to reader</u>: Our Osburn 900 wood stove was tested as part of our 1.3 Series (S244) firebox. Therefore, the 1.3 Series (S244) is referenced throughout the attached test report.

REPORT NUMBER: 100517524MTL-002 REPORT DATE: March 12, 2012

EVALUATION CENTER

Intertek Testing Services NA Inc. Intertek (Lachine) 1829 32nd Ave Lachine, Qc

RENDERED TO

S.B.I.-Stove Builders International 250 Copenhague Street St-Augustin-de-Desmaures, QC G3A 2H3

PRODUCT EVALUATED:

Wood Stove Model S244

Report of Testing Model S244 Wood Fuel Room Heater for compliance as an "Affected Facility" with the applicable requirements of the following criteria: EPA Method 28 "Certification and Auditing of Wood Heaters" and EPA Method 5G "Determination of Particulate Matter Emissions from Wood Heaters".

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

Ι.	I.A. I.B.	DUCTION	
II.	SUMN II.A II.B II.C II.D	IARIZATION3PRETEST INFORMATION4INFORMATION LOG4SUMMARY OF INFORMATION5SUMMARY OF OTHER DATA6	-
III.	PROC III.A	ESS DESCRIPTION	1
IV.	IV.A IV.A.1 IV.B. IV.B.1	LING SYSTEM	0
V.	SAMP V.A.	LING METHODS	2 2
VI.	VI.A. VI.A.1 VI.A.2 VI.A.3 VI.B. VI.B.1 VI.B.2	ITY ASSURANCE	2 2 3 3 3 3
VII.	CONC VII.A	LUSION	4 4
Apper Apper Apper Apper	ndice B: ndice C: ndice D: ndice E:	: K List Drawings : Operation Manual : Sample Analysis : Calibrations : Sample Calculations : Test Data	

I. INTRODUCTION

Intertek Testing Services NA (Intertek) has witnesed testing for S.B.I.-Stove Builders International, on model S244 Wood Room Heater, to evaluate all applicable performance requirements included in EPA Method 28 "Certification and auditing of wood heaters" and Method 5G-3 "Determination of Particulate Matter Emissions from Wood Heaters."

I.A PURPOSE OF TEST

The test was conducted to determine if the unit is in accordance with U.S EPA requirements for Residential Wood Fuel Room Heaters. This site-testing took place on December 5, 2011 – December 14, 2011.

I.B LABORATORY

The tests on the Wood Room Heater model S244 was conducted at the S.B.I's testing facility located at 250 Copenhague Street, St-Augustin-de-Desmaures, PQ G3A 2H3.

I.C DESCRIPTION OF UNIT

The model S244 Wood Room Heater is constructed of carbon steel. The outer dimensions are 20.924 - inches deep, 25.735 -inches high, and 22.626 - inches wide and the unit tested was bearing the serial number MTL1111071416-001. (See product drawings.)

Proprietary drawings are on file at Intertek in Montreal.

I.D REPORT ORGANIZATION

This report includes summaries of all data necessary to determine compliance with the regulations. Raw data, calibration records, intermediate calculations, drawings, specifications and other supporting information are contained in appendices to this report.

II. SUMMARIZATION

II.A PRETEST INFORMATION

Prior to beginning the emissions tests the unit was operated for a minimum of one hour at the burn rate corresponding to the burn rate cathegory the unit was about to be tested.

On December 2 2011 the unit was set-up for testing.

II.B INFORMATION LOG

TEST STANDARD

From December 5, 2011 – December 14, 2011 the unit was tested for EPA emissions.

Deviation from Standard Method

No deviations from the standards were performed, however, only the applicable sections from each standard were used during all testing.

II.C SUMMARY OF TEST RESULTS

RUN #1 (December 5, 2011) This test was filed as an R&D as it was a trial of the product prior to certification.

RUN #2 (December 6, 2011) Air control was half open until 3:45 min and was set at full closed position at 5 minutes. Burn time was 200 minutes with a category 2 burn rate of 0.9 Kg/hr. The fuel was loaded by 50 seconds and the door was closed by 95 seconds. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #3 (December 7, 2011) Air control was open till 4:30 minutes and closed at 5 minutes. Burn time was 210 minutes with a category 2 burn rate of 0.86 kg/hr. The fuel was loaded by 60 seconds and the door was closed immediately after. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #4 (December 8, 2011) Air control was closed at 5 minutes. Burn time was 220 minutes with a category 2 burn rate of 0.82 kg/hr. The fuel was loaded by 44 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #5 (December 9, 2011) Air control was closed at 5 minutes. Burn time was 220 minutes with a category 2 burn rate of 0.82 kg/hr. The fuel was loaded by 44 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test. This test was declared null due to Delta T outside the acceptable range.

RUN #6 (December 12, 2011) Air control was fully open. Burn time was 110 minutes with a category 4 burn rate of 1.67 kg/hr. The fuel was loaded by 45 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #7 (December 13, 2011) Air control was fully open. Burn time was 100 minutes with a category 4 burn rate of 1.81 kg/hr. The fuel was loaded by 60 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #8 (December 14, 2011) Air control was closed. Burn time was 160 minutes with a category 2 burn rate of 1.13 kg/hr. The fuel was loaded by 60 seconds and the door was closed at 90 seconds into the test. The blower was off for duration of the test run.

II.D SUMMARY OF OTHER DATA

EMISSIONS

Run	Test	Burn Rate	Emission	Adjusted Emission Rate	Heating
Number	Date	(kg/hr)	Rate (g/hr)	(g/hr)	Efficiency (% LHV)
2*	12/06/2011	0.90	3.73	5.42	No flue gases for 20 minutes
3	12/07/2011	0.86	2.81	4.29	78.2
4	12/08/2011	0.82	3.20	4.78	75.4
5	12/09/2011	1.64	4.05	5.72	N/A
6	12/12/2011	1.67	1.94	3.15	68.5
7	12/13/2011	1.81	3.21	4.80	71.9
8-Fan conf.	12/14/2011	1.13	3.80	5.51	75.5

WEIGHTED AVERAGE CALCULATION

Test No.	Burn Rate	(E) Average Emission Rate g/hr	Heat Output (Btu/hr)	Probability	(K) Weighting Factor	(KxE)
4	0.82	4.78	9887.72	0.2336	0.2632	1.2581
3	0.86	4.29	10370.05	0.2632	0.5974	2.5628
6	1.67	3.15	20137.19	0.8310	0.6132	1.9316
7	1.81	4.80	21825.34	0.8764	0.1690	0.8112
	6.5637					
	ission rate:	3.9954**				

* Run Test 2 was omitted on a two for one basis in accordance to EPA Rules ** Run Test 5 was omitted due to calculated Delta T results falling outside acceptable limits

* *The weighed average is calculated using only the runs 4, 3, 6 and 7

	Room	Room	Baro.	Baro.	R.H.	R.H.	Air	Air
Run	Temp.	Temp	Pres.	Pres.	к.п. %	к.п. %	Vel.	Vel.
Run	°F	°F	In. Hg	In. Hg	before	after	Ft/min	Ft/min
	before	after	before	after	neiole	aitei	before	after
2	88	84	30.17	30.12	31	31	0	0
3	83	83	29.97	29.84	28	28	0	0
4	85	78	29.75	29.95	36	35	0	0
5	73	86	30.19	30.15	35	35	0	0
6	66	81	30.42	30.40	39	38	0	0
7	74	83	30.36	30.34	28	28	0	0
8	88	82	30.42	30.36	30	29	0	0

TEST FACILITY CONDITIONS

DILUTION TUNNEL	. FLOW RATE MEASUREMENTS AND	SAMPLING DATA
(50-2)		

(5	G-3)							
Run	Burn Time	Velocity	Volumetric Flow Rate	Total Temp.		ume nple	Partic Catch	culate (mg)
No.	(min)	(ft/sec)	(dscf/min)	(°R)	1	2	1	2
2	200	6.65	131.53	540.25	21.073	18.288	10.0	8.6
3	210	7.36	143.32	544.64	24.758	23.814	8.3	7.6
4	220	7.94	154.35	544.41	25.708	24.883	8.7	8.8
5	110	7.93	144.79	585.86	12.267	12.366	N/A	N/A
6	110	7.79	144.20	582.25	12.223	12.749	2.5	3.1
7	100	8.17	149.97	586.53	11.540	11.957	4.1	4.3
8	160	7.22	142.27	546.92	19.936	20.018	9.1	8.7

DILUTION TUNNEL DUAL TRAIN PRECISION

Run No.	Sample	Ratios	Total Emis	%	
Run No.	Train 1	Train 2	Train 1	Train 2	Deviation
2	1247.889	1437.893	12.48	12.37	0.38
3	1215.15	1263.28	10.086	9.601	2.04
4	1320.297	1364.085	11.487	12.004	1.83
5	1298.358	1288.027	N/A	N/A	N/A
6	1296.96	1243.48	3.24	3.86	7.17
7	1298.81	1253.56	5.325	5.390	0.5
8	1141.30	1136.64	10.386	9.889	2.03

*= As described in Method 5G-3 section 16.2.5

GENERAL SUMMARY OF RESULTS

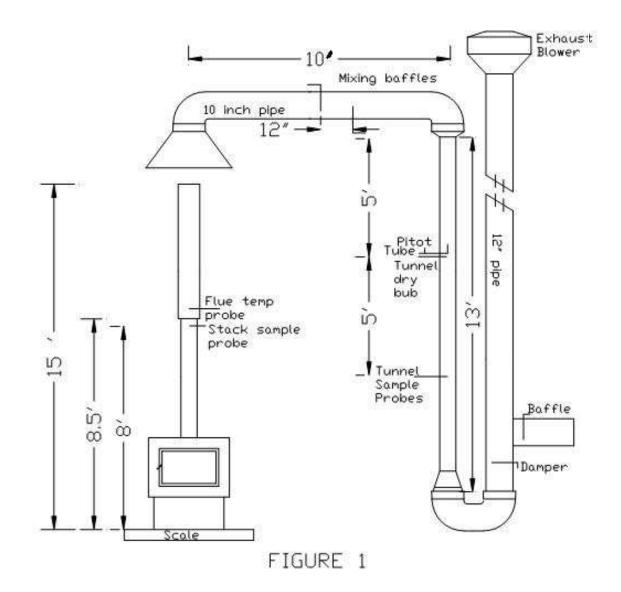
Run No.	Burn Rate (kg/hr)	Change In Surface Temp (°F)	Initial Draft (in/H ₂ O)	Run Time (min)	Average Draft (in/H ₂ O)
2	0.90	-22.9	-0.038	200	-0.040
3	0.86	-55.3	-0.055	210	-0.043
4	0.82	-68.54	-0.045	220	-0.045
5	1.64	-173.2	-0.090	110	-0.080
6	1.67	-113.6	-0.095	110	-0.078
7	1.81	-85.22	-0.080	100	-0.082
8	1.13	-28.02	-0.075	160	-0.054

III. PROCESS DESCRIPTION

III.A TEST SET-UP DESCRIPTON

A standard 8" diameter single wall pipe and insulated chimney system was installed to 15' above the scale level. The unit controls were set to the lowest setting during the test.

IV. SAMPLING SYSTEMS


IV.A. SAMPLING LOCATIONS

Particulate samples are collected from the dilution tunnel at a point 20 feet from the tunnel entrance. The tunnel has two elbows and two mixing baffles in the system ahead of the sampling section. (See Figure 3) The sampling section is a continuous 13 foot section of 6 inch diameter pipe straight over its entire length. Tunnel velocity pressure is determined by a standard Pitot tube located 60 inches from the beginning of the sampling section. The dry bulb thermocouple is located six inches downstream from the Pitot tube. Tunnel samplers are located 60 inches downstream of the Pitot tube and 36 inches upstream from the end of this section. (See Figure 1)

Stack gas samples are collected from the steel chimney section 8 feet \pm 6 inches above the scale platform. (See Figure 2)

IV.A.(1) DILUTION TUNNEL

IV.B.OPERATIONAL DRAWINGS

IV.B.(1) STACK GAS SAMPLE TRAIN

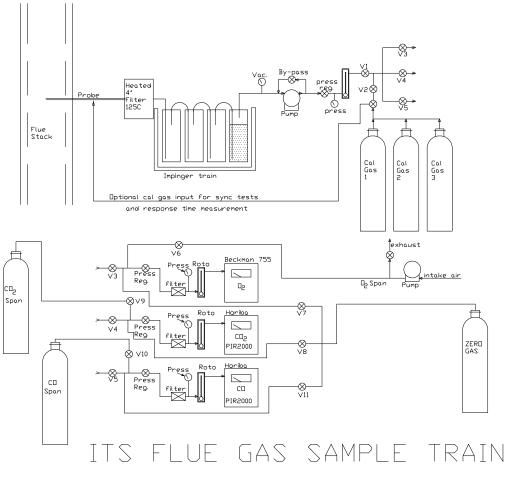


FIGURE 2

IV.B.(2). DILUTION TUNNEL SAMPLE SYSTEMS

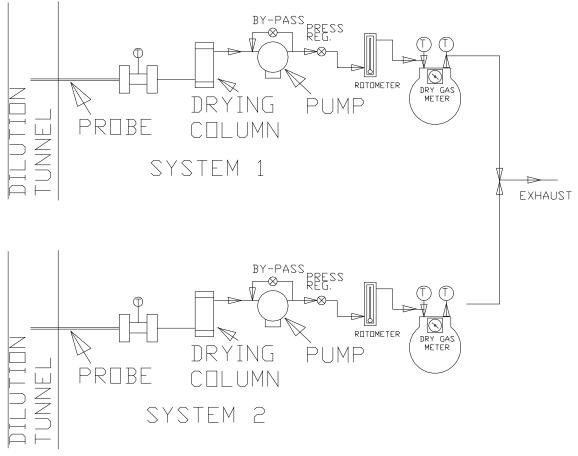


Figure 3

V. SAMPLING METHODS

V.A. PARTICULATE SAMPLING

Particulates were sampled in strict accordance with EPA Method 5G-3. This method uses two identical sampling systems with 47-mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run.

VI. QUALITY ASSURANCE

VI.A. INSTRUMENT CALIBRATION

VI.A. (1). DRY GAS METERS

At the conclusion of each test program the dry gas meters are checked against our standard dry gas meter. Three runs are made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix D.

An integral part of the post test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressurizing the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated annually by an accredited laboratory certified ISO 17025. The process involves sampling the train operation for 1 cubic foot of volume. With readings made to .001 ft³, the resolution is .1%, giving an accuracy higher than the $\pm 2\%$ required by the standard.

VI.A.(2). STACK SAMPLE ROTAMETER

The stack sample rotometer is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotometer in series with one of the dry gas meters for 10 minutes with the rotometer at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

VI.A.(3). GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a five-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

VI.B. TEST METHOD PROCEDURES

VI.B.(1). LEAK CHECK PROCEDURES

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pre-test and post-test leak checks are conducted with a vacuum of 10 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During, these tests the vacuum was typically less than 2 inches of mercury. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.

VI.B.(2). TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.

VI.B.(3). PM SAMPLING PROPORTIONALITY (5G-3)

Proportionality was calculated in accordance with EPA Method 5G-3. The data and results are included in Appendix C.

VII. CONCLUSION

These tests demonstrate that this unit is an affected facility under the definition given in the regulation. The weighted average emission rate of 3.9954 g/hr that meets the requirements.

VII.A RESULTS AND OBSERVATIONS

The Model S244 Wood Room Heater has been found to be in compliance with the applicable performance and construction requirements of the following criteria: EPA Method 28 "Certification and auditing of wood heaters" and Method 5G-3 "Determination of Particulate Matter Emissions from Wood Heaters."

INTERTEK TESTING SERVICES NA

Reported by:

Florin Anghel, Testing Engineer

Banks

Reviewed by: Bruce S. Davis, Project Engineer

Appendix C

Sample Analysis

(•)

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL1111071416-001 Test Date: December 5 2011 Test Run Number: 1

Sample Train - 1									
Sample Component	Component	ID Number	Weights						
eample component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	25		122.2					
B - Rear Filter Catch	Filter	26		122.5					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			254.6	244.7	9.9				
Probe & Filter Holder	Probe	22	139579.1	139578.0	1.1				
			Total Parti	culate, mg	11				

Sample Train - 2									
Sample Component	Component	ID Number	D Number Weights		S .				
	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	27		122.4					
B - Rear Filter Catch	Filter	28		124					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			256.5	246.4	10.1				
Probe & Filter Holder	Probe	31	137098.9	137098.0	0.9				
			Total Parti	culate, mg	11				

Test Engineer:

Date: 03/13/2012

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL1111071416-001 Test Date: December 6 2011 Test Run Number: 2

Sample Train - 1									
Sample Component	Component	ID Number	Weights						
	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	31		123.7					
B - Rear Filter Catch	Filter	32		121.8					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			254.3	245.5	8.8				
Probe & Filter Holder	Probe	33	135994.8	135993.6	1.2				
			Total Parti	culate, mg	10				

Sample Train - 2									
Sample Component	Component	ID Number	Weights						
	Component		Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	29		122	<i>\////////////////////////////////////</i>				
B - Rear Filter Catch	Filter	30		123.2					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			252.8	245.2	7.6				
Probe & Filter Holder	Probe	32	136018.2	136017.2	1.0				
			Total Parti	culate, mg	8.6				

Test Engineer:

Date: 03/13/2012

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 7-Dec-11 Test Run Number: 3

Sample Train - 1								
Sample Component	Component	ent ID Number		Weigh	ts			
	component	ID Number	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	33		122.7				
B - Rear Filter Catch	Filter	34		123.2				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			252.9	245.9	7			
Probe & Filter Holder	Probe	34	108411.5	108410.2	1.3			
			Total Parti	culate, mg	8.3			

Sample Train - 2									
Sample Component	Component	Component ID Number		Weights					
	Component		Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	35		121.9					
B - Rear Filter Catch	Filter	36		122.8					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			251.5	244.7	6.8				
Probe & Filter Holder	Probe	35	107838.0	107837.2	0.8				
			Total Particulate, mg		7.6				

Test Engineer:

Date: 03/13/2012

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 8-Dec-11 Test Run Number: 4

Intertek Equipment No.'s SBI-206

Sample Train - 1									
Sample Component	Component ID Number	Weights							
	Component	1D Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	37		123.3					
B - Rear Filter Catch	Filter	38		122.2					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			253.5	245.5	8				
Probe & Filter Holder	Probe	36	108503.0	108502.3	0.7				
			Total Parti	culate, mg	8.7				

Sample Train - 2									
Sample Component	Component	Component ID Number	Weights						
eample component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	39		123.5					
B - Rear Filter Catch	Filter	40		123.3					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			255.1	246.8	8.3				
Probe & Filter Holder	Probe	37	108382.8	108382.3	0.5				
		Total Parti	culate, mg	8.8					

Test Engineer:

03/13/2012 Date:

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 9-Dec-11 Test Run Number: 5

Sample Train - 1									
Sample Component	Component	ID Number		Weigh	ts				
	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	1		121.7					
B - Rear Filter Catch	Filter	2		123.1					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			247.9	244.8	3.1				
Probe & Filter Holder	147891.7	0.0							
			Total Parti	culate, mg	3.1				

Sample Train - 2								
Sample Component	Component	omponent ID Number		Weights				
	Component	ID Number	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	3		122.7				
B - Rear Filter Catch	Filter	4		123.3				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			249.2	246	3.2			
Probe & Filter Holder	140119.6	5.2						
	Probe & Filter Holder Probe 19				8.4			

Test Engineer:

Date: 03/13/2012

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 12-Dec-11 Test Run Number: 6

Sample Train - 1									
Sample Component	Component	ID Number	Weights		ts				
*	Compenent		Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	5		122.5					
B - Rear Filter Catch	Filter	6		123.4					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			247.4	245.9	1.5				
Probe & Filter Holder	Probe	17	139750.1	139749.1	1.0				
		Total Parti	culate, mg	2.5					

Sample Train - 2								
Sample Component	Component	Component ID Number		Weights				
	Component	ib runiber	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	7		121.9				
B - Rear Filter Catch	Filter	8		122.7				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			247.1	244.6	2.5			
Probe & Filter Holder	Probe	20	139068.1	139067.5	0.6			
		Total Parti	culate, mg	3.1				

Test Engineer:

Date: 03/13/2012

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 13-Dec-11 Test Run Number: 7

Sample Train - 1									
Sample Component	Component ID Number		Weight	s					
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	9		123.2					
B - Rear Filter Catch	Filter	10		121.9					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			247.6	245.1	2.5				
Probe & Filter Holder	Probe	21	139249.3	139247.7	1.6				
	Total Parti	culate, mg	4.1						

Sample Train - 2								
Sample Component	Component	Component ID Number	Weights					
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	11	///////////////////////////////////////	122.9				
B - Rear Filter Catch	Filter	12		123.6				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			249.3	246.5	2.8			
Probe & Filter Holder	Probe	23	136188.9	136187.4	1.5			
		₩1	Total Parti	culate, mg	4.3			

Test Engineer:

2012 Date: 03/13

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 14-Dec-11 Test Run Number: 8 - Fan Confirmation

Sample Train - 1									
Sample Component	Component	ID Number	Weights						
Campie Component	Component		Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	13		121.8					
B - Rear Filter Catch	Filter	14		123					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			252.8	244.8	8				
Probe & Filter Holder	Probe	24	136040.4	136039.3	1.1				
		Total Parti	culate, mg	9.1					

Sample Train - 2									
Sample Component	Component		Weights						
eample component	component	ID INGINDER	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	15		123.5					
B - Rear Filter Catch	Filter	16		122.8					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			254.1	246.3	7.8				
Probe & Filter Holder	be & Filter Holder Probe 25 136832.7 136831.8								
		Total Parti	culate, mg	8.7					

Test Engineer:

2012 Date: 03 13

ş										
	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	13K:45	A00.00	26:15							
T VIAZ		0.1216	C.(214							
RUNU 2	0,1230	0,1231	0,1234							
RUH S 3	0.1228	0.42.27	C. 1227							
FUNS 4	40.12753	0.1232	C.12.33							
RUMC 5	5 C. 1224	0.1225	C. 12.25							
RUMG 6	C.V235	0.1234	0.1234							
RUAC 7	70.1218	0,1213	0.1219							
RUMG 8	C.12.27	0.1227	5.122.7							
6 FUNA	C,1232	0.1232	0.1235F							
RW7 10 0.1220	0.1220	G. 1221	6121.0							
RUH7 11 0, (229	0, (2.2.9	0,1229	C.1229							
RUNA 12	0.123640.1235		0.1236							
RUH8 13	130.1218+A 0 1217		0.1218							
PUN8 14	14 C.1230	0.1230	0, 1230							
RUMS 15	15 O.\234		0.1235							
RUHS 16	16 O. 122.8	O.1223 H	C. 1228							
17	17 C. 1228	0.1223	0.12.23							
18	18 C. \2 25	C.1227	C.1227							
19	0.1234	0.1236	0.1236							
20	20 0.1231	0,1231	0.1231							
21	0.1226	0,1225	0.1226							,
22	C.1230	0.1230	0,1230							
23	C.1136	C.1187	0,4486							
24	C. 1232	0.1232	0,12.52							

1202 13 B

Projet: Date: Tech: Standard:

V. Pelletier

 \bigcirc

THAT THAT

 \bigcirc

ALBIT AUDIT 0.2 m 0.2 m 0.2000 9.2 m C.Paré 0.2%--TA 0.2%--201-12-01 201-01 201-01 C.Paré Projet: Date: Tech: Standard:

			Uate	Date	Date	Date	Date	Date	4 15	
25 0 26 0 27 0	2 8430	34:45						1		T
26 0 27 0	3 C.1222									Τ
27 0,	y 0.1225									Г
	4 0.N224									Γ
RUMA 28 0.124	0 0.1240									Γ
RUNZ 29 0, 122	0.1221	0.1220 /								Γ
RUM2 30 0, 1232	2 0.1231	0.12521								Γ
RUN2 31 0.1236	6 0.123G	C.12374								Γ
RUN2 32 0 12 18	8 0.1217	0.1218 -								Γ
RUM3 33 0, 12 27	7 0.1226	C.1227 Y								Γ
RUH3 34 0, 12 32	1521.0 \$	0.1232 1								
RUN3 35 0 12 20	0 0.1220	~ 6121.0								
RUH3 36 0, 12, 28		0.12.2% -								Γ
RUM+ 37 0, 12 3	33 O.1234	0.1233 4								
RUN4 38 0 12 22	2 0.1222	0,12224								
RUNH 39 0 1237	7 0.123S	0.12554								
RUN 4 40 0, 12 33	3 0.1233	0.1233×								
2 41 0.1229	9 0.1223	0.1223 4								
42 0,1234	10.1235	0.12:25 2								
43 0.1227	7 0.1228	0.1227 1								
44 0, 1214	4 0.1214	0,1245 H								
45 0. 1227	7 0.122G	0.12264								
46 0, 1228		0.12304								
47 0.1223	3 0.1224	0.1224 4								
48 0,1230	0.1230	0,12,33	0,12310							

	Date																									
	te																									
É	Date		-		-	-					-			0	_	_	_			_					-	-
100 - 100 -	Date	04:6												136,2230												
A-4417 100 = 100 = 100 =	Date	5:05	1277421											136,2229												
AUDIT AUDIT 100 % = 100 = 100.000 % ADOMICS	Date	10:0	-	N.	140,11362	12670 561	いちもする いろこ)		136,18747	36,0393	36,33180	133,8266	36, 3022	136,2236 1												
		108:00	133 7434 139 139 74 83	1 +158 + +1		139,0678 1			1 6781, 351	250,0351,525,0351	36,8322	0428,05	136,3021 136,3025 136,3022													
F.()	Date	04:40	88 HE 621	0128, FH		133,0671	133,2475 139,2480		136 1873	136,0390	136.8318 1	133,8265	1206,361	136,2236 136,2242												
AUNIT AUDIT 1000000 1000000 100000000	Date	St. 42																136,0172	(35,9336	108,4102	107,8372	108,5023"	108,3823			
100.0001 100.0001 201-12-05	Date	8 F 13						08455551									0920, 451, 0980	136,0166 136,0430 136,0132	8506,251	103,44CH	107,8273	108,5024	108,382C			
C.Paré	Date							139.5781									_	136,0166	33 / 35, 4430 /35, 99 38 / 35, 9936	1084101	35 107 8368	36 108 50 22 108,5024	1083825 108,3826			
Projet: Date: Tech: Standard:	Id. Probes		RUNG 17	RUAN 18	RUNS 19	FUNG 20	RUH7 21	RUNI 22	FLW 7 23	FLAS 24	RUM8 25	26	27	28	29	30	RUNA 31	RUH 2 32	RUH2 33	7UH3 34	RUM3 35	RUH+ 36	RUM4 37	38		

50

2012

0

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: <u>SBI</u> Model: <u>S244</u>

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/05/11 Engineer: Florin Anghel Run #: 1 Sample Train #: A

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

	pinent#. 10740	(Daidi					1	
Front Filter #	25		Tare:	0.1222	Preliminary	Wt:		0,1320
Rear Filter #	26		Tare:	0.1225	Preliminary	Wt:		0.1232
Seal Set #			Tare:		Preliminary	Wt:		
Date/Time in de	essicator:	12	105/2	2011/16:00	Preliminary	Wt:	O.	2552
Date	Time	F	₹/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/06/11	16:00		29	63	0.2549		12=	AF-
12/07/11	10:00		28	68	0.2546		001	++
12/07/11	16:00	2	27	68	0,2546		,2= 002	-TF
Probe #:	22		Tare:	139,5780	Preliminary \	/Vt:	139	5799
Date/Time in de	essicator:	12	105/2	611/16:00				
Date	Time	F	VH %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/06/11	16:00	2	29	69	133,5789		0066	AF
12/07/11	10:00		28	68	139,5791		00= 0066	#
					·			

Date: 03/13/12

This

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: <u>SBI</u> N	lodel: <u>S244</u>								
Project #: <u>G1005</u>	17524 Sample ID	#: <u>M</u>	<u>TL-11110</u>)71	1416-001				
Date: 12/05/11 E						ample Train #:	P	<u>></u>	
Balance Equipme									
Audit weight Equi	pment #: <u>19749</u>	(Balar	nce audit	mf	fr. std: 500 ± 0	.72 mg)		1011	
Front Filter #	27		Tare:		0,1224	Preliminary V	Nt:	C	1325
Rear Filter #	28		Tare:		0.1240	Preliminary	Nt:	0	,1246
Seal Set #			Tare:			Preliminary \	Nt:		
Date/Time in de	essicator:	12_	105/2	0	11/16:00	Preliminary \	Nt:	О.	2571
Date	Time		R/H %		Temp. (F)	Weight (grams)	(gra	udit ams)	Initials
12/06/11	16:00		23		63	0.2568		.2= 001	AF
12/07/11	10:00		28		68	0.2565		.2=	Æ
Probe #:	31		Tare:	V.	37,0380	Preliminary V	Vt:	137	0880
Date/Time in de	ssicator:	12	105/2	0	11/16:00				
Date	Time	F	₹⁄H %		Temp. (F)	Weight (grams)		udit ams)	Initials
12/06/11	16:00		29		C9	137,0388		0 == 0066	AF
12/07/11	10:00		28		68	137,0989	»۲ ۲00	00 -= ,0066	- \\
Date: <u>0</u> 3	13/2012)				

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: SBI Model: S244

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/06/11 Engineer: Florin Anghel Run #: ____ Sample Train #: ____

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

31		Tare:	0.1237	Preliminary V	Wt:	C	0,1323	
32		Tare:	0.1218	Preliminary	Wt:	C	0.1226	
		Tare:		Preliminary \	Wt:			1
ssicator:	12/	106/20	11/14:45	Preliminary \	₩t:	0	.2549	
Time	F	R/H %	Temp. (F)	Weight (grams)			Initials	
16:00	2	<u>-</u> -	68	0.2545	1		Æ	
17;30	2	23	68	0,2543			AF	
33		Tare:	135,9936	Preliminary V	, Nt:	135	3950	1
ssicator:	12,	106/2	-011/14:45					
Time	R	R/H %	Temp. (F)	Weight (grams)			Initials	
16:00	2	27	68	135,3950	10	= 00	AF	-
17:30	2	29	68	135,9948			TT	1
								1
								1
	32 ssicator: Time 16:00 33 ssicator: Time 16:00	32 ssicator: $1/2/$ Time F $1/6.00$ 33 ssicator: $1/2/$ Time F $1/6.00$ 2	32 Tare: Tare: Tare: Tare: Tare: Tare: Time R/H % T6:00 27 A7;30 2.3 Tare: Time R/H % Tare: Time R/H % T6:00 2.7	32 Tare: 0.1218 Tare: Tare: ssicator: $12/06/2011/14!45$ Time R/H% Temp. (F) $16:00$ $2-7$ 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $17:30$ 2.9 68 $14:35,993.6$ $14:4:45$ Time $1/2/0.6/20.41/14:45$ Time $R/H %$ Temp. (F) $16:00$ 2.7 6.8	32Tare: 0.1218 PreliminaryTare:Tare:Preliminaryssicator: $12/06/2011/14;455$ PreliminaryTimeR/H %Temp. (F)Weight (grams)16:002768 0.2545 14:302968 0.2543 33Tare: $135,9936$ Preliminaryssicator: $12/06/2011/14;455$ PreliminaryTimeR/H %Temp. (F)Weight (grams)16:002768 $135,9936$	32Tare: 0.1218 Preliminary Wt:Tare:Preliminary Wt:ssicator: $12/06/2011/14+45$ Preliminary Wt:TimeR/H %Temp. (F)Weight (grams)A (gr $16:00$ $2-7$ 68 0.2545 0.2 $14:30$ 2.9 68 0.2543 0.2 33 Tare: 1359336 Preliminary Wt:sicator: $12/06/2011/14+45$ Preliminary Wt:Time $R/H %$ Temp. (F)Weight (grams)A (grams) 33 Tare: 135936 Preliminary Wt: 34 12000 27 68 12000	32Tare: $O.\Lambda 2\Lambda 8$ Preliminary Wt: O Tare:Preliminary Wt:Preliminary Wt: O ssicator: $\Lambda 2/06/20 \Lambda/\Lambda4; 45$ Preliminary Wt: O TimeR/H %Temp. (F)Weight (grams)Audit (grams) $\Lambda 6:00$ $2-7$ 68 0.2545 0.202 $\Lambda 4; 30$ 2.9 68 0.2543 $0.2=0$ $\Lambda 4; 30$ $12/06/20\Lambda$ $/14; 45$ 135 Time $R/H \%$ Temp. (F)Weight (grams) $\Lambda 5:00$ 2.7 6.8 $\Lambda 35; 9350$ $\Lambda 5:00$ 2.7 6.8 $\Lambda 35; 9350$ $\Lambda 00=4$ $\Lambda 5:00$ 2.7 6.8 $\Lambda 35; 9350$ $\Lambda 00=4$	32Tare: 0.1218 Preliminary Wt: 0.1226 Tare:Preliminary Wt:Preliminary Wt: 0.2549 ssicator: $12/06/2011/14+5$ Preliminary Wt: $0.2.549$ TimeR/H %Temp. (F)Weight (grams)Initials $16:00$ 27 68 0.2545 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $17:30$ 2.9 68 0.2543 $0.2=$ $12:59350$ $0.2=$ $12:59350$ $13:59350$ $10:100$ 2.7 6.8 $13:59350$ $100=$ $10:100$ 2.7 6.8 $13:59350$ $100=$ $10:100$ 2.7 6.8 $13:59350$ $100=$ $10:100$ 2.7 6.8 $13:59350$ $100=$ $10:100$ 2.9 0.9 $12:100$ $100=$ $10:100$ 2.9 0.9 12

Date: 03/13/2012

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: SBI Model: <u>S244</u>

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/06/M Engineer: Florin Anghel Run #: ____ Sample Train #: ____

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

29		Tare:	0.1220	Preliminary	Nt:	<	0.1296
30	x	Tare:	0.1232	Preliminary	Nt:	<	0,1238
		Tare:		Preliminary \	Nt:		
ssicator:	12/	0 6/20	11/14:45	Preliminary \	/Vt:	О,	2534
Time	F	R/H %	Temp. (F)	Weight (grams)			Initials
16:00	2	27	68	0.2530			AF
17:30	2	29	68	0,2528			A
32		Tare:	136,0172	Preliminary V	Vt:	136	2810,2
ssicator:	12	106/20	011/14:45				
Time			Temp. (F)	Weight (grams)			Initials
16:00	2	27	68	136,0185	10	= 0	AF
17:30	2	29	68	136,0182			AF
	$\frac{30}{100}$ <pre>ssicator:</pre> $\frac{1600}{100}$ $\frac{1600}{100}$ $\frac{32}{32}$ <pre>ssicator:</pre> $\frac{3600}{100}$	$\frac{30}{100}$ ssicator: $\sqrt{2}/2$ Time F $\sqrt{6'.00}$ $\frac{32}{100}$ Ssicator: $\sqrt{2}/2$ Time F $\sqrt{6:00}$	30 Tare: Tare: Tare: Tare: Tare: Time R/H % T6:00 2.4 Tare: Tar	30 Tare: 0.1232 Tare: Tare: Tare: ssicator: $12/0 \ C/20 \ M/ \ 14! \ 45$ Temp. (F) Time R/H % Temp. (F) 16:00 27 68 $\Lambda7:30$ 29 68 $\Lambda7:30$ 29 68 32 Tare: $136,0172$ ssicator: $\Lambda 2/06/20 \ \sqrt{14':45}$ Temp. (F) Time R/H % Temp. (F) $\Lambda6:00$ 27 68	30 Tare: 0.1232 PreliminaryTare:Tare:Preliminaryssicator: $12/0 \le 1/2 \le 1/4$; 45 PreliminaryTime $R/H \%$ Temp. (F)Weight (grams)16:00 27 68 0.2530 $14:30$ 2.9 68 0.2528 $14:30$ 2.9 68 0.2528 $14:30$ 2.9 68 0.2528 $14:30$ 2.9 68 0.2528 $14:30$ 2.9 68 0.2528 $14:30$ 2.9 68 0.2528 32 Tare: $136,0172$ Preliminary 32 Tare: $136,0172$ Preliminary $12/06/201/(14:45)$ Temp. (F)Weight (grams) $16:00$ 2.7 6.8 $136,0185$	30Tare: 0.1232 Preliminary Wt:Tare:Tare:Preliminary Wt:ssicator: $12/06/2011/1445$ Preliminary Wt:TimeR/H %Temp. (F)Weight (grams)Au (grams)16:002.76.8 0.2530 0.2530 14:302.96.8 0.2528 0.2528 1111132Tare: $136,0172$ Preliminary Wt:ssicator: $12/06/2011/1445$ 1132Tare: $136,0172$ Preliminary Wt:ssicator: $12/06/2011/1445$ 11TimeR/H %Temp. (F)Weight (grams)Au (grams)1002.76.8 $136,0185$ 100 $100,0172$ 2.9 6.8 $136,0185$ 100	30Tare: 0.1232 Preliminary Wt:Tare:Preliminary Wt: 0.1232 Preliminary Wt:ssicator: $12/0 C/20 A/A + 4.45$ Preliminary Wt: 0.1230 Time $R/H %$ Temp. (F)Weight (grams)Audit (grams) $16:00$ 27 68 0.2530 $0.2=0.2002$ $A7:30$ 2.9 6.8 0.2528 $0.2=0.2004$ $14:30$ 2.9 6.8 0.2528 $0.2=0.2004$ 32 Tare: $136,0172$ Preliminary Wt: $136,0172$ Ssicator: $1.2/06/2041/(44:45)$ Temp. (F)Weight (grams) $Audit(grams)$ Time $R/H %$ Temp. (F)Weight (grams) $Audit(grams)$ $16:00$ 27 6.8 $136,0185$ $100=7$

Date: 03/13/2012

The

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: <u>SBI</u> Model: <u>S244</u>

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/07/11 Engineer: Florin Anghel

Run #: <u>3</u> Sample Train #: <u>A</u>

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: <u>19749</u> (Balance audit mfr. std: 500 ± 0.72 mg)

Front Filter #	33		Tare:	0.1227	Preliminary	Wt:	C	0.1234
Rear Filter #	34		Tare:	0.1232	Preliminary	Wt:	С	0.1237
Seal Set #			Tare:		Preliminary	Wt:		
Date/Time in de	essicator:	12/	07/20	041/15:45	Preliminary	Wt:	0	.2531
Date	Time	R	VH %	Temp. (F)	Weight (grams)		ıdit ams)	Initials
12/08/11	17:30	1	28	68	0.2531	0.2	2.= 001	AF
12/09/11	13:00	4	29	69	0.2523	0.2	0.2= 001	-
Probe #:	34		Tare:	108,4102	Preliminary V	Nt:	108	5,4113
Date/Time in de	essicator:	12/	07/20	011/15:45		I		
Date	Time	R/	/H %	Temp. (F)	Weight (grams)	Au (gra	dit ms)	Initials
12/08/11	17:30	4	28	68	108,4114		200	×
12/03/11	13:00	2	29	63	108,4115	100,5	== 0067	AF
	3/13/201	2						

Date: 03/13/2012 Engineer signature:

	DILUTIO	N TUNNEL V	VORKSHEET	- METHOD	5G3			
Client: <u>SBI</u> N	/lodel: <u>S244</u>							
Project #: <u>G1005</u>	17524 Sample ID	#: <u>MTL-11110</u>	71416-001		÷			
Date: 12/07/11 E	ngineer: <u>Florin A</u>	nghel Ri	un #: <u>3</u> Sa	ample Train #:	R			
Balance Equipme	ent #: <u>SBI-206</u> Th	ermo/Hygro me	ter Equipment #	: <u>SBI-212</u>				
Audit weight Equi	pment #: <u>19749</u>	(Balance audit r		.72 mg)				-
Front Filter #	35	Tare:	0.12.19	Preliminary	Wt:	E	2,1285	
Rear Filter #	36	Tare:	0,1228	Preliminary	Wt:	C	0.1232	
Seal Set #		Tare:		Preliminary	Wt:	r		
Date/Time in de	essicator:	12/07/20	15:45	Preliminary	Nt:	0,	2517	
Date	Time	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials	
12/08/11	N7:30	28	68	0.2516		2=	A F	
12/03/11	13:00	29	69	0.2515		2=	AF	1
								•
								1
Probe #:	35	Tare:	107,8372	Preliminary V	/Vt:	fot	58385	
Date/Time in de	essicator:	12/07/20	on/15:45					
Date	Time	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials	
12/08/11	17:30	28	68	678879		0067	- AF	
12/09/11	13:00	29	63	107,8380	100.1	20 = 0067	¥	-

-

Date: 03/13/2012

Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: SBI Model: <u>S244</u>

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/08/11 Engineer: Florin Anghel Run #: 4 Sample Train #: A

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

Front Filter #	37	Tare		0,1233	Preliminary	Wt:	0	0.1313
Rear Filter #	38	Tare	e:	0.1222	Preliminary	Wt:	0	.1226
Seal Set #		Tare	e		Preliminary	Wt:		
Date/Time in de	essicator:	12/08/	201	1/17:30	Preliminary	Wt:	C	0,2539
Date	Time	R/H %		Temp. (F)	Weight (grams)		udit ams)	Initials
12/11/11	12:20	6		67.5	0.2535	0.	2=	· TA
N2/13/11	14:40	8		68.5	0,2535		2= 001	-
Probe #:	36	Tare	: N	08,5023	Preliminary \	/ /Vt:	108	3,5031
Date/Time in de	essicator:	12/08/	201	1/17:30				
Date	Time	R/H %		Temp. (F)	Weight (grams)		udit ams)	Initials
12/11/11	12:20	6		67.5	108,5028			-XF
12/13/11	14:40	8		68.5	108.5030		==0	A
	3/13/2012			1	J	ļ		

Date: 03/13/2012 Muy Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: <u>SBI</u> N	lodel: <u>S244</u>						
Project #: <u>G1005</u>			71416-001		- TO		
Date: 12/08/ 11 E	ngineer: <u>Florin A</u>	nghel Ru	un #: <u>4</u> Sa	ample Train #:	D	_	
Balance Equipme	ent #: <u>SBI-206</u> Th	ermo/Hygro me	ter Equipment #	: <u>SBI-212</u>			
Audit weight Equi		(Balance audit r		.72 mg)			
Front Filter #	39	Tare:	0,1235	Preliminary	Wt:	C	2, 1317
Rear Filter #	40	Tare:	0.1233	Preliminary	Wt:	C	0.1238
Seal Set #		Tare:		Preliminary	Wt:		
Date/Time in de	essicator:	12/08/10	11/17:40	Preliminary	/Vt:	0	,2555
Date	Time	R/H %	Temp. (F)	Weight (grams)	Au (gra		Initials
12/11/11	12:20	6	67.5	0.2551	0,20	2= 002	- \
12/13/11	14:40	8	68.5	0,2551	0.2		TA
Probe #:	37	Tare:	108,3823	Preliminary \	/Vt:	108	,3833
Date/Time in de	essicator:	12/08/2	DAN/17:40				
Date	Time	R/H %	Temp. (F)	Weight (grams)	Au (gra		Initials
12/11/11	12:20	6	67.5	108,3830	100,0	20= 1066	A
12/13/11	14:40	8	68.5	108,3828	100,0	s <i>=</i> 0066	· TA
	2/12/2-1	2		*			

Date: 03/13/2012 1 Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: <u>SBI</u> Model: <u>S244</u>

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/03/11 Engineer: Florin Anghel

Run #: <u>5</u> Sample Train #: <u>A</u>

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: <u>19749</u> (Balance audit mfr. std: 500 ± 0.72 mg)

- 4		Tare:	0.1217	Prelimir	nary Wt:	C	2.1247
2		Tare:	0.1231	Prelimir	nary Wt:	С	0,1232
		Tare:		Prelimir	nary Wt:		
essicator:	12	103/2	611/13:00	Prelimir	nary Wt:	0	.2473
Time	F	R/H %	Temp. (F)				Initials
18		Tare:	147,8917	Prelimin	ary Wt:	14-	2168,4
ssicator:	12	63/2		the second se			
Time	F	R/H %	Temp. (F)				Initials
	2_ ssicator: Time A 8 ssicator:	2_ ssicator: λ2_ Time I I	$\frac{2}{1 \text{ Tare:}}$ Tare: $\frac{2}{1 \text{ Tare:}}$ $\frac{1}{2} \sqrt{2} \sqrt{63/2}$ Time $\frac{1}{1 \sqrt{2}} \sqrt{63/2}$ Time $\frac{1}{1 \sqrt{2}} \sqrt{63/2}$ Tare: $\frac{1}{2} \sqrt{63/2}$ Tare: $\frac{1}{1 \sqrt{2}} \sqrt{63/2}$ Time $\frac{1}{1 \sqrt{2}} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Λ Tare: \bigcirc $\Lambda 2 \Lambda^2$ Prelimin 2 Tare: \bigcirc $\Lambda 2 \Lambda^2 \Lambda$ PreliminTare:Tare: \land $\Lambda^2 - 6 3/2 \Lambda / \Lambda^3$; \bigcirc \land PreliminPreliminssicator: $\Lambda 2 - 6 3/2 \Lambda / \Lambda^3$; \bigcirc \land Prelimin \land Λ^2 Time \mathbb{R}/\mathbb{H} %Temp. (F)Weig Λ \Re Tare: $\Lambda + 3 + 3 + 3 \Lambda^2$ Preliminssicator: $\Lambda 2 - 6 - 3/2 - \sqrt{\Lambda^3}$; \bigcirc Λ^2 \land Λ^2 Λ \Re Tare: $\Lambda + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + $	$\begin{array}{c c c c c c c c c } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c c c c c c c c c } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Date: 3/ 13/2012 Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: <u>SBI</u> Model: <u>S244</u>

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/05/11 Engineer: Florin Anghel

Run #: <u>5</u> Sample Train #: <u>B</u>

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: <u>19749</u> (Balance audit mfr. std: 500 ± 0.72 mg)

Front Filter #	3		Tare:	0.1227	Preliminary	Wt:	C	0.1258
Rear Filter #	4		Tare:	0.1233	Preliminary	Wt:	0	.1234
Seal Set #			Tare:		Preliminary Wt:			
Date/Time in dessicator:		12/	69/2	11/13:00	Preliminary	Wt:	0	.2492
Date	Time	F	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
Probe #:	13		Tare:	140,1196	Preliminary \	/Vt:	140	,1248
Date/Time in de	ssicator:	12	109/20	13:00				
Date	Time	F	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials

Date: 03/13/2612 Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client:	<u>SBI</u>	Model:	<u>S244</u>	
---------	------------	--------	-------------	--

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/12/11 Engineer: Florin Anghel Run #: 6 Sample Train #:

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

Front Filter #	5		Tare:	0,1225	Preliminary	Wt:	0	1238
Rear Filter #	6		Tare:	0.1234	Preliminary	Wt:	0.1238	
Seal Set #			Tare:		Preliminary	Wt:		
Date/Time in de	essicator:	12/	11/20	11/12:15	Preliminary	Wt:	0,	2476
Date	Time	F	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/13/11	14:40		8	68.5	0.2475		2=	TA
12/14/11	14:30		8	68	0.2474		,2= 201	TA
Probe #:	17		Tare:	139,7491	Preliminary \	Nt:	135	5753
Date/Time in de	essicator:	12	1 7	11/12:15				
Date	Time	R	/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/13/11	14:40		8	68.5	133,7501	14	005= 0066	AF
12/14/11	14:30		8	68	133,7501	10	-00 0066	-
Date:	3/13/2017	2.						

Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: SBI Model: <u>S244</u>

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: $\frac{\sqrt{12}}{11}$ Engineer: <u>Florin Anghel</u> Run #: <u>6</u> Sample Train #: <u>B</u>

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

Front Filter #	7	Tare:	0.1219	Preliminary	Nt:	0.1240
Rear Filter #	8	Tare:	0,1227	Preliminary Wt:		0.1229
Seal Set #		Tare:		Preliminary \	Nt:	
Date/Time in de	essicator:	12/11/201	1/12:15	Preliminary \	Nt: 0.	2469
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams) Initials
12/13/11	14:40	8	68.5	0,2469	0,2=	
12/14/11	14,30	8	68	0,2471	0.2=	
Probe #:	20	Tare:	139,0675	Preliminary V	vt: ۸٦	C820 _l EE
Date/Time in de	essicator:		12:15			
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams) Initials
12/13/11	14:40	8	68.5	139,0684	100-	
12/14/11	14:30	8	68	1910 801	100,006	
-1						
Date: _ [©]	3/13/2012		1			

	DILUTIO			VURNOREE			262		
Client: <u>SBI</u> N	/lodel: <u>S244</u>								
	5 <u>17524</u> Sample ID Engineer: <u>Florin A</u>			71416-001 un #:	Sample Tra	ain # [.]	A		
1	ent #: <u>SBI-206</u> Th							_	
	pment #: <u>19749</u>					_			
Front Filter #	9		Tare:	0,1232		inary	Nt:	C	3.1254
Rear Filter #	10		Tare:	0.1219	Prelim	inary \	Nt:	0	, 1222
Seal Set #			Tare:		Prelimi	inary V	Nt:		
Date/Time in de	essicator:	12	13/2	011/14:50	> Prelimi	inary \	Nt:	0	.2476
Date	Time	F	R/H %	Temp. (F)	Wei (grar		(gra	udit ams)	Initials
12/14/11	14:20		8	68	0.24	77	0,2	2.= 501	· TA
12/15/11	11:30		8	67.9	0.24	નેદ	0.2	2=	-++
Probe #:	21		Tare:	139,247=	+ Prelimi	nary \	vt:	139	3,2473
Date/Time in de	essicator:	12/	13/2	on/14: 5	2				
Date	Time	F	R/H %	Temp. (F)	Weig (gran	·		udit ams)	Initials
12/14/11	14:20		8	68	139,2		La	20-	TX
12/15/11	11:30		8	67.9	139,21		100,	= 00 C200	TA
12/16/11	10:40		7	69.5	139,2		100,	= 00 0066	AT

Date: 03/13/2012

	DILUTIO		NNEL V	N	JRKSHEET	- METHOD	5G3		
Client: <u>SBI</u> M	lodel: <u>S244</u>								
Project #: <u>G1005</u>	17524 Sample ID	#: <u>M</u> T							
Date: 1 <u>2/13/</u> 11 E	ngineer: <u>Florin A</u>	nghel	R	Run	#: <u></u> Sa	ample Train #:	<u> ľ</u>	Ś	
Balance Equipme	nt #: <u>SBI-206</u> Th	ermo/ŀ	Hygro me	etei	r Equipment #	: <u>SBI-212</u>			
Audit weight Equi	pment #: <u>19749</u>	(Balan	ce audit	mfi	r. std: 500 ± 0.	.72 mg)			
Front Filter #	44		Tare:		0,1223	Preliminary	Nt:	C	0.1255
Rear Filter #	12		Tare:		0,1236	Preliminary \	∕Vt:	0	.1240
Seal Set #			Tare:			Preliminary \	/Vt:		
Date/Time in de	essicator:	12	12/20	0AC	1/14:50	Preliminary \	Nt:	0.	2435
Date	Time	F	R/H %		Temp. (F)	Weight (grams)		udit ams)	Initials
12/14/11	14:20		8		68	0.2493	0,2	2=	-TA
12/15/11	11:30		8		67.3	0.2493	0.25	,2= 201	++
Probe #:	23		Tare:	13	36,1874	Preliminary V	vt:	136	57873
Date/Time in de	ssicator:	12/	13/2	01	1/14:50				
Date	Time	R	VH %		Temp. (F)	Weight (grams)		udit ams)	Initials
12/14/11	14:20		8		68	136,1875	100	D== 0066	
12/15/11	11:30		8		67.9	136,1887		=0 5200	AF
12/16/M	10:40	ŕ	7		63.5	136,1883		20 = 0066	X
	/ /								

Date: 03/13/2012

DULITI T 1 1 /

	DILUTIO	IN TUNNEL W	UKNONEEI		263				
Client: <u>SBI</u> N	/lodel: <u>S244</u>								
	517524 Sample ID		1416-001						
Date: <u>12-/14/</u> 11_E	Date: 12/14/ M Engineer: Florin Anghel Run #: 8 Sample Train #: A								
Balance Equipme	alance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>								
udit weight Equipment #: <u>19749</u> (Balance audit mfr. std: 500 ± 0.72 mg)									
Front Filter #	13	Tare:	0.1218	Preliminary	Wt:	C	1239		
Rear Filter #	14	Tare:	0,1230	Preliminary	/Vt:	0	.1236		
Seal Set #		Tare:		Preliminary	Nt:				
Date/Time in de	essicator:	12/14/201	11/14:30	Preliminary \	/Vt:	0	.2535		
Date	Time	R/H %	Temp. (F)	Weight (grams)	Au (gra		Initials		
12/16/11	10:40	7	69,5	0.2535	0,2	2=	AF		
12/23/M	8:30	8	68.3	0,2530		2=	$\overline{\mathbf{A}}$		
12/23/M	15:00	8	63	0,2528	0.2	10	++		
	_								
Probe #:	24	Tare:	136,0393	Preliminary V	Vt:	136	8880,		
Date/Time in de	essicator:	12/14/20	14:30						
Date	Time	R/H %	Temp. (F)	Weight (grams)	Au (gra		Initials		
12/16/11	10:40	7	69,5	136,0407	100,9		×+		
12/23/11	8:30	8	68.3	136,0404	100. C	056 066	+ A		
Date:	53/13/20	>12	<u>.</u>						

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Project #: G100517524 Sample ID #: MTL-1111071416-001							
Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>							
Date: 12/14/11 Engineer: <u>Florin Anghel</u> Run #: Sample Train #:							
Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment # : <u>SBI-212</u>							
Audit weight Equipment #: <u>19749</u> (Balance audit mfr. std: 500 ± 0.72 mg)							
Front Filter # 15 Tare: 0,1235 Preliminary Wt: 0,13	CA						
Rear Filter # 16 Tare: 0,122.8 Preliminary Wt: 0,12	29						
Seal Set # Tare: Preliminary Wt:							
Date/Time in dessicator: $\frac{12}{14}$ $\frac{30}{14}$ Preliminary Wt: 0, 25	48						
Date Time R/H % Temp. (F) Weight Audit (grams) (grams)	nitials						
12/16/11 10:40 7 69.5 0.2544 0.201 -	A						
12/23/11 8:30 8 68.3 0.2541 0.2001 =	A						
Probe #: 25 Tare: 136,8318 Preliminary Wt: 136,83	s24						
Date/Time in dessicator: 12/14/2011/14:30							
Date Time R/H % Temp. (F) Weight Audit (grams) Ir	nitials						
12/16/11 10:40 7 63.5 136,8330 100.0066 7	A						
12/23/11 8:30 8 68.3 136,8327,00,0066 =	A						
Date: 03/13/2012							
Engineer signature:							

1.

Appendix D

Calibrations

 \bigcirc

No du rapport d'étalonnag CA0003-088-032111 **Mettler Toledo** Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association of Laboratory Accreditation (A2LA) CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client

Société :	SBI Fabricant de poêles International	inc.	
Adresse :	250, rue Copenhague		
Ville :	St-Augustin	État/Province :	Québec
Code postal :	G3A 2V1	Astea Customer ID:	C037589001001
Instrument			
Constructeur :	Rice Lake	Modèle de terminal :	IND560
Modèle :	Roughdeck	No de série du termin	00927396KL
No de série :	B00927396KL	No. Série Impr.	N/A
Capacité :	625 kg	Service/Pièce :	Lab
Résolution :	0.02 kg	Nbre de Divisions	31250
Classe :	III	Procédure utilisée :	Canadien
Numéro/ID d'actif du clie	SBI-013		
Procédure:	Le présent certificat est émis conformé l'A2LA, en vertu de la norme ISO/IEC laboratoire et la traçabilité des normes	17025. A2LA a évalué la e	
Date de calibrage :	21-mars-2011	Le prochain Cal Date	31-mars-2012
Signataire autorisé (A2LA) :	Dany Careau	Signature:	ELECTRONIC SIGNATURE
Signature du client :			

Étalons de travail

açabilité	Les poids de test utilisés se réfèrent au National Institute of Standards and Technology,							
Jeu de poids no :	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étalonnage 🗄	Date proch. étalonnage				
42268	M10-0278	M1	5-août-2010	5-août-2011				
MTP1	MT0015626	F1	17-sept2010	17-sept2011				
Kit S	1356103	M1	5-oct2010	5-oct2011				

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire ém

No du rapport d'étalonnag CA0003-088-032111

70 °F

METTLER TOLEDO

Résultats de mesure

La température :

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

·		Avant Réglage	Après Réglage
Les poids Appliqués	Position	Valeur lue	Valeur lue
1: 125 kg	Position 1	125.02 kg	124.98 kg
2: 125 kg	Position 2	125.16 kg	125.02 kg
3: 125 kg	Position 3	125.16 kg	125.02 kg
4: 125 kg	Position 4	125.26 kg	125.00 kg
Erreur maximum :		0.26 kg	0.04 kg
Max Erreur Admissible	8	0.10 kg	0.1 kg

Linéarité

			Avant régla	ge		
	Les poids Appliqués	Valeur lue	Erreur		Erreur admissible	Dans la Tolérance
Zero 1	0,00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI
2	20.00 kg	20.02 kg	0.02 kg	1 d	2 d	oui
3	40.00 kg	40.04 kg	0.04 kg	2 d	2 d	OUI
4	100.00 kg	100.12 kg	0.12 kg	6 d	5 d	NON
Max 5	200.00 kg	200.24 kg	0,24 kg	12 d 👘	5 d	NON
6	100.00 kg	100.12 kg	0.12 kg	6 d	5 d	NON
7	40.00 kg	40.04 kg	0.04 kg	2 d	2 d	OUI
8	20.00 kg	20.02 kg	0.02 kg	1 d	2 d	OUI
Zero 9	0.00 kg	0.00 kg	0,00 kg	0 d	1 d	OUI

Méthode de substitution utilisée

No du rapport d'étalonnag CA0003-088-032111

METTLER TOLEDO

	Après réglage						
	Les poids Appliqués	Valeur lue Erreur		eur	Erreur admissible	Dans la Tolérance	
Zero 1	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	oui	
2	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI	
3	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI	
4	100.00 kg	100.02 kg	0.02 kg	1 d	5 d	oui	
Max 5	200.00 kg	200.02 kg	0.02 kg	1 d	5 d	OUI	
6	100.00 kg	100.02 kg	0,02 kg	1 d	5 d	OUI	
7	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI	
8	20.00 kg	20,00 kg	0.00 kg	0 d	2 d	oui	
Zero 9	0.00 kg	0.00 kg	0,00 kg	0 d	1 d	OUI	

Méthode de substitution utilisée

Un réglage de la balance a été requis

Si NON, les résultats relatifs à l'état du système avant la prestation de service correspondent à l'état de

🗹 oui

Répétabilité

Poid	s appliqués : 100.00 kg	l	
	Chargé	Vide	Différence
1	100.00 kg	0.00 kg	100 kg
2	100.02 kg	0.00 kg	100.02 kg
3	100.02 kg	0.00 kg	100,02 kg
	Erreur maximale :	0.02 kg	1.0 d
	Tolérance :	0,10 kg	5 d

NON

Incertitude

Mesure de l'incertitude = 0.022 kg

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

Aucune.

No du rapport d'étalonnag CA0003-086-032111 **Mettler Toledo** Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association of Laboratory Accreditation (A2LA) CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client

Société :	SBI Fabricant de poêles International	inc.	
Adresse :	250, rue Copenhague		
Ville :	St-Augustin	État/Province :	Québec
Code postal :	G3A 2V1	Astea Customer ID:	C037589001001
Instrument			
Constructeur :	Weightronix	Modèle de terminal :	IND560
Modèle :	DSL-6060	No de série du termin	00927386KL
No de série :	B00927386KL	No. Série Impr.	N/A
Capacité :	500 kg	Service/Pièce :	LAB
Résolution :	0.02 kg	Nbre de Divisions	25000
Classe :	III	Procédure utilisée :	Canadien
Numéro/ID d'actif du clie	SBI-014		
Procédure:	Le présent certificat est émis conforme l'A2LA, en vertu de la norme ISO/IEC laboratoire et la traçabilité des normes	17025. A2LA a évalué la	
Date de calibrage :	21-mars-2011	Le prochain Cal Date	31-mars-2012
Signataire autorisé (A2LA) :	Dany Careau	Signature:	ELECTRONIC SIGNATURE
Signature du client :			

Étalons de travail

Traçabilité	Les poids de test utilisés se réfèrent au National Institute of Standards and Technology.						
Jeu de poids no :	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étalonnage :	Date proch. étalonnage			
42268	M10-0278	M1	5-août-2010	5-août-2011			
MTP1	MT0015626	F1	17-sept2010	17-sept-2011			
Kit S	1356103	M1	5-oct2010	5-oct2011			

Version Logiciel : 4.3.0.7

No du rapport d'étalonnag CA0003-086-032111

METTLER TOLEDO

Résultats de mesure

La température :

70 °F

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

		Avant Réglage	Après Réglage
Les poids Appliqués	Position	Valeur lue	Valeur lue
1: 125.00 kg	Position 1	125.00 kg	125.00 kg
2: 125,00 kg	Position 2	125.04 kg	125.00 kg
3: 125.00 kg	Position 3	125.00 kg	125.00 kg
4: 125.00 kg	Position 4	124.96 kg	125.00 kg
Erreur maximum :		0.08 kg	0.00 kg
Max Erreur Admissible :		0.10 kg	0.1 kg

Linéarité

			Avant régla			
	Les poids Appliqués	Valeur lue	Erre	eur	Erreur admissible	Dans la Tolérance
Zero 1	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI
2	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI
3	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI
4	100.00 kg	100.02 kg	0.02 kg	1 d	5 d	oui
Max 5	200.00 kg	200.04 kg	0.04 kg	2 d	5 d	oui
6	100.00 kg	100.02 kg	0.02 kg	1 d	5 d	OUI
7	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI
8	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI
Zero 9	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI

Méthode de substitution utilisée

No du rapport d'étalonnag CA0003-086-032111

METTLER TOLEDO

	Après réglage						
Zero 1	- Les poids Appliqués	Valeur lue Erreur		aur	Erreur admissible	Dans la Tolérance	
	0.00 kg	0.00 kg	0.00 kg 0 d		1 d	OUI	
2	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI	
3	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI	
4	100.00 kg	100.00 kg	0.00 kg	0 d	5 d	OUI	
Max 5	200.00 kg	200.00 kg	0,00 kg	0 d	5 d	OUI	
6	100.00 kg	100.00 kg	0.00 kg	0 d	5 d	OUI	
7	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI	
8	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI	
Zero 9	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI	

Méthode de substitution utilisée

Un réglage de la balance a été requis

Si NON, les résultats relatifs à l'état du système avant la prestation de service correspondent à l'état de

🗹 oui

Répétabilité

Poid	s appliqués : 100.00 kg		
	Chargé	Vide	Différence
1	100.00 kg	0.00 kg	100 kg
2	100.02 kg	0.00 kg	100.02 kg
3	100.00 kg	0.00 kg	100 kg
	Erreur maximale :	0.02 kg	1.0 d
	Tolérance :	0.10 kg	5 d

Incertitude

0.022 kg Mesure de l'incertitude =

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

Aucune.

Version Logiciel : 4.3.0.7 No du rapport d'étalonnag CA0003-093-032111 Mettler Toledo Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association of Laboratory Accreditation (A2LA) CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client

Société :	SBI Fabricant de poêles International inc.						
Adresse :	250, rue Copenhague						
Ville :	St-Augustin	État/Province :	Québec				
Code postal :	G3A 2V1	Astea Customer ID:	C037589001001				
nstrument							
Constructeur :	Sartorius	Modèle de terminal :	N/A				
Modèle :	TE214S	No de série du termin	N/A				
No de série :	25851066	No. Série Impr.	N/A				
Capacité :	210 g	Service/Pièce :	Lab				
Résolution :	0,0001 g	Nbre de Divisions	2100000				
Classe :	1	Procédure utilisée :	Canadien				
Numéro/ID d'actif du clie	SBI-206						
Procédure:	l'A2LA, en vertu de la norme	conformément aux conditions de c ISO/IEC 17025. A2LA a évalué la s normes nationales reconnues.					
Date de calibrage :	21-mars-2011	Le prochain Cal Date	31-mars-2012				
Signataire autorisé (A2LA) :	Dany Careau	Signature:	ELECTRONIC SIGNATURE				

Etalons de travall

Traçabilité	Les poids de test utilisés se réfèrent au National Institute of Standards and Technology,				
Jeu de poids no 💈	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étalonnage	Date proch. étalonnage	
MTP1	MT0015626	F1	17-sept2010	17-sept2011	

No du rapport d'étalonnag CA0003-093-032111

70 °F

METTLER TOLEDO

Résultats de mesure

La température :

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage,

Test de variation

		Avant Réglage	Après Réglage
Les poids Appliqués	Position	Valeur lue	Valeur lue
1: 50 g	Position 1	49.9999 g	50.0000 g
2: 50 g	Position 2	49.9999 g	50.0000 g
3: 50 g	Position 3	49.9999 g	50.0000 g
4: 50 g	Position 4	49,9999 g	50.0000 g
Erreur maximum :		0.0001 g	0.0000 g
Max Erreur Admissible :		0.0003 g	0.0003 g

METTLER TOLEDO

Linéarité

	Avant réglage						
	Les poids Appliqués	Valeur lue	Erre	əur	Erreur admissible	Dans la Tolérance	
Zero 1	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	oui	
2	0.0100 g	0.0100 g	0.0000 g	D d	1 d	OUI	
3	0.1000 g	0.1000 g	0.0000 g	b 0	1 d	OUI	
4	1.0000 g	1.0000 g	0.0000 g	0 d	1 d	OUI	
5	10.0000 g	9.9999 g	-0.0001 g	1 d	2 d	oui	
6	20.0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI	
7	50.0000 g	49.9998 g	-0.0002 g	2 d	3 d	OUI	
8	100.0000 g	99.9995 g	-0.0005 g	5 d	3 d	NON	
9	150.0000 g	149.9989 g	-0.0011 g	11 d	3 d	NON	
Max 10	200,0000 g	199.9982 g	-0.0018 g	18 d	3 d	NON	
11	150.0000 g	149.9989 g	-0.0011 g	11 d	3 d	NON	
12	100.0000 g	99.9995 g	-0.0005 g	5 d	3 d	NON	
13	50.0000 g	49.9998 g	-0.0002 g	2 d	3 d	oui	
14	20.0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI	
15	10.0000 g	9.9999 g	-0.0001 g	1 d	2 d	OUI	
16	1,0000 g	1.0000 g	0.0000 g	0 d	1 d	OUI	
17	0.1000 g	0.1000 g	0.0000 g	0 d	5 1 d	OUI	
18	0.0100 g	0.0100 g	0.0000 g	0 d	1 d	001	
Zero 19	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI	

Méthode de substitution utilisée

Version Logiciel : 4.3.0.7 No du rapport d'étalonnag CA0003-093-032111

÷,

METTLER TOLEDO

			Après régla	ge		
	Les poids Appliqués	Valeur lue	Erre	əur	Erreur admissible	Dans la Tolérance
Zero 1	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI
2	0.0100 g	0.0100 g	0.0000 g	0 d	1 d	oui
3	0.1000 g	0.1000 g	0.0000 g	0 d	1 d	oui
4	1.0000 g	1.0000 g	0.0000 g	0 d	1 d	oui
5	10.0000 g	10.0000 g	0.0000 g	0 d	2 d	OUI
6	20.0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI
7	50.0000 g	50.0000 g	0.0000 g	0 d	3 d	OUI
8	100.0000 g	100.0000 g	0.0000 g	0 d	3 d	OUI
9	150,0000 g	150.0001 g	0.0001 g	1 d	3 d	OUI
Max 10	200.0000 g	200.0002 g	0.0002 g	2 d	3 d	OUI
11	150.0000 g	150.0001 g	0.0001 g	1 d	3 d	oui
12	100.0000 g	100.0000 g	0.0000 g	0 d	3 d	OUI
13	50,0000 g	50.0000 g	0,0000 g	0 d	3 d	OUI
14	20.0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI
15	10.0000 g	10.0000 g	0.0000 g	0 d	2 d	OUI
16	1.0000 g	1.0000 g	0.0000 g	0 d	1 d	oui
17	0.1000 g	0.1000 g	0.0000 g	0 d	1 d	oui
18	0.0100 g	0.0100 g	0.0000 g	0 d	1 d	OUI
Zero 19	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI

Méthode de substitution utilisée

Un réglage de la balance a été requis

Si NON, les résultats relatifs à l'état du système avant la prestation de service correspondent à l'état de

🗹 oui

No du rapport d'étalonnag CA0003-093-032111

METTLER TOLEDO

Répétabilité

Poids appliqués : 20.0000 g

		• · ·	4 1747
	Chargé	Vide	Différence
1	20.0001 g	0.0000 g	20.0001 g
2	20.0002 g	0.0000 g	20.0002 g
3	20.0001 g	0.0000 g	20.0001 g
	Erreur maximale :	0.0002 g	2.0 d
	Tolérance :	0.0002 g	2 d

0,00020 g

Incertitude

Mesure de l'incertitude =

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

Aucune.

Version Logiciel :

 4850, bd Gouin est
 Tél. (514) 328-2550

 Montréal-Nord, Qc
 1 800 522-1226

 Canada
 H1G 1A2

 www.chevrierinstruments.com
 info@chevrierinstruments.com

 Instruments da assure et de régulation pour las precédés industriels àt laboratoire d'étaionsage

Certificat d'Étalonnage

Numéro du certificat: CE6926

Étalonnage effectué par :

Commentaire :

LA CIE J. CHEVRIER INSTRUMENTS INC. 4850 GOUIN EST MONTREAL, QC, CANADA H1G 1A2

3424	
SBI INC.	
250, RUE DE COPENHA	AGUE
ST-AUGUSTIN-DE-DES	MAURES, QC G3A 2H3

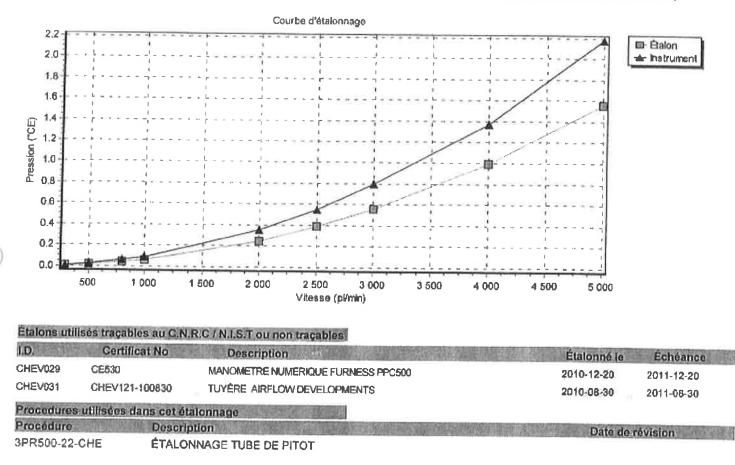
Informations su	r l'instrument
Description:	TUBE DE PITOT EN S
Manufacturier:	DWYER
Modèle:	160S-24
Numéro de série	•
I.D.:	SBI-104
État de l'instrum	ent: BON
Approuvé pár	

Date d'étalonn	lage : 2011-06-17
Échéance :	2012-08-17
Résultat de l'é	talonnage: Reçu Conforme
Conditions an	biantes: 21.7 °C / 42.5%hr
Technicien :	Benjamin Ricard SS

C.Q. B.R.

ALC:	65	
	-	Ĩ
		l

Points d'étalonnage			
Valeur Appliquée pi/min	Pitot Étalon "Ce	Pitot sous test "Ce	Factour
297 pi/min	0.0055 poH2O	0.0058 poH2O	0.97
502 pi/min	0.0157 poH2O	0.0205 poH2O	0.88
799 pi/min	0.0398 poH2O	0.0593 poH2O	0.82
999 pi/min	0.0622 poH2O	0.0901 poH2O	0.83
1998 pì/min	0.2488 poH2O	0.3521 poH2O	0.84
2500 pi/min	0.3896 poH2O	0.5515 poH2O	0.84
2999 pi/min	0.5605 poH2O	0.7945 poH2O	0.84
3998 pi/min	0.9965 poH2O	1.3695 poH2O	0.85
5000 pi/min	1.5583 poH2O	2.1798 poH2O	0.85


Verdict * = Point non conforme

Page 1 of 2

Enregistré par le BNQ selon ISO 9001:2008

Certificat d'Étalonnage

Numéro du certificat: CE6926

Reproduction interdite sans consentement écrit

Verdict * = Point non conforme

Enregistré par le BNC selon ISO 9001:2008

Page 2 of 2

Ulrich Métrologie inc. Ulrich Metrology inc. 9912, Côle-de-Liesse Montréal (Québec) H8T 1A1 Tol. (514) 631-6653 Fax (514) 631-6122 Info@ulrich.ca www.ulrich.ca

CALIBRATION CERTIFICATE

Certificate no.: Identification: Description: Size; Manufacturer: Model no.: Serial no.: 280384 SBI-096 CALIBRATOR, OMEGA CL23A TC K/J/T OMEGA CL23A T-256137

Calibration date	August 25, 2011
Certificate issued	August 25, 2011
Interval:	12 months
Due date:	August 25, 2012
Procedure no.:	MET/CAL
Environment:	CLAS Type 2 Laboratory
Temperature:	23 ± 2°C
Humidity:	35 - 55% RH
Metrologist:	NRS

Property of:

SBI 250 RUE DE COPENHAGUE ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Approved by:

avid Ilorens

David Llorens, VP Quality

This calibration verificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and QM-88. Measurement verificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and QM-88. Measurement verificate is issued are traceable to earlier the National Research Coancil Canada (NRC), the National Institute of Standards and Technology (NIST), a national luboratory of another counter signatory to the CIPM Midnal Recognition Arrangement (MRA), or a calibration luboratory accredited by an accrediting hody with which Canada has an equivalence agreement.

CALIBRATION STANDARDS

See notes below.

MEASUREMENT UNCERTAINTY

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

CALIBRATION DATA

See next page for measurement results.

Notes:

9V battery replaced.

Ulrich Métrologie Inc. Ulrich Metrology inc. 9912. Côte-de-Liesse Motnréal (Québec) H6T (Al Tél. (514) 831-8853 Fax (514) 831-8122 info@ulrich.ca www.ulrich.ca

CALIBRATION DATA

Identification: SBI-096 Description: CALIBRATOR THER Serial no.: T-256137 Procedure: Omega CL23A: 5520 CALIBRATION STANDARDS Identification Description 7870009 CALIBRATOR MEASUREMENT RESULTS (Per MET/CAI PARAMETER Temperature measurements are perfe electrical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -60.0degF -200.0degF 1240.0degF 1260.0degF 1260.0degF J Type Thermocouple -200.0degF -40.0degF -200.0degF -40.0degF -200.0degF -200.0degF -200.0degF -40.0degF -200.0degF -40.0degF -200.0degF -40.0degF -20				sult: PA		
Serial no.: T-256137 Procedure: Omega CL23A: 5520 CALIBRATION STANDARDS Identification Description 7870009 CALIBRATOR MEASUREMENT RESULTS (Per MET/CAL PARAMETER Temperature measurements are perfected simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF			Co	ondition: FO	UND-LEFT	
Procedure: Omega CL23A: 5520 CALIBRATION STANDARDS Identification Description 7870009 CALIBRATOR MEASUREMENT RESULTS (Per MET/CAL PARAMETER Temperature measurements are perfeatectrical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation CKBRMOMETER CALIBRATION CAUGEF 40.0degF 22.0degF	MOMETER					
CALIBRATION STANDARDS Identification Description 7870009 CALIBRATOR MEASUREMENT RESULTS (Per MET/CAI PARAMETER Temperature measurements are perfeaterical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION CALIBRATION COLOdegF 60.0degF 2200.0degF 240.0degF 250.0degF						
Identification Description 7870009 CALIBRATOR MEASUREMENT RESULTS (Per MET/CAI PARAMETER Temperature measurements are perfeaterrical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -40.0degF -200.0degF -200.0d	IA-M					
7870009 CALIBRATOR MEASUREMENT RESULTS (Per MET/CAI PARAMETER Temperature measurements are perfeater in a lactrical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -40.0degF -200.						
MEASUREMENT RESULTS (Per MET/CA PARAMETER Temperature measurements are perfectorical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -40.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -200.0degF -40.0degF -200.0degF -40.0degF -20		Manufacturer		Model no.	Cal. Date	Due Date
PARAMETER Temperature measurements are perfected electrical simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -60.0degF -40.0degF 1240.0degF 1260.0degF 1260.0degF 2500.0degF -60.0degF -40.0degF 1260.0degF -200.0degF -40.0degF -200.0degF -40.0degF -200.0d		FLUKE		5520A	2011/05/06	2012/05/06
Temperature measurements are perfected simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -60.0degF -40.0degF 1240.0degF 1260.0degF 1260.0degF 2500.0degF 40.0degF 2500.0degF 40.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1260.0	L)					
Temperature measurements are perfected simulation. DISPLAY CALIBRATION Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -40.0degF -200.0degF -	TRUE	TEST	ACCEPTANCE		PASS/	
<pre>electrical simulation. DISPLAY CALIBRATION Did all segments of the display i Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -60.0degF -40.0degF 1240.0degF 1260.0degF 1260.0degF 2500.0degF -60.0degF -40.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1260.0degF 1260.0degF 1400.0degF 1400.0degF -7 Type Thermocouple 200.0degF 60.0degF 60.0degF 40.0degF 40.0degF 32.0degF 40.0degF 40.0degF 40.0degF 40.0degF 40.0degF 40.0degF 40.0degF 40.0degF 40.0degF 40.0degF</pre>	VALUE	RESULT	LOW	HIGH	FAIL	TUR
Did all segments of the display in Result of Operator Evaluation THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -40.0degF -40.0degF 1240.0degF 1260.0degF 1260.0degF 2500.0degF -40.0degF -40.0degF -40.0degF -40.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1260.0degF 1400.0degF -40.0d	formed by					
Result of Operator Evaluation THBRMOMETER CALIBRATION (Type Thermocouple 200.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 2500.0degF 2500.0degF 40.0degF 40.0degF 32.0degF 1240.0degF 1240.0degF 1240.0degF 1240.0degF 1260.0degF 1260.0degF 1260.0degF 1260.0degF 1260.0degF 1260.0degF 1260.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1200.0degF 1200.0degF 1200.0degF 12.0degF 12.0degF 12.0degF 12.0degF 12.0degF 12.0degF 12.0degF						
THBRMOMETER CALIBRATION K Type Thermocouple -200.0degF -60.0degF -40.0degF 32.0degF 1240.0degF 1260.0degF 2500.0degF -2500.0degF -40.0degF -40.0degF -40.0degF -200.0degF -2	lluminate?					
C Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 2500.0degF C Type Thermocouple 200.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1260.0degF 1400.0degF 1400.0degF 40.0degF 1400.0degF 1400.0degF 32.0degF 1400.0degF 1400.0degF 32.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 140.0degF					PASS	
200.0degF 60.0degF 40.0degF 32.0degF 32.0degF 1240.0degF 2500.0degF 2500.0degF 40.0degF 40.0degF 32.0degF 1240.0degF 1240.0degF 1260.0degF 1260.0degF 1260.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1400.0degF 1260.0degF 1400.0degF 1200.0degF 1200.0degF 1200.0degF 1200.0degF 1200.0degF 1200.0degF 1200.0degF 1200.0degF 12.0degF 12.0degF 12.0degF						
-60.0degF -40.0degF -40.0degF 32.0degF 1240.0degF 1260.0degF 2500.0degF -00.0degF -40.0degF -40.0degF 1240.0degF 1240.0degF 1260.0degF -40.0d						
<pre>-40.0degF 32.0degF 32.0degF 1240.0degF 1260.0degF 2500.0degF 2500.0degF -00.0degF -00.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF ' Type Thermocouple 200.0degF 60.0degF 60.0degF 40.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF</pre>		-201.0	-201.0	-199.0	PASS	1.7
32.0degF 1240.0degF 1260.0degF 2500.0degF 2500.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 1240.0degF 1240.0degF 1260.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF 200.0degF		- 60.4	-61.0	-59.0	PASS	3.1
1240.0degF 1260.0degF 2500.0degF V Type Thermacouple 200.0degF 60.0degF 40.0degF 1240.0degF 1240.0degF 1260.0degF 1400.0degF Type Thermacouple 200.0degF 60.0degF 40.0degF 32.0degF 32.0degF 32.0degF 32.0degF		-40,5	+40.5	-39.5	PASS	1.5
1260.0degF 2500.0degF 200.0degF 200.0degF 40.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF 40.0degF 40.0degF 40.0degF 50.0degF 40.0degF 40.0degF 40.0degF		31.5	31.5	32.5	PASS	1.7
2500.0degF J Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		1239.5	1239.5	1240.5	PASS	1.1
Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		1259×5	1259.5	1260.5	PASS	1.1
200.0degF 60.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		2499.3	2499.0	2501.0	PASS	1.4
60.0degF 40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF ' Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF						
40.0degF 32.0degF 1240.0degF 1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		-200,7	-201.0	-199.0	PASS	2.1
32.0degF 1240.0degF 1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		-60.4	-61.0	-59.0	PASS	3.5
1240.0degF 1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		40.5	-40.5	-39,5	PASS	1.7
1260.0degF 1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		31.6	31.5	32.5	PASS	2,0
1400.0degF Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		1239.6	1239.5	1240.5	PASS	1,6
Type Thermocouple Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		1259.7	1259.5	1260.5	PASS	1.6
Type Thermocouple 200.0degF 60.0degF 40.0degF 32.0degF		1399.6	1399.4	1400.6	PASS	1.8
200.0degF 60.0degF 40.0degF 32.0degF						
60.0degF 40.0degF 32.0degF						
40.0degF 32.0degF		200.2	-201.0	-199.0	PASS	2.3
32.0degF		-60.0	-61.0	-59.0	PASS	2.3
-		-4D.1	-40.5	-39.5	PASS	1.2
		31.9	31.5	32.5	PASS	1.7
750.0degF		749.8	749.5	750.5	PASS	2.0
ALIBRATOR CALIBRATION						

.

ULRIGH	Ulrich Métrologie inc. Ulrich Metrology inc. 9912, Côte-de-Liesse Motnréal (Québec) H8T IAI	Tél. (514) 631- Fax (514) 631- info@ulrich.ca www.ulrich.	6122				
		TRUM	TEST	ACCEPTANC	E LIMITS	PASS/	
PARAMETER		VALUE	RESULT	LOW	HIGH	FAIL	TUR
K Type The	ermocouple						
-200.0degF	?		-199.4	-201.0	-199.0	PASS	1.7
-60.0degF			-59.8	-61.0	-59.0	PASS	3.1
-40.0degF			-39.8	-40.5	-39.5	PASS	1.5
32,0degF			32,1	31.5	32.5	PASS	1.7
1240.0deg	F		1239.5	1239,5	1240.5	PASS	1.1
1260.0deg	F		1259.5	1259.5	1260.5	PASS	1.1
2500.0deg	F		2499.0	2499.0	2501.0	PASS	1.4
J Type The	rmocouple						
-200.0degF	,		-200.0	-201.0	-199.0	PASS	2.1
-60.0degF			-60.2	-61,0	-59.0	PASS	3,5
40.0degP			-40.0	-40.5	-39.5	PASS	1.7
32.0degF			31.8	31.5	32.5	PASS	2.0
1240.0deg	F		1239.5	1239.5	1,240,5	PASS	1.6
1260.0deg	F		1259.5	1259.5	1260.5	PASS	1.6
1400.0deg	F		1399.5	1399.4	1400.6	PASS	1.8
Type The	Imocouple						
200.0degF	-		-199.2	-201.0	-199.0	PASS	2.3
60.0degF			59.9	-61.0	-59,0	PASS	2.3
40.0degF			-39.7	-40.5	-39.5	PASS	1.2
32.0degF			32.1	31.5	32.5	PASS	1.7
750.0degF			749.6	749.5	750,5	PASS	2.0

End of Test Data

()

TX-
12/1/2010
Date:

Temperature: R.H.: Equipment: SBI-134 (T1) Accuracy: 0.2 Reference: SBI-096

% 0.57 0.57 0.57 % % 0.57 A.D. 0.01 0.29 Ave A.D. 69.6 69.6 69.6 Reading Standard 70.0 70.0 70.0 S.D. R.M.U. 0.M.U

S.D.	0.00	%	
R.M.U.	0.02	%	
o.m.u	0.16	%	
	Ave A.D.	0.08	%
Standard	Reading	A.D.	
1000.0	999.2	0.08	
1000.0	2,999.2	0.08	
1000.0	2*666	0.08	

Technician: Vincent Pelletier

72 F 25%

S.D.	0.01	%	
R.M.U.	0.10	%	
0.M.U	1.02	%	
	Ave A.D.	0.50	%
Standard	Reading	A.D.	
200.0	199.2	0.40	
200.0	199.2	0.40	
200.0	198.6	0.70	

0.00 0.01 0.13 Ave A.D. Reading 1399.0 1399.2 1399.2	%	%	%	0.06 %	A.D.	0.07	0.06	0.06
	0.00	0.01	0.13	Ave A.D.	Reading	1399.0	1399.2	1399.2

S.D.	0.00	%	
R.M.U.	0.03	%	
0.M.U	0:30	%	
	Ave A.D.	0.14	%
Standard	Reading	A.D.	
600.0	599.2	0.13	
600.0	299.0	0.17	
600.0	599.2	0.13	

Hangel	Température:	R.H.:
12/1/2011	5BI-134 (T2)	0.2

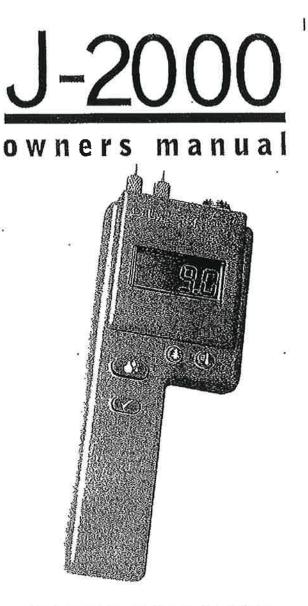
Date:

0

Equipment: SBI-134 (T2) Accuracy: 0.2 Reference: SBI-096

72 F 25%

S.D.	0.01	%	
R.M.U.	0.29	%	
0.M.U	0.95	%	
	Ave A.D.	0.38	%
Standard	Reading	A.D.	
70.0	70.2	0.29	
70.0	70.2	0.29	
70.0	70.4	0.57	


S.D.	0.00	%	
R.M.U.	0.02	%	
0.M.U	0.04	%	
	Ave A.D.	0.01	%
Standard	Reading	A.D.	
1000.0	8.666	0.02	
1000.0	1000.0	0.00	
1000.0	1000.0	0.00	

Technician: Vincent Pelletier

	<u> </u>	-		–				1
			%					
%	%	%	0.13	A.D.	0.10	0.20	0.10	
0.00	0.10	0.33	Ave A.D.	Reading	200.2	200.4	200.2	
S.D.	R.M.U.	0.M.U		Standard	200.0	200.0	200.0	

S.D.	0.00	%	
R.M.U.	0.01	%	
0.M.U	0.05	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1400.0	1399.6	0.03	
1400.0	1399.6	0.03	
1400.0	1400.0	0.00	

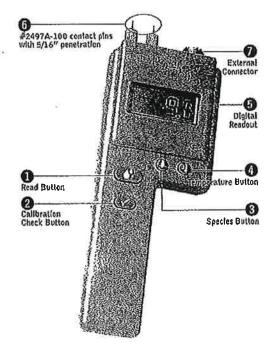
S.D.	0.00	%	
R.M.U.	0.03	%	
0.M.U	0.08	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
600.0	600.0	0.00	
600.0	599.6	0.07	
600.0	600.0	0.00	

)

Ę

 \bigcirc

TABLE OF CONTENTS


- 2 J-2000 Features
- 3 Before You Begin
- 3 Check Calibration
- 4 Set Species

l

- 5 Species Code Chart
- 6 Set Temperature
- 7 Set Pin Calibration
- 7 Taking a Reading
- 8 Information About Your Readings
- 8 To Check Accumulated Readings
- 8 To Reset Meter
- 9 Pin Talk
- 9 Care of Your Meter
- 10 Service For Your Meter
- 11 Warranty

DELMHORST J-2000

1

J-2000 FEATURES

- Resistance technology recognized worldwide as the most accurate method for measuring moisture
- ▶ 6% to 40% moisture range
- ► Digital readout
- Averages up to 100 accumulated readings
- Built-in correction for 48 different species
- Built-in temperature compensation both Fahrenheit and Celsius
- Proven microcontroller circuit for increased reliability and accuracy
- Easy one-hand operation
- Includes (1) 9-Volt Battery
- Includes sturdy carrying case
- ► One-year warranty
- > Over fifty years of proven quality, accuracy and service
- 2

BEFORE YOU BEGIN

Button Functions

- READ BUTTON Reads the Percent Molsture Content value (%MC), corrected for temperature and species.
- CALIBRATION CHECK BUTTON Checks meter calibration. It also displays the average of up to 100 accumulated readings; displays the maximum stored reading; erases the readings.
- SPECIES BUTTON Sets the species code for the wood you are using. Species are numbered from 1 to 48 and are listed on the Species Code Chart. This button also acts as a scroll key, depending on the function.
- TEMPERATURE BUTTON Sets the wood temperature and changes the temperature mode (Fahrenheit or Celsius). This button also acts as a scroll key, depending on the function.

CHECK CALIBRATION

Press the calibration check button 0 and read button 1 simultaneously. Meter is in calibration if it displays 12% (+ or - .2).

If you check the calibration and the meter does not display 12% It is likely an indication of a low battery. If this occurs, change the battery immediately. Continued use with a low battery may cause the meter to go out of calibration. If you have a fresh battery and the instrument still does not indicate a proper calibration, return it to DELMHORST for service. See Service for your Moter section.

When the battery is removed and then reconnected, the meter displays its software version for one second and then turns itself off. After replacing the battery, you must reset the meter as described in Resetting the Meter section.

SET SPECIES

4

The J-2000 defaults to Species Code #1 - Douglas Fir - the USDA standard and basis for all calibrations. Because the electrical characteristics of different species vary, all species read differently at the same moisture content. For this reason you need to adjust for species. If you are working with a species other than Douglas Fir, set the species code using the species button (3), and the meter will make the necessary corrections.

- ► To change species press the species button ③. The meter will display the current species code for one second.
- To scroll forward through the species list hold the species button (3) while the current species code is displayed and scroll to the species number desired.
- To scroll backward through the species list, press and release the species button (3). Within one second, press and hold the temperature button (4). Continue to hold the temperature button (4) and the species number will decrease.
- When scrolling in either direction, release the button to stop at your desired species.

The J-2000 can be used to test more than just wood. It will also give a relative reading on plywood, OSB, particleboard and MDF or can be fitted with a 26-ES slide hammer for specific applications. Call Delmhorst at 1-877-DELMHORST or e-mail <u>info@delmhorst.com</u> for information on how to interpret the readings for other materials.

Species Code Chart

÷

1

I

,)

CODE	SPECIES	CODE	/ SPECIES
1	Fir, Douglas	25	Magnolla
2	Pine, Southern	26	Mahogany, African (also Khaya)
3	SPF '	27	Mahogany, Honduras
4	Alder	28	Mahogany, Philippine
5	Aplitong	29	Maple, Hard/Soft
6	Aspen	30	Meranil, Dark Red
7	Ash, White	31	Oak, Red
8	Basswood	32	Oak, White
9	Birch	33	Pecan
10	Cedar, Eastern Red	34	Pine, Longleaf
11	Cedar, Incense	35	Pine, Ponderosa
12	Cherry	36	Pine, Shortleaf
13	Cottonwood	37	Pine, Sugar
14	Cypress	38	Pine, White
15	Elm, American	39	Poplar, Yeilow
16	Flr, Red	40	Ramin
17	Fir, White	41	Radiata Pine
18	Gum, Black	42	Redwood
19	Gum, Red	43	Spruce, Silka
20	Hemlock, Western	44	SPF, COFI*
21	Hackberry	45	Teak
22	Hickory	46	Virola
23	Keruing	47	Walnut, Black
24	Larch	48	Western Hemlock - COFI*

*Species and temperature correction data for both Western Hemlock-COFI (code #48) and SPF-COFI (code #44) were developed by COFI. When comparing readings between the model RDM-2/COFI or the RDM-2S/COFI, used with type 26-E electrode with insulated pins, and the J-2000, be sure both meters are set to 2-pin electrode (insulated pins).

5

SET TEMPERATURE

The J-2000 defaults to a temperature of 70°F. As wood temperature increases, its electrical resistance decreases and indicated moisture content rises. Lower wood temperatures result in lower indicated moisture content. A correction is necessary if the wood temperature is outside the range of 50°F (10°C) to 90°F (32°C). Set the temperature accordingly and the meter will make the correction.

- To change temperature press and release the temperature button . The meter will display the current temperature for one second.
- To scroll forward through the temperature settings, press and hold the temperature button @ while the current temperature is displayed.
- To scroll backward press and release the temperature button . Within one second, press and hold the species button . Continue to hold the species button . and the temperature will decrease.
- When scrolling in either direction, release the button to stop at the desired temperature.

Set Temperature Mode

- ► To change from Fahrenheit to Celsius mode or Celsius to Fahrenheit mode press the temperature button .
- Press the calibration check button 2 within one second and release when you are in the mode needed.
- The meter will display the current temperature setting in the new mode and will wait one more second until shutting off so that you may change the temperature value as described above.

If the meter is in Fahrenheit mode, the letter "F" will display in the left-hand corner. If it is in Celsius mode, no letter will appear in the display.

In the Fahrenheit mode, the temperature will change in increments of 5°F. In Celsius, the temperature will change in increments of either 2°C or 3°C depending on its conversion from Fahrenheit.

In the Fahrenheit mode, the temperature value will display in whole numbers. In the Celsius mode, positive values will display in whole numbers; negative values will display with a decimal point and a "-" sign in the left-hand corner. (i.e.: -17.0)

SET PIN CALIBRATION

The basic factory calibration of the J-2000 is for use with uninsulated pins – either the integral pins 0 or with an optional external electrode, such as the #4-E. The difference in readings between insulated and uninsulated pins is small below 10% moisture content. The difference increases as moisture content increases above 10%. When using an electrode with insulated pins, such as the 26-ES, you can change the calibration to compensate for this difference.

- ► To change the pin setting, press and release the species button ③, then press the calibration check button ② within one second.
- The meter will display the current pin calibration as either 222 for insulated or 444 for uninsulated pins.
- If you continue to hold the calibration check button 2, the meter will change pin calibration. The new calibration will remain in "memory" until you change it again, or you remove the battery.

TAKING A READING

The contact pins (6) provided are best for stock up to 6/4. On stock over 6/4 or for hardwoods over 4/4 we recommend using a remote probe such as the 26-ES ram-type electrode. Mount the 26-ES directly to the external connector (7). See additional information under the Pin Talk section.

- Remove the protective cover to expose the pins. Check that the contact pins () are firmly hand tightened.
- ► To take a reading, align the contact pins (6) parallel to the grain and push them to their full penetration into the wood, if possible. Insulated pins read only at the tip and can be driven to the desired depth.
- Press the read button ① and read the moisture content on the meter scale. The meter displays the %MC for two seconds.
- To add a reading to the sum of all the previously stored readings, release the read button 1 within 2 seconds.

INFORMATION ABOUT YOUR READINGS

Readings below 6% will be displayed as a numeric value, (-##, #), and will not be added to accumulation. A reading below 6% which is due to temperature and species adjustments will be shown as a numeric value with no minus sign and this reading will be added to the accumulation.

Readings above 40% are always displayed as 999 and are not added to the accumulation.

The meter will accumulate up to 100 readings. After all 100 readings are stored it will not add new readings until the memory has been cleared. It will also continue to display the average of all 100 readings as a reminder that the memory is full.

When taking and storing readings for a specific wood species, be sure to "clear" the meter before moving on to the next species if you do not want to group all of the readings together.

TO CHECK ACCUMULATED READINGS

This feature allows you to view the total number of all accumulated readings, the average of those readings, and the highest stored reading.

- To view the readings press and release the calibration check button ②. First the meter displays the number of accumulated readings for one second, then the average of those readings for two seconds. Then it displays the highest stored reading for two seconds. The total "cycle" time is five seconds.
- ► To erase readings hold the calibration check button down for 5 seconds. All accumulated readings will be erased and the meter will display "0".

TO RESET METER

- ▶ Press and release the callbration check button 2.
- Within one second press the species button 3.
- The meter will reset itself and display "170" to indicated Species #1 (Douglas Fir) at 70°F. All of the readings in memory will be cleared.

PIN TALK

÷

There are two types of contact pins - uninsulated, which were provided with your meter, and insulated. When using uninsulated pins, push them in to the wood to their full length, if possible. This will give you the highest measured reading. Insulated pins read only at the tip and can be driven to a desired depth to gather shell and core (gradient) information. Additional types and lengths of both the insulated and uninsulated pins are available for specific applications.

CARE OF YOUR METER

To keep your meter in good working order:

- Store your meter in a clean, dry place. The protective carrying case provided is an ideal storage place when the meter is not in use.
- Change the 9-Volt battery as needed. Continued use with a low battery may cause the meter to go out of calibration.
- Change contact plns as needed. Keep contact plns hand tightened.
- Clean the meter and contact pins with any biodegradable cleaner. Use the cleaner sparingly and on external parts only. Keep cleaner out of the external connector .
- Remove the battery if the meter will not be used for one month or longer.

SERVICE FOR YOUR METER

- Before sending in your meter we recommend you give one of our trained technicians a call. Many times troubleshooting can be taken care of over the phone. Call us at 1-877-DELMHORST.
- Pack your meter securely. Enclose a purchase order or letter with a brief description of the problem.
- There is no need to call us for a return authorization number if you are within the U.S. Customers outside the U.S. must contact us for more specific instructions prior to returning a meter.
- Include your name, address, daytime phone and fax numbers or e-mail address. If you believe the meter is under warranty, please provide the original sales slip or invoice.
- Ship via UPS, Express Mail, Priority Mail, or any overnight courier who provides prompt service. Do not use standard parcel post.
- Insure your instrument for its full value and ship prepaid. We are not responsible for damage in transit.
- ► We do not accept COD shipments or cover any incoming freight or duty charges on returned merchandise
- Turnaround time on repairs is approximately two weeks.
- We will call you with an estimate if you specifically request one, or if we determine that the meter may be too costly to repair.
- Non-warranty repairs will be returned via UPS/COD unless you have already established other payment terms. There is no COD service outside the U.S. To pay by credit card, include the card number and expiration date with your repair. We accept Visa/MasterCard and American Express.
- Warranty repairs will be returned at no charge if shipped within the U.S. via UPS Ground Service. Freight charges for expedited services (i.e., Federal Express, UPS/2 Day, UPS/1 Day, etc.) are the customer's responsibility and will be charged as per the above terms.

10

WARRANTY

Delmhorst Instrument Co., referred to hereafter as Delmhorst, guarantees its J-2000 meter for one year from date of purchase and any optional electrodes against defects in material or workmanship for 90 days. If, within the warranty period, you find any defect in material or workmanship return the meter following the instructions in the Service for Your Meter section. This limited warranty does not cover abuse, alteration, misuse, damage during shipment, improper service, unauthorized or unreasonable use of the meter or electrodes. This warranty does not cover batteries or contact pins. If the meter or any optional electrodes have been tampered with, the warranty shall be void. At our option we may replace or repair the meter.

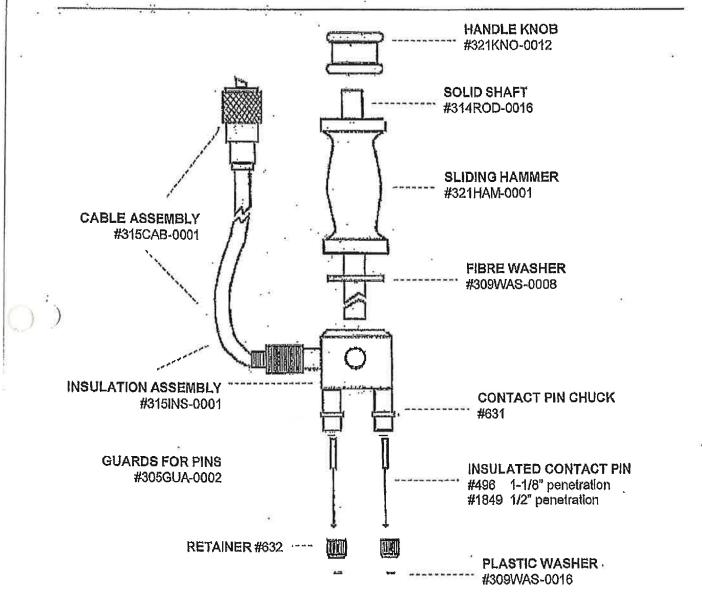
Delmhorst shall not be liable for Incidental or consequential damages for the breach of any express or implied warranty with respect to this product or its calibration. With proper care and maintenance the meter should stay in calibration; follow the instructions in the Care of Your Meter section.

Under no circumstances shall Delmhorst be liable for any incidental, indirect, special, or consequential damages of any type whatsoever, including, but not limited to, lost profits or downtime arising out of or related in any respect to its meters or electrodes and no other warranty, written, oral or implied applies. Deimhorst shall in no event be liable for any breach of warranty or defect in this product that exceeds the amount of purchase of this product.

The express warranty set forth above constitutes the entire warranty with respect to Delmhorst meters and electrodes and no other warranty, written, oral, or implied applies. This warranty is personal to the customer purchasing the product and is not transferable. For more detailed information about using a wood moisture meter, call us toll-free at 1-877-DELMHORST. Ask for your free copy of "Measuring Wood Moisture Content: Straight Talk from Deimhorst". Or find it on our web site at www.deimhorst.com.

For over 60 years, Delmhorst has been the leading manufacturer of high-quality moisture meters and thermo-hygrometers. Today we offer the innovative KIL-MO-TROL® in-kiln monitoring system. We also offer a wide range of meters for a variety of applications including woodworking/lumber, agriculture, construction, paper, restoration, IAQ and flooring.

WHEN ACCURACY IS THE POINT.™ 51 Indian Lane East Towaco, NJ 07082


(877)-DELMHORST www.delmhorst.com e-mail - Info@delmhorst.com

.

©2006, Delmhorst Instrument Co. 510INS-0003 REV. 11/06

WHEN ACCURACY IS THE POINT Parts List for 26-ES Electrode

Note: Type 26-ED electrode is fitted with hollow shaft assembly (with depth gauge) #315SHA-0002

Delmhorst Instrument Co. 51 Indian Lane East, Towaco, NJ 07082 Tel: 800.222-0638 Fax: 973.334.2657 www.delmhorst.com 01/08

 4850, bd. Gouin est
 Tél. (514) 328-2550

 Montréal-Nord, Qc
 I 800 522-1226

 Canada
 H1G 1A2

 www.chevrierinstruments.com
 Info@chevrierinstruments.com

 Instruments de measere et de régisterion peur les practidés industriels et laboratoire d'élaionnese

Certificat d'étalonnage

Numéro du certificat: CE1638

Étalonnage effectué par :		Pour :			
LA CIE J. CHEVRIER INSTRUMENTS INC.		3424			
4850 GOUIN ES	T	SBLINC,			
MONTREAL, QC	, CANADA H1G 1A2	250, RUE DE COPE	NHAGUE		
		ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3			
Informations su	ir l'instrument 👔 👔				
Description:	MANOMETRE DIFFERENTIEL ANALOGIQUE				
Manufacturier:	DWYER	Date d'étalonnage :	2011-02-10		
Modèle:	2000-00N	Échéance	2012-02-10		
Plage:	0/0.20 POH2O				
Précision:	±4%P.E				
Numéro de série	<u>}</u>	Résultat de l'étalonnage: Conforme			
I.D.	SBI-025	Conditions ambiantes 20.9 °C / 29.9%HR			
Etat de l'instrument: BON		Technicien :	Pierre Junior Berlus		
Commentaire :	探		0.01		

POINTS D'ETALON	INAGE	10			
and the second sec	Valeur Appliquée	Tolérance -	Lectures	Tolérance +	Verdict
Ascendant	0.0000 noH2O	-0.0100	0	0.0100	OK

Ascendant	0.0000 poH2O	-0.0100	0	0.0100	OK
Ascendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Ascendant	0.1000 poH2O	0.0900	0.095	0.1100	OK
Ascendant	0.1500 poH2O	0.1400	0.1425	0.1600	OK
Ascendant	0.2000 poH2O	0.1900	0.1925	0.2100	OK
	Valeur Appliquée	Tolérance -	Lectures	Tolérance +	Verdict
Descendant	0.2000 poH2O	0.1900	0.1925	0.2100	OK
Descendant	0.1500 poH2O	0.1400	0.1425	0.1600	OK
Descendant	0.1000 poH2O	0.0900	0.095	0.1100	OK
Descendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Descendant	0.0000 poH2O	-0.0100	0	0.0100	OK

Étalons utilisés traçable au C.N.R.C / N.I.S.T

I.D.	Certificat No	Description	Étalonné le	Échéance
CHEV175	12688334994	CALIBRATEUR DE PRESSION DH PPC4	2010-03-17	2011-03-17
CHEV175	12688334994	CALIBRATEUR DE PRESSION DH PPC4	2010-03-17	2011-03

the second statement of the second second

Certificat d'étalonnage

Numéro du certificat: CE1638

Procédures utilisées po	eur effectuer cet étalonnage
Procédure	Description
3PR500-01-CHE	ÉTALONNAGE DE MANOMÈTRE

Verdict * = Point non conforme

Page 2 of 2 Enregistré par le BNQ selon ISO 9001:2008

4850, bd Gouin est Montréal-Nord, Qc Canada HTG LA2 www.chevrierinstruments.com

lociromente de mesure et de régulation pour les procédés industriels et laboratoire d'étaionnage

Certificat d'étalonnage

Numéro du certificat: CE1639

Étalonnage effectué par :		Pour: State and the state of th		
LA CIE J. CHEVRIER INSTRUMENTS INC.		3424		
4850 GOUIN ES	ST	SBUNC		
MONTREAL, QC	CANADA H1G 1A2	250, RUE DE COPENHAGUE		
		ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3		
Informations su	ir l'Instrument			
Description:	MANOMETRE DIFFERENTIEL ANALOGIQUE			
Manufacturier:	DWYER	Date d'étalonnage : 2011-02-10		
Modèle:	2000-00	Échéance : 2012-02-10		
Plage:	0/0.25 POH2O			
Précision:	±4%P.E			
Numéro de série	3 (Résultat de l'étalonnage: Conforme		
I.D.:	SBI-027	Conditions ambiantes 20.9 °C / 29.9%HR		
Etat de l'instrument: BON		Technicien : Pierre Junior Berlus PJB		
Commentaire :	1951 marging state the second se	[G.Q]		

POINTS D'ÉTALOI	NNAGE	K. S. K			
	Valeur Appliquée	Tolérance -	Lectures	Tolérance +	Verdict
Ascendant	0.0000 poH2O	-0.0100	0	0.0100	OK
Ascendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Ascendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Ascendant	0.1500 poH2O	0.1400	0.15	0.1600	OK
Ascendant	0.2000 poH2O	0. 1900	0.205	0.2100	OK
Ascendant	0.2450 poH2O	0.2350	0.25	0.2550	OK
建	Valeur Appliquée	Tolérance	Lectures	Tolérance +	Verdict
Descendant	0.2450 poH2O	0.2350	0.25	0.2550	OK
Descendant	0.2000 poH2O	0.1900	0.205	0.2100	OK
Descendant	0.1500 poH2O	0.1400	0.15	0.1600	OK
Descendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Descendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Descendant	0.0000 poH2O	-0.0100	0	0.0100	OK

0.0

4850, bd Gouin est Montréal-Nord, Qc Canada H1G IA2 www.chevrierinstruments.com Indo unit de nasura di de résultation

Fig

Instruments de measure et de régulation pour les procédés industriais et inderateire d'étainnage

Certificat d'étalonnage

Numéro du certificat: CE1640

Étalonnage effectué par :		Pour :		
LA CIE J. CHEVRIER INSTRUMENTS INC.		3424		
4850 GOUIN ES	5T	SBI INC		
MONTREAL, QC	CANADA H1G 1A2	250, RUE DE COPENHAGUE		
		ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3		
Informations su	ir l'Instrument			
Description:	MANOMETRE DIFFERENTIEL ANALOGIQUE			
Manufacturier:	DWYER	Date d'étalornage : 2011-02-10		
Modèle:	2000-00	Échéance : 2012-02-10		
Plage	0/0.25 POH2O			
Précision:	±4%P.E.			
Numéro de série		Résultat de l'étalonnage: Conforme		
I.D.:	SBI-101	Conditions ambiantes 20.9 °C / 29.9%HR		
Etat de l'instrument: BON		Technicien : Pierre Junior Berlus PTB		
Commentaire :				

POINTS D'ÉTALONNAGE

	Valeur Appliquée	Tolérance -	Lectures	Tolerance +	Verdict
Ascendant	0.0000 poH2O	-0.0100	0	0.0100	OK
Ascendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Ascendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Ascendant	0.1500 poH2O	0.1400	0.15	0.1600	OK
Ascendant	0.2000 poH2O	0.1900	0.20	0.2100	OK
Ascendant	0.2500 poH2O	0.2400	0.25	0.2600	OK
新学校 的任何	Valeur Appliquée	Tolérance -	Lectures	Tolerance +	Verdict
Descendant	0.2500 poH2O	0.2400	0.25	0.2600	ОК
Descendant	0.2000 poH2O	0.1900	0.20	0.2100	OK
Descendant	0.1500 poH2O	0.1400	0.15	0 1600	OK
Descendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Descendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Descendant	0.0000 poH2O	-0.0100	0	0.0100	OK

Appendix E

Sample Calculations

20

Equations and Sample Calculations - Method 5G

Equations used to calculate the parameters listed below are described in this appendix. Sample calculations are provided for each equation. The raw data and printout results from a sample run are also provided for comparison to the sample calculations.

- BR Dry burn rate, kg/hr
- m_a Total particulate matter collected, mg
- $V_{\mbox{\scriptsize m(sid)}}$ Volume of gas sampled corrected to standard conditions, dscf
- v_s Average dilution tunnel gas velocity, ft/sec
- C_s Particulate concentration, g/dscf
- Q_{sd} Average dilution tunnel gas flow rate, dscf/min
- E Particulate emission rate, lbs/hr
- PR Proportional rate variation, %

 $\bigcirc
ho$

Dry Burn Rate

Using equation 28-3:

$$BR = \frac{60 \times W_{wd}}{\Theta} \times \frac{100 - \% M_{w}}{100}$$

Where,

 \supset

BR	Ħ	Dry burn rate, lb/hr	
W_{wd}	=	Mass of wood burned (wet basis) during test run, ib	
θ	H	Total time of test run, minutes	
%M _w	7	Average moisture content of test fuel charge, wet basis percent	at

Sample Calculation:

Dry basis moisture of fuel = 20.03%

1

Using the equation 28-2 for converting dry basis moisture to wet basis moisture,

$$\%M_{\psi} = \frac{20.03 \times 100}{20.03 + 100}$$

$\% M_{\rm w} = 16.69\%$

The wet weight of the fuel charge was 7.8 pounds. Converting pounds to kilograms yields a weight of 3,538 kg. The run time for this run was 180 minutes. Therefore, the burn rate equation appears thus:

$$BR = \frac{60 \times 3.538 \times (100 - 16.69)}{180 \times 100}$$

$$BR = 0.98 \ kg/hr = 2.17 \ lb/hr$$

Volume of Gas Sampled Corrected to Dry Standard Conditions

Using equation 5-1:

$$V_{m(sid)} = V_m \times Y \times \left(\frac{T_{sid}}{P_{std}}\right) \times \frac{\left(P_b + \frac{\Delta H}{13.6}\right)}{T_m}$$

1

Where:

)

ł

ċ,

 \odot

К	=	17.64 °R/in. Hg
T _{stđ}		528 °R
\mathbf{P}_{sld}	=	29.92 in. Hg
V _m	=	Volume of gas sample measured at the dry gas meter, dcf
Y	=	Dry gas meter calibration factor, dimensionless
$\mathbf{P}_{\mathbf{b}}$	=	Barometric pressure at the testing site, in. Hg
ΔH	=	Average pressure differential across the orifice meter, in. H_2O
T _m	=	Absolute average dry gas meter temperature, °R

Sample Calculation:

$$V_{m(std)} = 98.434 \times 1.01 \times (\frac{528}{29.92}) \times \frac{30.03 + \frac{0.7}{13.6}}{532.5}$$

$$V_{m(std)} = 99.116 \, ft^3$$

Dilution Tunnel Gas Velocity

Using equations 2-7 and 2-6, calculated at each recorded interval:

 $v_s = k_p \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{T_{s(avg)}}{P_s \times M_s}}$ $M_s = M_d \times (1 - B_{vs}) + 18.0 \times B_{vs}$

Where:

í

 \mathcal{I}_{p}

$$v_s = Average dilution tunnel gas velocity, fl/sec$$

$$k_p$$
 = Pitot tube constant: $85.49 \frac{ft}{sec} \left[\frac{(lb/lb-mole) \times (inches Hg)}{(^{\circ}R) \times (inches H_2O)} \right]^{\frac{1}{2}}$

Pitot tube coefficient (0.99 for standard pitot tube; 0.84 may be used for C_p S-type pitot tubes constructed according to Method 2 procedures), unitless AP measured during the pre-test flow traverse of the dilution tunnel; the ΔP = square root of the ΔP values are averaged for this calculation, in. H₂O Barometric pressure at test site, in. Hg Рь = P_s Static Pressure of tunnel, in. Hg Π Absolute tunnel pressure, = $P_b + P_g$ P. ≒

 $M_s = Molecular$ weight of tunnel gas; assume $M_d = 29$ lb/lb-mole (per method 5G)

B_{ws} = Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)

 $T_s = Dilution tunnel temperature, °R; (°R = °F + 460)$

Sample calculation:

$$M_s = 29 \times (1 - 0.04) + 18.0 \times 0.04 = 28.56$$

$$v_s = 85.49 \times 0.99 \times \sqrt{0.0351} \times \sqrt{\frac{(548)}{(30.03 + \frac{-0.45}{13.6})} \times (28.56)}$$

 $v_s = 12.69 \frac{ft}{sec}$

Particulate Concentration

Using equation 5G-2:

$$C_s = 0.001 \frac{g}{mg} \times \frac{m_n}{V_{in(sid)}}$$

Where:

t

 \bigcirc

C_s = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscf

 $m_n = Total mass of particulate matter collected in the sampling train, mg$

 $V_{m(std)}$ = Volume of gas sampled corrected to dry standard conditions, dscf

Sample calculation:

$$C_s = \frac{0.001 \times 16.2}{99.116}$$

 $C_{s} = 0.000163 \ g/dscf$

Average Dilution Tunnel Gas Flow Rate

Using equation 2-8, calculated at each recorded interval:

$$Q_{sd} = 3600 \times (1 - B_{vs}) \times v_s \times A \times \frac{T_{std}}{T_{s(avg)}} \times \frac{P_s}{P_{std}}$$

Where:

)

Q_{sd}	⇔	Gas flow rate corrected to dry, standard conditions, dscf/hr
3600	=	Conversion from seconds to hours
\mathbf{B}_{ws}	11	Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)
Vs		Average dilution tunnel gas velocity, ft/sec
A	8	Cross sectional area of dilution tunnel, ft ²
\mathbf{T}_{std}	æ	Standard absolute temperature, 538°R
T _{s(avg)}	1	Average absolute dilution tunnel temperature, $^{\circ}R$, ($^{\circ}R = ^{\circ}F + 460$)
P _b	2	Barometric pressure at test site, in. Hg
P _g	=	Dilution tunnel static pressure, in. Hg
\mathbf{P}_{s}		Absolute dilution tunnel gas pressure, in Hg, $(Hg = P_b + P_g)$
$\mathbf{P}_{\mathrm{std}}$	11	Standard absolute pressure, 29.92 in Hg

Sample calculation:

 $Q_{sd} = 3600 \times (1 - 0.04) \times 12.69 \times \frac{(\pi \times 3^2)}{144} \times \frac{528}{548} \times \frac{30.03 + \frac{-0.45}{13.6}}{29.92}$

÷.

 $Q_{sd} = 8313.36 \ dscf/hr = 138.56 \ dscf/min$

Particulate Emission Rate

Using equation 5G-3 and 5G-4:

$$E = C_s \times Q_{sd}$$
$$E_{adj} = K_3 \times E^{0.83}$$

Where:

(

 \bigcirc)

)

E	=	Particulate emission rate, g/hr					
$\mathbf{E}_{\mathrm{adj}}$	=	Particulate emission rate, adjusted, g/hr					
C_s	=	Concentration of particulate matter in the stack, corrected to dry, standard					
	condit	ions, g/dscf					
_							

$$K_3 = Constant, 1.82$$
 for metric units, 0.643 for English units

Sample calculation:

 $E = 0.000163 \times 8313.36$

 $E = 1.36 \, g/hr$

 $E_{adj} = 1.82 \times 1.36^{0.83}$

 $E = 2.35 \ g/hr$

Proportional Rate Variation

Using equation 5H-9, calculated at each recorded interval:

$$PR = \frac{\theta \times (V_{ml} \times V_s \times T_m \times T_{sl})}{10 \times (V_m \times V_{sl} \times T_s \times T_m)} \times 100$$

Where:

۰.

.

)

)

PR	11	Percent proportional rate
θ	-	Time of test, min
S_1	=	Measured tracer gas concentration for the "i th " interval, in this case, the
		inverse of the calculated flow in the stack based on CO_2 concentrations in
		the stack and in the dilution tunnel
V _{ml(std)}	=	Volume of gas sample measured by the dry gas meter during the "i th " 10
		minute interval, dscf
V _m	=	Volume of gas sample as measured by dry gas meter, dsef
$V_{\rm ei}$	=	Average gas velocity in the dilution tunnel during each 10 minute interval, i,
		of the test run, m/sec
V,	Ħ	Average gas velocity in the dilution tunnel, m/sec
T _{ml}	I	Absolute average dry gas meter temperature during each 10 minute interval, i,
		of the test run, °R
T _m	=	Absolute average dry gas meter temperature, °R
Tst	3	Absolute average gas temperature in the dilution tunnel during each 10
		minute interval, i, of the test run, °R.
T,	Ħ	Absolute average gas temperature in the dilution tunnel, °R

Sample calculation (for the reading at 50 minutes into test run 1):

 $PR = \frac{180 \times 5.6 \times 12.69 \times 533 \times 552}{10 \times 98.434 \times 12.63 \times 548 \times 532} \times 100$

PR = 103.8%

Appendix F

Test Data

 \bigcirc

SBI Model S244 G100517524

EPA NSPS WEIGHTED AVERAGE CALCULATION V 1.1

2

 Sort data from lowest to highest
 Type of

 burn rate and enter below.
 Stove:

 2=noncat
 3=pellet

		(E)						
		Ave.		Heat		(K)		
Test	Burn	Emission		Output		Weighting		
No.	Rate	Rate g/hr	(OHE)	(BTU/HR)	Prob.	Factor	(KxE)	KxOHE
4	0.82	4.78		9887.72	0.2336	0.2632	1.2581	0.00
3	0.86	4.29		10370.05	0.2632	0.5974	2.5628	0.00
6	1.67	3.15		20137.19	0.8310	0.6132	1.9316	0.00
7	1.81	4.80		21825.34	0.8764	0.1690	0.8112	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
						0.0000	0.0000	0.00
					Totals:	1.6428	6.5637	0.00

Weighted average emissions rate: 3.9954 Weighted Average OHE: 0.00

2012

Run 1

 \odot

 \bigcirc

PROJECT / TEST INFORMATION						
Project Number:	G100517524					
Manufacturer:						
Model;						
Sample ID Number:	MTL1111071416-001					
Test Date:	December 5 2011					
Test Run Number:	1					
Date tunnel cleaned:	12/1/2011					
Purpose of Test	Cat 1					

Appliance Information							
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic					
Firebox Volume, ft ³ :	1.219	N/A for pellet type					
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard					

		Test Settings						
	Primary Air:							
S	econdary Air:	Fixed						
C	Control Board:							
	Blower/Fan:	Off the first 30 minutes then On-Low for the reminder of the test.						
		Pre- Burn Activities						
Time	· · · · · · · · · · · · · · · · · · ·							
0	Time=11:15							
	When the w	eight was 2.4 lbs the primary air was shut and timer started.						
60	The coal be	d was leveled.						
_								
		Start-Up Procedure						
		Loaded by 50 seconds.						
Fuel-i	oading door	Ajar until 90 seconds.						
-	Primary air:	Opened half way at 2:30 min. then abruptly closed at 5 minutes into the test.						
	econdary air:							
C	Control board:							
_	Blower / fan:	Off the first 30 minutes then On-Low for the reminder of the test.						
		Other Notes						

TEST DATA EPA METHOD 5G-3

Temperature Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	
Sample ID No:	MTL1111071416-001
Test Date:	December 5 2011
Test Run No:	1

								emp Start	378.88	1 1	Max Filte	er Temps		
								Femp End	328.88		Train A	Train B		
						14	Firebox	Delta-T	50.0	1	68.25	68.98		
Interval		Dura	tion of Tes	st, Min	220									
	Time						Te	mperature	Data					
						1								
			Dillution	Flue	Firebox	Firebox	Firebox	Firebox	Firebox	Catalyst	Train A	Train B	Train A	Train B
Interval	Duration	Room	Tunnel	Gas	Тор	Bottom	Back	Left	Right	Outlet	Filter	Filter	DGM	DGM
0	0	78.88	89.52	212.5	342	408.5	380.4	376.4	387.1		65.52	65.29	65.34	65.01
1	10	85.77	82.33	172.9	303.6	397.7	336.3	328.3	340.6		67.93	68.29	65.69	65.63
2	20	85.2	80.71	169.6	301.4	373.3	302.2	288.6	298.8		67.77	68.14	65.47	65.19
3	30	82.75	77.8	162.3	290.1	345.2	286.4	266	271.3		67.72	68.18	65.47	65.23
4	40	83.7	79.62	199.5	375.7	319.2	286.6	269.3	268.7		67.67	68.24	65.58	65.37
5	50	84.66	81.37	229.7	464.7	297.2	288.4	297.6	288.3		67.92	68.46	65.84	65.49
6	60	86.36	82.45	244	488.5	280.6	299	333.4	317.3		67.98	68.7	65.79	65.47
7	70	87.73	83.36	255.6	540.5	269.2	318.9	363.5	346.6		68.22	68.78	65.87	65.51
8	80	88.55	82.84	250.5	538.8	262.6	343	383.6	369.5		68.25	68.9	65.83	65.49
9	90	88.43	81.73	235,6	518.7	261.9	337,6	394.6	387.7		68.18	68,92	66	65.55
10	100	87.32	80.57	211.6	476.1	266.2	357.7	402.1	387		68.13	68.98	66.13	65.65
11	110	86.73	78.79	194.3	433.9	270	354.5	406.8	383.3		68.1	68.81	66.2	65.77
12	120	85.99	78.03	184.2	403.8	275.3	358.9	400.9	380.2		68.09	68.74	66.25	65.89
13	130	86.85	77.28	175.6	386.2	282.6	343.7	391	376.8		67.99	68.66	66.24	65.95
14	140	86.64	76.61	169.1	368.9	288.9	325.3	384.1	374.5		67.98	68.6	66.38	66.08
15	150	86.42	76.21	164.7	358.9	294.7	342.6	382	372.1		67.92	68.4	66.32	66.09
16	160	84.64	75.6	161.2	349.5	299	338.8	378.9	370.1		67.77	68.27	66.27	66.08
17	170	85.15	75.5	159.3	343	302.4	335.9	370.3	366.4		67.74	68.31	66.37	66.18
18	180	84.92	75.21	157.5	335.9	304.1	349.3	363.3	365.6		67.76	68.24	66.38	66.23
19	190	85.37	75.55	158.2	331.1	305.9	345.9	353.6	365.6		67.76	68.28	66.37	66.27
20	200	85.5	75.56	158.5	326.9	305.4	342.8	343.4	365.4		67.69	68.23	66.39	66.22
21	210	84.7	75.37	157.1	320.6	304.4	350.5	334.6	360.8		67.48	68.06	66.26	66.02
22	220	84.66	75.14	155	313	304.6	346.7	326.2	353.9		67.44	68.03	66.26	66.02

Date: 03/13/2012

Test Engineer:

()

 \bigcirc

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	
Model:	
	MTL1111071416-001
·	December 5 2011
Test Run Number:	
	-

	er, In. Hg	RH, %			x Correction (y) Factors			Leak Check, cfm @ in Hg			Maximum Vacuum	
Start	30.21	28.9	M	eter Box	(A)	1.014		Train A	Train B	1	Train A	Train B
End	30.15	28.8	M	eter Box ((B)	1.011		0.025@5	0.02@5	1	0.00	0.00
Durat	ation of Test, Min 220									•		
							Particulate	Sampling Data	1			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.033	7.90	7.90	755.942	807 168	100.31	100.31		
10	0.017	0.00	0.00	-0.033	7.59	0.31	756.952	808.203	94.95	96.98		
20	0.015	0.00	0.00	-0.035	7.24	0.35	757.961	809.260	100.87	105.37		
30	0.015	0.00	0.00	-0.035	6.75	0.49	758,967	810.303	100.30	103.68		
40	0.015	0.00	0.00	-0.045	6.10	0.65	759.975	811 342	100.65	103.43		
50	0.015	0.00	0.00	-0.048	5.30	0.80	760.983	812.395	100.76	104.97		
60	0.015	0.00	0.00	-0.050	4.51	0.79	761.992	813.459	100.97	106.18		
70	0.015	0.00	0.00	-0.050	3.70	0.81	763.000	814.512	100.94	105.16		
80	0.015	0.00	0.00	-0.050	2.93	0.77	764.010	815.534	101.10	102.02		
90	0.015	0.00	0.00	-0.048	2.33	0.60	765.018	816.559	100.77	102.20	·	
100	0.015	0.00	0.00	-0.043	1.90	0.43	766.029	817 541	100.93	97.79		
110	0.015	0.00	0.00	-0.038	1.64	0.26	767.040	818.532	100.75	98.51		
120	0.015	0.00	0.00	-0.038	1.47	0.17	768.050	819.514	100.57	97.52		
130	0.015	0,00	0.00	-0.035	1.26	0.21	769.061	820.495	100.60	97.34		
140	0.015	0.00	0.00	-0.033	1.08	0.18	770.067	821.504	100.02	100.03		
150	0.015	0,00	0.00	-0.030	0.93	0.15	771.075	822.470	100.19	95.73		
160	0.015	0.00	0.00	-0.030	0.77	0.16	772.087	823 439	100.54	95.98		
170	0.015	0.00	0.00	-0.030	0.63	0.14	773.096	824.412	100.21	96.34		
180	0.015	0.00	0.00	-0.028	0.46	0.17	774.103	825 385	99.99	96.31		
190	0.015	0.00	0.00	-0.028	0.35	0.11	775.111	826.402	100.12	100.69		
200	0.015	0.00	0.00	-0.028	0.18	0.17	776.125	827.415	100.71	100.30		
210	0.015	0.00	0.00	-0.028	0.06	0.12	777.135	828.428	100.32	100.32		
220	0.015	0.00	0.00	-0.028	0.00	0.06	778.147	829,437	100.50	99.91		

Test Engineer:

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL1111071416-001 Test Date: December 5 2011 Test Run Number: 1

Dry Burr	-Rate, kg/hr:	0.82					
Emission-Rate, g/hr:							
Adjusted Emission-Rate, g/hr :							
Duration of Test, Minutes	2	20					
Dry Gas Meter Standardization	Train A	Train B					
Dry Gas Meter Beginning Reading, ft ³	755.942	807.168					
Dry Gas Meter Ending Reading, ft ³	778.147	829.437					
Barometric Pressure Correction Factor	1.009	1.009					
Dry Gas Meter Calibration Factors (y factors)	1.014	1.011					
Dry Gas Meter Temperature Factors	1.004	1.004					
Dry Gas Meter Delta-H Correction Factors	1.000	1.000					
Dry Gas Meter STD Volume Sampled, ft ³	22.796	22.806					
Dillution Tunnel Flow / Volume							
Standardized Tunnel Flow, dscfm	139	.277					
Total Tunnel Volume, scf	3064	1.014					
Emission Caclulations	Train A	Train B					
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	Train A 1344.129	Train B 1343.542					
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1344.129	1343.542					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams	1344.129 11.0 14.785	1343.542 11.0 14.779					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr	1344.129 11.0 14.785 4.03	1343.542 11.0 14.779 4.03					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, %	1344.129 11.0 14.785	1343.542 11.0 14.779 4.03 5.79					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, %	1344.129 11.0 14.785 4.03 5.79	1343.542 11.0 14.779 4.03 5.79					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F	1344.129 11.0 14.785 4.03 5.79 0.0	1343.542 11.0 14.779 4.03 5.79 2%					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	1344.129 11.0 14.785 4.03 5.79 0.0 Train A	1343.542 11.0 14.779 4.03 5.79 2% Train B					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	1344.129 11.0 14.785 4.03 5.79 0.0 Train A 68.25	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	1344.129 11.0 14.785 4.03 5.79 0.00 Train A 68.25 0.025@5	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	1344.129 11.0 14.785 4.03 5.79 0.0 Train A 68.25 0.025@5	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0 9					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Fuel Properties	1344.129 11.0 14.785 4.03 5.79 0.00 Train A 68.25 0.025@5 5 8 7	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0 9					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	1344.129 11.0 14.785 4.03 5.79 0.0 Train A 68.25 0.025@5 5 8	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0 9					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, %	1344.129 11.0 14.785 4.03 5.79 0.00 Train A 68.25 0.025@5 5 8 7	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0 9 9					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperture, °F Fuel Properties Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	1344.129 11.0 14.785 4.03 5.79 0.0 Train A 68.25 0.025@5 5 8 7 7	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0 9 9 9 9 9 9 9 9 9 9 9 9 9					
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, %	1344.129 11.0 14.785 4.03 5.79 0.00 Train A 68.25 0.025@5 5 8 7: 7.9 7.9	1343.542 11.0 14.779 4.03 5.79 2% Train B 68.98 0.02@5 0 9 9 9 9 9 9 9 9 9 9 9 9 9					

Intertek

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL1111071416-001
Test Date:	December 5 2011
Test Run Number:	1

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 393.64

Final Coal Bed Wt, Ib 1.96

Interval													
T	ime				Tem	perature D	ata		r				
nterval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weigh Loss
0	0	71.83	153.9	506.4	504.4	82.72	193.1	190.6	207.3		-0.002	10.38	9.37
1	10	70.05	156.1	588.6	755.6	155.5	315.8	288.2	322.8		0	7.63	2.75
2	20	71.24	164.8	625.2	872.2	245.1	427.2	405.9	455.1		-0.001	4.80	2.83
3	30	87.31	163	615.2	828.7	340.7	549	512.6	551.2		0.001	2.46	2.34
4	40	90.22	137.4	484.2	689.9	419	544.2	556.6	592.5		0.001	1.51	0.95
5	50	82.29	180.1	395.2	554	463.6	526.6	547.1	567		-0.003	1.01	0.50
6	60	80.44	161.9	607.9	813	474.8	478.6	477.3	512.4		0.003	9.58	-8.57
7	70	84.19	168.6	632.3	907.4	458.8	538.9	502.3	553.5		0.002	6.52	3.06
8	80	90.56	159	590.7	908.4	460.5	603.5	551.7	612.8		-0.001	3.96	2.56
9	90	79.53	146.4	548.2	823.2	465.3	633.6	595.2	643.2		0.002	2.49	1.47
10	100	84.45	104	287.8	612.1	477.3	518.9	577.3	596		-0.003	2.31	0.18
11	110	82.78	95.72	230,7	516.6	472.1	447.4	529.3	536.6		-0.001	2.26	0.05
12	120	88.11	87.61	203.7	460.8	455.2	477.5	488.8	493		0.001	2.17	0.09
13	130	88.77	83.24	186.6	415.8	436.9	454.7	450.8	454.3		-0.002	2.14	0.03
14	140	86.56	81.74	175.5	386.4	422.9	426.5	415.8	423.5		-0.002	2.08	0.06
15	150	86.02	80.48	168.2	361.8	413.3	404.6	388.9	399.6		-0.002	1.96	0.12
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26								1					
27													
28													
29													
30													

Test Engineer:

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL1111071416-001 Test Date: December 5 2011 Test Run Number: 1

	Dilution	Tunnel	
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0125	82	0.1118
A2	0.0150	82	0.1225
A3	0.0150	82	0.1225
A4	0.0125	81	0.1118
A Center	0.0150	82	0.1225
B1	0.0125	85	0.1118
B2	0.0150	84	0.1225
B3	0.0150	84	0.1225
B4	0.0125	84	0.1118
B Center	0.0150	85	0.1225
Averages	0.014	83.12	0.1171

Tunnel Diameter	8.000	inches
Tunnel Static	-0.063	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9564	factor
Baro. Pressure	30.21	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	6.993	Ft/ Sec
Initial Flow	137.94	Ft3/min

Test Engineer:

Date: 03/13/2012

TEST FUEL DATA EPA METHOD 5G-3

Project Number: Manufacturer: Model:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL1111071416-001 December 5 2011
Test Date:	December 5 2011
Test Run Number:	1

Calibration Reference ID	1.0/	1 462		
Set meter to Species 1	180-463			
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

	PRE-B	URN FUE	L PROPE	RTIES		٦	
Eq. ID No.:	SBI214	Time:	9:50	Temp.,°F	75		
Piece No.	Length, In.	Weight, Lb.	Moi	Moisture, %, Dry Basis			
1	9.00	0.90	20.6	20.7	21.1		
2	9.00	0.95	20.2	18.8	20.3		
3	9.00	0.95	20.4	19.8	19.8		
4	9.00	0.90	20.2	19.0	20.5		
5	16.00	1.65	19.9	19.1	20.8		
6 16.00		1.85	21.4	18.7	20.4		
7	16.00	1.75	19.6	19.8	20.4		
8	16.00	1.75	20.3	19.7	20.4		
9							
10							
11				·			
12							
Total We	eight	10.7	Avera	ge, %db	20.1		
Allowa	ble Fuel Lo	ad Range	:	7.7	to	9.3	

		ad Range	(.)	ιο	9.3			
		EST FUE	L LOAD F	PROPERTIE	S			
Eq. ID No.:	SBI214		Time:	11:00	Temp.,°F:	75		
Piece No.	Length,	Weigl	nt, Lb.	Moisture, %, Dry Basis				
Thece NO.	In.	2x4	4x4					
1	15,75	1.75		19.8	19.2	19.7		
2	15,75	1.90		18.8	19.1	19.7		
3	15,75	2.10		21.1	18.8	20.0		
4	15,75	2.15	2	21.5	21.1	19.1		
5				10				
6								
7								
8								
Total	S	7.9	0.0					
% of Weight 100			0					
Total weight	, wet, lb.	7.9	0	Average M	loisture, dry	19.83		
Total weight	, dry, kg	2.9	99	Average M	oisture, wet	16.54		

Date: 03/13/2012

Run 2

O

Ō

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION							
Project Number:	G100517524						
Manufacturer:							
Model:							
Sample ID Number:	MTL1111071416-001						
Test Date:	December 6 2011						
Test Run Number:	2						
Date tunnel cleaned:	12/1/2011						
Purpose of Test	Cat 2						

Appliance Information									
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic							
Firebox Volume, ft ³ :	1.219	N/A for pellet type							
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard							

Test Settings
Primary Air: Half opened at 3:45 min and abruptly closed at 5 minutes.
Secondary Air: Fixed
Control Board: N/A
Blower/Fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
Pre- Burn Activities
Activity
Time = 10:01AM
When the scale indicated 2.4 lbs, the Primary air was closed and the timer started
The coal bed was leveled for 30 seconds
Start-Up Procedure
g of fuel, sec. : Loaded by 50 seconds.
loading door : Ajar for 1:45 minutes
Primary air: Half opened at 3:45 min and abruptly closed at 5 minutes for the reminder of the test.
Secondary air: Fixed
Control board: N/A
Blower / fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
Other Notes

TEST DATA EPA METHOD 5G-3

Temperature Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
	MTL1111071416-001
Test Date:	December 6 2011
Test Run No:	

								emp Start			Max Filte Train A	er Temps Train B	ľ	
_							Firebox	Delta-T	22.9	1	67.39	68.56		
Interval		Dura	tion of Tes	st, Min	200									
Time						Te	mperature	Data						
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	87.91	90.96	213.7	341.7	419	367.1	375.9	384.9		67.3	68.12	64.59	64.28
1	10	84.92	81.74	184.3	310.4	399.4	335.3	329.9	335		67.3	68.12	64.64	64.19
2	20	83.84	81.56	201.1	343.4	373.8	311.2	299.5	299.4		67.3	68.12	64.89	64.31
3	30	85.49	82.57	223.7	401.7	347.7	316.9	294.5	289.1		67.3	68.12	64.88	64.31
4	40	86.34	85.23	263.3	489.3	327.4	306.2	323.3	306.4		67.3	68.12	64.77	64.33
5	50	87.37	85.18	271.1	546.5	311.3	311	355.8	339.2		67.23	68.15	64.79	64.33
6	60	89.32	85.51	276.7	568.3	299.1	317.8	376.6	356.8		67.2	68.3	64.78	64.38
7	70	81.41	89.15	268.4	566 .1	287.9	321.2	383.3	372.8		67.39	68.55	64.8	64.3
8	80	88.56	84	252	524.9	281.6	329.7	385.3	386.2		67.23	68.56	64.51	64.22
9	90	88.89	81.28	218.7	467.2	282	292.9	390.7	392.9		66.91	68.24	64.57	64.24
10	100	88.84	79.57	203.1	429.2	287.5	307.3	396.5	401.3		66.78	67.83	64.65	64.33
11	110	88.44	78.16	191.7	408	296.3	309.9	395.8	407.6		66.64	67.48	64.62	64.14
12	120	87.71	77.22	180.9	386.4	304.7	315.7	392.1	404.7		66.5	67.31	64.68	64.2
13	130	86.47	76.34	174.9	372.9	310.9	317.6	392.2	402,6		66.26	67.14	64.63	64.16
14	140	85.51	75.9	171.6	366.3	316.3	397.5	389	400.3		66.18	66.95	64.49	64.12
15	150	86.43	75.61	170.1	361.5	321	402.2	385.6	396.4		66.24	66.86	64.64	64.19
16	160	86.29	75.57	169.6	356.1	324.5	400.5	380.9	393.4		66.25	66.82	64.68	64.15
17	170	85.33	75.07	167.9	349.5	324.5	382.6	375	392.8		66.05	66.77	64.57	64.09
18	180	85.05	75.09	167.8	349	329	374.9	368.1	386.9		65.91	66.69	64.44	64.1
19	190	85.54	74.97	165.4	343.3	333	374.2	364.2	378.6		65.86	66.61	64.53	63.75
20	200	84.11	74.65	163.3	336	336.1	373.1	357.9	371.1		65.9	66.61	64.54	64.07

Test Engineer:_

 \bigcirc

Date: 02/13/2012

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL1111071416-001
Test Date:	December 6 2011
Test Run Number:	2

Baromete		RH, %	Sample	Box Corr	rection (y)	Factors		Leak Check	, cfm @ in Hg	1	Maximun	n Vacuum
Start	30.17	31		eter Box		1.014		Train A	Train B	1	Train A	Train B
End	30.12	31	M	eter Box	(B)	1.011		0.002@5	0.001@5	1	0.00	0.00
Durati	on of Test	Min	200									
							Particulate	Sampling Dat	a			
									Train A	Train B	Train A	Train B
	Tunnei	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, I
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.015	0.00	0.00	-0.038	7.95	7.95	778.176	929.634	99.95	99.95		
10	0.015	0.00	0.00	-0.035	7.55	0.40	779.208	930.529	100.80	100.52		
20	0.015	0.00	0.00	-0.045	6.96	0.59	780.242	931.421	100.93	100.14		
30	0.015	0.00	0.00	-0.048	6.13	0.83	781.265	932.302	99.96	99.00		
40	0.015	0.00	0.00	-0.055	5.25	0.88	782.285	933.197	99.93	100.82		
50	0.015	0.00	0.00	-0.055	4.36	0.89	783.304	934.128	99.82	104.87		
60	0.015	0.00	0.00	-0.055	3.58	0.78	784.324	935.008	99.95	99.14		
70	0.015	0,00	0.00	-0.055	2.86	0.72	785.345	935.848	100.38	94.97		
80	0.015	0.00	0.00	-0.050	2.32	0.54	786.367	936.717	100.01	97.80		
90	0.015	0,00	0.00	-0.045	1.93	0.39	787.389	937.610	99.85	100.24		
100	0.015	0.00	0.00	-0.040	1.63	0.30	788.407	938.510	99.23	100.85		
110	0.015	0.00	0.00	-0.038	1.38	0.25	789.429	939.392	99,50	98.74		
120	0.015	0.00	0.00	-0.035	1.20	0.18	790.446	940.266	98.92	97.75		
130	0.015	0.00	0.00	-0.035	1.05	0.15	791.469	941.143	99.43	98.01		
140	0.015	0.00	0.00	-0.035	0.92	0.13	792.490	942.044	99.22	100.66		
150	0.015	0.00	0,00	-0.033	0.73	0.19	793.523	943.024	100.33	109.44		
160	0.015	0.00	0.00	-0.030	0.56	0.17	794.558	943.938	100.51	102.07		
170	0.015	0.00	0,00	-0.030	0.40	0.16	795.600	944.825	101.17	99.02		
180	0.015	0.00	0.00	-0.030	0.28	0.12	796.630	945.704	100.03	98.13		
190	0.015	0.00	0.00	-0.030	0.12	0.16	797.654	946.583	99.42	98.19		
200	0.015	0.00	0.00	-0.030	0.00	0.12	798.680	947.466	99.58	98.54		

Test Engineer

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL111071416-001 Test Date: December 6 2011 Test Run Number: 2

Dry Burn	Dry Burn-Rate, kg/hr:							
Emission-Rate, g/hr:								
Adjusted Emission	h-Rate, g/hr :	5.42						
Duration of Test, Minutes	2	00						
Dry Gas Meter Standardization	Train A	Train B						
Dry Gas Meter Beginning Reading, ft ³	778.176	929.634						
Dry Gas Meter Ending Reading, ft ³	798.68	947.466						
Barometric Pressure Correction Factor	1.008	1.008						
Dry Gas Meter Calibration Factors (y factors)	1.014	1.011						
Dry Gas Meter Temperature Factors	1.006	1.007						
Dry Gas Meter Delta-H Correction Factors	1.000	1.000						
Dry Gas Meter STD Volume Sampled, ft ³	21.081	18.295						
Dillution Tunnel Flow / Volume								
Standardized Tunnel Flow, dscfm	131.534							
Total Tunnel Volume, scf	26306.844							
Emission Caclulations	Train A	Train B						
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1247.889	1437.893						
Sample Particulate Mass, mg	10.0	8.6						
Total Emissions, grams	12.479	12.366						
Emission-Rate, g/hr	3.74	3.71						
Adjusted Emission Rates, g/hr	5.44	5.40						
Deviation, %	0.38%							
Operating Parameters	Train A	Train B						
Max Filter Temperature, °F	67.39	Train B 68.56						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	67.39 0.002@5	68.56 0.001@5						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	67.39	68.56 0.001@5						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	67.39 0.002@5	68.56 0.001@5 88						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	67.39 0.002@5 22	68.56 0.001@5 88 9						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	67.39 0.002@5 22. 8 8	68.56 0.001@5 88 9 1						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	67.39 0.002@5 22. 8 8 7.9	68.56 0.001@5 88 9 1 95						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib, Dry-Basis Fuel Load Moisture Content, %	67.39 0.002@5 22. 8 8 7.9 7.9	68.56 0.001@5 88 9 1 95 97						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	67.39 0.002@5 22. 8 8 8 7.9 19. 16.	68.56 0.001@5 88 9 1 1 95 97 64						
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib, Dry-Basis Fuel Load Moisture Content, %	67.39 0.002@5 22. 8 8 7.9 7.9	68.56 0.001@5 88 9 1 9 5 97 64 1.90						

Intertek

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
	MTL1111071416-001
Test Date:	December 6 2011
Test Run Number:	

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 386.92

Final Coal Bed Wt, lb 1.96

Interval													
	ime				Tem	perature D	lata						
nterval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weigh Loss
0	0	78.68	168.7	400.5	536.1	454.9	544.2	525.8	555.3		0.001	10.65	8.69
1	10	86.87	160.1	587.2	791.7	465.8	519.5	464.4	484.6		-0.002	10.08	0.57
2	20	91.06	170.3	618.7	911.1	448	550.5	489.3	517.9		0.001	6.97	3.11
3	30	87.5	165.7	608.3	923.2	448.1	588.4	546.3	578.2		0.001	4.30	2.67
4	40	86.94	155.8	572.5	804	458.2	620.4	599.6	616.1		0.002	2.73	1.57
5	50	78.27	110.8	340.7	634.6	467.4	535.8	594.6	606.3		0.001	2.37	0.36
6	60	88.88	95.26	250.3	521	469.2	443	542.5	548.3		-0.003	2.26	0.11
7	70	81.39	93.73	219.3	460.9	464.1	456.5	495	499.2		0	2.18	0.08
8	80	79.17	89.87	199.6	417.6	449.8	410.9	450	457.1		0.002	2.09	0.09
9	90	88.07	83.23	184.4	390.6	437.1	369.6	416.6	426.4		0	2.03	0.06
10	100	87.79	81.21	175.7	367.6	425.2	351.2	390.5	400.1		-0.003	1.96	0.07
11													
12													
13							1						
14													-
15						-							1
16													
17													
18													
19			11										
20													
21													
22													
23													
24													-
25											-		
26													
27													
28													
29													
30													

Test Engineer:

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL1111071416-001 Test Date: December 6 2011 Test Run Number: 2

	Dilution	Tunnel	
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0125	87	0.1118
A2	0.0150	87	0.1225
A3	0.0125	87	0.1118
A4	0.0100	86	0.1000
A Center	0.0150	88	0.1225
B1	0.0125	87	0.1118
B2	0.0150	87	0.1225
B3	0.0125	87	0.1118
B4	0.0100	86	0.1000
B Center	0.0150	88	0.1225
Averages	0.013	87.08	0.1115

Tunnel Diameter	8.000	inches
Tunnel Static	-0.063	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9106	factor
Baro, Pressure	30.17	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	6.686	Ft/ Sec
Initial Flow	130.77	Ft3/min

Test Engineer:

Date: 03/13/2012

(,)

TEST FUEL DATA EPA METHOD 5G-3

Project Number: Manufacturer: Model;	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL1111071416-001
Test Date:	December 6 2011
Test Run Number:	MTL1111071416-001 December 6 2011 2

Calibration Reference ID	190)-463
Set meter to Species 1		-403
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

SBI-214		PRE-BURN FUEL PROPERTIES									
	Time:	8:30	Temp.,°F:	77							
Piece No. Length, In.		Moi	sture, %, Dry	y Basis							
16.00	1.70	20.2	19.5	20.4							
16.00	1.80	20.9	20.0	19.7							
16.00	1.85	21.2	21.2	20.9							
16.00	1.75	21.9	20.4	22.3							
9.00	0.95	21.0	20.2	21.0							
9.00	1.05	21.4	20.9	21.4							
9.00	0.95	20.6	20.3	20.2							
9.00	0.95	20.6	19.5	19.9							
Total Weight		Avera	ge, %db	20.7							
	In. 16.00 16.00 16.00 9.00 9.00 9.00 9.00 9.00 9.00	In. Lb. 16.00 1.70 16.00 1.80 16.00 1.85 16.00 1.75 9.00 0.95 9.00 1.05 9.00 0.95 9.00 0.95 9.00 0.95	In. Lb. IMOR 16.00 1.70 20.2 16.00 1.80 20.9 16.00 1.85 21.2 16.00 1.75 21.9 9.00 0.95 21.0 9.00 1.05 21.4 9.00 0.95 20.6 9.00 0.95 20.6 9.00 0.95 20.6 9.00 1.10 Avera	In. Lb. Moisture, %, Dry 16.00 1.70 20.2 19.5 16.00 1.80 20.9 20.0 16.00 1.85 21.2 21.2 16.00 1.85 21.2 21.2 16.00 1.75 21.9 20.4 9.00 0.95 21.0 20.2 9.00 1.05 21.4 20.9 9.00 0.95 20.6 20.3 9.00 0.95 20.6 19.5 9.00 0.95 20.6 19.5 9.00 1.10 Average, %db 11.0							

Allowable Fuel Load Range:

7.7 to 9.3

	T	EST FUE	L LOAD F	PROPERTIE	S	
Eq. ID No.:	SBI-214		Time:	9:45	Temp.,°F:	77
Piece No.	Length,	Weig	ht, Lb.	Moir		
Fiece No.	In.	2x4	4x4		sture, %, Dry E	basis
1	15.50	2.15		18.9	19.3	19.4
2	15.50	1.90		22.0	22.0	20.3
3	15.50	1.80		20.2	19.7	19.3
4	15.50	2.10	1	20.0	19.8	18.7
5						
6						
7						
8						
Total	S	8.0	0.0			///////////////////////////////////////
% of Weight		100	0			
Total weight, wet, lb.		7.95		Average N	19.97	
Total weight,	dry, kg	3.0	01	Average N	loisture, wet	16.64

Test Engineer:_____

Date: 03/13/2012

Run 3

(.)

 \bigcirc

 \bigcirc

0

Run Notes EPA Methods 28 and 5G-3

PROJECT / T	EST INFORMATION
Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	7-Dec-11
Test Run Number:	3
Date tunnel cleaned:	12/1/2011
Purpose of Test	Cat 1

Applia	nce Inform	ation
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic
Firebox Volume, ft ³ :	1.219	N/A for pellet type
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard

		Test Settings							
	Primary Air:	Closed.							
	Secondary Air:								
(Control Board:	N/A							
	Blower/Fan:	Off the first 30 minutes of the test and On-Low for the reminder of the test.							
		Pre- Burn Activities							
Time									
0	Time = 10:37. When the weight got to 2.4 lbs the timer was started and the primary air abruptly shut								
59	The Coal Be	ed was leveled for 30 seconds.							
	The blower v	was shut.							
		Start-Up Procedure							
_oading	of fuel, sec. :	Loaded by 60 seconds.							
Fuel-	loading door :	Closed after loading of fuel.							
	Primary air:	Fully open till 4:30 when it was half shut. Abruptly closed at 5 minutes.							
S	Secondary air:	Fixed							
C	Control board:	N/A							
	Blower / fan:	Off the first 30 minutes of the test and On-Low for the reminder of the test.							
		Other Notes							
one.									
_									

P

()

TEST DATA EPA METHOD 5G-3

Temperature Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	
Sample ID No:	MTL-111071416-001
Test Date:	7-Dec-11
Test Run No:	3

								emp Start				er Temps		
								Temp End	331.44		Train A	Train B		
		1				- I	Firebox	Delta-T	55.3		68.13	69.02		
Interval		Dura	tion of Tes	st, Min	210					9			~	
	lime						Te	mperature	Data					
		Dues	Dillution	Flue	Firebox	Firebox	Firebox	Firebox	Firebox	Catalyst	Train A	Train B	Train A	Train B
Interval		Room	Tunnel	Gas	Тор	Bottom	Back	Left	Right	Outlet	Filter	Filter	DGM	DGM
0	0	83.06	93.55	225.7	348.1	428.2	381.5	378	397.8		64.4	65.39	64.055	63.715
1	10	83.07	85.58	204.3	345.8	413.3	352.2	336.9	353.9		67.07	67.74	64.145	63.78
2	20	82.94	83.1	174.3	295.4	386.7	316.5	295.8	308.6	[]	67.22	68.27	64.195	63.805
3	30	83.09	85.5	223.7	398	354.9	313,5	287.3	293.1	ii	67.27	68.36	64.245	63.925
4	40	83.95	87.45	243	459.1	329.5	310	288.5	304.6		67.48	68.44	64.28	64.02
5	50	85.49	88.81	266.1	514.8	308.8	309	321.7	329.9		67.79	68.65	64.35	64.08
6	60	85.43	89.37	273.6	550.1	292.8	320.7	354.7	351.6		68.08	68.89	64.335	64.115
7	70	85.82	88.52	278.4	581	281.6	341.6	372.8	376.9	ll	68.13	68,92	64.34	64.16
8	80	86.21	87.58	271.7	580	274.5	347	383.7	393.8		67.99	68.99	64.41	64.27
9	90	86.86	87.35	263.1	581.6	272.9	348.7	388.1	399.3		67.87	69.02	64.49	64.37
10	100	87.2	85.65	227.2	491.5	278.7	311.8	395.9	411.7		67.77	68.75	64.51	64.345
11	110	87.58	85.12	201.6	431.7	291.6	323.5	395.8	412		67.85	68.59	64.57	64.415
12	120	86.91	83.59	189.7	400.6	304.6	321.8	394.5	405.2		67.51	68.45	64.645	64.445
13	130	86.3	82.6	182.8	382.2	315.7	310.5	390.8	398.2		67.33	68.24	64.605	64.375
14	140	85.49	81.82	178.6	370.1	324.2	323.1	386.1	392.9		67.24	68.14	64.625	64.4
15	150	85.13	81.63	175	358.9	330	327.2	380,9	387		67.17	68.14	64.715	64.49
16	160	85.42	81.75	173.1	352.7	332.2	310.7	374.3	381.4		67.09	68.11	64.67	64.5
17	170	84.99	81.89	170.9	345.9	332.8	317	370.3	379.4		66.97	67.93	64.69	64,485
18	180	85.19	81.3	168.6	339.7	333	310.3	364.4	378.6	5	67.12	67.96	64.715	64.54
19	190	83.73	79.94	166.3	331.3	335.1	311.1	360.6	371.6		67	67.95	64.76	64.52
20	200	82.8	79.6	164.9	324.5	336.2	306.9	357.4	361.5		66.98	67.83	64.715	64.495
21	210	83,17	80.3	163.8	318.7	334.7	299	353.5	351.3		67.05	67.76	64.78	64.535

Test Engineer:

Date: 03/13/2012

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	7-Dec-11
Test Run Number:	3

Baromete	Contraction of the local division of the loc	RH, %	Sample	Box Corr	rection (y)	Factors	1	Leak Check	, cfm @ in Hg	1	Maximun	Vacuum
Start	29.97	28		eter Box		1.014		Train A Train B			Train A	Train B
End	29.84	28	M	eter Box	(B)	1.011		0.002@5	0.002@5	1	0.00	0.00
Durati	on of Test	, Min	210				л́					
							Particulate	Sampling Date	a			_
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In	Vacuum, In
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.055	7.90	7.90	798.760	947.524	99.95	99.96	0.00	0.00
10	0.018	0.00	0.00	-0.043	7.33	0.57	799,925	948.720	99.71	106.18	0.00	0.00
20	0.018	0.00	0.00	-0.040	6.96	0.37	801.092	949.782	99.64	94.06	0.00	0.00
30	0.018	0.00	0.00	-0.050	6.26	0.70	802.234	950.807	99.10	92.25	0.00	0.00
40	0.018	0.00	0.00	-0.055	5.58	0.68	803.385	951.874	98.65	94.84	0.00	0.00
50	0.018	0.00	0.00	-0.055	4.76	0.82	804.535	953.000	100.08	101.62	0.00	0.00
60	0.018	0.00	0.00	-0.055	3.95	0.81	805.682	954.234	99.87	111.42	0.00	0.00
70	0.018	0.00	0.00	-0.055	3.13	0.82	806.839	955.406	100.66	105.73	0.00	0.00
80	0.018	0.00	0.00	-0.055	2.49	0.64	807.982	956.477	99.35	96.51	0.00	0,00
90	0.018	0,00	0.00	-0.050	1.93	0.56	809.126	957.550	99.40	96.66	0.00	0,00
100	0.018	0.00	0.00	-0.045	1.54	0.39	810.275	958.656	99.67	99.48	0.00	0,00
110	0.018	0.00	0.00	-0.040	1.41	0.13	811.431	959.835	100.22	105.98	0.00	0.00
120	0.018	0.00	0.00	-0.040	1.26	0.15	812.595	960.908	100.76	96.31	0.00	0.00
130	0.018	0.00	0.00	-0.035	1.08	0.18	813.763	962.042	101.02	101.71	0.00	0.00
140	0.018	0.00	0.00	-0.035	0.94	0.14	814.929	963.217	100.77	105.30	0.00	0.00
150	0.018	0.00	0.00	-0.035	0.82	0.12	816.092	964.352	100.47	101.68	0.00	0.00
160	0.018	0.00	0.00	-0.035	0.67	0.15	817.259	965.413	100.84	95.06	0.00	0.00
170	0.018	0.00	0.00	-0.032	0.54	0.13	818.410	966.481	99.47	95.70	0.00	0.00
180	0.018	0.00	0.00	-0.032	0.37	0.17	819.566	967.665	99.84	106.03	0.00	0.00
190	0.018	0.00	0.00	-0.032	0.24	0.13	820.728	968.741	100.22	96.24	0.00	0.00
200	0.018	0.00	0.00	-0.032	0.08	0.16	821.879	969.822	99.25	96.66	0.00	0.00
210	0.018	0.00	0.00	-0.032	0.00	0.08	823.038	970,936	99.99	99.67	0.00	0.00

Test Engineer:

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 7-Dec-11 Test Run Number: 3

Dry Burn-Rate, kg/hr: 0.86						
Emission-Rate, g/hr:						
Adjusted Emission	n-Rate, g/hr :	4.29				
Duration of Test, Minutes	2	10				
Dry Gas Meter Standardization	Train A	Train B				
Dry Gas Meter Beginning Reading, ft ³ Dry Gas Meter Ending Reading, ft ³	798.76 823.038	947.524 970.936				
Barometric Pressure Correction Factor Dry Gas Meter Calibration Factors (γ factors) Dry Gas Meter Temperature Factors Dry Gas Meter Delta-H Correction Factors	0.999 1.01 4 1.007 1.000	0.999 1.011 1.007 1.000				
Dry Gas Meter STD Volume Sampled, ft ³	24.769	23.825				
Dillution Tunnel Flow / Volume						
Standardized Tunnel Flow, dscfm	143	.323				
Total Tunnel Volume, scf	30097.808					
Emission Caclulations	Train A	Train B				
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1215.148	1263.281				
Sample Particulate Mass, mg	8.3	7.6				
Total Emissions, grams	10.086	9.601				
Emission-Rate, g/hr	2.88	2.74				
Adjusted Emission Rates, g/hr	4.38	4.21				
Deviation, %	2.0					
Operating Parameters	Train A	Train B				
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	68.13 0.002@5	69.02 0.002@5				
Average Firebox Surface Temperture delta-T, °F	55.	the second s				
Maximum Ambient Temperture, °F 88						
Mimimum Ambient Temperature, °F 83						
Fuel Properties						
Wet Fuel Load Weight, Ib. 7.90						
Dry-Basis Fuel Load Moisture Content, % 19.73						
Wet-Basis Fuel Load Moisture Content, %	16.					
Coal Bed Range, lb. Actual Coal Bed, Lb.	1.60 1.6	1.90 59				

Intertek

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
	MTL-111071416-001
Test Date:	7-Dec-11
Test Run Number:	3

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 391.42

Final Coal Bed Wt, lb 1.69

Т	ime		Temperature Data										
nterval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox	Catalyst Outlet	Flue	Fuel	Weig
0	0	88.84	157.8	601.9	719.3	502.4			Right	Outlet	Draft	Weight	Loss
1	10	94.77					514.4	457.1	467.7		0.001	10.21	8.52
2	20	86.96	166.1	643.4	875.4	475.8	509.6	469	498.7		-0.002	7.10	3.11
3	30		165.2	617.3	899.2	466.7	559.8	517.5	557.4		0.003	4.52	2.58
4	40	89.37 83.75	154.2	570.4	827.6	473.1	611.2	571.8	613.1		0.001	3.06	1.46
5	50	83.42	136.6 102	482.6	684.5	487.8	609.1	585.4	630.3		0	2.40	0.66
6	60	81.65	95	270.6	538	499.3	590	539.3	574.8		-0.001	2.37	0.03
7	70			225.8	467.9	485.8	508.9	489.2	517		0.001	2.31	0.06
8		80.82	90.74	205.7	423.5	463.4	474.4	448.7	469.9		-0.002	2.23	0.08
9	80 90	84.16	84.74	193.5	399	449	440.9	418.8	435.8		0.001	2.01	0.22
10	90	86.68	86.15	184	379.4	437.5	418.1	396.7	418		0	1.90	0.11
	100	82.82	114.3	232.8	352.4	429.3	395.4	379.7	400.3		0.001	1.69	0.21
11 12													
						1							(
13													
14													
15			<u> </u>										
16 17								l(
18													
												_	
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													1
29													
30													1

Test Engineer:

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 7-Dec-11 Test Run Number: 3

	Dilution	Tunnel	_
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0150	84	0.1225
A2	0.0175	84	0.1323
A3	0.0150	84	0.1225
A4	0.0125	84	0.1118
A Center	0.0175	84	0.1323
B1	0.0150	86	0.1225
B2	0.0175	86	0.1323
B3	0.0150	86	0.1225
B4	0.0125	85	0.1118
B Center	0.0175	86	0.1323
Averages	0.0155	84.98	0.1223

Tunnel Diameter	8.000	inches
Tunnel Static	-0.073	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9242	factor
Baro. Pressure	29.97	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.340	Ft/ Sec
Initial Flow	143.15	Ft3/min

Test Engineer:

Date: 03/13/2012

TEST FUEL DATA EPA METHOD 5G-3

Intertek

Project Number: Manufacturer:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	7-Dec-11
Test Run Number:	MTL-111071416-001 7-Dec-11 3
	the second se

Calibration Reference ID	100	400
Set meter to Species 1		-463
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

		URN FUE	L PROP	RTIES		1	
Eq. ID No.	SBI214	Time:	8:30	Temp.,°F	78	1	
Piece No.	Length, In.	Weight, Lb.	Мо	Moisture, %, Dry Basis			
1	9.00	0.80	21.2	21.3	20.4	1	
2	9.00	1.20	19.8	21.6	19.3	1	
3	9.00	1.20	20.3	20.8	19.5	1	
4	9.00	0.80	22.1	21.9	22.7	1	
5	16.00	2.10	21.3	20.2	20.3	1	
6	16.00	1.95	20.1	20.0	20.5	1	
7	16.00	1.45	21.7	21.2	21.5	1	
8	16.00	1.40	23.1	21.9	22.5	1	
9						1	
10						1	
11						1	
12							
Total We	eight	10.9	Avera	ge, %db	21.1		
Allowa	ble Fuel Lo	_		7.7	to	9.3	
		EST FUEL	LOAD F	ROPERTIE	S		
Eq. ID No.:			Time:		Temp.,°F:	78	
Piece No.	Length, In.	Weigh 2x4	it, Lb. 4x4	Moisture, %, Dry Bas			
1	15.38 2.15			18.9	19,4	18.8	
2	15.38	1.60		20.2	19.4	20.2	
3	15.38	2.15		20.2	21.2	20.2	
4	15.38	2.00		19.4	18.4	19.4	
5	10,00	2.00	_	13.4	10.4	15.4	

Piece No.	Length,	Weig	ht, Lb.	Maia	Moisture, %, Dry Basis				
	In,	2x4	4x4		sture, %, Dry E	sasis			
1	15.38	2.15	1	18.9	19.4	18.8			
2	15.38	1.60		20.2	19.7	20.2			
3	15.38	2.15		20.2	21.2	20,9			
4	15.38	2.00		19.4	18.4	19.4			
5									
6									
7									
8									
Total	s	7.9	0.0			///////////////////////////////////////			
% of We	ight	100	0						
Total weight,	wet, lb.	7.9	90	Average M	oisture, dry	19.73			
Total weight	, dry, kg	2.9	99	Average M	oisture, wet	16.48			

Date: 03/13/2012

Test Engineer:

and the second s								
PROJECT / TEST INFORMATION								
Project Number:	G100517524							
Manufacturer:								
Model:								
Sample ID Number:	MTL-111071416-001							
Test Date:	8-Dec-11							
Test Run Number:	4							
Date tunnel cleaned:	12/1/2011							
Purpose of Test	Cat 1							

Appliance Information									
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic							
Firebox Volume, ft ³ :	1.219	N/A for pellet type							
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard							

	Test Settings
	Primary Air: Closed.
S	Secondary Air: Fixed.
(Control Board: N/A
	Blower/Fan: Off for the first 30 minutes. On-Low for the reminder of the test.
	Pre- Burn Activities
Time 0 59	Activity Time=12:24; When the weight was 2.4 lbs the timer was started and the blower turned on-low position. The coal bed was leveled for 30 seconds.
	Start-Up Procedure
Fuel-	loading door : Ajar first 90 seconds
	Primary air: Open for the first 5 minutes then abruptly closed.
S	Secondary air: Fixed
C	Control board: N/A
	Blower / fan: Blower off the first 30 minutes and On-Low for the reminder of the test.
	Other Notes
lone.	

()

TEST DATA EPA METHOD 5G-3

Firebox Temp Start 380.98

Temperature Data

Max Filter Temps

G100517524
SBI
S244
MTL-111071416-001
8-Dec-11
4

							Firebox	Temp End	312.44		Train A	Train B		
							Firebox	Delta-T	68.5		68.57	69.34	1	
Interval		Dura	tion of Tes	st, Min	220		in							
T	ime	<u></u>					Te	mperature	Data					
				1										
		1	Dillution	Flue	Firebox	Firebox	Firebox	Firebox	Firebox	Catalyst	Train A	Train B	Train A	Train B
Interval	Duration	Room	Tunnel	Gas	Тор	Bottom	Back	Left	Right	Outlet	Filter	Filter	DGM	DGM
0	0	85.17	97.66	230.5	359.3	393.8	357.6	396.7	397.5		66.04	65.47	64.605	64.335
1	10	83.63	85.61	202	333.7	381.8	332.8	346,4	348.5		68.06	67.91	64.765	64.455
2	20	81.82	82.21	172.4	292.6	359.3	300	300.1	302.1		67.92	68.49	64.845	64.625
3	30	83.12	84.73	196.4	330.6	334.3	281.5	279.7	280		67.9	68.4	64.915	64.64
4	40	82.84	86.09	224.8	410.5	312.6	270.1	283.5	283.3		68.08	68.6	65.035	64.83
5	50	83.05	88.8	278.6	539.3	294.3	274.6	303.9	313.3		68.36	68.89	65.155	64.91
6	60	84.25	89.33	289.8	575.9	280	293.2	332.9	352.8	·	68.46	69.13	65.12	64.89
7	70	85.44	90.06	292.2	597.8	271.1	304.6	358.2	382.7		68.57	69.33	65.195	64.955
8	80	85.92	88.62	272.2	573.6	267.1	334.2	373.9	398.1		68.5	69.34	65.225	64.99
9	90	88.36	86.96	245.7	518.8	266.4	350.6	386.4	401.3		68.53	69.23	65.235	64.96
10	100	85.44	85.19	224.9	470.8	269.1	353.5	393.8	405.9		68.38	69.05	65.175	64.945
11	110	84.86	83.44	204.8	425.3	273.2	343.6	390.3	402		68.01	68.87	65.24	64.995
12	120	83.93	82.33	194.8	398.4	277.1	331.3	380.6	394.5		67.81	68.67	65.285	65.025
13	130	83.33	81.58	188.6	383.3	282	321.1	377.9	384.5		67.58	68.34	65.17	64.9
14	140	82.48	81.14	185.8	378	286.5	297.2	376.4	378.3		67.59	68.33	65.265	65.025
15	150	82.04	80,48	180.7	364	291.4	289.8	371.7	377.5		67.41	68.18	65.205	65.01
16	160	81.94	80.53	177.1	355.1	296.5	286.2	366.5	376.9		67.48	68.2	65.28	65.045
17	170	82.06	80.33	174.3	348.5	301.3	288.9	363.4	373.8		67.46	68.21	65.295	65,105
18	180	83.55	81.52	172.2	342.7	304.4	290.4	361.5	370.7		67.47	68.19	65.36	65.135
19	190	83.04	81.15	170.6	337.8	306.5	290.6	358.3	366.3		67.48	68.25	65.385	65.21
20	200	79.91	81.64	169.3	332.6	307.4	276.7	354.3	360		67.5	68.2	65.37	65.175
21	210	79.11	81.25	166.2	323.1	307.1	270.5	347.2	351.8		67.47	68.25	65.285	65.13
22	220	78.47	80.86	162.7	311.8	306.2	264.3	338.2	341.7		67.38	68.14	65.305	65.07

Test Engineer:

Date: 03/13/2012

0

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	8-Dec-11
Test Run Number:	4

Baromete		RH, %	% Sample Box Correction (y) Factors				1	Leak Check, cfm @ in Hg			Maximum Vacuum		
Start	29.75	36	M	eter Box ((A)	1.014		Train A	Train B		Train A	Train B	
End	29.95	35	M	eter Box ((B)	1.011	0.004@5 0.002@5			0.00	0.00		
Durati	on of Test	, Min	220										
							Particulate	Sampling Data	a				
									Train A	Train B	Train A	Train B	
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.	
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg	
0	0.020	0.00	0.00	-0.045	7.95	7.95	823.153	970.961	99.95	99.94	0.00	0.00	
10	0.020	0.00	0.00	-0.045	7.45	0.50	824.332	972.140	102.77	105.93	0.00	0.00	
20	0.020	0.00	0.00	-0.040	7.14	0.31	825.496	973.262	101.13	100.46	0.00	0.00	
30	0.020	0.00	0.00	-0.045	6.63	0.51	826.648	974.436	100.31	105.35	0.00	0.00	
40	0.020	0.00	0.00	-0.050	5.95	0.68	827.799	975.657	100.32	109.67	0.00	0.00	
50	0.020	0.00	0.00	-0.050	5.08	0.87	828.955	976.778	100.98	100.92	0.00	0.00	
60	0.020	0.00	0.00	-0.060	4.12	0.96	830.105	977.840	100.51	95.66	0.00	0.00	
70	0.020	0.00	0.00	-0.060	3.25	0.87	831.261	978.917	101.09	97.06	0.00	0.00	
80	0.020	0.00	0.00	-0.055	2.58	0.67	832.420	979.985	101.21	96.12	0.00	0.00	
90	0.020	0.00	0.00	-0.055	2.13	0.45	833.571	981.151	100.36	104.79	0.00	0.00	
100	0.020	0.00	0.00	-0.050	1.77	0.36	834.730	982.247	100.91	98.34	0.00	0.00	
110	0.020	0.00	0.00	-0.045	1.55	0.22	835.875	983.343	99.52	98.17	0.00	0.00	
120	0.020	0.00	0.00	-0.045	1.38	0.17	837.030	984.433	100.27	97.53	0.00	0.00	
130	0.020	0.00	0.00	-0.040	1.21	0.17	838.180	985.540	99.79	99.00	0.00	0.00	
140	0.020	0.00	0.00	-0.040	1.01	0.20	839.313	986.633	98.26	97.69	0.00	0.00	
150	0.020	0.00	0.00	-0.040	0.85	0.16	840.436	987.747	97.34	99.51	0.00	0.00	
160	0.020	0.00	0.00	-0.040	0.72	0.13	841.565	988.861	97.86	99.51	0.00	0.00	
170	0.020	0.00	0.00	-0.040	0.55	0.17	842.700	990.062	98.35	107.25	0.00	0.00	
180	0.020	0.00	0.00	-0.040	0.44	0.11	843.843	991.065	99.14	89.66	0.00	0.00	
190	0.020	0.00	0.00	-0.040	0.30	0.14	844.980	992.175	98.59	99.18	0.00	0.00	
200	0.020	0.00	0.00	-0.040	0.14	0.16	846.122	993.283	99.07	99.05	0.00	0.00	
210	0.020	0.00	0.00	-0.035	0.04	0.10	847.281	994.393	100.52	99.20	0.00	0.00	
220	0.020	0.00	0.00	-0.035	0.00	0.04	848.440	995.498	100.48	98.73	0.00	0.00	

Test Engineer.

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 8-Dec-11 Test Run Number: 4

Dry Burn-Rate, kg/hr: 0.8				
Emission-Rate, g/hr:				
Adjusted Emission	n-Rate, g/hr :	4.78		
Duration of Test, Minutes	22	20		
Dry Gas Meter Standardization	Train A	Train B		
Dry Gas Meter Beginning Reading, ft ³	823.153	970.961		
Dry Gas Meter Ending Reading, ft ³	848.44	995.498		
Barometric Pressure Correction Factor	0.998	0.998		
Dry Gas Meter Calibration Factors (y factors)	1.014	1.011		
Dry Gas Meter Temperature Factors	1.005	1.006		
Dry Gas Meter Delta-H Correction Factors	1.000	1.000		
Dry Gas Meter STD Volume Sampled, ft ³	25.719	24.894		
Dillution Tunnel Flow / Volume				
Standardized Tunnel Flow, dscfm	154.350			
Total Tunnel Volume, scf	33957.094			
Emission Caclulations	Train A	Train B		
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1320.297	1364.085		
Sample Particulate Mass, mg				
Sample Farticulate Mass, mg	8.7	8.8		
Total Emissions, grams	8.7 11.487	8.8 12.004		
Total Emissions, grams	11.487	12.004		
Total Emissions, grams Emission-Rate, g/hr	11.487 3.13	12.004 3.27 4.87		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters	11.487 3.13 4.70 Train A	12.004 3.27 4.87		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F	11.487 3.13 4.70 1.8 Train A 68.57	12.004 3.27 4.87 3% Train B 69.34		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	11.487 3.13 4.70 Train A	12.004 3.27 4.87 3% Train B		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	11.487 3.13 4.70 1.8 Train A 68.57	12.004 3.27 4.87 3% Train B 69.34 0.002@5		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68.	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68. 8 7	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8 8		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68. 8 7	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8 8		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68. 8 7	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8 8 8		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68. 8 7	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8 8 8		
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68. 8 7	12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8 8 8 95 53 34 1.90		

Intertek

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	8-Dec-11
Test Run Number:	4

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 396.5

Final Coal Bed Wt, Ib 1.68

Interval T	10 ime		_	_	Tem	perature D	ata				(<u> </u>
			Dilution		Firebox	Firebox	Firebox	Firebox	Firebox	Catalyst	Flue	Fuel	Weigl
nterval	Duration	Room	Tunnel	Flue Gas	Тор	Bottom	Back	Left	Right	Outlet	Draft	Weight	
0	0	83.37	138.6	553.3	686.1	333.3	351	336.4	337.6		0	10.17	8.49
1	10	83.03	157.3	620.6	849	322.5	421.4	406.5	416.9		0.001	7.58	2.59
2	20	85.42	162.1	635.2	908.1	341.2	510.9	490.8	504.8		-0.003	4.92	2.66
3	30	88.19	160.7	624.2	842.8	372.6	594.6	557.4	555.9		0	3.02	1.90
4	40	93.96	113.3	394.1	685.9	404.2	516.9	583.5	578.3		0.002	2.21	0.81
5	50	83.87	101.7	274.2	547	422	485	537.6	536.9		0.001	2.06	0.15
6	60	88.65	93.03	231.1	477.5	422.5	425.1	496.6	494.7		-0.002	1.96	0.10
7	70	89.68	89.14	209.3	434.8	416.3	435.7	462.7	463.2		-0.002	1.88	0.08
8	80	88.64	87.19	196.5	406.2	406.2	398.3	434.4	436.6		0	1.80	0.08
9	90	86.48	85.56	188.1	385	397.6	371.8	413.2	414.9		-0.003	1.68	0.12
10													
11													
12						l i							-
13													-
14													-
15													-
16													-
17												_	
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													

Test Engineer:

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 8-Dec-11 Test Run Number: 4

	Dilution	Dilution Tunnel			
	Delta P In. H2O	Temp,°F	Square Root		
A1	0.0150	88	0.1225		
A2	0.0175	87	0.1323		
A3	0.0150	87	0.1225		
A4	0.0125	87	0.1118		
A Center	0.0175	88	0.1323		
B1	0.0150	87	0.1225		
B2	0.0175	87	0.1323		
B3	0.0175	87	0.1323		
B4	0.0125	86	0.1118		
B Center	0.0175	87	0.1323		
Averages	0.01575	87	0.1235		

Tunnel Diameter	8.000	inches
Tunnel Static	-0.075	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9335	factor
Baro. Pressure	29.75	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal, For S-Type)
Initial Velocity	7.455	Ft/ Sec
Initial Flow	143.80	Ft3/min

Test Engineer:

13/2012 Date: 03

Project Number:	G100517524
Project Number: Manufacturer: Model:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	8-Dec-11
Test Run Number:	MTL-111071416-001 8-Dec-11 4
rest Run Number:	4

Intertek

Calibration Reference ID	180-463			
Set meter to Species 1		J-403		
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

	PRE-B	URN FUE	L PROPE	RTIES		1	
Eq. 1D No.:	SBI 214	Time:	8:30	Temp.,°F:	77		
Piece No.	Length, In.	Weight, Lb.	Мо	sture, %, Dry Basis			
1	9.00	0.85	19.4	19.3	20.5		
2	9.00	0.85	19.4	19.4	20.9		
3	9.00	1.20	21.7	21.2	21.4		
4	9.00	1.15	21.5	20.4	21.5		
5	16.00	1.50	20.0	19.5	21.0		
6	16.00	1.65	21.9	21.0	21.9		
7	16.00	2.10	21.9	20.9	21.9		
8	16.00	2.15	19.9	19.3	20.2		
9							
10							
11							
12							
Total We	eight	11.5	Avera	ige, %db	20.7		
Allowa	ble Fuel Lo	oad Range	:	7.7	to	9.3	
		EST FUEL	LOAD F	PROPERTIES	S		
Eq. ID No.:	SBI 214		Time:	9:30	Temp.,°F:	77	
Piece No.	Length,	Weigh	t, Lb. Mainture % Day			Basis	
TICCCINO,	ln.	2x4	4x4	Moisture, %, Dry			
1	15.38	1.70		19.5	18.7	18.9	
2	15.38	2.10		19.1	19.5	19.0	
3	15.38	2.00		20.3	21.2	20,0	
4	15.38	2.15		19.2	19.7	19.2	
5							
6							
7							
8							
Totals	6	8.0	0.0				
% of We	ight	100	0				
Total weight,	wet, lb.	7.9	5	Average Mo	oisture, dry	19.53	
Total weight, dry, kg		3.0	0	Average Mo	1	16.34	

Date: 03/13/2012


Test Engineer:_

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION		
Project Number:	G100517524	
Manufacturer:	SBI	
Model:		
Sample ID Number:	MTL-1111071416-001	
Test Date:	9-Dec-11	
Test Run Number:	5	
Date tunnel cleaned:	12/1/2011	
Purpose of Test	Cat 4	

Appliance Information				
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic		
Firebox Volume, ft ³ :	1.219	N/A for pellet type		
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard		

	Test Settings
	Primary Air: Fully open.
	Secondary Air: Fixed
C	Control Board: N/A
	Blower/Fan: Off the first 30 minutes and On-Low for the reminder of the test.
	Pre- Burn Activities
Time 0 65	Activity Time=9:51. The blower was on-Low position and the primary air fully open. The coal bed was leveled within seconds.
Loading	of fuel, sec. : Loaded by 42 seconds
	loading door : Closed immediately after the charge was loaded
	Primary air: Fully open.
S	Secondary air: Fixed
	Control board: N/A
	Blower / fan: Off the first 30 minutes and on-low for the reminder of the test.
	Other Notes
dditional elta T wa	leak cheks were done on both trains. The presented result is based only on the preliminary weighing. as over 125 degrees. Result = Run Null.

Test Engineer:_

Date: 03/13/2012

()

TEST DATA **EPA METHOD 5G-3**

Temperature Data

G100517524
SBI
S244
MTL-1111071416-001
9-Dec-11
5

1-1-1-1	10						Firebox	emp Start Femp End Delta-T			Max Filte Train A 79.31	er Temps Train B 80.11		
Interval		Dura	tion of Tes	st, Min	110					5/				
	ime						Te	mperature	Data					
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	72.9	139	452.2	586.6	474.8	491	529.8	565.6	0	65.5	65.52	63.98	63.795
1	10	82.72	166.3	681.4	885	483.2	497.4	505.6	577.6		78.01	77.99	64.275	64.095
2	20	85.7	169.9	700.6	923	469.1	527	524.3	601.1		79.31	80.11	64.56	64.365
3	30	87.41	154.1	600.1	877.9	462.2	583	562.3	629.4		76.57	76.31	64.645	64.46
4	40	87.9	132.8	475.4	671.2	464	528.9	585.7	608.1		73.28	74.44	64.755	64.565
5	50	85.95	123	418.6	564.6	464.8	523.4	558.5	563.3		72.96	75.28	64.85	64.715
6	60	88.58	114.6	384.8	512.4	463.9	519.6	525.9	531.8	-	73.11	75.21	64.985	64.825
7	70	86.73	110.3	353.5	464.9	456.6	504.9	494.3	499		72.16	74.41	65.035	64.93
8	80	85.43	105.1	326	420.2	440.5	461.6	459.5	461.6		71.62	73.41	65.04	64.945
9	90	85.8	99.89	299.7	379.3	419.4	416.8	425.1	424.1		70.83	72.47	65.025	64.95
10	100	87.64	98.57	279.8	346.1	397.2	380	393.8	391.2		70.21	71.88	64.885	64.755
11	110	86.05	96.81	263.1	320 .1	374.9	355.2	369.1	362.7		69.77	71.19	64.89	64.8

Test Engineer:_

Date: 03/13/2012

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	9-Dec-11
Test Run Number:	5

Baromete	er, In. Hg	RH, %	Sample	Box Corr	ection (y)	Factors		Leak Check	, cfm @ in Hg	1	Maximur	n Vacuum
Start	30.19	35	M	eter Box	(A)	1.014		Train A	Train B	1 1	Train A	Train B
End	30.15	35	M	eter Box	B)	1.011		.003@5	.002@5		0.00	0.00
Durati	on of Test	, Min	110							•)		
							Particulate	Sampling Dat	a			
			1						Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In
Time	Delta-P	Delta-H	Deita-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.090	7.90	7.90	848.501	995.521	99.44	99.62		
10	0.018	0.00	0.00	-0.100	5.46	2.44	849.588	996.705	108.48	116.91		
20	0.018	0.00	0.00	-0.100	3.16	2.30	850.643	997.798	105.53	108.18		
30	0.018	0.00	0.00	-0.095	1.50	1.66	851.617	998.878	96.18	105.52		
40	0.020	0.00	0.00	-0.085	0.98	0.52	852.673	999.944	95.82	95.70		
50	0.020	0.00	0.00	-0.085	0.74	0.24	853.771	1001.050	98.78	98.44		
60	0.020	0.00	0.00	-0.075	0.57	0.17	854.879	1002.189	98.93	100.62		
70	0.020	0,00	0.00	-0.075	0.39	0.18	855.987	1003.255	98.55	93.80		
80	0.020	0.00	0.00	-0.065	0.27	0.12	857.095	1004.337	98.10	94.77		
90	0.020	0.00	0.00	-0.065	0.17	0.10	858.205	1005.400	97.83	92.68		0
100	0.020	0.00	0.00	-0.060	0.09	0.08	859.315	1006.465	97.74	92.78		
110	0.020	0.00	0.00	-0.060	0.00	0.09	860.425	1007.573	97.58	96.36		

Test Engineer.

Date: 03/13/2012

()

Project Number:	G100517524
Manufacturer:	SBI
Model	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	9-Dec-11
Test Run Number:	5

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 199.114

Final Coal Bed Wt, lb 1.89

				Tem	perature D	ata					1	
Duration, Minutes	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weigh Loss
0	71.41	140.6	355.4	324.8	90.27	182.2	190.8	207.5			11.89	10.00
	74.25	114.1	401.8	419.9	165.2	226.5	232.5	264.4			10.29	1.60
	78.21	124.8	458.2	514.6	234.7	318.1	289.7	308.1			8.46	1.83
	83.74	135.4	549.2	645.4	297	326.1	355.8	364.2			6.50	1.96
	86.52	145.7	600.8	790.6	350.4	386.6	434.9	438.4			4.59	1.91
	82.55	149.8	596.6	846.1	399,9	522.3	514.4	515.6			2.82	1.77
	80.69	134.3	502.9	709.6	446.8	432.8	539.3	563			1.89	0.93
	_											
				-								

Test Engineer:

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 9-Dec-11 Test Run Number: 5

	Dilution		
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0150	136	0.1225
A2	0.0175	136	0.1323
A3	0.0150	136	0.1225
A4	0.0125	129	0.1118
A Center	0.0175	137	0.1323
B1	0.0150	135	0.1225
B2	0.0175	135	0.1323
B3	0.0150	136	0.1225
B4	0.0125	129	0.1118
B Center	0.0175	135	0.1323
Averages	0.0155	134.4	0.1223

Tunnel Diameter	8.000	inches
Tunnel Static	-0.085	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9242	factor
Baro. Pressure	30.19	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.638	Ft/ Sec
Initial Flow	137.57	Ft3/min

Test Engineer:

Date: 03/13/2012

TEST FUEL DATA EPA METHOD 5G-3

Project Number: Manufacturer: Model:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	9-Dec-11
Test Run Number:	MTL-1111071416-001 9-Dec-11 5

Firebox Volume, ft³ 1.219

Calibration Reference ID	19	180-463			
Set meter to Species 1	180-463				
Set Temperature to 70F	12%	12.0			
Set pin setting to 444	22%	22.0			

		URN FUE	L PROPE	RTIES		1	
Eq. ID No.:	SBI-214	Time:	8:15	Temp.,°F:	78	1	
Piece No. Length, In.		Weight, Mo Lb.		sture, %, Dŋ			
1	9.00	0.95	21.4	19.2	21.5		
2	9.00	0.95	22.0	18.0	22.1		
3	9.00	0.95	22.0	19.2	22.2		
4	9.00	1.20	23.3	21.9	22.0		
5	16.00	2.05	21.0	20.1	21.4		
6	16.00	1.75	22.5	18.8	22.2		
7	16.00	1.85	21.6	20.5	23.0		
8	16.00	1.80	23.8	26.3	23.8		
9			· · · · · · · · · · · · · · · · · · ·				
10							
11							
12							
Total We	eight	11.5	Avera	age, %db 21.7			
Allowa	ble Fuel Lo	oad Range);	8.5	to	9.3	
Allowa				8.5 ROPERTIES		9.3	
Allowa Eq. ID No.:	Т					9.3	
Eq. ID No.:	Т		LOAD P	PROPERTIES 9:00	5 Temp.,°F:	78	
	T SBI-214	EST FUEL	LOAD P	PROPERTIES 9:00	S	78	
Eq. ID No.:	T SBI-214 Length,	EST FUEL Weigh	LOAD P Time: it, Lb.	PROPERTIES 9:00	5 Temp.,°F:	78	
Eq. ID No.: Piece No.	T SBI-214 Length, In.	EST FUEL Weigh 2x4	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist	S Temp.,°F: ure, %, Dry	78 Basis	
Eq. ID No.: Piece No. 1	T SBI-214 Length, In. 15.50	EST FUEL Weigh 2x4 1.85	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2	5 Temp.,°F: ure, %, Dry 1 9. 1	78 Basis 19.5	
Eq. ID No.: Piece No. 1 2	T SBI-214 Length, In. 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2 19.7	S Temp.,°F: ure, %, Dry 19.1 20.0	78 Basis 19.5 19.3	
Eq. ID No.: Piece No. 1 2 3	T SBI-214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4	78 Basis 19.5 19.3 19.2	
Eq. ID No.: Piece No. 1 2 3 4	T SBI-214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4	78 Basis 19.5 19.3 19.2	
Eq. ID No.: Piece No. 1 2 3 4 5	T SBI-214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4	78 Basis 19.5 19.3 19.2	
Eq. ID No.: Piece No. 1 2 3 4 5 6	T SBI-214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4	78 Basis 19.5 19.3 19.2	
Eq. ID No.: Piece No. 1 2 3 4 5 6 7	T SBI-214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20	LOAD P Time: it, Lb.	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4	78 Basis 19.5 19.3 19.2	
Eq. ID No.: Piece No. 1 2 3 4 5 6 7 8	T SBI-214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20 1.85	LOAD P Time: it, Lb. 4x4	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4	78 Basis 19.5 19.3 19.2	
Eq. ID No.: Piece No. 1 2 3 4 5 6 7 8 8 Totals	T SBI-214 Length, In. 15.50 15.50 15.50 15.50	EST FUEL Weigh 2x4 1.85 2.00 2.20 1.85 7.9	- LOAD P Time: it, Lb. 4x4 0.0	PROPERTIES 9:00 Moist 19.2 19.7 20.3	S Temp.,°F: ure, %, Dry 19.1 20.0 19.4 19.4	78 Basis 19.5 19.3 19.2	

3.00

Average Moisture, wet

16.31

Date: 03/13/2012

Total weight, dry, kg

Run 6

0

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION							
Project Number:	G100517524						
Manufacturer:	SBI						
Model:							
Sample ID Number:	MTL-1111071416-001						
Test Date:	12-Dec-11						
Test Run Number:	6						
Date tunnel cleaned:	12/1/2011						
Purpose of Test	Cat 4						

Appliance Information							
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic					
Firebox Volume, ft ³ :	1.219	N/A for pellet type					
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard					

		Test Settings
	Primary Air:	Fully open
	econdary Air:	
C	Control Board:	
	Blower/Fan:	Off the first 30 minutes and on-low for the reminder of the test.
		Pre- Burn Activities
Time	Activity	
0		The blower was set on-low and the timewatch started.
42	The coal be	was stirred within 30 seconds.
62	The coal be	d was leveled.
	0 <u></u>	
		Start-Up Procedure
		Loaded by 45 seconds
Fuel-le		Ajar for 90 seconds.
	Primary air:	
	econdary air:	
С	ontrol board:	
	Blower / fan:	Off the first 30 minutes and on-low for the reminder of the test.
		Other Notes
	577240	
The data a	acquisition sys	tem was started only after 30 minutes into the preburn.
At the end	of the run, ad	ditional leack checks were performed on system 1.

TEST DATA EPA METHOD 5G-3

Temperature Data

Max Filter Temps

G100517524
SBI
S244
MTL-1111071416-001
12-Dec-11
6

							Firebox	Temp End	369.14		Train A	Train B		
							Firebox	Delta-T	113.6	1	75.75	75.7		
Interval	10	Dura	tion of Tes	st, Min	110					-				
1	ime						Te	mperature	Data					
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	65.93	124.5	354.7	465.3	459	470.9	507.1	511.4		64.450	63.940	62.910	62.715
1	10	81	138.5	555.7	710.7	445.9	427.7	453.2	465.3		72.360	71.650	63.260	63.09
2	20	80.58	151.7	619.4	848.4	425.3	479.4	457.4	498.8		75.390	75.140	63.440	63.25
3	30	86,52	155.7	636,5	915.3	416	522.2	496.5	559.7		75.750	75.620	63.850	63.585
4	40	85.24	138.2	511.6	723.8	417.3	462	537.8	593.2		73.310	74.110	64.155	63.915
5	50	87.79	125.4	443.6	599.8	418.4	423.7	537.9	578.4		74.160	75.700	64.325	64.085
6	60	91.75	114.1	396.5	527.3	421.7	439.2	525.6	543.7		72.990	75.380	64.500	64.335
7	70	85.65	116	372.9	486.6	420.7	424.1	500.9	513.4		72.540	74.270	64.595	64.465
8	80	87.92	111.1	347.9	450.6	417.2	427.8	477.9	484.5		71.670	73.650	64.730	64.585
9	90	88.53	100.6	320.1	409.8	408	421.5	447.6	448.1		71.000	72.890	64.740	64.585
10	100	87.7	96.51	295.4	372	394.2	404.5	416.1	413.5		70.270	71.990	64.780	64.64
11	110	80.51	94.72	271.5	336.9	376,5	365,9	384.4	382		69.650	71.030	64.725	64.615

Firebox Temp Start 482.74

Test Engineer:_

Date: 03/13/2012

()

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	12-Dec-11
Test Run Number:	6

Baromete	er, In. Hg	RH, %	Sample	Box Corr	ection (y)	Factors		Leak Check,	, cfm @ in Hg		Maximun	n Vacuum
Start	30.42	39	M	eter Box (A)	1.014		Train A	Train B		Train A	Train B
End	30.40	38	M	eter Box (B)	1.011		0.06@5	0.015@5	1	0.00	0.00
Durati	on of Test	Min	110									
							Particulate	Sampling Data	a			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.095	8.05	8.05	860.457	7.595	99.77	99.86	0.00	0.00
10	0.018	0.00	0.00	-0.090	6.32	1.73	861.554	8.780	106.39	109.89	0.00	0.00
20	0.018	0.00	0.00	-0.095	4.30	2.02	862.610	9.898	103.50	104.78	0.00	0.00
30	0.018	0.00	0.00	-0.095	2.37	1.93	863.633	10.988	100.51	102.43	0.00	0.00
40	0.018	0.00	0.00	-0.085	1.41	0.96	864.648	12.073	98.24	100.43	0.00	0.00
50	0.018	0.00	0.00	-0.080	1.03	0.38	865.691	13.229	99.83	105.82	0.00	0.00
60	0.020	0.00	0.00	-0.075	0.77	0.26	866.765	14.253	95.20	86.79	0.00	0.00
70	0.020	0.00	0.00	-0.070	0.59	0.18	867.844	15.421	95.78	99.13	0.00	0.00
80	0.018	0.00	0.00	-0.065	0.43	0.16	868.924	16.492	102.03	96.74	0.00	0.00
90	0.018	0.00	0.00	-0.065	0.26	0.17	870.026	17.640	103.14	102.74	0.00	0.00
100	0.020	0.00	0.00	-0.060	0.11	0.15	871.132	18.773	96.47	94.49	0.00	0.00
110	0.020	0.00	0.00	-0.055	0.00	0.11	872.239	19.916	96.41	95.18	0.00	0.00

Test Engineer:

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 12-Dec-11 Test Run Number: 6

Dry Burn-Rate, kg/hr:						
Emission-Rate, g/hr:						
Adjusted Emission	n-Rate, g/hr :	3.15				
Duration of Test, Minutes	1	10				
Dry Gas Meter Standardization	Train A	Train B				
Dry Gas Meter Beginning Reading, ft ³ Dry Gas Meter Ending Reading, ft ³	860.457 872.239	7.595 19.916				
	072.239	19.910				
Barometric Pressure Correction Factor	1.016	1.016				
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011				
Dry Gas Meter Temperature Factors	1.007	1.008				
Dry Gas Meter Delta-H Correction Factors	1.000	1.000				
Dry Gas Meter STD Volume Sampled, ft ³	12.230	12.756				
Dillution Tunnel Flow / Volume						
Standardized Tunnel Flow, dscfm	144	.203				
Total Tunnel Volume, scf	15862.368					
Emission Caclulations	Train A	Train B				
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1296.964	1243.483				
Sample Particulate Mass, mg	2.5	3.1				
	2.5	÷.,				
Total Emissions, grams	2.5 3.242	3.855				
Total Emissions, grams		3.855				
Total Emissions, grams Emission-Rate, g/hr	3.242	•••				
Total Emissions, grams	3.242 1.77	3.855 2.10 3.37				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr	3.242 1.77 2.92	3.855 2.10 3.37				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F	3.242 1.77 2.92 7.1	3.855 2.10 3.37 7%				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters	3.242 1.77 2.92 7.1 Train A	3.855 2.10 3.37 7% Train B				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	3.242 1.77 2.92 7.1 Train A 75.75	3.855 2.10 3.37 7% Train B 75.7 0.015@5				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5 11:	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6 2				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Fuel Properties	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5 111 9	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6 2				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5 111 9 6	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6 2 6				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5 11: 9 6	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6 2 6				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5 111 9 6	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6 2 6 2 58 37				
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	3.242 1.77 2.92 7.1 Train A 75.75 0.06@5 11: 9 6 	3.855 2.10 3.37 7% Train B 75.7 0.015@5 3.6 2 6 58 37 2.00				

 Project Number:
 G100517524

 Manufacturer:
 SBI

 Model:
 S244

 Sample ID Number:
 MTL-1111071416-001

 Test Date:
 12-Dec-11

 Test Run Number:
 6

Intertek

EPA Method 28 Pre Burn Data

Coal Bed Range 1.7 to 2.0

Average Firebox Temp, °F

Final Coal Bed Wt, lb 1.59

Interval	10												
Time					Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0												-1.59
1													
2													
3	30	75.4	151.5	625.3	893.3	336	472.5	501.2	544.9		0.001	4.04	-4.04
4	40	72.44	4139.7	593.6	851.5	404.8	510.2	562.2	601.5		0.001	2.28	1.76
5	50	70.79	122.1	451.5	628.1	454.1	565.6	571.6	580.7		0.001	1.75	0.53
6	60	64.87	113.2	386.8	504.9	457.5	500.9	515.8	521.1		0	1.59	0.16
7													
8													
9											<u></u>		
10				l									
11													1
12													
13	- i												-
14		1											
15													
16													-
17													1
18									·				
19					*								
20													
21													
22													
23													
24													
25													
26													0
27													
28													
29									·			-	
30													

Test Engineer:

Date: 03/13/2012

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 12-Dec-11 Test Run Number: 6

	Dilutior		
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0175	131	0.1323
A2	0.0200	129	0.1414
A3	0.0175	129	0.1323
A4	0.0150	122	0.1225
A Center	0.0200	132	0.1414
B1	0.0175	130	0.1323
B2	0.0200	130	0.1414
B3	0.0175	129	0.1323
B4	0.0150	122	0.1225
B Center	0.0200	131	0.1414
Averages	0.018	128.42	0.1321

Tunnel Diameter	8.000	inches
Tunnel Static	-0.095	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9342	factor
Baro. Pressure	30.42	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	8.181	Ft/ Sec
Initial Flow	149.99	Ft3/min

Test Engineer:

Date: 03/13/2012

TEST FUEL DATA EPA METHOD 5G-3

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	12-Dec-11
Test Run Number:	G100517524 SBI S244 MTL-1111071416-001 12-Dec-11 6
	d

Calibration Reference ID	1.9	180-463					
Set meter to Species 1		100-403					
Set Temperature to 70F	12%	12.0					
Set pin setting to 444	22%	22.0					

	PRE-B	URN FUE	L PROPI	ERTIES		1	
Eq. ID No.		Time:	8:30	Temp.,°F:		1	
Piece No.	Length, In	Weight, Mo		isture, %, Dr	1		
1	9.00	0.95	19.9	18.9	20.3	1	
2	9.00	1.00	21.7	18.9	20.6	1	
3	9.00	1.10	22.7	21.4	22.1	1	
4	9.00	1.00	22.6	22.1	22.0	1	
5	16.00	1.75	20.9	18.8	21.5	1	
6	16.00	1.80	21.7	19.9	21.9	1	
7	16.00	1.95	21.5	20.4	21.5	1	
8	16.00	2.05	21.0	19.3	20.3	1	
9						1	
10						1	
11						1	
12						1	
Total We	eight	11.6	Avera	age, %db	20.9		
Allowa	ble Fuel Lo	ad Range	:	7.7	to	9.3	
	T	EST FUEL	LOAD	PROPERTIES	3		
Eq. ID No.:			Time:	8:45	Temp.,°F:		
Piece No.	Length,	Weigh	t, Lb.	Maint	Desis		
T ICCO NO.	In.	2x4	4x4	Moisture, %, Dry		Basis	
1	15.50	1.80		18.9	19.2	18.9	
2	15.50	2.20		20.2	20.2	19.7	
3	15.50	2.05		20.1	19.8	20.0	
4	15.50	2.00		19.4	19.2	19.3	
5							
6							
7							
8							
Totals	3	8.1	0.0				
				(//////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////	
% of We	ight	100	0				
% of We Total weight,		100 8.0		Average Mo	oisture, dry	19.58	

Date: 03/13/2012

Run 7

0

Run Notes EPA Methods 28 and 5G-3

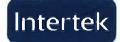
PROJECT / T	PROJECT / TEST INFORMATION							
Project Number:	G100517524							
Manufacturer:								
Model:	S244							
Sample ID Number:	MTL-1111071416-001							
Test Date:	13-Dec-11							
Test Run Number:	7							
Date tunnel cleaned:	12/1/2011							
Purpose of Test	Cat. 4							

Applia	Appliance Information									
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic								
Firebox Volume, ft ³ :	1.219	N/A for pellet type								
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard								

		Test Settings
	Primary Air:	Fully Open.
S	econdary Air:	Fixed
C	Control Board:	N/A
	Blower/Fan:	Off the first 30 minutes and on-low for the reminder of the test run.
		Pre- Burn Activities
Time	Activity	
0	Time=11:42.	At this time the blower was set on and on the low position for all duration of the preburn.
42		d was stirred within 20 seconds
64	The coal bec	was leveled for 30 seconds and the door closed.
		Start-Up Procedure
Loading	of fuel, sec. :	Loaded by 60 seconds.
Fuel-	oading door :	Ajar for 90 seconds.
	Primary air:	Fully Open
S	econdary air:	Fixed
C	Control board:	N/A
	Blower / fan:	Off the first 30 minutes and on-low for the reminder of the test run.
		Other Notes
he data a	acquisition sys	tem was started at the same time as the preburn but didn't aquire data the first 10 minutes.

)

0


TEST DATA EPA METHOD 5G-3

Temperature Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID No:	MTL-1111071416-001
Test Date:	13-Dec-11
Test Run No:	7

Interval	10	Dura	tion of Tor	t Min	100		Firebox 1	emp Start emp End Delta-T	476.52 391.3 85.2		Max Filte Train A 76.87	ar Temps Train B 78.61		
	ime	Dura	Duration of Test, Min 100 Temperature Data											
								Inperature	Data					
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	73.68	129.7	375.8	477.4	457.1	422.2	510.9	515	1	66.09	65.72	64.8	64.72
1	10	86.1	140.9	562.5	719.2	446.1	663.6	452.5	480.9		73.28	73.07	64.95	64.845
2	20	86.27	159.2	653.8	893.5	428.2	565.8	456.1	508.9		76.86	77.32	65.2	65.06
3	30	87.71	158.1	638.1	884.3	421.3	491.6	488.1	563.5		76.87	78.27	65.405	65.235
4	40	82.36	137.3	524.9	727.1	422.1	477.4	543.8	588.2		76.7	78.45	65.5	65.36
5	50	87.36	127.8	453.2	615.3	428	471.3	559	578.4		75.64	78.61	65.665	65,455
6	60	88.07	118.3	408.1	541.4	432.6	444.6	539	541.9		74,35	77.65	65.805	65.575
7	70	88.48	113.9	375.8	491.6	428.9	424.4	509.9	508.9		73.95	76.76	65.845	65.655
8	80	81.34	107.4	345	447.6	423.5	409	479.6	474.3		72.79	75.84	66.01	65.76
9	90	89.26	98.38	317	403.6	414.9	375.7	448.8	439.1		72.09	74.84	66.07	65.89
10	100	82.6	100.9	292.3	363.2	401.8	372.4	413.5	405.6		71.46	73.83	66.015	65.87

Test Engineer:_

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	13-Dec-11
Test Run Number:	7

Baromete	er, In. Hg	RH, %	% Sample Box Cor		ection (y)	Factors		Leak Check, cfm @ in Hg			Maximum	1 Vacuum
Start	30.36	28	Me	eter Box (A)	1.014	Train A Train B			Train A	Train B	
End	30.34	28	Me	eter Box (B)	1.011		0.001@5 0.002@5			0.00	0.00
Durat	ion of Test	Min	100				() ()			8		
	1						Particulate	Sampling Data	a			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.020	0.00	0.00	-0.080	7.95	7.95	872.322	19.937	99.99	100.05	0.00	0.00
10	0.020	0.00	0.00	-0.095	6.23	1.72	873.432	21.110	99.70	101.41	0.00	0.00
20	0.018	0.00	0.00	-0.100	4.19	2.04	874.516	22.255	104.14	105.87	0.00	0.00
30	0.018	0.00	0.00	-0.110	2.32	1.87	875.577	23.388	101.80	104.64	0.00	0.00
40	0.020	0.00	0.00	-0.090	1.41	0.91	876.647	24.582	95.72	102.81	0.00	0.00
50	0.020	0.00	0.00	-0.085	0.93	0.48	877.748	25.717	97.68	96.93	0.00	0.00
60	0.020	0.00	0.00	-0.080	0.64	0.29	878.870	26.822	98.71	93.58	0.00	0.00
70	0.020	0.00	0.00	-0.070	0.49	0.15	879.996	28.030	98.67	101.90	0.00	0.00
80	0.020	0.00	0.00	-0.065	0.21	0.28	881.163	29.151	101.65	94.01	0.00	0.00
90	0.020	0.00	0.00	-0.065	0.05	0.16	882.324	30.348	100.31	99.56	0.00	0.00
100	0.020	0.00	0.00	-0.065	0.00	0.05	883.496	31.545	101.50	99.78	0.00	0.00

Test Engineer:

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 13-Dec-11 Test Run Number: 7

Dry Burn-Rate, kg/hr:									
Emission-Rate, g/hr:									
Adjusted Emission-Rate, g/hr :									
Duration of Test, Minutes	1(00							
Dry Gas Meter Standardization	Train A	Train B							
Dry Gas Meter Beginning Reading, ft ³	872.322	19.937							
Dry Gas Meter Ending Reading, ft ³	883.496	31,545							
Barometric Pressure Correction Factor	1.014	1.014							
Dry Gas Meter Calibration Factors (y factors)	1.014	1.011							
Dry Gas Meter Temperature Factors	1.005	1.005							
Dry Gas Meter Delta-H Correction Factors	1.000	1.000							
Dry Gas Meter STD Volume Sampled, ft ³	11.546	11.963							
Dillution Tunnel Flow / Volume									
Standardized Tunnel Flow, dscfm	149	.966							
Total Tunnel Volume, scf	1499	6.551							
Emission Caclulations	Train A	Train B							
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	Train A 1298.805	1253.556							
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1298.805	1253.556							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams	1298.805 4.1	1253.556 4.3							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg	1298.805 4.1 5.325	1253.556 4.3 5.390							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr	1298.805 4.1 5.325 3.20	1253.556 4.3 5.390 3.23 4.82							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, %	1298.805 4.1 5.325 3.20 4.77 0.5 Train A	1253.556 4.3 5.390 3.23 4.82 0% Train B							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, %	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 85	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Fuel Properties	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 8 7	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22 9 4							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 85 87 7.	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22 99 4							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 85 87 7. 19	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22 99 4							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 85 8 7 7. 19 16	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22 99 4 95 .58 .37							
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	1298.805 4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 8 7 19 16 1.60	1253.556 4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 .22 99 4							

Intertek

Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	13-Dec-11
Test Run Number:	7

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, *F 519.72

Final Coal Bed Wt, Ib 1.75 Г

Interval													
Т	ime	e Temperature Data											
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weigh Loss
0	0									J		12.10	10.35
1	10	76.45	142.9	582.1	714.8	168.5	239.4	291.1	320.3		0	9.94	2.16
2	20	80.15	152	627	826.2	252.5	364.4	380.6	419.6		-0.002	7.29	2.65
3	30	80.55	159.3	656.9	923.1	330.4	448	463.2	517.9		-0.002	4.62	2.67
4	40	87.3	152.5	612.8	893.4	394.5	432.7	533.9	599.3		-0.003	2.68	1.94
5	50	76.24	131.6	484.9	675.6	446.5	436.8	569.4	601.1		0.003	1.95	0.73
6	60	78.43	118.9	414.4	545.8	460.3	509.3	538.4	544.8		-0.001	1.75	0.20
7											1		
8													
9				[]									
10													
11													
12													
13													
14						i							
15	· · · · · · · · · · · · · · · · · · ·												
16						l]							
17													
18													
19													
20													
21													
22													
23													4
24													
25							ļļ	ļ					
26													
27													
28													
29													
30		1											

Test Engineer:

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-1111071416-001 Test Date: 13-Dec-11 Test Run Number: 7

	Dilution		
	Delta P In. H2O		Square Root
A1	0.0175	155	0.1323
A2	0.0175	155	0.1323
A3	0.0150	155	0.1225
A4	0.0125	147	0.1118
A Center	0.0175	157	0.1323
B1	0.0175	156	0.1323
B2	0.0175	155	0.1323
B3	0.0150	155	0.1225
B4	0.0125	150	0.1118
B Center	0.0175	157	0.1323
Averages	0.016	154.2	0.1247

Tunnel Diameter	8.000	inches
Tunnel Static	-0.093	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9427	factor
Baro. Pressure	30.36	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.897	Ft/ Sec
Initial Flow	138.45	Ft3/min

Test Engineer:

Date: 03/13/2012

TEST FUEL DATA EPA METHOD 5G-3

Project Number: Manufacturer: Model:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-1111071416-001
Test Date:	13-Dec-11
Test Run Number:	MTL-1111071416-001 13-Dec-11 7

Calibration Reference ID	180	-463
Set meter to Species 1		-405
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

	PRE-BURN FUEL PROPERTIES								
Eq. ID No.:		Time:	8:30		1				
Piece No.	Length, In.	Weight, Lb.	Moi	sture, %, Dr	y Basis				
1	9.00	1.00	20.6	19.3	21.5	1			
2	9.00	1.00	21.0	19.3	21.2	1			
3	9.00	1.00	21.4	21.1	21.2	1			
4	9.00	1.00	20.9	19.5	21.0	1			
5	17.00	1.95	21.7	19.7	21.4	1			
6	17.00	2.00	21.9	20.3	22.3	1			
7	17.00	2.05	22.1	21.2	22.2]			
8	17.00	2.05	22.3	19.7	22.0	1			
9			1000		J]			
10]			
11						1			
12						1			
Total We	eight	12.1	Avera	ige, %db	21.0	1			
Allowable Fuel Load Range: 7.7 to 9.									
	Т	EST FUEI	L LOAD F	PROPERTIE	S				
Eq. ID No.;			Time:	9:10	Temp.,°F:				
Piece No.	Length, In.	Weigh 2x4	Weight, Lb. 2x4 4x4		ture, %, Dry	Basi			
1	15.50	2.00		20.3	20.0				

Piece No.	Longin	Troigitt, Eb.		Moisture, %, Dry Basis				
These No.	In.	2x4	4x4		(GIG, 70, DIY	Dasis		
1	15.50	2.00		20.3	20.0	18.8		
2	15.50	2.15		19.7	19.3	19.9		
3	15.50	1.95		19.8	19.5	19.5		
4	15.50	1.85		19.2	19.9	19.0		
5								
6								
7								
8								
Total	s	8.0	0.0					
% of Weight		100	0					
Total weight	, wet, lb.	7.95		Average Moisture, dry		19.58		
Total weight	, dry, kg	3.02		Average M	16.37			

Test Engineer:_

Date: 03/13/2012

Run 8

 \bigcirc

 \odot

 \bigcirc

 \bigcirc

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION				
Project Number:	G100517524			
Manufacturer:	SBI			
Model:	S244			
Sample ID Number:	MTL-111071416-001			
Test Date:	14-Dec-11			
Test Run Number:	8 - Fan Confirmation			
Date tunnel cleaned:	12/1/2011			
Purpose of Test	Fan Confirmation			

Applia	nce Inform	ation
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic
Firebox Volume, ft ³ :	1.219	N/A for pellet type
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard

		Test Settings				
	Primary Air:					
S	econdary Air:					
	control Board:					
	Blower/Fan:	Off				
		Pre- Burn Activities				
Time	Activity					
0	Time=10:34	. The Primary air was shut when the weight was 2.65 lbs. The timer was started at the same				
	time. The b	lower was unplugged the whole day.				
59	The seed he	ed was leveled for 30 seconds.				
29	The coad be	a was leveled for 30 seconds.				
		Start-Up Procedure				
Loading	of fuel, sec. :	Loaded by 60 seconds.				
Fuel-le	Fuel-loading door : Ajar for 90 seconds.					
	Primary air:	Closed				
S	econdary air:	Fixed				
С	control board:	N/A				
	Blower / fan:	Off				
		Other Notes				
None						
_						

 \bigcirc

TEST DATA EPA METHOD 5G-3

Temperature Data

Max Filter Temps

ě,

G100517524	٦
SBI	
S244	1
MTL-111071416-001	
14-Dec-11	
8 - Fan Confirmation	
	G100517524 SBI S244 MTL-111071416-001 14-Dec-11 8 - Fan Confirmation

							Firebox 1	Temp End	356.22		Train A	Train B		
						1	Firebox	Delta-T	28.0	1 1	70.84	72	1	
Interval	10	Dura	tion of Tes	st, Min	160									
Ŧ	ïme						Te	mperature	Data					
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	87.53	92.24	223.4	347.4	406.4	384.6	390.1	392.7		65.18	64.67	65.045	64.715
1	10	87.97	88.28	236.4	381.1	387.6	352.7	352.1	354		68.87	68.66	65.265	65.015
2	20	86.56	91.18	256.9	444.9	367.7	339.4	336.1	341.3		69.18	69.76	65.31	65.095
3	30	84.47	98.08	297.2	569.7	345.5	339.8	343.8	352.9		69.78	70.64	65.395	65.135
4	40	80.72	101.8	327.4	659.4	326.4	347.2	366.9	384.8		70.52	71.61	65.475	65.245
5	50	88.15	95.71	312.5	658.8	312.4	365.3	392	417.6		70.84	72	65.45	65.16
6	60	91.79	88.35	278.1	588.2	307.8	378	409.2	431.5		70.07	71.5	65.48	65.185
7	70	93.72	85.49	245.4	518.7	306.7	385.3	412.9	432.4		69.44	70.8	65,505	65.23
8	80	76.51	88.75	225.8	465.4	302.3	389.6	409.7	423.2		69.1	70.44	65.56	65.4
9	90	73.04	83.1	209.3	424.4	296.1	394.9	408.3	411.4		68.89	70.1	65.66	65.485
10	100	72.09	81.28	200.1	402.5	295.1	395.6	406	403.3		68.46	69.59	65.625	65.455
11	110	70.83	80.04	195.1	390.8	297	394.3	403.3	397.6		68.11	69.25	65.55	65.365
12	120	70.6	80.11	190.5	381.7	301.3	390.7	404.6	394.1		68.03	68.98	65.56	65.36
13	130	70.45	79.87	187.8	375.6	304.7	382.6	399,5	388.8		67.86	68.88	65.56	65.395
14	140	73.13	79.18	184	366.8	306.3	373.1	391.6	382.6		67.81	68.74	65.555	65.375
15	150	79.42	81.78	180.6	362	314.8	363,8	390.6	383.1		67.78	68,69	65,49	65.275
16	160	81.38	82.45	178.9	351.4	318.8	352.5	382.2	376.2		67.87	68.84	65.515	65.235

Firebox Temp Start 384.24

Test Engineer:

Date: 03/13/2012

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	G100517524
Manufacturer:	SBI
Model:	\$244
Sample ID Number:	MTL-111071416-001
Test Date:	14-Dec-11
Test Run Number:	8 - Fan Confirmation

Baromete	er, In. Hg	RH, %	Sample	Box Corr	ection (y)	Factors	Leak Check, cfm		cfm @ in Hg	1	Maximun	n Vacuum
Start	30.42	30	M	eter Box ((A)	1.014		Train A	Train B		Train A	Train B
End	30.36	29	M	eter Box ((B)	1.011		0.001@5	0.002@5		0.00	0.00
Durat	ion of Test	, Min	160									
			_	4			Particulate	Sampling Data	a			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.075	8.00	8.00	883.515	31.570	99.96	99.96	0.00	0.00
10	0.018	0.00	0.00	-0.055	7.06	0.94	884.710	32.815	99.37	102.85	0.00	0.00
20	0.018	0.00	0.00	-0.065	6.08	0.98	885.888	34.010	98.21	98.97	0.00	0.00
30	0.018	0.00	0.00	-0.065	4.91	1.17	887.076	35.212	99.64	100.16	0.00	0.00
40	0.018	0.00	0.00	-0.070	3.77	1.14	888.260	36.419	99.62	100.89	0.00	0.00
50	0.018	0.00	0.00	-0.065	2.77	1.00	889.445	37.627	99.17	100.44	0.00	0.00
60	0.018	0.00	0.00	-0.060	2.12	0.65	890.652	38.837	100.33	99.93	0.00	0.00
70	0.018	0.00	0.00	-0.055	1.69	0.43	891.860	40.051	100.15	99.99	0.00	0.00
80	0.018	0.00	0.00	-0.055	1.48	0.21	893.067	41.264	100.36	100.18	0.00	0.00
90	0.018	0.00	0.00	-0.050	1.17	0.31	894.284	42.488	100.65	100.55	0.00	0.00
100	0.018	0.00	0.00	-0.045	0.94	0.23	895.495	43.707	99.99	99.97	0.00	0.00
110	0.018	0.00	0.00	-0.045	0.76	0.18	896.712	44.877	100.38	95.86	0.00	0.00
120	0.018	0.00	0.00	-0.045	0.57	0.19	897.920	46.110	99.65	101.03	0.00	0.00
130	0.018	0.00	0.00	-0.040	0.39	0.18	899.122	47.317	99.13	98.87	0.00	0.00
140	0.018	0.00	0.00	-0.040	0.23	0.16	900.332	48.534	99.73	99.63	0.00	0.00
150	0.018	0.00	0.00	-0.040	0.11	0.12	901.552	49.737	100.80	98.74	0.00	0.00
160	0.018	0.00	0.00	-0.040	0.00	0.11	902.788	50.971	102.18	101.36	0.00	0.00

Test Engineer

Date: 03/13/2012

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 14-Dec-11 Test Run Number: 8 - Fan Confirmation

Dry Burn	-Rate, kg/hr:	1.13			
Emission-Rate, g/hr:					
Adjusted Emission-Rate, g/hr :					
Duration of Test, Minutes	16	60			
Dry Gas Meter Standardization	Train A	Train B			
Dry Gas Meter Beginning Reading, ft ³	883.515	31.57			
Dry Gas Meter Ending Reading, ft ³	902.788	50.971			
Barometric Pressure Correction Factor	1.016	1.016			
Dry Gas Meter Calibration Factors (y factors)	1.014	1.011			
Dry Gas Meter Temperature Factors	1.005	1.005			
Dry Gas Meter Delta-H Correction Factors	1.000	1.000			
Dry Gas Meter STD Volume Sampled, ft ³	19.945	20.027			
Dillution Tunnel Flow / Volume					
Standardized Tunnel Flow, dscfm	142.	272			
Total Tunnel Volume, scf	2276	3.595			
Emission Caclulations	Train A	Train B			
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1141.298	1136.639			
Sample Particulate Mass, mg	9.1	8.7			
Total Emissions, grams	10.386	9.889			
Emission-Rate, g/hr	3.89	3.71			
Adjusted Emission Rates, g/hr	5.63	5.40			
Deviation, %	2.0				
Operating Parameters	Train A	Train B			
Max Filter Temperature, °F	70.84	72			
Post-Test Leak Check, cfm @ in. Hg vac.	0.001@5	0.002@5			
Average Firebox Surface Temperture delta-T, °F	28.02				
Maximum Ambient Temperture, °F	94				
internet interest in borraro, it	70				
Mimimum Ambient Temperature, °F	7	0			
Mimimum Ambient Temperature, °F Fuel Properties	7	0			
Mimimum Ambient Temperature, °F	8.0				
Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %		00			
Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	8.0)0 91			
Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	8.0 19.	00 91 60 2.00			

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 14-Dec-11 Test Run Number: 8 - Fan Confirmation

Intertek

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 2.0

Average Firebox Temp, °F 416.7

Final Coal Bed Wt, lb 2.03

Interval	10												
Т	ime				Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	70.46	174	415.5	558.7	455.9	561.9	538.1	557.9		0	11.10	9.07
1	10	77.08	162.4	623.3	851.2	467.2	509.4	480.7	493.8		0	9.69	1.41
2	20	79.09	168.6	648	931.2	449.2	513	504.1	532.7		0.001	6.60	3.09
3	30	82.66	161.9	627	915.1	450.1	600	553.8	594.4		0.001	4.04	2.56
4	40	80.84	142.5	558.2	839.5	461.4	682.6	601.3	641.1		0.001	2.65	1.39
5	50	82.32	108.1	311.5	605.8	474.9	601.4	568	598.1		0.001	2.54	0.11
6	60	84.52	100.1	255	513.8	468	569.4	519.9	540.8		0	2.36	0.18
7	70	82.94	97.38	228.4	460.7	455	512.5	484.5	497.8		-0,003	2.24	0.12
8	80	89.75	88.36	209.4	421.9	439.2	463.4	454.4	461.6		-0.001	2.10	0.14
9	90	88.72	85.87	195.6	386.6	422.1	424.7	422.7	427.4		0.001	2.03	0.07
10													
11													
12					[]								
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30												· · · · · · · · · · · · · · · · · · ·	

Test Engineer:_____

Date: 03/13/2012

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001 Test Date: 14-Dec-11 Test Run Number: 8 - Fan Confirmation

	Dilution	Dilution Tunnel				
	Delta P In. H2O	Temp,°F	Square Root			
A1	0.0150	95	0.1225			
A2	0.0175	95	0.1323			
A3	0.0150	95	0.1225			
A4	0.0125	91	0.1118			
A Center	0.0175	95	0.1323			
B1	0.0150	96	0.1225			
B2	0.0175	96	0.1323			
B3	0.0150	96	0.1225			
B4	0.0100	95	0.1000			
B Center	0.0175	96	0.1323			
Averages	0.01525	94.96	0.1208			

Tunnel Diameter	8.000	inches
Tunnel Static	-0.700	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9130	factor
Baro. Pressure	30.42	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.269	Ft/ Sec
Initial Flow	141.31	Ft3/min

Test Engineer:

Date: 03 13/2012

Intertek

TEST FUEL DATA EPA METHOD 5G-3

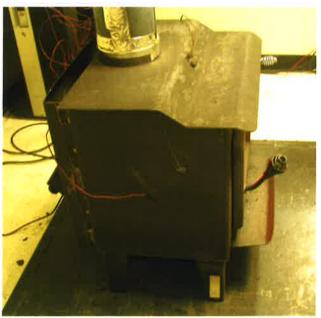
Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	14-Dec-11
Test Run Number:	G100517524 SBI S244 MTL-111071416-001 14-Dec-11 8 - Fan Confirmation

Calibration Reference ID	180-463			
Set meter to Species 1		0-403		
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

	PRE-B	URN FUE	L PROPE	RTIES		1
Eq. ID No.:	SBI214	Time:	8:30	Temp.,°F:	77	1
Piece No.	Length, In.	Weight, Lb.	Moi	sture, %, Dr	y Basis	1
1	9.00	0.95	22.1	22.2	22.1	1
2	9.00	1.05	22.6	22.0	23.3	1
3	9.00	1.00	22.2	19.8	22.1	1
4	9.00	1.00	23.3	22.2	23.2	1
5	16.00	1.85	22.2	21.3	21.5	1
6	16.00	1.70	22.4	21.0	22.7	1
7	16.00	1.70	21.9	21.2	22.7	1
8	16.00	1.80	22.1	22.1	20.6	1
9						1
10						
11						
12						
Total We	eight	11.1	Avera	ge, %db		
Allowa	ble Fuel Lo	oad Range	6	7.7	to	9.3
Allowa	_			7.7 ROPERTIES		9.3
Allowa Eq. ID No.:	_					9.3
Eq. ID No.:	Т		LOAD P Time:	PROPERTIE 9:30	S Temp.,°F:	77
	T SBI214	EST FUEL	LOAD P Time:	PROPERTIE 9:30	S	77
Eq. ID No.:	T SBI214 Length,	EST FUEL Weigh	LOAD P Time: it, Lb.	PROPERTIE 9:30	S Temp.,°F:	77
Eq. ID No.: Piece No. 1 2	T SBI214 Length, In.	EST FUEL Weigh 2x4	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist	S Temp.,°F: ure, %, Dry	77 Basis
Eq. ID No.: Piece No. 1	T SBI214 Length, In. 15.50	EST FUEL Weigh 2x4 2.20	LOAD P Time: it, Lb.	PROPERTIES 9:30 Moist 19.2	S Temp.,°F: ure, %, Dry 18.6	77 Basis 21.0
Eq. ID No.: Piece No. 1 2	T SBI214 Length, In. 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist 19.2 19.7	S Temp.,°F: ure, %, Dry 18.6 18.8	77 Basis 21.0 19.2
Eq. ID No.: Piece No. 1 2 3	T SBI214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7	77 Basis 21.0 19.2 20.9
Eq. ID No.: Piece No. 1 2 3 4 5 6	T SBI214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7	77 Basis 21.0 19.2 20.9
Eq. ID No.: Piece No. 1 2 3 4 5 6 7	T SBI214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7	77 Basis 21.0 19.2 20.9
Eq. ID No.: Piece No. 1 2 3 4 5 6	T SBI214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7	77 Basis 21.0 19.2 20.9
Eq. ID No.: Piece No. 1 2 3 4 5 6 7	T SBI214 Length, In. 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00	LOAD P Time: it, Lb.	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7	77 Basis 21.0 19.2 20.9
Eq. ID No.: Piece No. 1 2 3 4 5 6 7 8 7 8 7 8 7 0 8 7 0 8	T SBI214 Length, In. 15.50 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00 1.85	LOAD P Time: it, Lb. 4x4	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7	77 Basis 21.0 19.2 20.9
Eq. ID No.: Piece No. 1 2 3 4 5 6 7 8 8 Totals	T SBI214 Length, In. 15.50 15.50 15.50 15.50	EST FUEL Weigh 2x4 2.20 1.95 2.00 1.85 8.0	LOAD F Time: it, Lb. 4x4	PROPERTIE 9:30 Moist 19.2 19.7 21.9	S Temp.,°F: ure, %, Dry 18.6 18.8 21.7 19.3	77 Basis 21.0 19.2 20.9

3.03

Average Moisture, wet


16.60

Date: 03/13/2012

Total weight, dry, kg

S.B.I model S244

 \bigcirc

Side View

Sealed Unit

John Dupree US Environmental Protection Agency 1200Pennsylvania Ave NW Washington DC, 20460

January 11, 2012

Subject: SBI Stove model S244

Dear Mr. Dupree,

Stove Builders International has asked Intertek to write this letter on their behalf regarding data contained in an EPA certification report for the stove model S244. During the preburn of test run number six conducted December 12, 2011 a final coal bed weight was recorded 0.11 pounds outside the acceptable range for the fuel load. At the completion of the same test filter train 1 failed a post test leak check. Investigation of the data found the deviation between the two filters did meet the 7.5 % requirement stipulated in method 5G.

It is Stove Builders International's opinion that the two issues in this data are not significant enough to have an overall affect that would push final weighted average results outside the 7.5 gram per hour limit required for certification. They are therefore asking for a variance on the issues and the report be considered for certification.

If I can be of any assistance in this consideration please feel free to contact me at your convenience.

Bruce Davis

Banko-

Intertek Project Engineer

September 13, 2012

Pierre Pleau Stove Builders International Inc. 250 Rue de Copenhague St-Augustine-de-Desmaures QC G3A 2H3 22887 NE Townsend Way Fairview Oregon, 97024

Telephone: 503-676-2311 Facsimile: 503-676-2350 www.intertek.com

Letter Report No. 100709683PRT-001 Project No. G100709683

Ph: 418-527-3060

email:ppleau@sbi-international.com

Subject: Comparative evaluation of six wood burning stoves designed after the 1.3 Series

Dear Mr. Pleau,

This letter represents the results of an evaluation on stove models Century S244, Century S245, Drolet Pyropak, Drolet Rocket, Enerzone Solution 1.3, and the Osburn 900.

This investigation was authorized by Quote number 500393418 dated July 11, 2012. Design drawings were received on September 11, 2012 and evaluated on September 12, 2012 at the Portland Oregon facility.

Six stove models share similar features and are designed after an EPA certified room Heater Model Series 1.3.

Design drawings were evaluated to determine similarities of the six units in overall size, shape, combustion air controls and fire box insulation. Drawings show internal fire box size to be the same at 10 3/16" deep, 8 ¼" high, and 18" wide. All appliances share a 6" flue collar and have the same primary air intake controls. Fire box insulation such as refractory appears to be the same in shape, size, and location. Insulation in the baffle also is similar in all units by location, shape, and size. In three appliances, the Century S244, Drolet Pyropak, and the Drolet Rocket there is a 1.5 inch high step in the fire box top. Distance from the top front edge of the baffle to the bottom of the top plate is the same in all six units, while area above the baffle is increased by this step. Other differences noted were cosmetic with the use of ash pans, legs, and pedestals on different models. Secondary air used as an emissions control devise is the same in all six appliances in location and design. All external shielding appeared to be similar on the six models.

This letter report completes our evaluation of the six stove models.

If there are any questions regarding the results contained in this report, or any of the other services offered by Intertek, please do not hesitate to contact the undersigned.

Please note, this Letter Report does not represent authorization for the use of any Intertek certification marks.

Completed by: Title:

Bruce S Davis Project Engineer Reviewed by: Title: Jared Sorenson Senior Associate Engineer/Team Leader

Signature:

Signature

ratine

Page 1 of 1

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only the sample tested. This report y itself does not imply that the material, product or service is or has ever been under an Intertek certification program.

SD 12.1.2 (11/11/10) Informative