

TEST REPORT

SCOPE: EMISSIONS, EFFICIENCY AND OUTPUT

FUEL: EPA TEST FUEL (CRIBS)

TEST STANDARD: EPA

MODEL: SPARK WOOD STOVE

Notice to reader: Our Spark wood stove was tested as part of our 1.3 Series (S244) firebox. Therefore, the 1.3 Series (S244) is referenced throughout the attached test report.

REPORT NUMBER: 100517524MTL-002 REPORT DATE: March 12, 2012

EVALUATION CENTER

Intertek Testing Services NA Inc.
Intertek (Lachine)
1829 32nd Ave
Lachine. Qc

RENDERED TO

S.B.I.-Stove Builders International 250 Copenhague Street St-Augustin-de-Desmaures, QC G3A 2H3

PRODUCT EVALUATED:

Wood Stove Model S244

Report of Testing Model S244 Wood Fuel Room Heater for compliance as an "Affected Facility" with the applicable requirements of the following criteria: EPA Method 28 "Certification and Auditing of Wood Heaters" and EPA Method 5G "Determination of Particulate Matter Emissions from Wood Heaters".

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 2 of 14

TABLE OF CONTENTS

I.	INTRO I.A. I.B. I.C. I.D.	DDUCTION PURPOSE OF TEST LABORATORY DESCRIPTION OF UNIT REPORT ORGANIZATION.	3 3 3
II.	SUMM II.A II.B II.C II.D	MARIZATION	4 4 5
III.		ESS DESCRIPTIONTEST SET UP DESCRIPTION	
IV.	IV.A IV.A.1 IV.B. IV.B.1	LING SYSTEM SAMPLING LOCATIONS. DILUTION TUNNEL OPERATIONAL DRAWINGS. STACK GAS SAMPLE TRAIN. DILUTION TUNNEL SAMPLE SYSTEM.	8 9 10 10
V.	SAMP V.A.	LING METHODSPARTICULATE SAMPLING	12 12
VI.	VI.A. VI.A.1 VI.A.2 VI.A.3 VI.B. VI.B.1 VI.B.2	ITY ASSURANCE INSTRUMENT CALIBRATION DRY GAS METERS STACK SAMPLE ROTAMETER GAS ANALYZERS TEST METHOD PROCEDURES LEAK CHECK PROCEDURES TUNNEL VELOCITY/FLOW MEASUREMENT PM SAMPLING PROPORTIONALITY	12 12 13 13 13
VII.	CONC VII.A	RESULTS AND OBSERVATIONS	14 14
Apper Apper Apper Apper	dice B dice C dice D dice E	K List Drawings Operation Manual Sample Analysis Calibrations Sample Calculations Test Data	

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 3 of 14

I. INTRODUCTION

Intertek Testing Services NA (Intertek) has witnesed testing for S.B.I.-Stove Builders International, on model S244 Wood Room Heater, to evaluate all applicable performance requirements included in EPA Method 28 "Certification and auditing of wood heaters" and Method 5G-3 "Determination of Particulate Matter Emissions from Wood Heaters."

I.A PURPOSE OF TEST

The test was conducted to determine if the unit is in accordance with U.S EPA requirements for Residential Wood Fuel Room Heaters. This site-testing took place on December 5, 2011 – December 14, 2011.

I.B LABORATORY

The tests on the Wood Room Heater model S244 was conducted at the S.B.I's testing facility located at 250 Copenhague Street, St-Augustin-de-Desmaures, PQ G3A 2H3.

I.C DESCRIPTION OF UNIT

The model S244 Wood Room Heater is constructed of carbon steel. The outer dimensions are 20.924 - inches deep, 25.735 -inches high, and 22.626 - inches wide and the unit tested was bearing the serial number MTL1111071416-001. (See product drawings.)

Proprietary drawings are on file at Intertek in Montreal.

I.D REPORT ORGANIZATION

This report includes summaries of all data necessary to determine compliance with the regulations. Raw data, calibration records, intermediate calculations, drawings, specifications and other supporting information are contained in appendices to this report.

II. SUMMARIZATION

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 4 of 14

II.A PRETEST INFORMATION

Prior to beginning the emissions tests the unit was operated for a minimum of one hour at the burn rate corresponding to the burn rate cathegory the unit was about to be tested.

On December 2 2011 the unit was set-up for testing.

II.B INFORMATION LOG

TEST STANDARD

From December 5, 2011 – December 14, 2011 the unit was tested for EPA emissions.

Deviation from Standard Method

No deviations from the standards were performed, however, only the applicable sections from each standard were used during all testing.

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 5 of 14

II.C SUMMARY OF TEST RESULTS

RUN #1 (December 5, 2011) This test was filed as an R&D as it was a trial of the product prior to certification.

RUN #2 (December 6, 2011) Air control was half open until 3:45 min and was set at full closed position at 5 minutes. Burn time was 200 minutes with a category 2 burn rate of 0.9 Kg/hr. The fuel was loaded by 50 seconds and the door was closed by 95 seconds. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #3 (December 7, 2011) Air control was open till 4:30 minutes and closed at 5 minutes. Burn time was 210 minutes with a category 2 burn rate of 0.86 kg/hr. The fuel was loaded by 60 seconds and the door was closed immediately after. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #4 (December 8, 2011) Air control was closed at 5 minutes. Burn time was 220 minutes with a category 2 burn rate of 0.82 kg/hr. The fuel was loaded by 44 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #5 (December 9, 2011) Air control was closed at 5 minutes. Burn time was 220 minutes with a category 2 burn rate of 0.82 kg/hr. The fuel was loaded by 44 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test. This test was declared null due to Delta T outside the acceptable range.

RUN #6 (December 12, 2011) Air control was fully open. Burn time was 110 minutes with a category 4 burn rate of 1.67 kg/hr. The fuel was loaded by 45 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #7 (December 13, 2011) Air control was fully open. Burn time was 100 minutes with a category 4 burn rate of 1.81 kg/hr. The fuel was loaded by 60 seconds and the door was closed at 90 seconds into the test. The blower was off the first 30 minutes of the test and On-Low for the reminder of the test.

RUN #8 (December 14, 2011) Air control was closed. Burn time was 160 minutes with a category 2 burn rate of 1.13 kg/hr. The fuel was loaded by 60 seconds and the door was closed at 90 seconds into the test. The blower was off for duration of the test run.

II.D SUMMARY OF OTHER DATA

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 6 of 14

EMISSIONS

Run Number	Test Date	Burn Rate (kg/hr)	Emission Rate (g/hr)	Adjusted Emission Rate (g/hr)	Heating Efficiency (% LHV)
2*	12/06/2011	0.90	3.73	5.42	No flue gases for 20 minutes
3	12/07/2011	0.86	2.81	4.29	78.2
4	12/08/2011	0.82	3.20	4.78	75.4
5	12/09/2011	1.64	4.05	5.72	N/A
6	12/12/2011	1.67	1.94	3.15	68.5
7	12/13/2011	1.81	3.21	4.80	71.9
8-Fan conf.	12/14/2011	1.13	3.80	5.51	75.5

WEIGHTED AVERAGE CALCULATION

Test No.	Burn Rate	(E) Average Emission Rate g/hr	Heat Output (Btu/hr)	Probability	(K) Weighting Factor	(KxE)		
4	0.82	4.78	9887.72	0.2336	0.2632	1.2581		
3	0.86	4.29	10370.05	0.2632	0.5974	2.5628		
6	1.67	3.15	20137.19	0.8310	0.6132	1.9316		
7	1.81	4.80	21825.34	0.8764	0.1690	0.8112		
				Totals:	1.6428	6.5637		
	Weighted average emission rate: 3.9954**							

^{*} Run Test 2 was omitted on a two for one basis in accordance to EPA Rules

TEST FACILITY CONDITIONS

	Room	Room	Baro.	Baro.	R.H.	R.H.	Air	Air
Dun	Temp.	Temp	Pres.	Pres.	К.П. %	К.П. %	Vel.	Vel.
Run	°F	°F	In. Hg	In. Hg	before	after	Ft/min	Ft/min
	before	after	before	after	belore	anei	before	after
2	88	84	30.17	30.12	31	31	0	0
3	83	83	29.97	29.84	28	28	0	0
4	85	78	29.75	29.95	36	35	0	0
5	73	86	30.19	30.15	35	35	0	0
6	66	81	30.42	30.40	39	38	0	0
7	74	83	30.36	30.34	28	28	0	0
8	88	82	30.42	30.36	30	29	0	0

^{**} Run Test 5 was omitted due to calculated Delta T results falling outside acceptable limits

^{* *}The weighed average is calculated using only the runs 4, 3, 6 and 7

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 7 of 14

DILUTION TUNNEL FLOW RATE MEASUREMENTS AND SAMPLING DATA (5G-3)

Run No.	Burn Time	Velocity (ft/sec)	Volumetric Flow Rate (dscf/min)	Total Temp. (°R)		ume nple		culate n (mg)
	(min)		,	` '	Į.	2	l	2
2	200	6.65	131.53	540.25	21.073	18.288	10.0	8.6
3	210	7.36	143.32	544.64	24.758	23.814	8.3	7.6
4	220	7.94	154.35	544.41	25.708	24.883	8.7	8.8
5	110	7.93	144.79	585.86	12.267	12.366	N/A	N/A
6	110	7.79	144.20	582.25	12.223	12.749	2.5	3.1
7	100	8.17	149.97	586.53	11.540	11.957	4.1	4.3
8	160	7.22	142.27	546.92	19.936	20.018	9.1	8.7

DILUTION TUNNEL DUAL TRAIN PRECISION

Run No.	Sample	Ratios	Total Emis	ssions (g)	%			
Kuii No.	Train 1	Train 2	Train 1	Train 2	Deviation			
2	1247.889	1437.893	12.48	12.37	0.38			
3	1215.15	1263.28	10.086	9.601	2.04			
4	1320.297	1364.085	11.487	12.004	1.83			
5	1298.358	1288.027	N/A	N/A	N/A			
6	1296.96	1243.48	3.24	3.86	7.17			
7	1298.81	1253.56	5.325	5.390	0.5			
8	1141.30	1136.64	10.386	9.889	2.03			

^{*=} As described in Method 5G-3 section 16.2.5

GENERAL SUMMARY OF RESULTS

Run No.	Burn Rate (kg/hr)	Change In Surface Temp (°F)	Initial Draft (in/H ₂ O)	Run Time (min)	Average Draft (in/H ₂ O)
2	0.90	-22.9	-0.038	200	-0.040
3	0.86	-55.3	-0.055	210	-0.043
4	0.82	-68.54	-0.045	220	-0.045
5	1.64	-173.2	-0.090	110	-0.080
6	1.67	-113.6	-0.095	110	-0.078
7	1.81	-85.22	-0.080	100	-0.082
8	1.13	-28.02	-0.075	160	-0.054

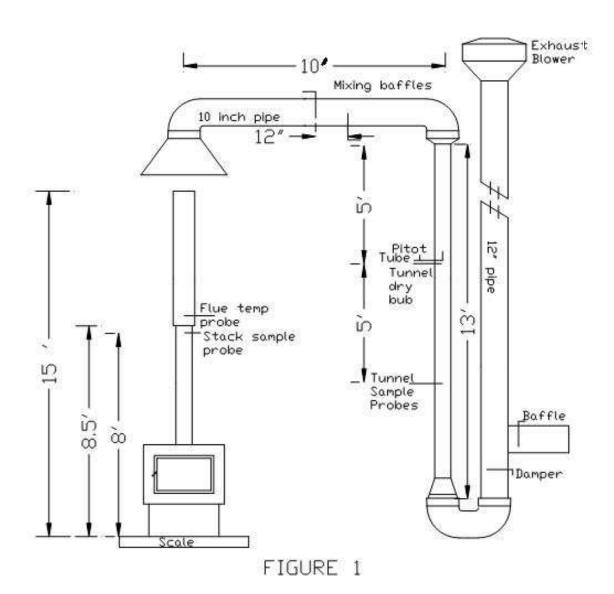
Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 8 of 14

III. PROCESS DESCRIPTION

III.A TEST SET-UP DESCRIPTON

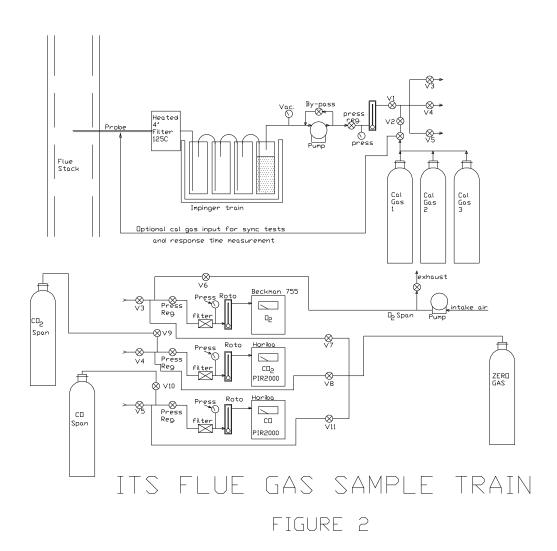
A standard 8" diameter single wall pipe and insulated chimney system was installed to 15' above the scale level. The unit controls were set to the lowest setting during the test.

IV. SAMPLING SYSTEMS


IV.A. SAMPLING LOCATIONS

Particulate samples are collected from the dilution tunnel at a point 20 feet from the tunnel entrance. The tunnel has two elbows and two mixing baffles in the system ahead of the sampling section. (See Figure 3) The sampling section is a continuous 13 foot section of 6 inch diameter pipe straight over its entire length. Tunnel velocity pressure is determined by a standard Pitot tube located 60 inches from the beginning of the sampling section. The dry bulb thermocouple is located six inches downstream from the Pitot tube. Tunnel samplers are located 60 inches downstream of the Pitot tube and 36 inches upstream from the end of this section. (See Figure 1)

Stack gas samples are collected from the steel chimney section 8 feet \pm 6 inches above the scale platform. (See Figure 2)


IV.A.(1) DILUTION TUNNEL

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 10 of 14

IV.B.OPERATIONAL DRAWINGS

IV.B.(1) STACK GAS SAMPLE TRAIN

IV.B.(2). DILUTION TUNNEL SAMPLE SYSTEMS

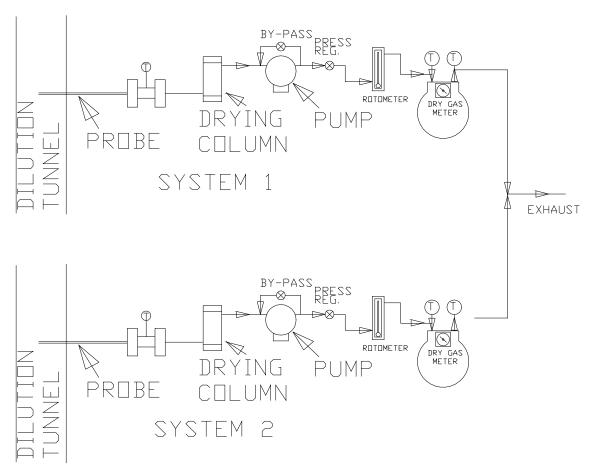


Figure 3

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 12 of 14

V. SAMPLING METHODS

V.A. PARTICULATE SAMPLING

Particulates were sampled in strict accordance with EPA Method 5G-3. This method uses two identical sampling systems with 47-mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run.

VI. QUALITY ASSURANCE

VI.A. INSTRUMENT CALIBRATION

VI.A. (1). DRY GAS METERS

At the conclusion of each test program the dry gas meters are checked against our standard dry gas meter. Three runs are made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix D.

An integral part of the post test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressurizing the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated annually by an accredited laboratory certified ISO 17025. The process involves sampling the train operation for 1 cubic foot of volume. With readings made to .001 ft³, the resolution is .1%, giving an accuracy higher than the ±2% required by the standard.

VI.A.(2). STACK SAMPLE ROTAMETER

The stack sample rotometer is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotometer in series with one of the dry gas meters for 10 minutes with the rotometer at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 13 of 14

VI.A.(3). GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a five-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

VI.B. TEST METHOD PROCEDURES

VI.B.(1). LEAK CHECK PROCEDURES

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pre-test and post-test leak checks are conducted with a vacuum of 10 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During, these tests the vacuum was typically less than 2 inches of mercury. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.

VI.B.(2). TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.

VI.B.(3). PM SAMPLING PROPORTIONALITY (5G-3)

Proportionality was calculated in accordance with EPA Method 5G-3. The data and results are included in Appendix C.

Client: Stove Builder International Date: March 12, 2012
Project No. G100517524 Page 14 of 14

VII. CONCLUSION

These tests demonstrate that this unit is an affected facility under the definition given in the regulation. The weighted average emission rate of 3.9954 g/hr that meets the requirements.

VII.A RESULTS AND OBSERVATIONS

The Model S244 Wood Room Heater has been found to be in compliance with the applicable performance and construction requirements of the following criteria: EPA Method 28 "Certification and auditing of wood heaters" and Method 5G-3 "Determination of Particulate Matter Emissions from Wood Heaters."

INTERTEK TESTING SERVICES NA

Reported by:

Florin Anghel, Testing Engineer

Reviewed by:

Bruce S. Davis, Project Engineer

Appendix C Sample Analysis

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 5 2011

Test Run Number: 1

Intertek Equipment No.'s SBI-206

Sample Train - 1								
Sample Component	Component	ID Number	Weights					
Odmpic Component	Component		Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	25		122.2				
B - Rear Filter Catch	Filter	26		122.5				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			254.6	244.7	9.9			
Probe & Filter Holder	Probe	22	139579.1	139578.0	1.1			
			Total Parti	culate, mg	11			

Sample Train - 2								
Sample Component	Component	ID Number	Weights					
	Component	ID Namber	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	27		122.4				
B - Rear Filter Catch	Filter	28		124				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			256.5	246.4	10.1			
Probe & Filter Holder	Probe	31	137098.9	137098.0	0.9			
			Total Parti	culate, mg	11			

Test Engineer:

Thyles

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 6 2011

Test Run Number: 2

Intertek Equipment No.'s SBI-206

Sample Train - 1								
Sample Component	Component	ID Number	Weights					
Sample Competiont	Component	ID Number	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	31		123.7				
B - Rear Filter Catch	Filter	32		121.8				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			254.3	245.5	8.8			
Probe & Filter Holder	Probe	33	135994.8	135993.6	1.2			
			Total Parti	culate, mg	10			

Sample Train - 2							
Sample Component	Component	ID Number	Weights				
	Component	ib Number	Final, mg	Tare, mg	Particulate, mg		
A - Front Filter Catch	Filter	29		122			
B - Rear Filter Catch	Filter	30		123.2			
C - Seal Set	O-Ring						
Total, A+B+C-Tares			252.8	245.2	7.6		
Probe & Filter Holder	Probe	32	136018.2	136017.2	1.0		
			Total Parti	culate, mg	8.6		

Test Engineer:

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 7-Dec-11

Test Run Number: 3

Intertek Equipment No.'s SBI-206

	Sample Train - 1							
Sample Component	Component	ID Number	Weights					
	Gomponom	.B (talliber	Final, mg	Tare, mg	Particulate, mg			
A - Front Filter Catch	Filter	33		122.7				
B - Rear Filter Catch	Filter	34		123.2				
C - Seal Set	O-Ring							
Total, A+B+C-Tares			252.9	245.9	7			
Probe & Filter Holder	Probe	34	108411.5	108410.2	1.3			
			Total Parti	culate, mg	8.3			

	S	ample Trair	1 - 2		
Sample Component	Component	ID Number		Weigh	ts
	Gomponent	10 Indiliber	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	35		121.9	
B - Rear Filter Catch	Filter	36		122.8	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			251.5	244.7	6.8
Probe & Filter Holder	Probe	35	107838.0	107837.2	0.8
			Total Parti	culate, mg	7.6

Test Engineer:

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 8-Dec-11

Test Run Number: 4

Intertek Equipment No.'s SBI-206

	S	ample Trair	1 - 1		
Sample Component	Component	ID Number		Weight	ts
- cample component	Component	1D Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	37		123.3	
B - Rear Filter Catch	Filter	38		122.2	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			253.5	245.5	8
Probe & Filter Holder	Probe	36	108503.0	108502.3	0.7
			Total Parti	culate, mg	8.7

	S	ample Trair	ı - 2		
Sample Component	Component	ID Number		Weight	ts
Cample Component	Component	ib Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	39		123.5	
B - Rear Filter Catch	Filter	40		123.3	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			255.1	246.8	8.3
Probe & Filter Holder	Probe	37	108382.8	108382.3	0.5
			Total Parti	culate, mg	8.8

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 9-Dec-11

Test Run Number: 5

Intertek Equipment No.'s SBI-206

	S	ample Trair	1 - 1		
Sample Component	Component	ID Number		Weigh	ts
oumponent	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	1		121.7	
B - Rear Filter Catch	Filter	2		123.1	
C - Seal Set	O-Ring				
Total, A+B+C-Tares	247.9 244.8 3.		3.1		
Probe & Filter Holder	Probe	18	147891.6	147891.7	0.0
			Total Parti	culate, mg	3.1

	S	ample Trair	- 2		
Sample Component	Component	ID Number		Weigh	ts
	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	3		122.7	
B - Rear Filter Catch	Filter	4		123.3	
C - Seal Set	O-Ring				
Total, A+B+C-Tares		Probe 19 140124.8 140119.6			
Probe & Filter Holder	Probe	19	140124.8	140119.6	5.2
			Total Parti	culate, mg	8.4

Test Engineer:

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 12-Dec-11

Test Run Number: 6

Intertek Equipment No.'s SBI-206

	S	ample Trair	1 - 1		
Sample Component	Component	ID Number		Weigh	ts
	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	5		122.5	
B - Rear Filter Catch	Filter	6		123.4	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			247.4	245.9	1.5
Probe & Filter Holder	Probe	17	139750.1	139749.1	1.0
	_		Total Parti	culate, mg	2.5

	S	ample Trair	ı - 2		
Sample Component	Component	ID Number		Weigh	ts
	Component	ID INGITIBET	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	7		121.9	
B - Rear Filter Catch	Filter	8		122.7	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			247.1	244.6	2.5
Probe & Filter Holder	Probe	20	139068.1	139067.5	0.6
			Total Parti	culate, mg	3.1

Test Engineer:

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 13-Dec-11

Test Run Number: 7

Intertek Equipment No.'s SBI-206

	S	ample Trair	ı - 1		
Sample Component	Component	ID Number		Weigh	
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	9		123.2	
B - Rear Filter Catch	Filter	10		121.9	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			247.6	245.1	2.5
Probe & Filter Holder	Probe			139247.7	1.6
			Total Parti	culate, mg	4.1

	S	ample Trair	- 2		
Sample Component	Component	ID Number		Weight	s
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	11		122.9	
B - Rear Filter Catch	Filter	12		123.6	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			249.3	246.5	2.8
Probe & Filter Holder	Probe	23	136188.9	136187.4	1.5
		¥?	Total Parti	culate, mg	4.3

CA

Test Engineer: Date:

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 14-Dec-11

Test Run Number: 8 - Fan Confirmation

Intertek Equipment No.'s SBI-206

	S	ample Train	1 - 1		
Sample Component	Component	ID Number		Weigh	ts
odmpie component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	13		121.8	
B - Rear Filter Catch	Filter	14		123	
C - Seal Set	O-Ring				
Total, A+B+C-Tares	es 252.8 244.8 8		8		
Probe & Filter Holder	Probe			136039.3	1.1
		Total Particulate,		culate, mg	9.1

	S	ample Trair	- 2		
Sample Component	Component	ID Number		Weigh	ts
Campic Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	15		123.5	
B - Rear Filter Catch	Filter	16		122.8	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			254.1	246.3	7.8
Probe & Filter Holder	Probe	25	136832.7	136831.8	0.9
			Total Parti	culate, mg	8.7

Test Engineer:

Projet: Date: Tech: Standard;

V. Pelletier Ardsit Andsit Andsit 0.2-pr 0.2-pr 0.2-pr 0.2-pr 0.2-pr 2011-12-05 2011-12-05

ld. Filtres	Date	Date	Date	Date	Date	Date	Date	Date	Date	Date
	28.七	DO. 904	38:15							
1 2 F	0.1218	0.1216	C. (217							
RUMB 2	0,1230	0,12.51	0,1234							
KUH 3	0.1228	0,42.27	0,1227							
FUHS 4	6.127.0	0.1232	C.12.33							
RUMAG 5	C. 1224	0,1225	C. 12.25							
RUMG 6	0.1235	C.1234	D.1234							
RUHC 7	70.1218	6,12,19	0.1219							
RUMG 8	C.1227	6.1227	O.1227							
RUNT 9	9 C,1232	0.1232	O. 1232FA							
FULT 10	RUNT 10 0.1220	G. 1221	0.1213							
RUH7 11 0, (229	0,1229	0,1229	C1223							
RUMA 12	12 0, 1235 FM 0,1235		0.1236							
RUHB 13	130,1218FA (121	4	0.1218							
RUH8 14	14 C.1230	0.1230	0,1230							
RUMB 15	15 O.1234	0,1235	0.1235							
RUM8 16	16 0, 122.8	O.1228 to	0, (22%							
17	17 C. 1228	0.12.29	0,12.29							
18	18 C.1225	C.1227	C.1227							
19	19 0.1234	0.1236	0,1236							
20	20 0.12.31	0,1231	0.1234							
21	21 O.1226	0,1225	0.1226							
22	22 C. 1230	0.1230	0,1230							
23	23 C. M &6	C.1187	0,4486							
24	24 C. 1232	0.1232	0,12.52							

Projet:

Date:

Tech: C.Paré Standard:

0.2 % - 0.2

AUBIT AUBIT 0.2.91 0.2.02 0.200019. 0.2002.19

2011-12-01 2011-12-05 2011-12-07

Date	Date	Date	Date	Date	Date	Date	Date	Date
8830	84:45							
C.1222								
0.1225								
10.12.24								
0.1240								
0.1221	0.12.20 /							
D.1231	0.12327							
0.1236	C.1237 V							
12 18 O.1217	0.1218 +							
1227 0.1226	0,1227							
12310	0.1232 7							
1220 0.1220	0.1219 7							
1228 0.1228	0.1228-							
33 O.1234	0,1233 /							
22 0.1222	N							
37 0.1235	0.1235 =							
1233 0.1233	0.1233 ×							
1229 O.X223	0.1229 5							
0.1235	0.1255 ×							
1227 0,1228	0,1227 V							
	0,12.45 "							
1227 O.1226	0.1226 4							
1228 0.1220m	A 0,1230 V							
0,1223 0,1224	0.1224 "	-						
0.1230	0,12.33	0,12311						

03/13/2012

Projet:

Tech: Date:

C.Paré Standard:

HARY 100.0043y 100.0066g =1600Y レスラマ ASSIT 1000

N. 8922401 J. 33302 JOY 上面是 100 3 F 58 30)

- W 5001

2011-17-07 201-12-08 2011-12-03 2011-17-10

ヒスクイ

tocacety Apparetin

1001

TIME

top calty

Date

Date

04:50 Date

3:05

70.0 Date

10R:00

St. 40

8R. 45 Date

5140 Date

Date

1d. Probes

18

SEAN!

RUNG 17

20

PUT C

RUH7 21

RUMS 19

Date

Date

2011-12-06

Zer1-12-05

Date

130 3401

#108, FTM F128, FH

8844, 624

(38) 24745 (38) 24744

33,2435 (39,2480

140,1195V

140,4000 139,0648

401110年

130 CET

JOH-12-18

136,2230

136,2229

36,2236 136,2242 136,2236

RUM3 35 107 8368 104,8373 107,8372

37

ナブランナ

33/35, 4930 (35,925) 8525, 25,9326

2510,361 0520,361 3610,381 |26

137 0976 137,0980

31

V TOX

RCAZ RUMZ

72 82 82 88

103,4404 108,4102

34 108 4101

TOT'S

108,3823

136,8322 (136,83189 139,8230 (139,8266) 126,3015 136,3022

139,8265 139,8270

136,8318

136,3021

580,38136,083

136,1874

136,1879

36,1873 136,0390

1353,5780

22 139,578

アンプ

PLY 7.23 FLY 8 24 25 25

PUT SO

AUDIT

Client: SBI

Model: S244

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/05/M Engineer: Florin Anghel Run #: _\darksquare Sample Train #: _\darksquare A

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212 Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 + 0.72 mg)

	pment #: 19749	(Dalali		T				_	
Front Filter #	25		Tare:	-	0.1222	Preliminary '	Wt:		0,1320
Rear Filter #	26		Tare:	(0.1225	Preliminary 1	Wt:		0.1232
Seal Set#			Tare:			Preliminary \	Wt:		
Date/Time in de	essicator:	12	105/2	۱ م2	1/16:00	Preliminary \	₩t:	0,	2552
Date	Time	F	₹/H %		Temp. (F)	Weight (grams)	1	udit ams)	Initials
12/06/11	16:00		29		63	0.2549		.2= -001	X
12/07/11	10:00	2	28		68	0.2546		.2= 001	+
12/07/11	16:00	2	27		E8	0.2546		,2= 002	AF.
Probe #:	22			13	08 FZ E	Preliminary V	Vt:	139	5799
Date/Time in de	essicator:	12	105/2	ک ۱	1/16,00				
Date	Time	R	VH %		Temp. (F)	Weight (grams)	Audit (grams)		Initials
12/06/11	16:00	2	29		69	139,5789	-		A
12/07/11	10:00		28		C8	139,5791	10	006° 00=	#
	, ,								

Date: 03/13/12

Engineer signature:

Client: SBI Model: S244

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: \\\\2/05/\text{M} Engineer: Florin Anghel Run #: \(\frac{1}{2}\) Sample Train #: \(\frac{B}{2}\)

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equ	ipment #: <u>19749</u>	(Balance audit n	nfr. std: 500 ± 0	.72 mg)				
Front Filter #	27	Tare:	0,1224	Preliminary \	Wt:	E	1325	
Rear Filter #	28	Tare:	0.1240	Preliminary \	Wt:	0	,1246	
Seal Set#		Tare:		Preliminary \	₩t:			
Date/Time in d	essicator:	12/05/20	11/16:00	Preliminary \	∕Vt:	0.	2571	
Date	Time	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials	
12/06/11	16:00	29	63	0.2568		2=	TA	
12/07/11	10,00	28	68	0.2565		.2=	A	7
								1
								1
								1
Probe #:	31	Tare:	0860,751	Preliminary V	Vt:	137	1,0990	
Date/Time in de	essicator:	12/05/20	011/16:00					1
Date	Time	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials	
12/06/11	16:00	29	63	1020328	10	0 ==	- \	
12/07/11	10:00	28	68	137,0989		:0066 50:	-	
			1					

Date: 03/13/2012

Engineer signature:

Client: SBI Model: S244

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/06/11 Engineer: Florin Anghel Run #: 2 Sample Train #: ______

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u> Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 + 0.72 mg)

				Λ/+-		1222	
	Tare,					7,1545	4
32	Tare:	0.1218	Preliminary \	Wt:	C	1226	
	Tare:		Preliminary \	Nt:			
essicator:	12/06/20	11/14:45	Preliminary \	∕Vt:	0	.2549	
Time	R/H %	Temp. (F)	Weight (grams)	1		Initials	
16:00	27	68	0.2545	1		\	
17:30	23	68	0.2543			A	
33	Tare:	135,9936	Preliminary V	Vt:	135	3950	
essicator:							
Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams)		Initials	
16:00	27	68	13579950	100=		T	
17:30	29	68	84 EE (75)			T	
							7
	31 32 essicator: Time 16:00 17:30 33 essicator: Time 16:00	31 Tare: 32 Tare: Tare: Tare: 42/06/20 Time R/H % 16:00 27 17 Tare: 33 Tare: 8 Sicator: 12/06/2 Time R/H % 16:00 27	31 Tare: 0.1237 32 Tare: 0.1218 Tare: $12/06/2011/14!45$ Time $12/06/2011/14!45$ Tare: $135,9936$ ssicator: $12/06/2011/14!45$ Time R/H % Temp. (F) $16:00$ 27 68	Tare: O.1218 Preliminary (Preliminary (Preli	31 Tare: 0.1237 Preliminary Wt: 32 Tare: 0.1218 Preliminary Wt: Tare: Preliminary Wt: Preliminary	Tare: O . 1237 Preliminary Wt: C	31 Tare: 0.1237 Preliminary Wt: 0.1323 32

Date: 03/13/2012

Engineer signature: __

Client: SBI Model: S244

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/06/M Engineer: Florin Anghel Run #: 2 Sample Train #: B

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

Audit weight Equi	pment #: 19749	$\frac{1}{2}$ (Balance audit mfr. std: 500 ± 0			0.72 mg)				
Front Filter #	29		Tare:	0.1220	Preliminary \	Wt:	<	0.1296	
Rear Filter #	30	×	Tare:	0.1232	Preliminary \	Wt:		0,1238	
Seal Set #			Tare:		Preliminary \	∕Vt:			
Date/Time in de	essicator:	12/	0 6/20	11/14:45	Preliminary \	∕Vt:	Ο,	2534	
Date	Time	F	R/H %	Temp. (F)	Weight (grams)	1	udit ams)	Initials	
12/07/11	16:00	2	27	68	0.2530		, 2= .002	T.	
12/08/11	17:30		29	C8	0.2528		12=		
Probe #:	32		Tare:	136,0172	Preliminary \	Vt:	136	29100	
Date/Time in de	essicator:	12	106/20	011/14:45					
Date	Time	F	₹/H %	Temp. (F)	Weight (grams)	Audit (grams)		Initials	
12/07/11	16:00	2	27	68	136,0185		= 00 P300	TA	
12/08/11	17:30	4	29	68	136,0182		2067 2067	-	

Date: 03/13/2012		
Engineer signature:	1 Just my	

Client: SBI Model: S244

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

Audit weight Equi	pment #: 19749	(Balan	ce audit	mfr. std: 500 ± 0	.72 mg)			
Front Filter #	33		Tare:	0,1227	Preliminary 1	Wt:		0.1234
Rear Filter #	34		Tare:	0,1232	Preliminary	Wt:	С	1237
Seal Set #			Tare:		Preliminary \	Wt:		
Date/Time in de	essicator:	12/	107/20	17:45	Preliminary \	∕Vt:	0	.2531
Date	Time	F	₹/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/08/11	17:30		28	68	0.2531	1	.2= .001	T
12/09/11	13:00		29	69	0.2523		2.2= 201	
Probe #:	34	Tare		108,4102	Preliminary \	Vt:	108	5,4113
Date/Time in de	ssicator:	12/	07/20	M/15:45				
Date	Time	R	VH %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/08/11	17:30		28	68	108,4114	1	=00 P300	\
12/03/11	13:00	2	29	69	68,4115		= 0 F300	\
L								

Date: 03/13/20	12	
Engineer signature:	TANK	

Client: SBI Model: S244

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/07/11 Engineer: Florin Anghel Run #: 3 Sample Train #: B

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)

Audit weight Equi	pment #: 19749	(Balance audit m	nfr. std: 500 ± 0	.72 mg)			
Front Filter #	32	Tare:	0.1219	Preliminary \	Wt:	0.1285	
Rear Filter #	36	Tare:	0.1228	Preliminary \	Wt:	0.1232	
Seal Set#		Tare:		Preliminary \	Wt:		
Date/Time in de	essicator:	12/07/20	11/15:45	Preliminary \	Wt:	0, 2517	
Date	Time	R/H %	Temp. (F)	Weight (grams)	Aud (gram	I Initiale	
12/08/11	17:30	28	68	0.2516	0,2	= = =	1
12/03/11	13,00	29	69	0.2515	0,20		,
Probe #:	35	Tare:	107,8372	Preliminary \	/Vt:	107,8385	
Date/Time in de	essicator:		24:21/10			-	
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audi (gram	I Initiale	1
12/08/11	17:30	2-8	€8	CF88F01	las		
12/05/11	13:00	23	69	2 222	100,001)=	١,
							1
							1
							1
				L			

Date: 03/13/2012

Engineer signature:

Client: SBI Model: <u>S244</u>

Engineer signature:

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/03/11 Engineer: Florin Anghel Run #: 4 Sample Train #:

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

Audit weight Equi	pment #: 19749	(Balance audit r	mfr. std: 500 ± 0).72 mg)			
Front Filter #	37	Tare:	0.1233	Preliminary '	Wt:	Ó	1313
Rear Filter #	38	Tare:	0.1222	Preliminary	Wt:	0	.1226
Seal Set#		Tare:		Preliminary 1	Wt:		
Date/Time in de	essicator:	12/08/20	11/17:30	Preliminary \	Wt:		0,2539
Date	Time	R/H %	Temp. (F)	Weight (grams)	Au (gra		Initials
12/11/11	12:20	6	67.5	0.2535	0.20	.=	· - -
12/13/11	14:40	8	68.5	0,2535	0,20	2=	*
Probe #:	36	Tare:	108,5023	Preliminary \	Vt:	108	2,5031
Date/Time in de	ssicator:	12/08/20					
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams)		Initials
12/11/11	12:20	6	67.5	108,5028	1		
12/13/11	14:40	8	68,5	108,5030	100,001	=-د	
Date: 03	13/2012			1			

Page 1 of 1

Model: <u>S244</u> Client: SBI

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 42/68/ 1 Engineer: Florin Anghel Run #: 4 Sample Train #: Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

udit weight Equ	ipment #: 19749	(Baland	ce audit r	nfr. std: 500 ± 0	.72 mg)			
Front Filter #	39		Tare:	0,1235	Preliminary \	₩t:	(5,1317
Rear Filter #	40		Tare:	0.1233	Preliminary \	∕Vt:		0.1238
Seal Set #			Tare:		Preliminary \	∕Vt:		
Date/Time in d	essicator:	12/	08/10	11/17:40	Preliminary \	∕Vt:	C	, 2555
Date	Time	R	k/H %	Temp. (F)	Weight (grams)	1	udit ams)	Initials
12/11/11	12:,20		6	67.5	0.2557		,2= 002	7
12/13/11	14:40		8	68.5	0.2551		2 <i>=</i> .001	TA
Probe #:	37	57		108,3823	Preliminary \	Nt:	108	,3833
Date/Time in de	essicator:	12/	08/2	04:40				
Date	Time	R	/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/11/11	12:20	,	6	67.5	108,3830		2066	*
12/13/11	14:40		8	68.5	108,3828		0066 0=	-

Date: 03/13/2012	1-00
Engineer signature:	Tuytal

Client: SBI Model: <u>\$244</u> Project #: G100517524 Sample ID #: MTL-1111071416-001 Date: 12/03/M Engineer: Florin Anghel Run #: 5 Sample Train #: Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212 Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg) ٨ Front Filter # 0.1217 Tare: 0.1247 Preliminary Wt: Rear Filter # 2 Tare: 0.1231 Preliminary Wt: 0,1232 Seal Set# Tare: Preliminary Wt: 12/09/2011/13:00 Date/Time in dessicator: 0,2473 Preliminary Wt: Weight Audit Date Time R/H % Temp. (F) Initials (grams) (grams) 18 F168, F41 2168, 741 Probe #: Tare: Preliminary Wt: 12/09/2011/13:00 Date/Time in dessicator: Weight Audit Date Time R/H % Temp. (F) Initials (grams) (grams) Date: 3/13/2012

Engineer signature:

DILUTION TUNNEL WORKSHEET - METHOD 5G3

Client: SBI Model: S244 Project #: G100517524 Sample ID #: MTL-1111071416-001 Date: 12/05/11 Engineer: Florin Anghel Run #: 5 Sample Train #: B Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212 Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg) Front Filter # 3 0.1258 0.1227 Tare: Preliminary Wt: 4 Rear Filter # 0.1233 0.1234 Tare: Preliminary Wt: Seal Set# Tare: Preliminary Wt: Date/Time in dessicator: 12/09/2011 13:00 Preliminary Wt: 0.2432 Weight Audit Date Time R/H % Temp. (F) Initials (grams) (grams) 140, M 96 13 140,1248 Probe #: Tare: Preliminary Wt: 12/09/2011 13:00 Date/Time in dessicator: Weight Audit Date Time R/H % Temp. (F) Initials (grams) (grams)

Client: SBI Model: S244

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/12/11 Engineer: Florin Anghel Run #: 6 Sample Train #:

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

Audit weight Equipment #: 19749 (Balance audit mfr. std.: 500 + 0.72 mg)

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)								
Front Filter #	5		Tare:	0.1225	Preliminary \	Wt:	0	,1238
Rear Filter #	6		Tare:	0.1234	Preliminary Wt:		t: 0.1238	
Seal Set#	Seal Set #		Tare:		Preliminary \	Wt:		
Date/Time in de	essicator:	12/	12/11/2011/12:15 1		Preliminary \	∕Vt:	0,	2476
Date	Time	F	₹/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/13/11	14:40		8	68.2	0.2475	0.2=		1
12/14/:11	14:30		8	68	0.2474		,2= 001	TA
Probe #:	17	1	Tare:	189,7491	Preliminary \	Nt:	135	€07£°C
Date/Time in de	ssicator:	12	/11/20	011/12:15				
Date	Time	F	₹/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/13/11	14:40		8	68,5	139,7501		99066	TA
12/14/11	14:30		8	€8	139,7501		00fe 20=	-
	1 1						-	

Date: 03/13/2012

Client: SBI Model: S244

Project #: <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/12/11 Engineer: Florin Anghel Run #: 6 Sample Train #:

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 + 0.72 mg)

Audit weight Equi	ipment #: 19749	(Balance audit r	mfr. std: 500 ± 0	.72 mg)			_
Front Filter #	7	Tare:	0.1219	Preliminary	Wt:	0.1240	
Rear Filter #	8	Tare:	0.1227	Preliminary Wt:		0.1229	
Seal Set#		Tare:		Preliminary	Wt:		
Date/Time in de	essicator:	12/11/20	11/12:15	Preliminary '	Wt: C	2463	
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (gram	I INITIALS	
12/13/11	14:40	8	68.5	0,2469	0,20	\ N	
12/14/11	14,30	8	68	0,2471	0,200		
Probe #:	20	Tare:	139,0675	Preliminary \	νt: Λ	C830,EE	
Date/Time in de	essicator:	12/11/20	m/12:15				
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams	Initiale	
12/13/11	14:40	8	68.5	4820, CE1	100=	=	
12/14/11	14:30	8	68	135,0681	100,00		
							1
	1. 1-						

Date: 03/13/2012

Client: SBI Model: S244

Project #:, <u>G100517524</u> Sample ID #: <u>MTL-1111071416-001</u>

Date: 12/13/11 Engineer: Florin Anghel Run #: _____ Sample Train #: _____

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

Audit weight Equipment #: 19749 (Balance audit mfr. std: 500 ± 0.72 mg)						
Front Filter #	9	Tare:	0.1232	Preliminary V	Vt: C	5.1254
Rear Filter #	10	Tare:	0.1219	Preliminary V	Vt: C	1,1222
Seal Set#		Tare:		Preliminary V	Vt:	
Date/Time in de	essicator;	12/13/20	11/14:50	Preliminary V	Vt:	1.2476
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams)	Initials
12/14/11	14:20	8	68	0.2477	0,2001	- 1
12/15/11	八八30	8	67.9	0.2476	0.2= 0.2 0 01	+
					_	
Probe #:	21	Tare:	139,2477	Preliminary V	Vt: 13°	3,2473
Date/Time in de	ssicator:	12/13/20	11/14:50			
Date	Time	R/H %	Temp. (F)	Weight (grams)	Audit (grams)	Initials
12/14/11	14:20	8	68	139,2479	100.0066	1
12/15/11	11:30	8	67.9	139,2489	=001 C200,001	+
12/16/11	10:40	7	69.5	139,2493	100,006 100,006	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Date: 03/13/2012

Client: SBI Model: S244

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/13/1 Engineer: Florin Anghel Run #: _____ Sample Train #: ______ But the control of the

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212

Audit weight Equ	ipment #: 19749	(Balan	ce audit m	nfr. std: 500 ± 0	.72 mg)			
Front Filter #	11		Tare:	0,1223	Preliminary '	₩t:	C	0.1255
Rear Filter #	12		Tare:	0,1236	Preliminary Wt:		1: 0.1240	
Seal Set #			Tare:		Preliminary \	∕Vt:		
Date/Time in d	essicator;	12	12/20	11/14:50	Preliminary \	∕Vt:	0.	2435
Date	Time	F	R/H %	Temp. (F)	Weight (grams)		udit ams)	Initials
12/14/11	14:20		8	68	0.2493	0,2	2= 001	1
12/15/11	11.30		8	67.9	0.2493	0,25	,2= 001	+
Probe #:	23		Tare:	136,1874	Preliminary \	Vt:	136	EF 81,2
Date/Time in de	essicator:	12/	13/20	14:50				
Date	Time	R	VH %	Temp. (F)	Weight (grams)	40	ıdit ams)	Initials
12/14/11	14:20		8	68	136,1875	10		\
12/15/11	11:30		8	67.3	136,1887		=0 E300	TA
12/16/11	10:40		7	63.5	136,1883		0= 0066	A

Date: 03/13/2012

Client: SBI Model: S244

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/14/1 Engineer: Florin Anghel Run #: 8 Sample Train #:

Balance Equipment #: <u>SBI-206</u> Thermo/Hygro meter Equipment #: <u>SBI-212</u>

Audit weight Equipment #: 19749 (Balance audit mfr. etc. 500 ± 0.72 mg)

Audit weight Equi	pment #: 19749	(Balance audit n	nfr. std: 500 ± 0	.72 mg)			
Front Filter #	13	Tare:	0.1218	Preliminary \	Wt:	0	(1239)
Rear Filter #	14	Tare:	0,1230	Preliminary Wt:		0.1236	
Seal Set#		Tare:		Preliminary \	∕Vt:		
Date/Time in de	essicator:	12/14/20	11/14:30	Preliminary \	∕Vt:	0	.2535
Date	Time	R/H %	Temp. (F)	Weight (grams)	Aud (gran		Initials
12/6/11	10:40	7	69,5	0.2535	0, 2 0, 20		1
12/23/M	8:30	8	68.3	0,2530	0,20		TA
12/23/11	15:00	8	63	0,2528	0.2		+
Probe #:	24	Tare:	13650292	Preliminary V	Vt:	136	8 C E O C
Date/Time in de	ssicator:	12/14/2	11/14:30				
Date	Time	R/H %	Temp. (F)	Weight (grams)	Aud (gran		Initials
12/16/11	10:40	7	69.5	F04079E1	100,0		+
12/23/11	8:30	8	68.3	136,0407	100° Q		1
	- 1 - 1 -						

Date: 03/13/2012

Client: SBI

Model: S244

Project #: G100517524 Sample ID #: MTL-1111071416-001

Date: 12/14/11 Engineer: Florin Anghel

Sample Train #: _______ Run #: __

Balance Equipment #: SBI-206 Thermo/Hygro meter Equipment #: SBI-212 Audit weight Equipment # 19749 (Ralance audit mfr. std: 500 ± 0.72 mg)

Audit weight Equip	.72 mg)						
Front Filter #	12	Tare:	0.1235	Preliminary \	Wt:	•	CNE1,C
Rear Filter #	16	Tare:	0,1228	Preliminary Wt:		0.1223	
Seal Set #		Tare:		Preliminary \	Wt:		
Date/Time in de	essicator:	12/14/2	511/14:30	Preliminary \	∕Vt:	0	2548
Date	Time	R/H %	Temp. (F)	Weight (grams)	(gra		Initials
12/16/11	10:40	7	65,5	0.2544	0,20	,2= &1	-
12/23/11	8:30	8	68,3	0.2541	0.2	2= 00/	TA
Probe #:	25	Tare:	136,8318	Preliminary V	Vt:	136	5,8324
Date/Time in de	ssicator:	12/14/20	11/14:30				
Date	Time	R/H %	Temp. (F)	Weight (grams)	Au (gra		Initials
12/16/11	10:40	7	C5.5	136,8330			TA
12/23/11	8:30	8	68.3	136,8327			1
							-
	- 1 h						

Appendix D

Calibrations

No du rapport d'étalonnag CA0003-088-032111

Mettler Toledo

Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered
ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association of Laboratory Accreditation (A2LA)

CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client					
Société :	SBI Fabricant de poêles I	nternational inc.	DC .		
Adresse :	250, rue Copenhague				
Ville :	St-Augustin	État/Pro	vince :	Québec	
Code postal :	G3A 2V1	Astea C	ustomer ID:	C037589	001001
Instrument					
Constructeur :	Rice Lake	Modèle	de terminal :	IND560	
Modèle :	Roughdeck	No de s	érie du termin	00927396	5KL
No de série :	B00927396KL	No. Séri	ie Impr.	N/A	
Capacité :	625 kg	Service/	Pièce :	Lab	
Résolution :	0.02 kg	Nbre de	Divisions	31250	
Classe:	H	Procédu	ıre utilisée :	Canadien	1
Numéro/ID d'actif du clie	SBI-013				
Procédure:	Le présent certificat est ér l'A2LA, en vertu de la norr laboratoire et la traçabilité	ne ISO/IEC 17025. A2	LA a évalué la		•
Date de calibrage :	21-mars-2011	Le proch	nain Cal Date	31-mars-2	2012
Signataire autorisé (A2LA) :	Dany Careau	Signatur	re:	ELECTRO	ONIC SIGNATURE
Signature du client :					
Étalons de travail					
Traçabilité	Les poids de test utilisés s	e réfèrent au National	Institute of Star	ndards and	Technology.
Jeu de poids no	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étalo	onnage ‡	Date proch, étalonnage
42268	M10-0278	M1	5-août-2	2010	5-août-2011
MTP1	MT0015626	F1	17-sept	2010	17-sept2011
Kit S	1356103	M1	5-oct2	010	5-oct2011

Version Logiciel:

4.3.0.7

Page 1 sur 3

METTLER TOLEDO

Résultats de mesure

La température :

70 °F

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

_ ₁	20
□ ⁴	3_

w		Avant Réglage
Les poids Appliqués	Position	Valeur lue
1: 125 kg	Position 1	125.02 kg
2: 125 kg	Position 2	125.16 kg
3: 125 kg	Position 3	125.16 kg
4: 125 kg	Position 4	125.26 kg
Erreur maximum :		0,26 kg
Max Erreur Admissible	ř.	0.10 kg

Après Réglage
Valeur lue
124.98 kg
125.02 kg
125.02 kg
125,00 kg
0.04 kg
0.1 kg

Linéarité

			Avant régla	ge	211	
	Les poids Appliqués	Valeur lue	Erre	Erreur		Dans la Tolérance
Zero 1	0,00 kg	0.00 kg	0,00 kg	0 d	1 d	OUI
2	20.00 kg	20.02 kg	0.02 kg	1 d	2 d	QUI
3	40.00 kg	40.04 kg	0.04 kg	2 d	2 d	OUI
4	100.00 kg	100.12 kg	0.12 kg	6 d	5 d	NON
Max 5	200.00 kg	200.24 kg	0,24 kg	12 d	5 d	NON
6	100,00 kg	100,12 kg	0.12 kg	6 d	5 d	NON
7	40.00 kg	40.04 kg	0.04 kg	2 d	2 d	OUI
8	20.00 kg	20.02 kg	0.02 kg	1 d	2 d	OUI
Zero 9	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI

Méthode de substitution utilisée

METTLER TOLEDO

			Après réglas			
	Les poids Appliqués	Valeur lue	Erre	eur	Erreur admissible	Dans la Tolérance
Zero 1	0,00 kg	0.00 kg	0,00 kg	0 d	1 d	OUI
2	20,00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI
3	40.00 kg	40,00 kg	0,00 kg	0 d	2 d	OUI
4	100.00 kg	100.02 kg	0.02 kg	1 d	5 d	OUI
Max 5	200.00 kg	200.02 kg	0.02 kg	1 d	5 d	OUI
6	100.00 kg	100.02 kg	0,02 kg	1 d	5 d	OUI
7	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI
8	20.00 kg	20,00 kg	0.00 kg	0 d	2 d	OUI
Zero 9	0.00 kg	0.00 kg	0,00 kg	0 d	1 d	oui

Zero 9	0.00 kg	0.00 kg	0,00 kg	0 d	1 d	OUI			
☐ Méth	Méthode de substitution utilisée								
	Un réglage de la balance a été requis								
Si NON, les r	ésultats relatifs à l'état d	lu système avant la pre	station de service	corresponden	t à l'état de				
\checkmark	oui 🗌	NON							
Répétabi	épétabilité								

	-		
_			

100.00 kg Poids appliqués :

	V S				
	Chargé	Vide	Différence		
1	100.00 kg	0.00 kg	100 kg		
2	100.02 kg	0.00 kg	100.02 kg		
3	100.02 kg	0.00 kg	100,02 kg		
	Erreur maximale	0.02 kg	1.0 d		
	Tolérance :	0,10 kg	5 d		

Incertitude

Mesure de l'incertitude = 0.022 kg

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Aucune.

Version Logiciel:

4.3.0.7

Page 3 sur 3 © METTLER TOLEDO

No du rapport d'étalonnag CA0003-086-032111 **Mettler Toledo**

Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered
ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association of Laboratory Accreditation (A2LA)

CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client						
Société :	SBI Fabricant de poêles Ir	nternational inc.				
Adresse :	250, rue Copenhague					
Ville :	St-Augustin	État/Pro	État/Province :			
Code postal :	G3A 2V1	Astea C	ustomer ID:	C037589	001001	
Instrument						
Constructeur :	Weightronix	Modèle	de terminal :	IND560		
Modèle :	DSL-6060	No de se	érie du termin	00927386	SKL	
No de série :	B00927386KL	No. Séri	ie Impr.	N/A		
Capacité :	500 kg	Service/	Pièce :	LAB		
Résolution :	0.02 kg	Nbre de	Divisions 25000			
Classe :	III	Procédu	ıre utilisée :	Canadien		
Numéro/ID d'actif du clie	SBI-014					
Procédure:	Le présent certificat est én l'A2LA, en vertu de la norn laboratoire et la traçabilité	ne ISO/IEC 17025. A2	LA a évalué la			
Date de calibrage	21-mars-2011	Le proch	nain Cal Date	31-mars-2	2012	
Signataire autorisé (A2LA) :	Dany Careau	Signatur	Signature:		ELECTRONIC SIGNATURE	
Signature du client						
Étalons de travail						
Traçabilité	Les poids de test utilisés s	e réfèrent au National	Institute of Sta	ndards and	Technology.	
Jeu de poids no	Traçabilité NIST No.:	Classe ASTM/OIML	Date d'étale	onnage	Date proch étalonnage	
42268	268 M10-0278 M1		5-août-2010		5-août-2011	
MTP1	MT0015626	F1	17-sept	-2010	17-sept-2011	
Kit S	1356103	M1	5-oct2	2010	5-oct2011	

Version Logiciel: 4.3.0.7 Page 1 sur 3

© METTLER TOLEDO

METTLER TOLEDO

Résultats de mesure

La température :

70 °F

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

₁	20
□ ⁴	3_

	Na contract of the contract of			
	Avant Réglage			
Position	Valeur lue			
Position 1	125.00 kg			
Position 2	125.04 kg			
Position 3	125.00 kg			
Position 4	124.96 kg			
Erreur maximum				
Max Erreur Admissible				
	Position 1 Position 2 Position 3 Position 4			

Après Réglage
Valeur lue
125.00 kg
125.00 kg
125.00 kg
125.00 kg
0.00 kg
0.1 kg

Linéarité

	Avant réglage					
(—	Les poids Appliqués	Valeur lue	Erreur		Erreur admissible	Dans la Tolérance
Zero 1	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI
2	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI
3	40.00 kg	40,00 kg	0.00 kg	0 d	2 d	oui
4	100.00 kg	100.02 kg	0.02 kg	1 d	5 d	oui
Max 5	200.00 kg	200.04 kg	0.04 kg	2 d	5 d	OUI
6	100.00 kg	100.02 kg	0.02 kg	1 d	5 d	OUI
7	40.00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI
8	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI
Zero 9	0.00 kg	0.00 kg	0,00 kg	0 d	1 d	OUI

Méthode de substitution utilisée

METTLER TOLEDO

			Après régla	ge				
	Les poids Appliqués	es poids Appliqués Valeur lue Erreur		Erreur admissible	Dans la Tolérance			
Zero 1	0.00 kg	0,00 kg	0.00 kg	0 d	1 d	OUI		
2	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI		
3	40,00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI		
4	100.00 kg	100,00 kg	0.00 kg	0 d	5 d	OUI		
Max 5	200.00 kg	200.00 kg	0,00 kg	0 d	5 d	OUI		
6	100.00 kg	100.00 kg	0.00 kg	0 d	5 d	OUI		
7	40,00 kg	40.00 kg	0.00 kg	0 d	2 d	OUI		
8	20.00 kg	20.00 kg	0.00 kg	0 d	2 d	OUI		
Zero 9	0.00 kg	0.00 kg	0.00 kg	0 d	1 d	OUI		

utilisée
equis
tat du système avant la prestation de service correspondent à l'état de
□ NON

Répétabilité

Poids appliqués : 100.00 kg

V	Chargé	Vide	Différence
1	100.00 kg	0.00 kg	100 kg
2	100.02 kg	0.00 kg	100.02 kg
3	100.00 kg	0.00 kg	100 kg
	Erreur maximale:	0.02 kg	1.0 d
	Tolérance :	0.10 kg	5 d

Incertitude

Mesure de l'incertitude =	0.022 kg	
nodare de riricertitude –	0.022 Ng	

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

Aucune			

Version Logiciel:

4.3.0.7

Page 3 sur 3 © METTLER TOLEDO No du rapport d'étalonnag CA0003-093-032111

Mettler Toledo

Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered
ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association of Laboratory Accreditation (A2LA)

CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Société :	SBI Fabricant de poêles Ir	nternational inc.			
Adresse :	250, rue Copenhague				
Ville:	St-Augustin	État/Pro	vince :	Québec	
Code postal :	G3A 2V1	Astea C	ustomer ID:	C0375890	001001
nstrument					
Constructeur :	Sartorius	Modèle (de terminal :	N/A	
Modèle :	TE214S	No de se	érie du termin	N/A	
No de série :	25851066	No. Séri	e Impr.	N/A	
Capacité :	210 g	Service/	Pièce :	Lab	
Résolution :	0,0001 g	Nbre de	Divisions	2100000	
Classe:	1	Procédu	re utilisée :	Canadien	
Numéro/ID d'actif du clie	SBI-206				
Procédure:	Le présent certificat est én l'A2LA, en vertu de la norn laboratoire et la traçabilité	ne ISO/IEC 17025. A2	LA a évalué la		
			710001111000.		
Date de calibrage :	21-mars-2011	Le proch	ain Cal Date	31-mars-2	
Date de calibrage : Signataire autorisé (A2LA) :	21-mars-2011 Dany Careau	Le proch	ain Cal Date		
Signataire autorisé			ain Cal Date		2012
Signataire autorisé (A2LA) :	Dany Careau		ain Cal Date		2012
Signataire autorisé (A2LA) : Signature du client :	Dany Careau	Signatur	e:	ELECTRO	2012 DNIC SIGNATURE
Signataire autorisé (A2LA) : Signature du client : Étalons de travail	Dany Careau	Signatur	e:	ELECTRO	2012 DNIC SIGNATURE

Version Logiciel:

4.3.0.7

METTLER TOLEDO

Résultats de mesure

La	tem	pér	atu	re .	
	LCI11	201	au	, .	

70 °F

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage,

Test de variation

	Avant Réglage
Position	Valeur lue
Position 1	49.9999 g
Position 2	49.9999 g
Position 3	49.9999 g
Position 4	49,9999 g
	0.0001 g
)	0.0003 g
	Position 1 Position 2 Position 3 Position 4

1
Après Réglage
Valeur lue
50.0000 g
50.0000 g
50,0000 g
50.0000 g
0.0000 g
0.0003 g

METTLER TOLEDO

Linéarité

			Avant régla	ge		
	Les poids Appliqués	Valeur lue	Erre	eur	Erreur admissible	Dans la Tolérance
Zero 1	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI
2	0.0100 g	0.0100 g	0.0000 g	0 d	1 d	OUI
3	0.1000 g	0.1000 g	0.0000 g	0 d	1 d	OUI
4	1.0000 g	1.0000 g	0.0000 g	0 d	1 d	OUI
5	10.0000 g	9.9999 g	-0.0001 g	1 d	2 d	OUI
6	20,0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI
7	50,0000 g	49.9998 g	-0.0002 g	2 d	3 d	OUI
8	100.0000 g	99.9995 g	-0.0005 g	5 d	3 d	NON
9	150.0000 g	149.9989 g	-0.0011 g	11 d	3 d	NON
Max 10	200,0000 g	199,9982 g	-0.0018 g	18 d	3 d	NON
11	150.0000 g	149.9989 g	-0.0011 g	11 d	3 d	NON
12	100.0000 g	99.9995 g	-0.0005 g	5 d	3 d	NON
13	50.0000 g	49.9998 g	-0.0002 g	2 d	3 d	OUI
14	20.0000 g	20,0000 g	0.0000 g	0 d	2 d	OUI
15	10.0000 g	9.9999 g	-0.0001 g	1 d	2 d	OUI
16	1,0000 g	1.0000 g	0,0000 g	0 d	1 d	OUI
17	0.1000 g	0.1000 g	0.0000 g	0 d	- 1 d	oui
18	0.0100 g	0.0100 g	0.0000 g	⁼ 0 d	1 d	OUI
Zero 19	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI

Méthode de substitution utilisée

No du rapport d'étalonnag CA0003-093-032111

METTLER TOLEDO

			Après régla	ge		
	Les poids Appliqués	Valeur lue	Erre	eur	Erreur admissible	Dans la Tolérance
Zero 1	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI
2	0.0100 g	0.0100 g	0.0000 g	0 d	1 d	OUI
3	0.1000 g	0.1000 g	0.0000 g	0 d	1 d	OUI
4	1.0000 g	1.0000 g	0.0000 g	0 d	1 d	OUI
5	10.0000 g	10.0000 g	0.0000 g	0 d	2 d	OUI
6	20.0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI
7	50.0000 g	50.0000 g	0.0000 g	0 d	3 d	OUI
8	100.0000 g	100,0000 g	0.0000 g	0 d	3 d	OUI
9	150.0000 g	150,0001 g	0.0001 g	1 d	3 d	OUI
Max 10	200.0000 g	200.0002 g	0.0002 g	2 d	3 d	OUI
11	150.0000 g	150.0001 g	0.0001 g	1 d	3 d	OUI
12	100,0000 g	100,0000 g	0.0000 g	0 d	3 d	OUI
13	50,0000 g	50,0000 g	0,0000 g	0 d	3 d	OUI
14	20.0000 g	20.0000 g	0.0000 g	0 d	2 d	OUI
15	10.0000 g	10.0000 g	0.0000 g	0 d	2 d	OUI
16	1.0000 g	1.0000 g	0.0000 g	0 d	1 d	oui
17	0.1000 g	0.1000 g	0,0000 g	0 d	1 d	OUI
18	0.0100 g	0.0100 g	0.0000 g	0 d	1 d	OUI
Zero 19	0.0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI

Méthode de substitution utilisée

Un réglage de la balance	a été requis		
Si NON, les résultats rela	tifs à l'état du système a	avant la prestation de service correspondent à l'éta	at de
√ oui	П иои		

Version Logiciel:

4.3.0.7

Page 4 sur 5

No du rapport d'étalonnag CA0003-093-032111

METTLER TOLEDO

Répétabilité

Poids appliqués :

20.0000 g

		er .	V 1
	Chargé	Vide	Différence
1	20.0001 g	0.0000 g	20,0001 g
2	20.0002 g	0.0000 g	20.0002 g
3	20.0001 g	0.0000 g	20.0001 g
	Erreur maximale :	0.0002 g	2.0 d
	Tolérance :	0.0002 g	2 d

Incertitude

Mesure de l'incertitude =	0,00020 g	

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

ucune.

4.3.0.7

4850, bd Govin est Montréal-Nord, Qc Canada H1G 1A2 Tél. (514) 328-2550 1 800 522-1226

www.chevnerinstruments.com

info@chevrierInstruments.com

instruments du mesure et de régulation pour les procédés industriels àt leboratoire d'étalegrage

Certificat d'Étalonnage

Numéro du certificat: CE6926

Étalonnage effectué par :

LA CIE J. CHEVRIER INSTRUMENTS INC.

4850 GOUIN EST

MONTREAL, QC, CANADA H1G 1A2

Informations sur l'instrument

Description:

TUBE DE PITOT EN S

Manufacturier:

DWYER 160S-24

Modèle:

Numéro de série :

I.D.:

SBI-104

État de l'instrument: BON

Approuvé par

Commentaire:

Pour:

3424

SBI INC.

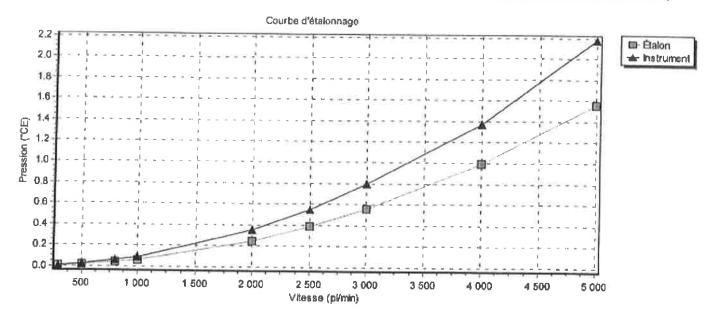
250, RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Date d'étalonnage : 2011-08-17

Échéance : 2012-08-17

Résultat de l'étalonnage: Reçu Conforme Conditions ambiantes: 21.7 °C /42.5%hr


Technicien: Benjamin Ricard SC

C.Q. B.R.

Points d'étalonnage			
Valeur Appliquée pi/min	Pitot Étalon "Ce	Pitot sous test "Ce	Facteur
297 pi/min	0.0055 poH2O	0.0058 poH2O	0.97
502 pi/min	0.0157 poH2O	0.0205 poH2O	0.88
799 pi/min	0.0398 poH2O	0.0593 poH2O	0.82
999 pi/min	0.0622 poH2O	0.0901 poH2O	0.83
1998 pì/min	0.2488 poH2O	0.3521 poH2O	0.84
2500 pi/min	0.3896 poH2O	0.5515 poH2O	0.84
2999 pi/min	0.5605 poH2O	0.7945 poH2O	0.84
3998 pi/min	0.9965 poH2O	1.3695 poH2O	0.85
5000 pl/min	1.5583 poH2O	2.1798 poH2O	0.85

Certificat d'Étalonnage

Numéro du certificat: CE6926

Étalons utilisés traçables au C.N.R.C / N.I.S.T ou non traçables

I.D.	Certificat No	Description	Étalonné le	Échéance
CHEV029	CE530	MANOMETRE NUMERIQUE FURNIESS PPC500	2010-12-20	2011-12-20
CHEV031	CHEV121-100830	TUYÈRE AIRFLOW DEVELOPMENTS	2010-08-30	2011-08-30

Procedures utilisées dans cet étalonnage

Design further		
Procédure	Description	Date de révision
3PR500-22-CHE	ÉTALONNAGE TUBE DE PITOT	3.00 0.00000000000000000000000000000000

Ulrich Métrologie inc. Ulrich Metrology Inc. 9912, Côte-de-Liesse Montréal (Québec) H8T 1A1 Tet. (514) 631-6653 Fax (514) 631-6122 info@otrich.ca www.utrich.ca

CALIBRATION CERTIFICATE

Certificate no.:

280384

Identification:

SBI-096

Description:

CALIBRATOR, OMEGA CL23A

Size:

TC K/J/T

Manufacturer: Model no.;

OMEGA CL23A

Serial no.:

T-256137

Calibration date

August 25, 2011

Certificate issued

August 25, 2011

Interval:

12 months

Due date:

August 25, 2012

Procedure no.:

MET/CAL

Environment:

CLAS Type 2 Laboratory

Temperature:

23 ± 2°C

Humidity:

35 - 55% RH

Metrologist:

NRS

Property of:

SBI

250 RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Approved by:

David Llorens VP Quality

This calibration verificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and QM-88. Measurement reads provided are traceable to either the Notional Research Council Canada tNRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Midual Recognition Assungement (MRA), or a calibration behoved by an accrediting body with which Canada has an equivalence agreement.

CALIBRATION STANDARDS

See notes below.

MEASUREMENT UNCERTAINTY

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

CALIBRATION DATA

See next page for measurement results.

Notes:

9V battery replaced.

Ulrich Métrologie Inc. Ulrich Metrology inc. 9912, Côte-de-Liesse Motoréal (Québec) H8T IAI

Tél. (514) 831-8653 Fax (514) 631-8122 info@ulrich.ca www.ulrich.ca

CALIBRATION DATA

Certificate no.:

280384

Identification:

SBI-096

Description:

CALIBRATOR THERMOMETER

Serial no.:

T-256137

Procedure:

Omega CL23A: 5520A-M

CALIBRATION STANDARDS

Identification

Description

Manufacturer

Model no.

PASS

Condition: FOUND-LEFT

Cal. Date **Due Date**

7870009

CALIBRATOR

FLUKE

5520A

Result:

2011/05/06 2012/05/06

MEASUREMENT RESULTS (Per MET/CAL)

PARAMETER

TRUE VALUE

TEST RESULT ACCEPTANCE LIMITS LOW HIGH PASS/ FAIL

TUR

1.7

3.1

1.5

1.7

1.1

1.1

1.4

2.1

3.5

1.7

2.0

1,6

1,6

1.8

Temperature measurements are performed by electrical simulation.

DISPLAY CALIBRATION

Did all segments of the display illuminate?

Result of Operator Evaluation

PASS

BRAG

PASS

PASS

THERMOMETER CALIBRATION

K Type Thermocouple

_
-60.0degF
-40.0degF
32.OdegF
1240.0degF
1260.0degF
2500.0degF

-200.0deqF

J Type Thermocouple -200.0degF

-60.0degF -40.0degF 32.0degF

1240.0degF 1260.0degF 1400.0degF

T Type Thermocouple

T Type Thermocouple -200.0degF -60.0degF

-40.0degF 32.0degF 750.0degF

CALIBRATOR CALIBRATION

-201.0 460.4 -40.5

-200,7

-60.4

-40.5

31.6

1239.6

1259.7

1399.6

-200.2

-60.0

-40.1

31.9

749.8

31.5 1239.5

31.5 1239.5 1259.5 1259.5 2499.3 2499.0

-201.0

-61.0

40.5

-201.0

1399.4

201.0

-61.0

-40.5

31.5

749.5

-61.0 -59.0 -39,5 -40.5 31.5 32.5 1239.5 1259.5

1240.5 1260.5 1400.6

-59.0

-39.5

32.5

750.5

×199.0

-199.0

-59.0

-39.5

32.5

1240.5

1260.5

2501.0

-199.0 PASS

2.3 PASS 2.3 PASS PASS

1.2 1.7 PASS 2.0

Ulrich Métrologie inc. Ulrich Metrology inc. 9912, Côte-de-Uesse Motoréal (Québec) HST IAI

Tél. (514) 631-6653 Fax (514) 631-6122 Info@ulnch.ca www.ulrich.ca

	TRUM	TEST	acceptanc	E LIMITS	PASS/	
PARAMETER	VALUE	RESULT	LOW	HIGH	FAIL	TUR
K Type Thermocouple						
-200,0degF		-199.4	-201.0	-199.0	PASS	1.7
-60.0degF		-59.8	-61.0	-59.0	PASS	3.1
-40.0degF		-39.8	-40.5	-39.5	PASS	1.5
32,0degF		32,1	31.5	32.5	PASS	1.7
1240.0degF		1239.5	1239,5	1240.5	PASS	1.1
1260.0degF		1259.5	1259.5	1260.5	PASS	1.1
2500.0degF		2499.0	2499.0	2501.0	PASS	1.4
J Type Thermocouple						
-200.0degF		-200.0	-201.0	-199.0	PAS\$	2.1
-60.0degF		-60.2	-61.0	-59.0	PASS	3,5
-40,0deg?		-40.0	-40.5	-39.5	PASS	1.7
32.0degF		31.8	31.5	32.5	PASS	2.0
1240.0degF		1239.5	1239.5	1,240,5	PASS	1.6
1260,0degF		1259.5	1259.5	1260.5	PASS	1.6
1400.0degF		1399.5	1399.4	1400.6	PASS	1.8
T Type Thermocouple						
-200.0degF		199.2	-201.0	-199.0	PASS	2.3
· 60.0degF		59.9	-61.0	-59.0	PASS	2.3
-40.0degF		=39.7	-40.5	-39.5	PASS	1.2
32.0degF		32.1	31.5	32.5	PAS5	1.7
750.0degF		749.6	749.5	750,5	PASS	2.0

End of Test Date

Date:

12/1/2010 TALLER

72 F 25%

Temperature: R.H.:				%		
b - 4	%	%	%	0.57	A.D.	
SBI-134 (T1) 0.2 SBI-096	0.01	0.29	1.28	Ave A.D.	Reading	
Equipment: Accuracy: Reference:	S.D.	R,M.U.	O.M.U		Standard	

0.57 0.57 0.57

69.6 69.6 69.6

70.0 **70.0** 70.0

0.10 %	Ave A.D. 0.08	Reading A.D.	0 999.2 0.08	0 999.2 0.08	0 999.2 0.08	
2		dard	0.000.	0.0001	0.000	

Technician: Vincent Pelletier

S.D.	0.01	%	
R.M.U.	0.10	%	
J.	1.02	%	
	Ave A.D.	0.50	%
standard	Reading	A.D.	
200.0	199.2	0.40	
200.0	199.2	0.40	
200.0	198.6	0.70	

S.D.	0.00	%	
R.M.U.	0.01	%	
o.m.u	0.13	%	
	Ave A.D.	90.0	%
Standard	Reading	A.D.	
1400.0	1399.0	0.07	
1400.0	1399.2	90.0	
1400.0	1399.2	0.06	

S.D.	0.00	%		_
R.M.U.	0.03	%		_
o.M.u	0:30	%		_
	Ave A.D.	0.14	%	_
Standard	Reading	A.D.		_
				_
0.009	599.2	0.13		_
0.009	299.0	0.17		_
0.009	599.2	0.13		_

Date:

12/1/2011

Equipment: SBI-134 (T2) Accuracy: 0.2

Accuracy: Reference: SBI-096

Températur R.H.:

72 F	72%
Température:	R.H.:

			%				
%	%	%	0.13	A.D.	0.10	0.20	0.10
00'0	0.10	0.33	Ave A.D.	Reading	200.2	200.4	200.2
S.D.	R.M.U.	o.M.u		Standard	200.0	200.0	200.0

%

0.38

A.D.

Reading

Standard

% %

0.01 0.29 **0.95** Ave A.D.

O.M.U

S.D. R.M.U. 0.29 0.29 0.57

70.2

70.0

S.D.	0.00	%	
R.M.U.	0.01	%	
O.M.U	0.05	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
1400.0	1399.6	0.03	
1400.0	1399.6	0.03	
1400.0	1400.0	00:00	

%

A.D.

Reading

Standard

% % % 0.01

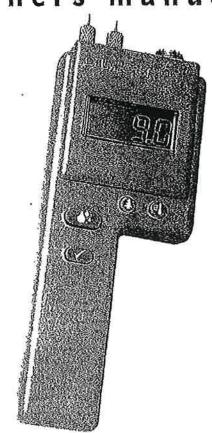
0.00 0.02 **0.04** Ave A.D.

O.M.O

S.D. R.M.U.

%

S.D.	00:00	%	
R.M.U.	0.03	%	
O.M.O	80.0	%	
	Ave A.D.	0.02	%
Standard	Reading	A.D.	
0.009	0'009	00:00	
0.009	9'665	0.07	
600.0	600.0	0.00	


Technician: Vincent Pelletier

0.00

999.8 1000.0 1000.0

1000.0 1000.0 1000.0

J-2000 owners manual

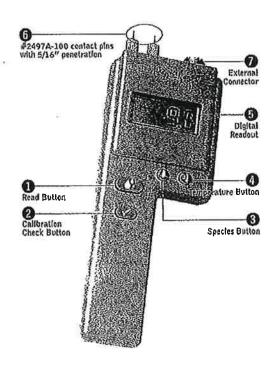


TABLE OF CONTENTS

- .2 J-2000 Features
- 3 Before You Begin
- 3 Check Calibration
- 4 Set Species
- 5 Species Code Chart
- 6 Set Temperature
- 7 Set Pin Calibration
- 7 Taking a Reading
- 8 Information About Your Readings
- 8 To Check Accumulated Readings
- 8 To Reset Meter
- 9 Pin Talk
- 9 Care of Your Meter
- 10 Service For Your Meter
- 11 Warranty

DELMHORST J-2000

J-2000 FEATURES

- Resistance technology recognized worldwide as the most accurate method for measuring moisture
- ▶6% to 40% moisture range
- ► Digital readout
- Averages up to 100 accumulated readings
- ▶ Built-in correction for 48 different species
- ➤ Built-in temperature compensation both Fahrenhelt and Celsius
- ► Proven microcontroller circuit for increased reliability and accuracy
- Easy one-hand operation
- ► Includes (1) 9-Volt Battery
- ► Includes sturdy carrying case
- ► One-year warranty
- ► Over fifty years of proven quality, accuracy and service

BEFORE YOU BEGIN

Button Functions

- READ BUTTON Reads the Percent Moisture Content value (%MC), corrected for temperature and species.
- CALIBRATION CHECK BUTTON Checks meter calibration. It also displays the average of up to 100 accumulated readings; displays the maximum stored reading; erases the readings.
- 3 SPECIES BUTTON Sets the species code for the wood you are using. Species are numbered from 1 to 48 and are listed on the Species Code Chart. This button also acts as a scroll key, depending on the function.
- TEMPERATURE BUTTON Sets the wood temperature and changes the temperature mode (Fahrenheit or Celsius). This button also acts as a scroll key, depending on the function.

CHECK CALIBRATION

Press the calibration check button and read button simultaneously, Meter is in calibration if it displays 12% (+ or - .2).

If you check the calibration and the meter does not display 12% it is likely an indication of a low battery. If this occurs, change the battery immediately. Continued use with a low battery may cause the meter to go out of calibration. If you have a fresh battery and the instrument still does not indicate a proper calibration, return it to DELMHORST for service. See Service for your Moter section.

When the battery is removed and then reconnected, the meter displays its software version for one second and then turns itself off. After replacing the battery, you must reset the meter as described in Resetting the Meter section.

SET SPECIES 🥸

The J-2000 defaults to Species Code #1 - Douglas Fir - the USDA standard and basis for all calibrations. Because the electrical characteristics of different species vary, all species read differently at the same moisture content. For this reason you need to adjust for species. If you are working with a species other than Douglas Fir, set the species code using the species button 3, and the meter will make the necessary corrections.

- ► To change species press the species button 3. The meter will display the current species code for one second.
- ► To scroll forward through the species list hold the species button ③ while the current species code is displayed and scroll to the species number desired.
- ➤ To scroll backward through the species list, press and release the species button ③. Within one second, press and hold the temperature button ④. Continue to hold the temperature button ④ and the species number will decrease.
- ► When scrolling in either direction, release the button to stop at your desired species.

The J-2000 can be used to test more than just wood. It will also give a relative reading on plywood, OSB, particleboard and MDF or can be fitted with a 26-ES slide hammer for specific applications. Call Delmhorst at 1-877-DELMHORST or e-mail lnfo@delmhorst.com for information on how to interpret the readings for other materials.

Species Code Chart

CODE	/SPECIES	CODE	/ SPECIES
1	Fir, Douglas	25	Magnolfa
2	Pine, Southern	26	Mahogany, African (also Khaya)
3	SPF	27	Mahogany, Honduras
4	Alder	28	Mahogany, Philippine
5	Apitong	29	Maple, Hard/Soft
6	Aspen	30	Meranti, Dark Red
7	Ash, White	31	Oak, Red
8	Basswood	32	Oak, White
9	Birch	33	Pecan
10	Cedar, Eastern Red	34	Pine, Longleaf
11	Cedar, Incense	35	Pine, Ponderosa
12	Cherry	36	Pine, Shortleaf
13	Cottonwood	37	Pine, Sugar
14	Cypress	38	Pine, White
15	Elm, American	39	Poplar, Yellow
16	Flr, Red	40	Ramin
17	Fir, White	41	Radiata Pine
18	Gum, Black	42	Redwood
19	Gum, Red	43	Spruce, Sitka
20	Hemlock, Western	44	SPF, COF1*
21	Hackberry	45	Teak
22	Hickory	46	Virola
23	Keruing	47	Walnut, Black
24	Larch	48	Western Hemlock - COFI*

^{*}Species and temperature correction data for both Western Hemiock-COFI (code #48) and SPF-COFI (code #44) were developed by COFI. When comparing readings between the model RDM-2/COFI or the RDM-2S/COFI, used with type 26-E electrode with insulated pins, and the J-2000, be sure both meters are set to 2-pin electrode (insulated pins).

SET TEMPERATURE 🗐

The J-2000 defaults to a temperature of 70°F. As wood temperature Increases, its electrical resistance decreases and Indicated moisture content rises. Lower wood temperatures result in lower indicated moisture content. A correction is necessary if the wood temperature is outside the range of 50°F (10°C) to 90°F (32°C). Set the temperature accordingly and the meter will make the correction.

- ➤ To change temperature press and release the temperature button . The meter will display the current temperature for one second.
- ► To scroll forward through the temperature settings, press and hold the temperature button while the current temperature is displayed.
- ► To scroll backward press and release the temperature button . Within one second, press and hold the species button . Continue to hold the species button . and the temperature will decrease.
- When scrolling in either direction, release the button to stop at the desired temperature.

Set Temperature Mode

- ► To change from Fahrenhelt to Celsius mode or Celsius to Fahrenhelt mode press the temperature button .
- ► Press the calibration check button ② within one second and release when you are in the mode needed.
- ►The meter will display the current temperature setting in the new mode and will wait one more second until shutting off so that you may change the temperature value as described above.

If the meter is in Fahrenheit mode, the letter "F" will display in the left-hand corner. If it is in Ceisius mode, no letter will appear in the display.

In the Fahrenheit mode, the temperature will change in increments of 5°F. In Celsius, the temperature will change in increments of either 2°C or 3°C depending on its conversion from Fahrenheit.

In the Fahrenhelt mode, the temperature value will display in whole numbers. In the Celsius mode, positive values will display in whole numbers; negative values will display with a decimal point and a "-" sign in the left-hand corner. (i.e.: -17.0)

SET PIN CALIBRATION

The basic factory calibration of the J-2000 is for use with uninsulated pins — either the integral pins 6 or with an optional external electrode, such as the #4-E. The difference in readings between insulated and uninsulated pins is small below 10% moisture content. The difference increases as moisture content increases above 10%. When using an electrode with insulated pins, such as the 26-ES, you can change the calibration to compensate for this difference.

- ➤ To change the pin setting, press and release the species button ③, then press the calibration check button ② within one second.
- ►The meter will display the current pin calibration as either 222 for insulated or 444 for uninsulated pins.
- ►If you continue to hold the calibration check button 2, the meter will change pln calibration. The new calibration will remain in "memory" until you change it again, or you remove the battery.

TAKING A READING

The contact pins 6 provided are best for stock up to 6/4. On stock over 6/4 or for hardwoods over 4/4 we recommend using a remote probe such as the 26-ES ram-type electrode. Mount the 26-ES directly to the external connector 7. See additional information under the Pin Talk section.

- ➤ Remove the protective cover to expose the pins. Check that the contact pins 6 are firmly hand tightened.
- ►To take a reading, align the contact pins 6 parallel to the grain and push them to their full penetration into the wood, if possible. Insulated pins read only at the tip and can be driven to the desired depth.
- Press the read button ① and read the moisture content on the meter scale. The meter displays the %MC for two seconds.
- ▶To add a reading to the sum of all the previously stored readings, release the read button within 2 seconds.

INFORMATION ABOUT YOUR READINGS

Readings below 6% will be displayed as a numeric value, (-##.#), and will not be added to accumulation. A reading below 6% which is due to temperature and species adjustments will be shown as a numeric value with no minus sign and this reading will be added to the accumulation.

Readings above 40% are always displayed as 999 and are not added to the accumulation.

The meter will accumulate up to 100 readings. After all 100 readings are stored it will not add new readings until the memory has been cleared. It will also continue to display the average of all 100 readings as a reminder that the memory is full.

When taking and storing readings for a specific wood species, be sure to "clear" the meter before moving on to the next species if you do not want to group all of the readings together.

TO CHECK ACCUMULATED READINGS

This feature allows you to view the total number of all accumulated readings, the average of those readings, and the highest stored reading.

- ➤ To view the readings press and release the calibration check button ②. First the meter displays the number of accumulated readings for one second, then the average of those readings for two seconds. Then it displays the highest stored reading for two seconds. The total "cycle" time is five seconds.
- ►To erase readings hold the calibration check button ②
 down for 5 seconds. All accumulated readings will be
 erased and the meter will display "0".

TO RESET METER

- > Press and release the calibration check button 2.
- ➤ Within one second press the species button 3.
- ► The meter will reset itself and display "170" to indicated Species #1 (Douglas Fir) at 70°F. All of the readings in memory will be cleared.

PIN TALK

There are two types of contact pins - uninsulated, which were provided with your meter, and insulated. When using uninsulated pins, push them in to the wood to their full length, if possible. This will give you the highest measured reading. Insulated pins read only at the tip and can be driven to a desired depth to gather shell and core (gradient) information. Additional types and lengths of both the insulated and uninsulated pins are available for specific applications.

CARE OF YOUR METER

To keep your meter in good working order:

- Store your meter in a clean, dry place. The protective carrying case provided is an ideal storage place when the meter is not in use.
- Change the 9-Volt battery as needed. Continued use with a low battery may cause the meter to go out of calibration.
- ► Change contact plns as needed. Keep contact plns hand tightened.
- Clean the meter and contact pins with any biodegradable cleaner. Use the cleaner sparingly and on external parts only. Keep cleaner out of the external connector .
- Remove the battery if the meter will not be used for one month or longer.

SERVICE FOR YOUR METER

- ➤ Before sending in your meter we recommend you give one of our trained technicians a call. Many times troubleshooting can be taken care of over the phone. Call us at 1-877-DELMHORST.
- Pack your meter securely. Enclose a purchase order or letter with a brief description of the problem.
- ► There is no need to call us for a return authorization number if you are within the U.S. Customers outside the U.S. must contact us for more specific instructions prior to returning a meter.
- Include your name, address, daytime phone and fax numbers or e-mail address. If you believe the meter is under warranty, please provide the original sales slip or invoice.
- Ship via UPS, Express Mail, Priority Mail, or any overnight courier who provides prompt service. Do not use standard parcel post.
- ► Insure your instrument for its full value and ship prepaid. We are not responsible for damage in transit.
- ► We do not accept COD shipments or cover any incoming freight or duty charges on returned merchandise
- Turnaround time on repairs is approximately two weeks.
- ➤ Wo will call you with an estimate if you specifically request one, or if we determine that the meter may be too costly to repair.
- ➤ Non-warranty repairs will be returned via UPS/COD unless you have already established other payment terms. There is no COD service outside the U.S. To pay by credit card, include the card number and expiration date with your repair. We accept Visa/MasterCard and American Express.
- ➤ Warranty repairs will be returned at no charge if shipped within the U.S. via UPS Ground Service. Freight charges for expedited services (i.e., Federal Express, UPS/2 Day, UPS/1 Day, etc.) are the customer's responsibility and will be charged as per the above terms.

WARRANTY

Delmhorst Instrument Co., referred to hereafter as Delmhorst, guarantees its J-2000 meter for one year from date of purchase and any optional electrodes against defects in material or workmanship for 90 days. If, within the warranty period, you find any defect in material or workmanship return the meter following the instructions in the Service for Your Meter section. This limited warranty does not cover abuse, alteration, misuse, damage during shipment, improper service, unauthorized or unreasonable use of the meter or electrodes. This warranty does not cover batteries or contact pins. If the meter or any optional electrodes have been tampered with, the warranty shall be void. At our option we may replace or repair the meter.

Delmhorst shall not be liable for incidental or consequential damages for the breach of any express or implied warranty with respect to this product or its calibration. With proper care and maintenance the meter should stay in calibration; follow the instructions in the Care of Your Meter section.

Under no circumstances shall Delmhorst be liable for any incidental, indirect, special, or consequential damages of any type whatsoever, including, but not limited to, lost profits or downtime arising out of or related in any respect to its meters or electrodes and no other warranty, written, oral or implied applies. Delmhorst shall in no event be liable for any breach of warranty or defect in this product that exceeds the amount of purchase of this product.

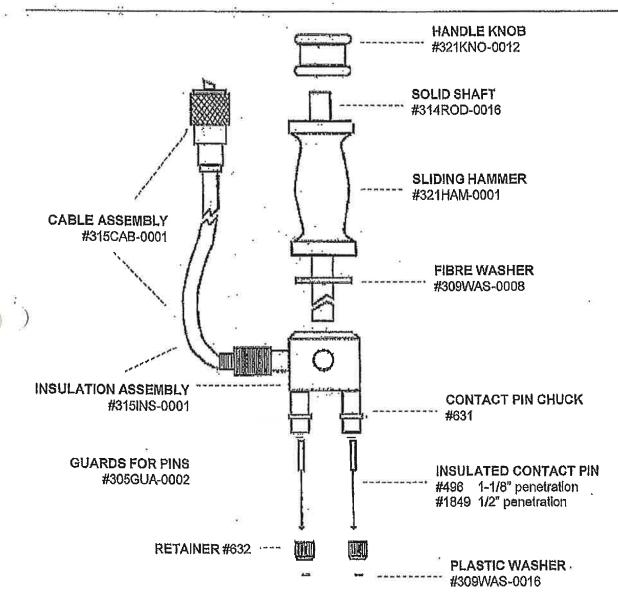
The express warranty set forth above constitutes the entire warranty with respect to Delmhorst meters and electrodes and no other warranty, written, oral, or implied applies. This warranty is personal to the customer purchasing the product and is not transferable.

For more detailed information about using a wood moisture meter, call us toll-free at 1-877-DELMHORST. Ask for your free copy of "Measuring Wood Moisture Content: Straight Talk from Delmhorst".

Or find it on our web site at www.delmhorst.com.

For over 60 years, Delmhorst has been the leading manufacturer of high-quality moisture meters and thermo-hygrometers. Today we offer the innovative KIL-MO-TROL® in kiln monitoring system.

We also offer a wide range of meters for a variety of applications including woodworking/lumber, agriculture, construction, paper, restoration, IAQ and flooring.



(877)-DELMHORST vww.delmhorst.com e-mail - info@delmhorst.com

©2006, Delmhorst Instrument Co. 510INS-0003 REV. 11/06

WHEN ACCURACY IS THE POINT. Parts List for 26-ES Electrode

Note: Type 26-ED electrode is fitted with hollow shaft assembly (with depth gauge) #315SHA-0002

4850, bd Gouin est Montréal-Nord, Qc Canada HIG IA2

www.chev/ierinstruments.com

Tél. (514) 328-2550 I 800 522-1226 Fax (514) 327-0604

info@chevrierinstruments.com

instruments de mosero et de régaletion pour les pracédés industriels et laboratoire d'étaleunage

Certificat d'étalonnage

Numéro du certificat: CE1638

Étalonnage effectué par :

LA CIE J. CHEVRIER INSTRUMENTS INC

4850 GOUIN EST

MONTREAL, QC, CANADA H1G 1A2

Pour:

3424

SBI INC.

250, RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Informations sur l'instrument

MANOMETRE DIFFERENTIEL ANALOGIQUE

0.0000 poH2O

Description: Manufacturier:

DWYER

Modèle:

2000-00N

Plage:

0/0.20 POH2O

Précision:

±4%P.E.

Numéro de série :

Commentaire:

Descendant

LD.

SBI-025

Etat de l'instrument; BON

Date d'étalonnage

2011-02-10

Échéance

2012-02-10

0

Résultat de l'étalonnage: Conforme

Conditions ambiantes 20.9 °C / 29.9%HR

Pierre Junior Berlus

POINTS D'ÉTALON	NAGE	THE RESERVE				
	Valeur Appliquée		Tolérance -	Lectures	Tolérance +	Verdict
Ascendant	0.0000 poH2O		-0.0100	0	0.0100	OK
Ascendant	0.0500 poH2O		0.0400	0.045	0.0600	OK
Ascendant	0.1000 poH2O		0.0900	0.095	0.1100	OK
Ascendant	0.1500 poH2O		0 1400	0.1425	0.1600	OK
Ascendant	0.2000 poH2O		0.1900	0.1925	0.2100	OK
	Valeur Appliquée	湖北東 40%/6%	Tolérance - 1	Lectures	Tolérance +	Verdict
Descendant	0,2000 poH2O		0.1900	0.1925	0.2100	OK
Descendant	0.1500 poH2O		0.1400	0.1425	0.1600	OK
Descendant	0.1000 poH2O		0.0900	0.096	0.1100	OK
Descendant	0.0500 poH2O		0.0400	0.045	0.0600	OK

-0.0100

Étalons utilisés traçable au C.N.R.C / N.I.S.T

I.D.	Certificat No	Description	Étalonné le	Échéance
CHEV175	12688334994	CALIBRATEUR DE PRESSION DH PPC4	2010-03-17	2011-03-17

0.0100

OK

Certificat d'étalonnage

Numéro du certificat: CE1638

Procédures utilisées pour effectuer cet étalonnage

Procédure Description

3PR500-01-CHE

ÉTALONNAGE DE MANOMÈTRE

4850, bd Gouin est Montréal-Nord, Qc Canada HIG IA2

www.chevrierinstruments.com

Tél. (\$14) 328-2550 1 **8**00 522-1226 Fox (514) 327-0604

info@chevrierinstruments.com

toziromente de mesure et de régulation pour les precèdés industriels et laboratoire d'étalonnage

Certificat d'étalonnage

Numéro du certificat: CE1639

Étalonnage effectué par :

LA CIE J. CHEVRIER INSTRUMENTS INC.

4850 GOUIN EST

MONTREAL, QC, CANADA H1G 1A2

Pour:

3424

SBI INC.

250, RUE DE COPENHAGUE

Date d'étalonnage 📜

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

2011-02-10

2012-02-10

Informations sur l'instrument

Description:

MANOMETRE DIFFERENTIEL ANALOGIQUE

Manufacturier:

DWYER

Modèle:

2000-00

Plage:

0/0.25 POH2O

Précision:

Numéro de série :

I.D.:

SBI-027

Etat de l'instrument: BON

Commentaire:

±4%P.E.

Résultat de l'étalonnage:

Conforme

Conditions ambiantes 20.9 °C / 29.9%HR

Technicien:

Échéance :

Pierre Junior Berlus

	NAGE			Self (made to the control of the con	ALT RESIDENCE STATE OF A
	Valeur Appliquée	Tolérance -	Lectures	Tolérance +	- Aeldict
Ascendant	0.0000 poH2O	-0.0100	0	0.0100	OK
Ascendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Ascendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Ascendant	0.1500 poH2O	0.1400	0.15	0.1600	ok
Ascendant	0.2000 poH2O	0.1900	0.205	0.2100	OK
Ascendant	0.2450 poH2O	0.2350	0.25	0.2550	OK
#	Valeur Appliquée	Tolérance	Lectures	Tolérance +	Verdict
Descendant	0.2450 poH2O	0.2350	0.25	0.2550	OK
Descendant	0.2000 poH2O	0.1900	0.205	0.2100	OK
Descendant	0.1500 poH2O	0.1400	0.15	0.1600	OK
Descendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Descendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Descendant	0.0000 poH2O	-0.0100	0	0.0100	OK

4850, bd Gouin est Montréal-Nord, Qc Canada H1G IA2

www.chevriorinstruments.com

Tel. (514) 328-2550 1 800 522-1226

Fex (514) 327-0604 info@chevrierinstruments.com

Instruments de mesure et de régulation pour les procéées industriels et laboratoire d'étalonnage

Certificat d'étalonnage

Numero du certificat: CE1640

Étalonnage effectué par :

LA CIE J. CHEVRIER INSTRUMENTS INC.

4850 GOUIN EST

MONTREAL, QC, CANADA H1G 1A2

Pour :

3424

SBI INC.

250, RUE DE COPENHAGUE

ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Informations sur l'Instrument

Description: MANOMETRE DIFFERENTIEL ANALOGIQUE

Manufacturier: DWYER

Modèle: 2000-00

 Plage
 0/0.25 POH2O

 Précision:
 ±4%P.E.

Numéro de série

I.D.:

SBI-101

Etat de l'instrument: BON

Commentaire :

Date d'étalonnage :

2011-02-10

Échéance :

2012-02-10

Résultat de l'étalonnage: Cor

Conforme

20.9 °C / 29.9%HR

Conditions ambiantes
Technicien : F

Pierre Junior Berlus

0.0

POINTS D'ÉTALO	NNAGE				
	Valeur Appliquée	Tolérance -	Lectures	Tolerance +	Verdict
Ascendant	0.0000 poH2O	-0.0100	0	0.0100	OK
Ascendant	0.0500 poH2O	0.0400	0.045	0.0600	OK
Ascendant	0.1000 poH2O	0.0900	0.10	0.1100	ОК
Ascendant	0.1500 poH2O	0.1400	0.15	0.1600	ОК
Ascendant	0.2000 poH2O	0.1900	0.20	0.2100	ok
Ascendant	0,2500 poH2O	0.2400	0.25	0.2600	ОК
STORE HUTCH	Valeur Appliquée	Tolérance -	Lectures	Tolerance +	Verdict
Descendant	0.2500 poH2O	0.2400	0.25	0.2600	ОК
Descendant	0.2000 poH2O	0.1900	0.20	0.2100	OK
Descendant	0.1500 poH2O	0.1400	0.15	0.1600	OK
Descendant	0.1000 poH2O	0.0900	0.10	0.1100	OK
Descendant	0.0500 poH2O	0.0400	0.045	0.0600	ОК
Descendant	0.0000 poH2O	-0.0100	0	0.0100	OK

Appendix E Sample Calculations

Equations and Sample Calculations - Method 5G

Equations used to calculate the parameters listed below are described in this appendix. Sample calculations are provided for each equation. The raw data and printout results from a sample run are also provided for comparison to the sample calculations.

BR Dry burn rate, kg/hr

m, Total particulate matter collected, mg

 $V_{m(std)}$ Volume of gas sampled corrected to standard conditions, dscf

ν_s Average dilution tunnel gas velocity, ft/sec

C_s Particulate concentration, g/dscf

Q_{sd} Average dilution tunnel gas flow rate, dscf/min

B Particulate emission rate, lbs/hr

PR Proportional rate variation, %

Dry Burn Rate

Using equation 28-3:

$$BR = \frac{60 \times W_{wd}}{\theta} \times \frac{100 - \%M_{w}}{100}$$

Where,

BR = Dry burn rate, 1b/hr

W_{wd} = Mass of wood burned (wet basis) during test run, lb

θ = Total time of test run, minutes

%M_w = Average moisture content of test fuel charge, wet basis percent

Sample Calculation:

Dry basis moisture of fuel = 20.03%

Using the equation 28-2 for converting dry basis moisture to wet basis moisture,

$$\%M_{W} = \frac{20.03 \times 100}{20.03 + 100}$$

$$\%M_{_{W}} = 16.69\%$$

The wet weight of the fuel charge was 7.8 pounds. Converting pounds to kilograms yields a weight of 3.538 kg. The run time for this run was 180 minutes. Therefore, the burn rate equation appears thus:

$$BR = \frac{60 \times 3.538 \times (100 - 16.69)}{180 \times 100}$$

$$BR = 0.98 \, kg/hr = 2.17 \, lb/hr$$

Volume of Gas Sampled Corrected to Dry Standard Conditions

Using equation 5-1:

$$V_{m(std)} = V_m \times Y \times (\frac{T_{std}}{P_{std}}) \times \frac{(P_b + \frac{\Delta H}{13.6})}{T_m}$$

Where:

K = 17.64 °R/in, Hg

 $T_{sid} = 528 \, ^{\circ}R$

 $P_{sid} = 29.92 \text{ in. Hg}$

V_m = Volume of gas sample measured at the dry gas meter, def

Y = Dry gas meter calibration factor, dimensionless

P_b = Barometric pressure at the testing site, in. Hg

 ΔH = Average pressure differential across the orifice meter, in. H_2O

T_m = Absolute average dry gas meter temperature, °R

Sample Calculation:

$$V_{m(std)} = 98.434 \times 1.01 \times (\frac{528}{29.92}) \times \frac{30.03 + \frac{0.7}{13.6}}{532.5}$$

$$V_{m(std)} = 99.116 \, ft^3$$

Dilution Tunnel Gas Velocity

Using equations 2-7 and 2-6, calculated at each recorded interval:

$$v_s = k_p \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{T_{s(avg)}}{P_s \times M_s}}$$

$$M_s = M_d \times (1 - B_{vs}) + 18.0 \times B_{vs}$$

Where:

v_s = Average dilution tunnel gas velocity, ft/sec

$$k_p$$
 = Pitot tube constant: $85.49 \frac{ft}{\text{sec}} \left[\frac{(lb/lb-mole) \times (inches Hg)}{(^oR) \times (inches H_2O)} \right]^{\frac{1}{2}}$

C_p Pitot tube coefficient (0.99 for standard pitot tube; 0.84 may be used for S-type pitot tubes constructed according to Method 2 procedures), unitless

 $\Delta P = \Delta P$ measured during the pre-test flow traverse of the dilution tunnel; the square root of the ΔP values are averaged for this calculation, in. H_2O

P_b = Barometric pressure at test site, in. Hg

P_g = Static Pressure of tunnel, in. Hg

 $P_s = Absolute tunnel pressure, = P_b + P_g$

 M_d = Molecular weight of tunnel gas; assume M_d =29 lb/lb-mole (per method 5G)

B_{ws} = Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)

T, = Dilution tunnel temperature, °R; (°R = °F + 460)

Sample calculation:

$$M_s = 29 \times (1 - 0.04) + 18.0 \times 0.04 = 28.56$$

$$v_s = 85.49 \times 0.99 \times \sqrt{0.0351} \times \sqrt{\frac{(548)}{(30.03 + \frac{-0.45}{13.6}) \times (28.56)}}$$

$$v_s = 12.69 \frac{ft}{sec}$$

Particulate Concentration

Using equation 5G-2:

$$C_s = 0.001 \frac{g}{mg} \times \frac{m_n}{V_{m(std)}}$$

Where:

C_s = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscf

m_n = Total mass of particulate matter collected in the sampling train, mg

 $V_{m(sid)}$ = Volume of gas sampled corrected to dry standard conditions, dscf

Sample calculation:

$$C_s = \frac{0.001 \times 16.2}{99.116}$$

 $C_s = 0.000163$ g/dscf

Average Dilution Tunnel Gas Flow Rate

Using equation 2-8, calculated at each recorded interval:

$$Q_{sd} = 3600 \times (1 - B_{vs}) \times v_s \times A \times \frac{T_{std}}{T_{s(avg)}} \times \frac{P_s}{P_{std}}$$

Where:

Q_{sd} = Gas flow rate corrected to dry, standard conditions, dscf/hr

3600 = Conversion from seconds to hours

B_{ws} = Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)

v_s = Average dilution tunnel gas velocity, ft/sec

A = Cross sectional area of dilution tunnel, ft^2

T_{std} = Standard absolute temperature, 538°R

 $T_{s(avg)}$ = Average absolute dilution tunnel temperature, °R, (°R = °F + 460)

P_b Barometric pressure at test site, in. Hg

P_a = Dilution tunnel static pressure, in. Hg

 P_{g} = Absolute dilution tunnel gas pressure, in Hg, $(Hg = P_{b} + P_{g})$

 P_{std} = Standard absolute pressure, 29.92 in Hg

Sample calculation:

$$Q_{sd} = 3600 \times (1 - 0.04) \times 12.69 \times \frac{(\pi \times 3^2)}{144} \times \frac{528}{548} \times \frac{30.03 + \frac{-0.45}{13.6}}{29.92}$$

$$Q_{sd}$$
 = 8313.36 dscf/hr = 138.56 dscf/min

Particulate Emission Rate

Using equation 5G-3 and 5G-4:

$$E = C_s \times Q_{sd}$$

$$E_{adj} = K_3 \times E^{0.83}$$

Where:

E = Particulate emission rate, g/hr

E_{edj} = Particulate emission rate, adjusted, g/hr

C_s = Concentration of particulate matter in the stack, corrected to dry, standard conditions, g/dscf

 Q_{sd} = Average dilution tunnel gas flow rate, dscf/hr

K₃ = Constant, 1.82 for metric units, 0.643 for English units

Sample calculation:

$$E = 0.000163 \times 8313.36$$

$$E = 1.36 g/hr$$

$$E_{adj} = 1.82 \times 1.36^{0.83}$$

$$E = 2.35 g/hr$$

Proportional Rate Variation

Using equation 5H-9, calculated at each recorded interval:

$$PR = \frac{\theta \times (V_{ml} \times V_s \times T_m \times T_{sl})}{10 \times (V_m \times V_{sl} \times T_s \times T_{ml})} \times 100$$

Where:

PR = Percent proportional rate

 θ = Time of test, min

S₁ = Measured tracer gas concentration for the "ith" interval, in this case, the inverse of the calculated flow in the stack based on CO₂ concentrations in the stack and in the dilution tunnel

V_{mil(std)} = Volume of gas sample measured by the dry gas meter during the "ith" 10 minute interval, dscf

 V_m = Volume of gas sample as measured by dry gas meter, dsef

V_{si} ⇒ Average gas velocity in the dilution tunnel during each 10 minute interval, i, of the test run, m/sec

V_E = Average gas velocity in the dilution tunnel, m/sec

 T_{mi} = Absolute average dry gas meter temperature during each 10 minute interval, i, of the test run, ${}^{\circ}R$

T_m = Absolute average dry gas meter temperature, °R

T_{st} = Absolute average gas temperature in the dilution tunnel during each 10 minute interval, i, of the test run, °R

T_s = Absolute average gas temperature in the dilution tunnel, °R

Sample calculation (for the reading at 50 minutes into test run 1):

$$PR = \frac{180 \times 5.6 \times 12.69 \times 533 \times 552}{10 \times 98.434 \times 12.63 \times 548 \times 532} \times 100$$

Appendix F
Test Data

EPA NSPS WEIGHTED AVERAGE CALCULATION

Type of

Sort data from lowest to highest

Stove:

2

V 1.1

burn rate and enter below.

Weighted Average

1=cat 2=noncat

3=pellet

(E)

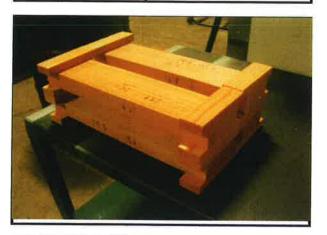
Ave. Heat

(K)

				11000		(, ,)		
Test	Burn	Emission		Output		Weighting		
No.	Rate	Rate g/hr	(OHE)	(BTU/HR)	Prob.	Factor	(KxE)	KxOHE
4	0.82	4.78		9887.72	0.2336	0.2632	1.2581	0.00
3	0.86	4.29		10370.05	0.2632	0.5974	2.5628	0.00
6	1.67	3.15		20137.19	0.8310	0.6132	1.9316	0.00
7	1.81	4.80		21825.34	0.8764	0.1690	0.8112	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
				0.00	1.0000	0.0000	0.0000	0.00
						0.0000	0.0000	0.00

Totals: 1.6428 6.5637 0.00

Weighted average emissions rate:	3.9954
Weighted Average OHE:	0.00


03/13/2012

Run 1

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION						
Project Number:	G100517524					
Manufacturer:	SBI					
Model;						
Sample ID Number:	MTL1111071416-001					
Test Date:	December 5 2011					
Test Run Number:	1					
Date tunnel cleaned:	12/1/2011					
Purpose of Test	Cat 1					

Appliance Information							
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic					
Firebox Volume, ft ³ :	1.219	N/A for pellet type					
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard					

		Test Settings
	Primary Air:	
	Secondary Air:	
(Control Board:	
	Blower/Fan:	Off the first 30 minutes then On-Low for the reminder of the test.
		Pre- Burn Activities
Time	Activity	
0	Time=11:15	
	When the we	eight was 2.4 lbs the primary air was shut and timer started.
60	The coal bed	d was leveled.
		Start-Up Procedure
		Loaded by 50 seconds.
Fuel-i		Ajar until 90 seconds.
	Primary air:	Opened half way at 2:30 min. then abruptly closed at 5 minutes into the test.
	econdary air:	
C	control board:	
	Blower / fan:	Off the first 30 minutes then On-Low for the reminder of the test.
		Other Notes

TEST DATA EPA METHOD 5G-3

Project Number: G100517524
Manufacturer: SBI

Model: S244
Sample ID No: MTL1111071416-001
Test Date: December 5 2011
Test Run No: 1

Temperature Data

Firebox Temp Start 378.88 Firebox Temp End 328.88 Firebox Delta-T 50.0

Max Filter Temps							
Train A Train B							
68.25	68.98						

Interval	10	Dura	ition of Tes	st, Min	220	0								
	ime	Temperature Data												
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	78.88	89.52	212.5	342	408.5	380.4	376.4	387.1		65.52	65.29	65.34	65.01
1	10	85.77	82.33	172.9	303.6	397.7	336.3	328.3	340.6		67.93	68.29	65.69	65.63
2	20	85.2	80.71	169.6	301.4	373.3	302.2	288.6	298.8		67.77	68.14	65.47	65.19
3	30	82.75	77.8	162.3	290.1	345.2	286.4	266	271.3		67.72	68.18	65.47	65.23
4	40	83.7	79.62	199.5	375.7	319.2	286.6	269.3	268.7		67.67	68.24	65.58	65.37
5	50	84.66	81.37	229.7	464.7	297.2	288.4	297.6	288.3		67.92	68.46	65.84	65.49
6	60	86.36	82.45	244	488.5	280.6	299	333.4	317.3		67.98	68.7	65.79	65.47
7	70	87.73	83.36	255.6	540.5	269.2	318.9	363.5	346.6		68.22	68.78	65.87	65.51
8	80	88.55	82.84	250.5	538.8	262.6	343	383.6	369.5		68.25	68.9	65.83	65.49
9	90	88.43	81.73	235.6	518.7	261.9	337.6	394.6	387.7		68.18	68.92	66	65.55
10	100	87.32	80.57	211.6	476.1	266.2	357.7	402.1	387		68.13	68.98	66.13	65.65
11	110	86.73	78.79	194.3	433.9	270	354.5	406.8	383.3		68.1	68.81	66.2	65.77
12	120	85.99	78.03	184.2	403.8	275.3	358.9	400.9	380.2		68.09	68.74	66.25	65.89
13	130	86.85	77.28	175.6	386.2	282.6	343.7	391	376.8		67.99	68.66	66.24	65.95
14	140	86.64	76.61	169.1	368.9	288.9	325.3	384.1	374.5		67.98	68.6	66.38	66.08
15	150	86.42	76.21	164.7	358.9	294.7	342.6	382	372.1		67.92	68.4	66.32	66.09
16	160	84.64	75.6	161.2	349.5	299	338.8	378.9	370.1		67.77	68.27	66.27	66.08
17	170	85.15	75.5	159.3	343	302.4	335.9	370.3	366.4		67.74	68.31	66.37	66.18
18	180	84.92	75.21	157.5	335.9	304.1	349.3	363.3	365.6		67.76	68.24	66.38	66.23
19	190	85.37	75,55	158.2	331.1	305,9	345.9	353.6	365.6		67.76	68.28	66.37	66.27
20	200	85.5	75.56	158.5	326.9	305.4	342.8	343.4	365.4		67.69	68.23	66.39	66.22
21	210	84.7	75.37	157.1	320.6	304.4	350.5	334.6	360.8		67.48	68.06	66.26	66.02
22	220	84.66	75.14	155	313	304.6	346.7	326.2	353.9		67.44	68.03	66.26	66.02

Test Engineer:

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 5 2011

Test Run Number: 1

Baromete	er, In. Hg	RH, %	Sample Box Correction	(y) Factors
Start	30.21	28.9	Meter Box (A)	1.014
End	30.15	28.8	Meter Box (B)	1.011
Duration of Test, Min			220	

Leak Check,	cfm @ in Hg
Train A	Train B
0.025@5	0.02@5

Maximum	Vacuum
Train A	Train B
0.00	0.00

Duran	TOTA OF TOSE	+ I VIIII	220									
							Particulate S	Sampling Data	1			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.033	7.90	7.90	755.942	807 168	100.31	100.31		
10	0.017	0.00	0.00	-0.033	7.59	0.31	756.952	808.203	94.95	96.98		
20	0.015	0.00	0.00	-0.035	7.24	0.35	757.961	809.260	100.87	105.37		
30	0.015	0.00	0.00	-0.035	6.75	0.49	758,967	810.303	100.30	103.68		
40	0.015	0.00	0.00	-0.045	6.10	0.65	759.975	811 342	100.65	103.43		
50	0.015	0.00	0.00	-0.048	5.30	0.80	760.983	812.395	100.76	104.97		
60	0.015	0.00	0.00	-0.050	4.51	0.79	761.992	813,459	100.97	106.18		
70	0.015	0.00	0.00	-0.050	3.70	0.81	763,000	814.512	100.94	105.16		
80	0.015	0.00	0.00	-0.050	2.93	0.77	764.010	815.534	101.10	102.02		
90	0.015	0.00	0.00	-0.048	2.33	0.60	765.018	816.559	100.77	102.20		
100	0.015	0.00	0.00	-0.043	1.90	0.43	766.029	817.541	100.93	97.79		
110	0.015	0.00	0.00	-0.038	1.64	0.26	767.040	818.532	100.75	98.51		
120	0.015	0.00	0.00	-0.038	1.47	0.17	768.050	819.514	100.57	97.52		
130	0.015	0.00	0.00	-0.035	1.26	0.21	769.061	820.495	100.60	97.34		
140	0.015	0.00	0.00	-0.033	1.08	0.18	770.067	821.504	100.02	100.03		
150	0.015	0.00	0.00	-0.030	0.93	0.15	771.075	822.470	100.19	95.73		
160	0.015	0.00	0.00	-0.030	0.77	0.16	772.087	823 439	100.54	95.98		
170	0.015	0.00	0.00	-0.030	0.63	0.14	773.096	824.412	100.21	96.34		
180	0.015	0.00	0.00	-0.028	0.46	0.17	774.103	825 385	99.99	96.31		
190	0.015	0.00	0.00	-0.028	0.35	0.11	775.111	826.402	100.12	100.69		
200	0.015	0.00	0.00	-0.028	0.18	0.17	776.125	827.415	100.71	100.30		
210	0.015	0.00	0.00	-0.028	0.06	0.12	777.135	828.428	100.32	100.32		
220	0.015	0.00	0.00	-0.028	0.00	0.06	778.147	829.437	100.50	99.91		

Test Engineer:_

High

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 5 2011

Test Run Number: 1

Dry Burn	n-Rate, kg/hr:	0.82
Emission	on-Rate, g/hr:	4.03
Adjusted Emission	n-Rate, g/hr :	5.79
Duration of Test, Minutes	2	20
Dry Gas Meter Standardization	Train A	Train B
Dry Gas Meter Beginning Reading, ft ³	755.942	807.168
Dry Gas Meter Ending Reading, ft ³	778.147	829.437
Barometric Pressure Correction Factor	1.009	1.009
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011
Dry Gas Meter Temperature Factors	1.004	1.004
Dry Gas Meter Delta-H Correction Factors	1.000	1.000
Dry Gas Meter STD Volume Sampled, ft ³	22.796	22.806
Dillution Tunnel Flow / Volume		
Standardized Tunnel Flow, dscfm	139	. 27 7
Total Tunnel Volume, scf	3064	1.014
Emission Caclulations	Train A	Train B
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1344.129	1343.542
Sample Particulate Mass, mg	11.0	11.0
Total Emissions, grams	14.785	14.779
Emission-Rate, g/hr	4.03	4.03
Adjusted Emission Rates, g/hr	5.79	5.79
Deviation, %	0.0	2%
Operating Parameters	Train A	Train B
Max Filter Temperature, °F	Train A 68.25	Train B 68.98
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	Train A 68.25 0.025@5	Train B 68.98 0.02@5
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	Train A 68.25 0.025@5	Train B 68.98 0.02@5
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	Train A 68.25 0.025@5 5	Train B 68.98 0.02@5 0
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	Train A 68.25 0.025@5	Train B 68.98 0.02@5 0
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	Train A 68.25 0.025@5 5 8 7	Train B 68.98 0.02@5 0 9
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	Train A 68.25 0.025@5 5 8 7	Train B 68.98 0.02@5 0 9
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	Train A 68.25 0.025@5 5 8 7	Train B 68.98 0.02@5 0 9 9 90 83
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	Train A 68.25 0.025@5 5 8 7 7.9 19.	Train B 68.98 0.02@5 0 9 9 83 54
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	Train A 68.25 0.025@5 5 8 7	Train B 68.98 0.02@5 0 9 9 9 100 83 54 1.90

Project Number: G100517524

Manufacturer: SBI

Model: **S244**

Sample ID Number: MTL111071416-001
Test Date: December 5 2011
Test Run Number: 1

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 393.64 Final Coal Bed Wt, lb

Interval	10												
Т	ime				Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	71.83	153.9	506.4	504.4	82.72	193.1	190.6	207.3		-0.002	10.38	9.37
1	10	70.05	156.1	588.6	755.6	155,5	315.8	288.2	322.8		0	7.63	2.75
2	20	71.24	164.8	625.2	872.2	245.1	427.2	405.9	455.1		-0.001	4.80	2.83
3	30	87.31	163	615.2	828.7	340.7	549	512.6	551.2		0.001	2,46	2.34
4	40	90.22	137.4	484.2	689.9	419	544.2	556.6	592.5		0.001	1.51	0.95
5	50	82.29	180.1	395.2	554	463.6	526.6	547.1	567		-0.003	1.01	0.50
6	60	80.44	161.9	607.9	813	474.8	478.6	477.3	512.4		0.003	9.58	-8.57
7	70	84.19	168.6	632.3	907.4	458.8	538.9	502.3	553.5		0.002	6.52	3.06
8	80	90.56	159	590.7	908.4	460.5	603.5	551.7	612.8		-0.001	3.96	2.56
9	90	79.53	146.4	548.2	823.2	465.3	633.6	595.2	643.2		0.002	2.49	1.47
10	100	84.45	104	287.8	612.1	477.3	518.9	577.3	596		-0.003	2.31	0.18
11	110	82.78	95.72	230,7	516.6	472.1	447.4	529.3	536.6		-0.001	2.26	0.05
12	120	88.11	87.61	203.7	460.8	455.2	477.5	488.8	493		0.001	2.17	0.09
13	130	88.77	83.24	186.6	415.8	436.9	454.7	450.8	454.3		-0.002	2.14	0.03
14	140	86.56	81.74	175.5	386.4	422.9	426.5	415.8	423.5		-0.002	2.08	0.06
15	150	86.02	80.48	168.2	361.8	413.3	404.6	388.9	399.6		-0.002	1.96	0.12
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 5 2011

Test Run Number: 1

	Dilution	Tunnel	
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0125	82	0.1118
A2	0.0150	82	0.1225
A3	0.0150	82	0.1225
A4	0.0125	81	0.1118
A Center	0.0150	82	0.1225
B1	0.0125	85	0.1118
B2	0.0150	84	0.1225
B3	0.0150	84	0.1225
B4	0.0125	84	0.1118
B Center	0.0150	85	0.1225
Averages	0.014	83.12	0.1171

Tunnel Diameter	8.000	inches
Tunnel Static	-0.063	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9564	factor
Baro. Pressure	30.21	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type
Initial Velocity	6.993	Ft/ Sec
Initial Flow	137.94	Ft3/min

Test Engineer:

TEST FUEL DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL1111071416-001

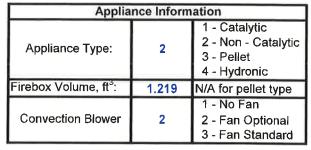
Test Date: December 5 2011

Test Run Number: 1

Calibration Reference ID	10	0-463
Set meter to Species 1	10	0-403
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

	PRE-B	URN FUE	L PROPE	RTIES	
Eq. ID No.:	SBI214	Time:	9:50	Temp.,°F:	75
Piece No.	Length, In.	Weight, Lb.	Moi	sture, %, Dr	y Basis
1	9.00	0.90	20.6	20.7	21.1
2	9.00	0.95	20.2	18.8	20.3
3	9.00	0.95	20.4	19.8	19.8
4	9.00	0.90	20.2	19.0	20.5
5	16.00	1.65	19.9	19.1	20.8
6	16.00	1.85	21.4	18.7	20.4
7	16.00	1.75	19.6	19.8	20.4
8	16.00	1.75	20.3	19.7	20.4
9					
10					
11					
12					
Total We	eight	10.7	Avera	ge, %db	20.1

Allowa	ble Fuel Lo	oad Range	9 :	7.7	to	9.3
	Т	EST FUE	LOAD F	PROPERTIE	S	
Eq. ID No.:	SBI214		Time:	11:00	Temp.,°F:	75
Piece No.	Length,	Weigh	nt, Lb.	Maia	turn 0/ Day	Dania
Fiece No.	ln.	2x4	4x4	IVIOIS	ture, %, Dry	Basis
1	15,75	1.75		19.8	19.2	19.7
2	15,75	1.90		18.8	19.1	19.7
3	15,75	2.10		21.1	18.8	20.0
4	15,75	2.15		21.5	21.1	19.1
5						
6						
7						
8						
Total	S	7.9	0.0			
% of We	eight	100	0			
Total weight,	wet, lb.	7.9	0	Average M	oisture, dry	19.83
Total weight	, dry, kg	2.9	9	Average M	oisture, wet	16.54


Test Engineer:

Run 2

Run Notes EPA Methods 28 and 5G-3

PROJECT / T	EST INFORMATION
Project Number:	G100517524
Manufacturer:	SBI
Model:	
Sample ID Number:	MTL1111071416-001
Test Date:	December 6 2011
Test Run Number:	2
Date tunnel cleaned:	12/1/2011
Purpose of Test	Cat 2

	Test Settings
	Primary Air: Half opened at 3:45 min and abruptly closed at 5 minutes.
	econdary Air: Fixed
C	ontrol Board: N/A
	Blower/Fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
	Pre- Burn Activities
Time	Activity
0	Time = 10:01AM
	When the scale indicated 2.4 lbs, the Primary air was closed and the timer started
59	The coal bed was leveled for 30 seconds
	of fuel, sec. : Loaded by 50 seconds.
	Start-Up Procedure
	pading door: Ajar for 1:45 minutes
i u c i-i	Primary sign. Half approach at 2:45 min and abstratly alread at 5 minutes for the control of the text.
	Primary air: Half opened at 3:45 min and abruptly closed at 5 minutes for the reminder of the test.
9	condary air: Fixed
	econdary air: Fixed
	ontrol board: N/A
	ontrol board: N/A Blower / fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
	ontrol board: N/A
	ontrol board: N/A Blower / fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
	ontrol board: N/A Blower / fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
	ontrol board: N/A Blower / fan: OFF the first 30 minutes and On-LOW for the reminder of the test.
	ontrol board: N/A Blower / fan: OFF the first 30 minutes and On-LOW for the reminder of the test.

TEST DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID No: MTL1111071416-001

Test Date: December 6 2011

Test Run No: 2

Temperature Data

Firebox Temp Start 377.72 Firebox Temp End 354.84 22.9 Firebox Delta-T

Max Filte	r Temps
Train A	Train B
67.39	68.56

Interval		Dura	tion of Tes	st, Min	200									
1	ime					Temperature Data								
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	87.91	90.96	213.7	341.7	419	367.1	375.9	384.9		67.3	68.12	64.59	64.28
1	10	84.92	81.74	184.3	310.4	399.4	335.3	329.9	335		67.3	68.12	64,64	64.19
2	20	83.84	81.56	201.1	343.4	373.8	311.2	299.5	299.4		67.3	68.12	64.89	64.31
3	30	85.49	82.57	223.7	401.7	347.7	316.9	294.5	289.1		67.3	68.12	64.88	64.31
4	40	86.34	85.23	263.3	489.3	327.4	306.2	323.3	306.4		67.3	68.12	64.77	64.33
5	50	87.37	85.18	271.1	546.5	311.3	311	355.8	339.2		67.23	68.15	64.79	64.33
6	60	89.32	85.51	276.7	568.3	299.1	317.8	376.6	356.8		67.2	68.3	64.78	64.38
7	70	81.41	89.15	268.4	566.1	287.9	321.2	383.3	372.8		67.39	68.55	64.8	64.3
8	80	88.56	84	252	524.9	281.6	329.7	385.3	386.2		67.23	68.56	64.51	64.22
9	90	88.89	81.28	218.7	467.2	282	292.9	390.7	392.9		66.91	68.24	64.57	64.24
10	100	88.84	79.57	203.1	429.2	287.5	307.3	396.5	401.3		66.78	67.83	64.65	64.33
11	110	88.44	78.16	191.7	408	296.3	309.9	395.8	407.6		66.64	67.48	64.62	64.14
12	120	87.71	77.22	180.9	386.4	304.7	315.7	392.1	404.7		66.5	67.31	64.68	64.2
13	130	86.47	76.34	174.9	372.9	310.9	317.6	392.2	402,6		66.26	67.14	64.63	64.16
14	140	85.51	75.9	171.6	366.3	316.3	397.5	389	400.3		66.18	66.95	64.49	64.12
15	150	86.43	75.61	170.1	361.5	321	402.2	385.6	396.4		66.24	66.86	64.64	64.19
16	160	86.29	75.57	169.6	356.1	324.5	400.5	380.9	393.4		66.25	66.82	64.68	64.15
17	170	85.33	75.07	167.9	349.5	324.5	382.6	375	392.8		66.05	66.77	64.57	64.09
18	180	85.05	75.09	167.8	349	329	374.9	368.1	386.9		65.91	66.69	64.44	64.1
19	190	85.54	74.97	165.4	343.3	333	374.2	364.2	378.6		65.86	66.61	64.53	63.75
20	200	84.11	74.65	163.3	336	336.1	373.1	357.9	371.1		65.9	66.61	64.54	64.07

Test Engineer:_

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL1111071416-001 Test Date: December 6 2011

Test Run Number: 2

Baromete	er, In. Hg	RH, %	Sample Box Correction (y) Factors
Start	30.17	31	Meter Box (A)	1.014
End	30.12	31	Meter Box (B)	1.011
Durati	on of Test	Min	200	

Leak Check, cfm @ in Hg						
Train A	Train B					
0.002@5	0.001@5					

Maximu	Maximum Vacuum								
Train A	Train B								
0.00	0.00								

Durati	on of Test	IVIII	200									
							Particulate	Sampling Dat	a			
Time	Tunnel Delta-P	Train A Delta-H	Train B Delta-H	Flue Draft	Fuel Weight	Weight Loss	Train A Volume	Train B	Train A Proportional	Train B Proportional	Train A Vacuum, In	Train B Vacuum, In
0	0.015	0.00	0.00	-0.038	7.95	7.95	778.176	Volume 929.634	Rate	Rate	Hg	Hg
10	0.015	0.00	0.00	-0.035	7.55	0.40	779.208	930.529	99.95	99.95		
20	0.015	0.00	0.00	-0.045	6.96	0.59	780.242		100.80	100.52		
30	0.015	0.00	0.00	-0.048	6.13	0.83	781.265	931,421	100.93	100.14		
40	0.015	0.00	0.00	-0.055				932.302	99.96	99.00		
50	0.015	0.00			5.25	0.88	782.285	933.197	99.93	100.82		
60			0.00	-0.055	4.36	0.89	783.304	934.128	99.82	104.87		
	0.015	0.00	0.00	-0.055	3.58	0.78	784.324	935.008	99.95	99.14		
70	0.015	0.00	0.00	-0.055	2.86	0.72	785.345	935.848	100.38	94.97		
80	0.015	0.00	0.00	-0.050	2.32	0.54	786.367	936.717	100.01	97.80		
90	0.015	0.00	0.00	-0.045	1.93	0.39	787.389	937.610	99.85	100.24		
100	0.015	0.00	0.00	-0.040	1.63	0.30	788.407	938.510	99.23	100.85		
110	0.015	0.00	0.00	-0.038	1.38	0.25	789.429	939.392	99.50	98.74		
120	0.015	0.00	0.00	-0.035	1.20	0.18	790.446	940.266	98.92	97.75		
130	0.015	0.00	0.00	-0.035	1.05	0.15	791.469	941.143	99.43	98.01		
140	0.015	0.00	0.00	-0.035	0.92	0.13	792.490	942.044	99.22	100.66		
150	0.015	0.00	0,00	-0.033	0.73	0.19	793,523	943.024	100.33	109.44		
160	0.015	0.00	0.00	-0.030	0.56	0.17	794.558	943.938	100.51	102.07		
170	0.015	0.00	0.00	-0.030	0.40	0.16	795,600	944.825	101.17	99.02		
180	0.015	0.00	0.00	-0.030	0.28	0.12	796.630	945.704	100.03	98.13		
190	0.015	0.00	0.00	-0.030	0.12	0.16	797.654	946.583	99.42	98.19		
200	0.015	0.00	0.00	-0.030	0.00	0.12	798.680	947.466	99.58	98.54		

Test Engineer:

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 6 2011

Test Run Number: 2

Dry Burn-Rate, kg/hr: 0.9							
Emission-Rate, g/hr:							
Adjusted Emission	n-Rate, g/hr :	5.42					
Duration of Test, Minutes	2	00					
Dry Gas Meter Standardization	Train A	Train B					
Dry Gas Meter Beginning Reading, ft ³	778.176	929.634					
Dry Gas Meter Ending Reading, ft ³	798.68	947.466					
Barometric Pressure Correction Factor	1.008	1.008					
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011					
Dry Gas Meter Temperature Factors	1.006	1.007					
Dry Gas Meter Delta-H Correction Factors	1.000	1.000					
Dry Gas Meter STD Volume Sampled, ft³	21.081	18.295					
Dillution Tunnel Flow / Volume							
Standardized Tunnel Flow, dscfm	131.534						
Total Tunnel Volume, scf	26306.844						
Emission Caclulations	Train A	Train B					
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1247,889	1437.893					
	12-11.000						
Sample Particulate Mass, mg	10.0	8.6					
		8.6 12.366					
Sample Particulate Mass, mg Total Emissions, grams	10.0 12.479	12.366					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr	10.0	***					
Sample Particulate Mass, mg Total Emissions, grams	10.0 12.479 3.74	12.366 3.71 5.40					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters	10.0 12.479 3.74 5.44	12.366 3.71 5.40					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F	10.0 12.479 3.74 5.44 0.3 Train A 67.39	12.366 3.71 5.40 8%					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5	12.366 3.71 5.40 8% Train B 68.56 0.001@5					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	10.0 12.479 3.74 5.44 0.3 Train A 67.39	12.366 3.71 5.40 8% Train B 68.56 0.001@5					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5	12.366 3.71 5.40 8% Train B 68.56 0.001@5					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5	12.366 3.71 5.40 8% Train B 68.56 0.001@5					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5	12.366 3.71 5.40 8% Train B 68.56 0.001@5 88 9					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5 22. 8	12.366 3.71 5.40 8% Train B 68.56 0.001@5 88 9					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib., Dry-Basis Fuel Load Moisture Content, %	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5 22. 8 8	12.366 3.71 5.40 8% Train B 68.56 0.001@5 88 9 1					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5 22. 8 8	12.366 3.71 5.40 8% Train B 68.56 0.001@5 .88 9 1					
Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib., Dry-Basis Fuel Load Moisture Content, %	10.0 12.479 3.74 5.44 0.3 Train A 67.39 0.002@5 22. 8 8	12.366 3.71 5.40 8% Train B 68.56 0.001@5 88 9 1					

Project Number: G100517524

Manufacturer: SBI S244
Sample ID Number: MTL111071416-001
Test Date: December 6 2011

Test Run Number: 2

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 386.92

Final Coal Bed Wt, lb 1.96

Interval	10												
T	ime				Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	78.68	168.7	400.5	536.1	454.9	544.2	525.8	555.3		0.001	10.65	8.69
1	10	86.87	160.1	587.2	791.7	465.8	519.5	464.4	484.6		-0.002	10,08	0.57
2	20	91.06	170.3	618.7	911.1	448	550.5	489.3	517.9		0.001	6.97	3.11
3	30	87.5	165.7	608.3	923.2	448.1	588.4	546.3	578.2		0.001	4.30	2.67
4	40	86.94	155.8	572.5	804	458.2	620.4	599.6	616.1		0.002	2.73	1.57
5	50	78.27	110.8	340.7	634.6	467.4	535.8	594.6	606.3		0.001	2.37	0.36
6	60	88.88	95.26	250.3	521	469.2	443	542.5	548.3		-0.003	2.26	0.11
7	70	81.39	93.73	219.3	460.9	464.1	456.5	495	499.2		0	2.18	0.08
8	80	79.17	89.87	199.6	417.6	449.8	410.9	450	457.1		0.002	2.09	0.09
9	90	88.07	83.23	184.4	390.6	437.1	369.6	416.6	426.4		0	2.03	0.06
10	100	87.79	81.21	175.7	367.6	425.2	351.2	390.5	400.1		-0.003	1.96	0.07
11													
12													
13													
14													
15													
16													
17 18													
19													
20													
21													
22													
23													-
24													
25													
26													
27													
28													
29													
30													

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL1111071416-001

Test Date: December 6 2011

Test Run Number: 2

	Dilution	Tunnel	
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0125	87	0.1118
A2	0.0150	87	0.1225
A3	0.0125	87	0.1118
A4	0.0100	86	0.1000
A Center	0.0150	88	0.1225
B1	0.0125	87	0.1118
B2	0.0150	87	0.1225
B3	0.0125	87	0.1118
B4	0.0100	86	0.1000
B Center	0.0150	88	0.1225
Averages	0.013	87.08	0.1115

Tunnel Diameter 8	3.000	inches
Tunnel Static -	0.063	in. H2O
Tunnel Area 0.	34907	Ft2
Pitot Correction 0.	.9106	factor
Baro. Pressure 3	30.17	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity 6	3.686	Ft/ Sec
Initial Flow 13	30.77	Ft3/min

Test Engineer:

TEST FUEL DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL1111071416-001

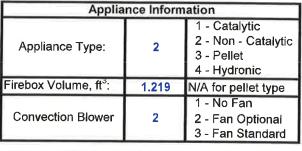
Test Date: December 6 2011

Test Run Number: 2

Calibration Reference ID	190 463			
Set meter to Species 1	180-463			
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

	PRE-BURN FUEL PROPERTIES											
Eq. ID No.:		Time:	8:30	Temp.,°F;	77							
Piece No.	Length, In.	Weight, Lb.	Moisture, %, Dry Basis									
1	16.00	1.70	20.2	19.5	20.4							
2	16.00	1.80	20.9	20.0	19.7							
3	16.00	1.85	21.2	21.2	20.9							
4	16.00	1.75	21.9	20.4	22.3							
5	9.00	0.95	21.0	20.2	21.0							
6	9.00	1.05	21.4	20.9	21.4							
7	9.00	0.95	20.6	20.3	20.2							
8	9.00	0.95	20.6	19.5	19.9							
9												
10												
11												
12												
Total We	eight	11.0	Avera	20.7								

Allowable Fuel Load Range:				7.7	to	9.3
TEST FUEL LOAD PROPERTIES						
Eq. ID No.: SBI-214			Time:	9:45	Temp.,°F:	77
Piece No.	Length,	Weight, Lb.		Mainture 9/ Dry Rania		
	ln.	2x4	4x4	Moisture, %, Dry Basis		
11	15.50	2.15		18.9	19.3	19.4
2	15.50	1.90		22.0	22.0	20.3
3	15.50	1.80		20.2	19.7	19.3
4	15.50	2.10		20.0	19.8	18.7
5						
6						
7						
8						
Totals		8.0	0.0			
% of Weight		100	0			
Total weight, wet, lb.		7.95		Average Moisture, dry		19.97
Total weight, dry, kg		3.01		Average Moisture, wet		16.64


Test Engineer:

Run 3

Run Notes EPA Methods 28 and 5G-3

V						
PROJECT / TEST INFORMATION						
Project Number:	G100517524					
Manufacturer:	SBI					
Model:	S244					
Sample ID Number:	MTL-111071416-001					
Test Date:	7-Dec-11					
Test Run Number:	3					
Date tunnel cleaned:	12/1/2011					
Purpose of Test	Cat 1					

		Test Settings
	Primary Air:	
S	econdary Air:	
	ontrol Board:	
·		Off the first 30 minutes of the test and On-Low for the reminder of the test.
	210110171 4111	Pre- Burn Activities
Time	Activity	Tie- built Activities
0		7. When the weight got to 2.4 lbs the timer was started and the primary air abruptly shut .
59	The Coal Re	d was leveled for 30 seconds.
•	The blower v	
	1110 0101101 1	ruo onut.

		Start-Up Procedure
Loading	of fuel, sec. :	Loaded by 60 seconds.
Fuel-lo	pading door :	Closed after loading of fuel.
	Primary air:	Fully open till 4:30 when it was half shut. Abruptly closed at 5 minutes.
	econdary air:	Fixed
	ontrol board:	
	Blower / fan:	Off the first 30 minutes of the test and On-Low for the reminder of the test.
		Other Notes
None.		

Project Number: G100517524
Manufacturer: SBI

Model: S244

Sample ID No: MTL-111071416-001
Test Date: 7-Dec-11
Test Run No: 3

Temperature Data

Firebox Temp Start 386.72 Firebox Temp End 331.44 Firebox Delta-T 55.3

Max Filte	er Temps
Train A	Train B
68.13	69.02

Interval		Dura	ition of Tes	it, Min	210	210								
	ime					Temperature Data								
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	83.06	93.55	225.7	348.1	428.2	381.5	378	397.8		64.4	65.39	64.055	63.715
1	10	83.07	85.58	204.3	345.8	413.3	352.2	336.9	353.9		67.07	67.74	64.145	63.78
2	20	82.94	83.1	174.3	295.4	386.7	316.5	295.8	308.6		67.22	68.27	64.195	63.805
3	30	83.09	85.5	223.7	398	354.9	313.5	287.3	293.1		67.27	68.36	64.245	63.925
4	40	83.95	87.45	243	459.1	329.5	310	288.5	304.6		67.48	68.44	64.28	64.02
5	50	85.49	88.81	266.1	514.8	308.8	309	321.7	329.9		67.79	68.65	64.35	64.08
6	60	85.43	89.37	273.6	550.1	292.8	320.7	354.7	351.6		68.08	68.89	64.335	64.115
7	70	85.82	88.52	278.4	581	281.6	341.6	372.8	376.9		68.13	68,92	64.34	64.16
8	80	86.21	87.58	271.7	580	274.5	347	383.7	393.8		67.99	68.99	64.41	64.27
9	90	86.86	87.35	263.1	581.6	272,9	348.7	388.1	399.3		67.87	69.02	64.49	64.37
10	100	87.2	85.65	227.2	491.5	278.7	311.8	395.9	411.7		67.77	68.75	64.51	64.345
11	110	87.58	85.12	201.6	431.7	291.6	323.5	395.8	412		67.85	68.59	64.57	64.415
12	120	86.91	83.59	189.7	400.6	304.6	321.8	394.5	405.2		67.51	68.45	64.645	64.445
13	130	86.3	82.6	182.8	382.2	315.7	310.5	390.8	398.2		67.33	68.24	64.605	64.375
14	140	85.49	81.82	178.6	370.1	324.2	323.1	386.1	392.9		67.24	68.14	64.625	64.4
15	150	85.13	81.63	175	358.9	330	327.2	380.9	387		67.17	68.14	64.715	64.49
16	160	85.42	81.75	173.1	352.7	332.2	310.7	374.3	381.4		67.09	68.11	64.67	64.5
17	170	84.99	81.89	170.9	345.9	332.8	317	370.3	379.4		66.97	67.93	64.69	64.485
18	180	85.19	81.3	168.6	339.7	333	310.3	364.4	378.6	h ,	67.12	67.96	64.715	64.54
19	190	83.73	79.94	166.3	331.3	335.1	311.1	360.6	371.6		67	67.95	64.76	64.52
20	200	82.8	79.6	164.9	324.5	336.2	306.9	357.4	361.5		66.98	67.83	64.715	64.495
21	210	83,17	80.3	163.8	318.7	334.7	299	353.5	351.3		67.05	67.76	64.78	64.535

Test Engineer:

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 7-Dec-11
Test Run Number: 3

Start 29.97 28 Meter Box (A) 1.014
End 29.84 28 Meter Box (B) 1.011
Duration of Test Min. 210

Leak Check, cfm @ in Hg						
Train A	Train B					
0.002@5	0.002@5					

Maximum Vacuum							
Train A Train B							
0.00	0.00						

Durat	ion of Test	, Min	210									
							Particulate	Sampling Date	а			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.055	7.90	7.90	798.760	947.524	99.95	99.96	0.00	0.00
10	0.018	0.00	0.00	-0.043	7.33	0.57	799,925	948.720	99.71	106.18	0.00	0.00
20	0.018	0.00	0.00	-0.040	6.96	0.37	801.092	949.782	99.64	94.06	0.00	0.00
30	0.018	0.00	0.00	-0.050	6.26	0.70	802.234	950.807	99.10	92.25	0.00	0.00
40	0.018	0.00	0.00	-0.055	5.58	0.68	803.385	951.874	98.65	94.84	0.00	0.00
50	0.018	0.00	0.00	-0.055	4.76	0.82	804.535	953.000	100.08	101.62	0.00	0.00
60	0.018	0.00	0.00	-0.055	3.95	0.81	805.682	954.234	99.87	111.42	0.00	0.00
70	0.018	0.00	0.00	-0.055	3.13	0.82	806.839	955.406	100.66	105.73	0.00	0.00
80	0.018	0.00	0.00	-0.055	2.49	0.64	807.982	956.477	99.35	96.51	0.00	0,00
90	0.018	0,00	0.00	-0.050	1.93	0.56	809.126	957.550	99.40	96.66	0.00	0.00
100	0.018	0.00	0.00	-0.045	1.54	0.39	810.275	958.656	99.67	99.48	0.00	0,00
110	0.018	0.00	0.00	-0.040	1.41	0.13	811.431	959.835	100.22	105.98	0.00	0.00
120	0.018	0.00	0.00	-0.040	1.26	0.15	812.595	960.908	100.76	96.31	0.00	0.00
130	0.018	0.00	0.00	-0.035	1.08	0.18	813.763	962.042	101.02	101.71	0.00	0.00
140	0.018	0.00	0.00	-0.035	0.94	0.14	814.929	963.217	100.77	105.30	0.00	0.00
150	0.018	0.00	0.00	-0.035	0.82	0.12	816.092	964.352	100,47	101.68	0.00	0.00
160	0.018	0.00	0.00	-0.035	0.67	0.15	817.259	965.413	100.84	95.06	0.00	0.00
170	0.018	0.00	0.00	-0.032	0.54	0.13	818.410	966.481	99.47	95.70	0.00	0.00
180	0.018	0.00	0.00	-0.032	0.37	0.17	819,566	967.665	99.84	106.03	0.00	0.00
190	0.018	0.00	0.00	-0.032	0.24	0.13	820,728	968.741	100.22	96.24	0.00	0.00
200	0.018	0.00	0.00	-0.032	0.08	0.16	821.879	969.822	99.25	96.66	0.00	0.00
210	0.018	0.00	0.00	-0.032	0.00	0.08	823,038	970.936	99.99	99.67	0.00	0.00

Test Engineer:

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 7-Dec-11

Test Run Number: 3

Dry Rurn	Pate ka/hr:	0.86					
Dry Burn-Rate, kg/hr:							
Emissio	n-Rate, g/hr:	2.81					
Adjusted Emission	n-Rate, g/hr	4.29					
Duration of Test, Minutes	2	10					
Dry Gas Meter Standardization	Train A	Train B					
Dry Gas Meter Beginning Reading, ft ³	798.76	947.524					
Dry Gas Meter Ending Reading, ft ³	823.038	970.936					
Barometric Pressure Correction Factor	0.999	0.999					
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011					
Dry Gas Meter Temperature Factors	1.007	1.007					
Dry Gas Meter Delta-H Correction Factors	1.000	1.000					
Dry Gas Meter STD Volume Sampled, ft³	24.769	23.825					
Dillution Tunnel Flow / Volume							
Standardized Tunnel Flow, dscfm	143	.323					
Total Tunnel Volume, scf	30097.808						
Emission Caclulations	Train A	Train B					
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1215.148	1263.281					
Sample Particulate Mass, mg	8.3	7.6					
Total Emissions, grams	10.086	9.601					
Emission-Rate, g/hr	2.88	2.74					
Adjusted Emission Rates, g/hr	4.38	4.21					
Deviation, %	2.04%						
Operating Parameters	Train A	Train B					
Max Ciltar Tarana authora 90							
Max Filter Temperature, °F	68.13	69.02					
Post-Test Leak Check, cfm @ in. Hg vac.	0.002@5	0.002@5					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	0.002@5 55.	0.002@5 28					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	0.002@5 55. 8	0.002 @ 5 28 8					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	0.002@5 55.	0.002 @ 5 28 8					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	0.002@5 55. 8 8	0.002@5 28 8 3					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	0.002@5 55. 8 8	0.002@5 28 8 3					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	0.002@5 55. 8 8 7.9	0.002@5 28 8 3 3 90 73					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	0.002@5 55. 8 8	0.002@5 28 8 3 90 73					

Project Number: G100517524 Manufacturer: SBI Model: S244 Sample ID Number: MTL-111071416-001
Test Date: 7-Dec-11
Test Run Number: 3

Average Firebox Temp, °F 391.42

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

> Final Coal Bed Wt, lb 1.69

Interval													
\Box	ime				Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	88.84	157.8	601.9	719.3	502.4	514.4	457.1	467.7		0.001	10.21	8.52
1	10	94.77	166.1	643.4	875.4	475.8	509.6	469	498.7		-0.002	7.10	3.11
2	20	86.96	165.2	617.3	899.2	466.7	559.8	517.5	557.4		0.003	4.52	2.58
3	30	89.37	154.2	570,4	827.6	473.1	611.2	571.8	613.1		0.001	3.06	1.46
4	40	83.75	136.6	482.6	684.5	487.8	609.1	585.4	630.3		0	2.40	0.66
5	50	83.42	102	270.6	538	499.3	590	539.3	574.8		-0.001	2.37	0.03
6	60	81.65	95	225.8	467.9	485.8	508.9	489.2	517		0.001	2.31	0.06
7	70	80.82	90.74	205.7	423.5	463.4	474.4	448.7	469.9		-0.002	2.23	0.08
8	80	84.16	84.74	193.5	399	449	440.9	418.8	435.8		0.001	2.01	0.22
9	90	86.68	86.15	184	379.4	437.5	418.1	396.7	418		0	1.90	0.11
10	100	82.82	114.3	232.8	352.4	429.3	395.4	379.7	400.3		0.001	1.69	0.21
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													

Test Engineer:_

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 7-Dec-11

Test Run Number: 3

	Dilution		
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0150	84	0.1225
A2	0.0175	84	0.1323
A3	0.0150	84	0.1225
A4	0.0125	84	0.1118
A Center	0.0175	84	0.1323
B1	0.0150	86	0.1225
B2	0.0175	86	0.1323
B3	0.0150	86	0.1225
B4	0.0125	85	0.1118
B Center	0.0175	86	0.1323
Averages	0.0155	84.98	0.1223

Tunnel Diameter	8.000	inches
Tunnel Static	-0.073	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9242	factor
Baro. Pressure	29.97	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.340	Ft/ Sec
Initial Flow	143.15	Ft3/min

Test Engineer:

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 7-Dec-11

Test Run Number: 3

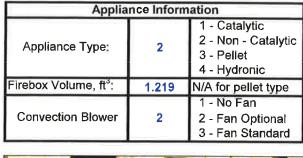
Calibration Reference ID	190 462			
Set meter to Species 1	180-463			
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

PRE-BURN FUEL PROPERTIES									
Eq. ID No.:		Time:	8:30	Temp.,°F	78				
Piece No.	Length, In.	Weight, Lb.	Moisture, %, Dry Basis						
1	9.00	0.80	21.2	21.2 21.3					
2	9.00	1.20	19.8	21.6	19.3				
3	9.00	1.20	20.3	20.8	19.5				
4	9.00	0.80	22.1	21.9	22.7				
5	16.00	2.10	21.3	20.2	20.3				
6	16.00	1.95	20.1	20.0	20.5				
7	16.00	1.45	21.7	21.2	21.5				
8	16.00	1.40	23.1	21.9	22.5				
9									
10									
11									
12									
Total Weight		10.9	Avera	ge, %db	21.1				

Allowable Fuel Load Range	Allowable	Fuel	Load	Range
---------------------------	-----------	------	------	-------

1.1 10 3.	7.7	to	9.
-----------	-----	----	----

				, , ,	.0	5.0
		EST FUE	L LOAD	PROPERTIE	S	
Eq. ID No.	SBI214		Time:		Temp.,°F:	78
Piece No.	Length,	Weigl	ht, Lb.	Maia	turn O/ Day	Dania
	ln.	2x4	4x4	IVIOIS	ture, %, Dry	Basis
1	15.38	2.15		18.9	19.4	18.8
2	15,38	1.60		20.2	19.7	20.2
3	15.38	2.15		20.2	21.2	20.9
4	15.38	2.00		19.4	18.4	19.4
5						
6						
7						
8						
Totals		7.9	0.0			
% of Weight		100	0			
Total weight	, wet, lb.	7.90		Average M	19.73	
Total weight	, dry, kg	2.9	99	Average Moisture, wet 16.4		


Test Engineer:

Run 4

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION							
Project Number:	G100517524						
Manufacturer:	SBI						
Model:	S244						
Sample ID Number:	MTL-111071416-001						
Test Date:	8-Dec-11						
Test Run Number:	4						
Date tunnel cleaned:	12/1/2011						
Purpose of Test	Cat 1						

		Test Settings
	Primary Air:	
	Secondary Air:	Fixed.
(Control Board:	
	Blower/Fan:	Off for the first 30 minutes, On-Low for the reminder of the test.
	6 ***	Pre- Burn Activities
Time 0 59	Activity Time=12:24;	When the weight was 2.4 lbs the timer was started and the blower turned on-low position.
	10-	
		Start-Up Procedure
Loading	of fuel sec	Loaded by 44 seconds
		Ajar first 90 seconds
		Open for the first 5 minutes then abruptly closed
5	Secondary air:	Fixed
	Control board:	
	Blower / fan:	Blower off the first 30 minutes and On-Low for the reminder of the test.
		Other Notes
one.		

Project Number: G100517524
Manufacturer: SBI

Model: \$244

Sample ID No: MTL-111071416-001

Test Date: 8-Dec-11
Test Run No: 4

Temperature Data

Firebox Temp Start 380.98 Firebox Temp End 312.44 Firebox Delta-T 68.5

Max Filter Temps							
Train A	Train B						
68.57	69.34						

Interval		Dura	Duration of Test, Min 220											
	ime		Temperature Data											
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	85.17	97.66	230.5	359.3	393.8	357.6	396.7	397.5		66.04	65.47	64.605	64.335
1	10	83.63	85.61	202	333.7	381.8	332.8	346.4	348.5		68,06	67.91	64.765	64.455
2	20	81.82	82.21	172.4	292.6	359.3	300	300.1	302.1		67.92	68.49	64.845	64.625
3	30	83.12	84.73	196.4	330.6	334.3	281.5	279.7	280		67.9	68.4	64.915	64.64
4	40	82.84	86.09	224.8	410.5	312.6	270.1	283.5	283.3		68.08	68.6	65.035	64.83
5	50	83.05	88.8	278.6	539.3	294.3	274.6	303.9	313.3		68.36	68.89	65.155	64.91
6	60	84.25	89.33	289.8	575.9	280	293.2	332.9	352.8		68.46	69.13	65.12	64.89
7	70	85.44	90.06	292.2	597.8	271.1	304.6	358.2	382.7		68.57	69.33	65.195	64.955
8	80	85.92	88.62	272.2	573.6	267.1	334.2	373.9	398.1		68.5	69.34	65.225	64.99
9	90	88.36	86.96	245.7	518.8	266.4	350.6	386.4	401.3		68.53	69.23	65.235	64.96
10	100	85.44	85.19	224.9	470.8	269.1	353.5	393.8	405.9		68.38	69.05	65.175	64.945
11	110	84.86	83.44	204.8	425.3	273.2	343.6	390.3	402		68.01	68.87	65.24	64.995
12	120	83.93	82.33	194.8	398.4	277.1	331.3	380.6	394.5		67.81	68.67	65.285	65.025
13	130	83.33	81.58	188.6	383.3	282	321.1	377.9	384.5		67.58	68.34	65.17	64.9
14	140	82.48	81.14	185.8	378	286.5	297.2	376.4	378.3		67.59	68.33	65.265	65.025
15	150	82.04	80.48	180.7	364	291,4	289.8	371.7	377.5		67.41	68.18	65.205	65.01
16	160	81.94	80.53	177.1	355.1	296.5	286.2	366.5	376.9		67.48	68.2	65.28	65.045
17	170	82.06	80.33	174.3	348.5	301.3	288.9	363.4	373.8		67.46	68.21	65.295	65.105
18	180	83.55	81.52	172.2	342.7	304.4	290.4	361.5	370.7		67.47	68.19	65.36	65.135
19	190	83.04	81.15	170.6	337.8	306.5	290.6	358.3	366.3		67.48	68.25	65.385	65.21
20	200	79.91	81.64	169.3	332.6	307.4	276.7	354.3	360		67.5	68.2	65.37	65.175
21	210	79.11	81.25	166.2	323.1	307.1	270.5	347.2	351.8		67.47	68.25	65.285	65.13
22	220	78.47	80.86	162.7	311.8	306,2	264.3	338.2	341.7		67.38	68.14	65.305	65.07

Test Engineer:

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 8-Dec-11
Test Run Number: 4

 Barometer, In. Hg
 RH, %
 Sample Box Correction (y) Factors

 Start
 29.75
 36
 Meter Box (A)
 1.014

 End
 29.95
 35
 Meter Box (B)
 1.011

 Duration of Test Min
 220
 220
 220

Leak Check, cfm @ in Hg								
Train A	Train B							
0.004@5	0.002@5							

Maximum Vacuum							
Train A	Train B						
0.00	0.00						

Durati	on or rest	, Min	220									
							Particulate	Sampling Data	а			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.020	0.00	0.00	-0.045	7.95	7.95	823.153	970.961	99.95	99.94	0.00	0.00
10	0.020	0.00	0.00	-0.045	7.45	0.50	824.332	972.140	102.77	105.93	0.00	0.00
20	0.020	0.00	0.00	-0.040	7.14	0.31	825.496	973.262	101.13	100.46	0.00	0.00
30	0.020	0.00	0.00	-0.045	6.63	0.51	826.648	974.436	100.31	105.35	0.00	0.00
40	0.020	0.00	0.00	-0.050	5.95	0.68	827.799	975.657	100.32	109.67	0.00	0.00
50	0.020	0.00	0.00	-0.050	5.08	0.87	828.955	976.778	100.98	100.92	0.00	0.00
60	0.020	0.00	0.00	-0.060	4.12	0.96	830.105	977.840	100.51	95.66	0.00	0.00
70	0.020	0.00	0.00	-0.060	3.25	0.87	831.261	978.917	101.09	97.06	0.00	0.00
80	0.020	0.00	0.00	-0.055	2.58	0.67	832.420	979.985	101.21	96.12	0.00	0.00
90	0.020	0.00	0.00	-0.055	2.13	0.45	833.571	981.151	100.36	104.79	0.00	0.00
100	0.020	0.00	0.00	-0.050	1.77	0.36	834.730	982.247	100.91	98.34	0.00	0.00
110	0.020	0.00	0.00	-0.045	1.55	0.22	835.875	983.343	99.52	98.17	0.00	0.00
120	0.020	0.00	0.00	-0.045	1.38	0.17	837.030	984.433	100.27	97.53	0.00	0.00
130	0.020	0.00	0.00	-0.040	1.21	0.17	838.180	985.540	99.79	99.00	0.00	0.00
140	0.020	0.00	0.00	-0.040	1.01	0.20	839.313	986.633	98.26	97.69	0.00	0.00
150	0.020	0.00	0.00	-0.040	0.85	0.16	840.436	987.747	97.34	99.51	0.00	0.00
160	0.020	0.00	0.00	-0.040	0.72	0.13	841.565	988.861	97.86	99.51	0.00	0.00
170	0.020	0.00	0.00	-0.040	0.55	0.17	842.700	990,062	98.35	107.25	0.00	0.00
180	0.020	0.00	0.00	-0.040	0.44	0.11	843.843	991.065	99.14	89.66	0.00	0.00
190	0.020	0.00	0.00	-0.040	0.30	0.14	844.980	992.175	98.59	99.18	0.00	0.00
200	0.020	0.00	0.00	-0.040	0.14	0.16	846.122	993.283	99.07	99.05	0.00	0.00
210	0.020	0.00	0.00	-0.035	0.04	0.10	847.281	994.393	100.52	99.20	0.00	0.00
220	0.020	0.00	0.00	-0.035	0.00	0.04	848.440	995.498	100.48	98.73	0.00	0.00

Test Engineer

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 8-Dec-11

Test Run Number: 4

	Dry Burn-Rate, kg/hr: 0.82								
Emission									
EITIISSIO	Emission-Rate, g/hr:								
Adjusted Emission	-Rate, g/hr:	4.78							
Duration of Test, Minutes	22	20							
Dry Gas Meter Standardization	Train A	Train B							
Dry Gas Meter Beginning Reading, ft ³	823.153	970.961							
Dry Gas Meter Ending Reading, ft ³	848.44	995.498							
Barometric Pressure Correction Factor	0.998	0.998							
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011							
Dry Gas Meter Temperature Factors	1.005	1.006							
Dry Gas Meter Delta-H Correction Factors	1.000	1.000							
Dry Gas M eter STD Volume Sampled, ft ³	25.719	24.894							
Dillution Tunnel Flow / Volume									
Standardized Tunnel Flow, dscfm	154.	.350							
Total Tunnel Volume, scf	3395	7.094							
Emission Caclulations	Train A	Train B							
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1320.297	1364.085							
Sample Particulate Mass, mg	8.7	8.8							
Total Emissions, grams	11.487	12.004							
Emission-Rate, g/hr	3.13	3.27							
Adjusted Emission Rates, g/hr	4.70	4.87							
Deviation, %	1.8	3%							
		Train B							
	105424413	MARKS 8.000							
		The second secon							
· · · · · · · · · · · · · · · · · · ·									
Mimimum Ambient Temperature, °F Fuel Properties	7	8							
		,							
Wet Fuel Load Weight, lb.	19.53								
Wet Fuel Load Weight, lb. Dry-Basis Fuel Load Moisture Content, %									
Wet Fuel Load Weight, lb.	19. 16. 1.60								
Emission Caclulations Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F	Train A 1320.297 8.7 11.487 3.13 4.70 1.8 Train A 68.57 0.004@5 68. 8 7	Train B 1364.085 8.8 12.004 3.27 4.87 3% Train B 69.34 0.002@5 54 8							

Project Number: G100517524

Manufacturer: SBI

Sample ID Number: Test Date: Test Run Number: 4

Project Number: G100517524

SBI

S244

MTL-111071416-001

8-Dec-11

4

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

Average Firebox Temp, °F 396.5

Final Coal Bed Wt, lb 1.68

Interval		L											
T	ime				Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	83.37	138.6	553.3	686.1	333.3	351	336.4	337.6	- Guillet	0	10.17	8 49
1	10	83.03	157.3	620.6	849	322,5	421.4	406.5	416.9		0.001	7.58	2.59
2	20	85.42	162.1	635.2	908.1	341.2	510.9	490.8	504.8		-0.003	4.92	2.66
3	30	88.19	160.7	624.2	842.8	372.6	594.6	557.4	555.9		0.000	3.02	1.90
4	40	93.96	113.3	394.1	685.9	404.2	516.9	583.5	578.3		0.002	2.21	0.81
5	50	83.87	101.7	274.2	547	422	485	537.6	536.9		0.001	2.06	0.15
6	60	88.65	93.03	231.1	477.5	422.5	425.1	496.6	494.7		-0.002	1.96	0.10
7	70	89.68	89.14	209.3	434.8	416.3	435.7	462.7	463.2		-0.002	1.88	0.08
8	80	88.64	87.19	196.5	406.2	406.2	398.3	434.4	436.6		0	1.80	0.08
9	90	86.48	85.56	188.1	385	397.6	371.8	413.2	414.9		-0.003	1.68	0.12
10													- VI.II
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
25 26													
27													
28													
29													
30													
50													

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 8-Dec-11

Test Run Number: 4

	Dilution		
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0150	88	0.1225
A2	0.0175	87	0.1323
A3	0.0150	87	0.1225
A4	0.0125	87	0.1118
A Center	0.0175	88	0.1323
B1	0.0150	87	0.1225
B2	0.0175	87	0.1323
B3	0.0175	87	0.1323
B4	0.0125	86	0.1118
B Center	0.0175	87	0.1323
Averages	0.01575	87	0.1235

Tunnel Diameter	8.000	inches
Tunnel Static	-0.075	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9335	factor
Baro. Pressure	29.75	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal, For S-Type)
Initial Velocity	7.455	Ft/ Sec
Initial Flow	143.80	Ft3/min

Test Engineer:

TEST FUEL DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 8-Dec-11

Test Run Number: 4

Calibration Reference ID	10	0.462		
Set meter to Species 1	180-463			
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

PRE-BURN FUEL PROPERTIES										
Eq. ID No.:	SBI 214	Time:	8:30	Temp.,°F:	77					
Piece No.	Length, In.	Weight, Lb.								
1	9.00	0.85	19.4	19.3	20.5					
2	9.00	0.85	19.4	19.4	20.9					
3	9.00	1.20	21.7	21.2	21.4					
4	9.00	1.15	21.5	20.4	21.5					
5	16.00	1.50	20.0	19.5	21.0					
6	16.00	1.65	21.9	21.0	21.9					
7	16.00	2.10	21.9	20.9	21.9					
8	16.00	2.15	19.9	19.3	20.2					
9										
10										
11										
12										
Total We	iaht	11.5	Avera	ge. %db	20.7					

Allowable Fuel Load Range:

7.7 to **9.3**

TEST FUEL LOAD PROPERTIES										
Eq. ID No.	SBI 214		Time:	9:30	Temp.,°F:	77				
Piece No.	Length,	Weig	ht, Lb.	Moisture, %, Dry Basis						
1 1000 140,	ln.	2x4	4x4	IVIOIS	ture, %, Dry	Dasis				
1	15.38	1.70		19.5	18.7	18.9				
2	15.38	2.10		19.1	19.5	19.0				
3	15.38	2.00		20.3	21.2	20.0				
4	15.38	2.15		19.2	19.7	19.2				
5										
6										
7										
8										
Total	S	8.0	0.0							
% of We	100 0									
Total weight, wet, lb.			95	Average M	19.53					
Total weight, dry, kg 3.			02	Average M	oisture, wet	16.34				

Test Engineer:

Hugel

Run 5

Run Notes EPA Methods 28 and 5G-3

PROJECT/TEST INFORMATION					
Project Number:	G100517524				
Manufacturer:	SBI				
Model:					
Sample ID Number:	MTL-1111071416-001				
Test Date:	9-Dec-11				
Test Run Number:	5				
Date tunnel cleaned:	12/1/2011				
Purpose of Test	Cat 4				

Appliance Information								
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic						
Firebox Volume, ft ³ :	1.219	N/A for pellet type						
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard						

		Test Settings
		Fully open.
	Secondary Air:	
(Control Board:	
	Blower/Fan:	Off the first 30 minutes and On-Low for the reminder of the test.
		Pre- Burn Activities
Time	Activity	
0	Time=9:51.	The blower was on-Low position and the primary air fully open.
65	The coal bed	d was leveled within seconds.
	-	
		Start-Up Procedure
Loading	of fuel, sec. :	Loaded by 42 seconds
Fuel-	loading door :	Closed immediately after the charge was loaded
_	Primary air:	
	econdary air:	
	Control board:	
	Blower / fan:	Off the first 30 minutes and on-low for the reminder of the test.
		Other Notes
dditional	leak cheks we	ere done on both trains. The presented result is based only on the preliminary weighing.
eita I wa	as over 125 de	grees. Result = Run Null.

Test Engineer:

Project Number: G100517524
Manufacturer: SBI

Model: **S244**Sample ID No: MTL-1111071416-001 Test Date: 9-Dec-11
Test Run No: 5

Temperature Data

Firebox Temp Start 529.56 Firebox Temp End 356.4
Firebox Delta-T 173.2

Ma	x Filte	er Temps
Tra	in A	Train B
79	.31	80.11

Interval	10	Dura	tion of Tes	t, Min	110					9				
	ime				Temperature Data									
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	72.9	139	452.2	586.6	474.8	491	529.8	565.6		65.5	65.52	63.98	63.795
1	10	82.72	166.3	681.4	885	483.2	497.4	505.6	577.6		78.01	77.99	64.275	64.095
2	20	85.7	169.9	700.6	923	469.1	527	524.3	601.1		79.31	80.11	64.56	64.365
3	30	87.41	154.1	600.1	877.9	462.2	583	562.3	629.4		76.57	76.31	64,645	64.46
4	40	87.9	132.8	475.4	671.2	464	528.9	585.7	608.1		73.28	74.44	64.755	64.565
5	50	85.95	123	418.6	564.6	464.8	523.4	558.5	563.3		72.96	75.28	64.85	64.715
6	60	88.58	114.6	384.8	512.4	463.9	519.6	525.9	531.8		73.11	75.21	64.985	64.825
7	70	86.73	110.3	353.5	464.9	456.6	504.9	494.3	499		72.16	74.41	65,035	64.93
8	80	85.43	105.1	326	420.2	440.5	461.6	459.5	461.6		71.62	73.41	65.04	64.945
9	90	85.8	99.89	299.7	379.3	419.4	416.8	425.1	424.1		70.83	72.47	65.025	64,95
10	100	87.64	98.57	279.8	346.1	397.2	380	393.8	391.2		70.21	71.88	64.885	64,755
11	110	86.05	96.81	263.1	320.1	374.9	355.2	369.1	362.7		69.77	71.19	64.89	64.8

Test Engineer:_

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 9-Dec-11

Test Run Number: 5

Baromet	er, In. Hg	RH, %	Sample Box Correction (y) Facto				
Start	30.19	35	Meter Box (A)	1.014			
End	30.15	35	Meter Box (B)	1.011			
Durant	an of Tool	1.4	440				

Leak Check, cfm @ in Hg					
Train A	Train B				
.003@5	.002@5				

Maximum Vacuum					
Train A	Train B				
0.00	0.00				

Durat	ion of Test	, IVIIII	110									
							Particulate	Sampling Date	а			
									Train A	Train B	Train A	Train B
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.090	7.90	7.90	848.501	995.521	99.44	99.62		
10	0.018	0.00	0.00	-0.100	5.46	2.44	849.588	996.705	108.48	116.91		
20	0.018	0.00	0.00	-0.100	3.16	2.30	850.643	997.798	105.53	108.18		
30	0.018	0.00	0.00	-0.095	1.50	1.66	851.617	998.878	96.18	105.52		
40	0.020	0.00	0.00	-0.085	0.98	0.52	852.673	999.944	95.82	95.70		
50	0.020	0.00	0.00	-0.085	0.74	0.24	853.771	1001.050	98.78	98.44		
60	0.020	0.00	0.00	-0.075	0.57	0.17	854.879	1002.189	98.93	100.62		
70	0.020	0.00	0.00	-0.075	0.39	0.18	855.987	1003.255	98.55	93.80		
80	0.020	0.00	0.00	-0.065	0.27	0.12	857.095	1004.337	98.10	94.77		
90	0.020	0.00	0.00	-0.065	0.17	0.10	858.205	1005.400	97.83	92.68		
100	0.020	0.00	0.00	-0.060	0.09	0.08	859.315	1006.465	97.74	92.78		
110	0.020	0.00	0.00	-0.060	0.00	0.09	860.425	1007.573	97.58	96.36		

Test Engineer: Tuyki

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 9-Dec-11

Test Run Number: 5

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 to 1.9

1.89

Average Firebox Temp, °F 199.114 Final Coal Bed Wt, lb

				Tem	perature D	ata						
Duration, Minutes	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	71.41	140.6	355.4	324.8	90.27	182.2	190.8	207.5			11.89	10.00
	74.25	114.1	401.8	419.9	165.2	226.5	232.5	264.4			10.29	1,60
	78.21	124.8	458.2	514.6	234.7	318.1	289.7	308.1			8.46	1.83
	83.74	135.4	549.2	645.4	297	326.1	355.8	364.2			6.50	1.96
	86.52	145.7	600.8	790.6	350.4	386.6	434.9	438.4			4.59	1.91
	82.55	149.8	596.6	846.1	399.9	522.3	514.4	515.6			2.82	1.77
	80.69	134.3	502.9	709.6	446.8	432.8	539.3	563			1.89	0.93
	_											

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 9-Dec-11

Test Run Number: 5

	Dilution	Dilution Tunnel			
	Delta P In. H2O	Temp,°F	Square Root		
A1	0.0150	136	0.1225		
A2	0.0175	136	0.1323		
A3	0.0150	136	0.1225		
A4	0.0125	129	0.1118		
A Center	0.0175	137	0.1323		
B1	0.0150	135	0.1225		
B2	0.0175	135	0.1323		
В3	0.0150	136	0.1225		
B4	0.0125	129	0.1118		
B Center	0.0175	135	0.1323		
Averages	0.0155	134.4	0.1223		

Tunnel Diameter	8.000	inches
Tunnel Static	-0.085	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9242	factor
Baro. Pressure	30.19	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.638	Ft/ Sec
Initial Flow	137.57	Ft3/min

Test Engineer:

TEST FUEL DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 9-Dec-11

Test Run Number: 5

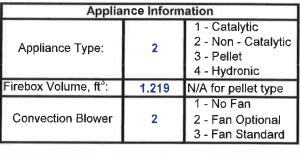
Firebox Volume, ft³ 1,219

Calibration Reference ID	10	0.462		
Set meter to Species 1	10	180-463		
Set Temperature to 70F	12%	12.0		
Set pin setting to 444	22%	22.0		

	PRE-B	URN FUE	L PROPE	RTIES			
Eq. ID No.:	SBI-214	Time:	8:15	Temp.,°F:	78		
Piece No.	Length, In.	J IVIOI		sture, %, Dry Basis			
1	9.00	0.95	21.4	19.2	21.5		
2	9.00	0.95	22.0	18.0	22.1		
3	9.00	0.95	22.0	19.2	22.2		
4	9.00	1.20	23.3	21.9	22.0		
5	16.00	2.05	21.0	20.1	21.4		
6	16.00	1.75	22.5	18.8	22.2		
7	16.00	1.85	21.6	20.5	23.0		
8	16.00	1.80	23.8	26.3	23.8		
9							
10							
11							
12							
Total We	eight	11.5	Avera	ge, %db	21.7		

Allowa	ible Fuel Lo	oad Range	8.5	to	9.3	
	T	EST FUE	L LOAD F	PROPERTIE	S	
Eq. ID No.:	SBI-214		Time:	9:00	Temp.,°F:	78
Piece No.	Length,	Weigh	nt, Lb.	Mois	ture, %, Dry	Pania
1 1000 140.	In.	2x4	4x4	IVIOIS	iture, %, Dry	Dasis
1	15.50	1.85		19.2	19.1	19.5
2	15.50	2.00		19.7	20.0	19.3
3	15.50	2.20		20.3	19.4	19.2
4	15.50	1.85		18.1	19.4	20.6
5						
6						
7						
8						
Totals		7.9	0.0			
% of Weight		100 0				
Total weight	, wet, lb.	7.9	90	Average Moisture, dry		19.48
Total weight	Total weight, dry, kg 3.0		00	Average M	oisture, wet	16.31

Test Engineer:


+ tagel

Run 6

Run Notes EPA Methods 28 and 5G-3

PROJECT / T	PROJECT / TEST INFORMATION					
Project Number:	G100517524					
Manufacturer:	SBI					
Model:						
Sample ID Number:	MTL-1111071416-001					
Test Date:	12-Dec-11					
Test Run Number:	6					
Date tunnel cleaned:	12/1/2011					
Purpose of Test	Cat 4					

	Test Settings
Primary Air:	Fully open
Secondary Air:	Fixed
Control Board:	N/A
Blower/Fan:	Off the first 30 minutes and on-low for the reminder of the test.
	Pre- Burn Activities
Time Activity	
0 Time=9:05. T	The blower was set on-low and the timewatch started.
	was stirred within 30 seconds.
62 The coal bed	l was leveled.
7	
	Start-Up Procedure
	Loaded by 45 seconds
Fuel-loading door:	
Primary air:	
Secondary air:	
Control board:	
Blower / fan:	Off the first 30 minutes and on-low for the reminder of the test.
	Other Notes
The data was latter and	
ne data acquisition syst	tem was started only after 30 minutes into the preburn.
u the end of the run, add	ditional leack checks were performed on system 1.

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID No: MTL-1111071416-001

Test Date: 12-Dec-11

Test Run No: 6

Temperature Data

Firebox Temp Start 482.74 Firebox Temp End 369.14 Firebox Delta-T

Max Filte	Max Filter Temps					
Train A	Train B					
75.75	75.7					

Interval	10	Dura	tion of Tes	t, Min	110									
	ime						Te	mperature	Data					
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	65.93	124.5	354.7	465.3	459	470.9	507.1	511.4		64.450	63.940	62.910	62.715
1	10	81	138.5	555.7	710.7	445.9	427.7	453.2	465.3		72.360	71.650	63.260	63.09
2	20	80.58	151.7	619.4	848.4	425.3	479.4	457.4	498.8		75.390	75.140	63.440	63.25
3	30	86,52	155.7	636,5	915.3	416	522.2	496.5	559.7		75.750	75.620	63.850	63.585
4	40	85.24	138.2	511.6	723.8	417.3	462	537.8	593.2		73.310	74.110	64.155	63.915
5	50	87.79	125.4	443.6	599.8	418.4	423.7	537.9	578.4		74.160	75.700	64.325	64.085
6	60	91.75	114.1	396.5	527.3	421.7	439.2	525.6	543.7		72.990	75.380	64.500	64.335
7	70	85.65	116	372.9	486.6	420.7	424.1	500.9	513.4		72.540	74.270	64.595	64.465
8	80	87.92	111.1	347.9	450.6	417.2	427.8	477.9	484.5		71.670	73.650	64.730	64.585
9	90	88.53	100.6	320.1	409.8	408	421.5	447.6	448.1		71.000	72.890	64.740	64.585
10	100	87.7	96.51	295.4	372	394.2	404.5	416.1	413.5		70.270	71.990	64.780	64.64
11	110	80.51	94.72	271.5	336.9	376.5	365.9	384.4	382		69.650	71.030	64.725	64.615

Test Engineer:

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 12-Dec-11

Test Run Number: 6

Baromete	er, In. Hg	RH, %	Sample Box Correction (y) Factors
Start	30.42	39	Meter Box (A)	1.014
End	30.40	38	Meter Box (B)	1.011
Durat	on of Tool	BAiro	110	

Leak Check,	, cfm @ in Hg
Train A	Train B
0.06@5	0.015@5

Maximun	n Vacuum
Train A	Train B
0.00	0.00

Durat	ion of Test	, IVIIII	110									
					W		Particulate	Sampling Date	a			
i									Train A	Train B	Train A	Train B
1	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In:	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.018	0.00	0.00	-0.095	8.05	8.05	860.457	7.595	99.77	99.86	0.00	0.00
10	0.018	0.00	0.00	-0.090	6.32	1.73	861.554	8.780	106.39	109.89	0.00	0.00
20	0.018	0.00	0.00	-0.095	4.30	2.02	862.610	9.898	103.50	104.78	0.00	0.00
30	0.018	0.00	0.00	-0.095	2.37	1.93	863.633	10.988	100.51	102.43	0.00	0.00
40	0.018	0.00	0.00	-0.085	1.41	0.96	864.648	12.073	98.24	100.43	0.00	0.00
50	0.018	0.00	0.00	-0.080	1.03	0.38	865.691	13.229	99.83	105.82	0.00	0.00
60	0.020	0.00	0.00	-0.075	0.77	0.26	866.765	14.253	95.20	86.79	0.00	0.00
70	0.020	0.00	0.00	-0.070	0.59	0.18	867.844	15.421	95.78	99.13	0.00	0.00
80	0.018	0.00	0.00	-0.065	0.43	0.16	868.924	16.492	102.03	96.74	0.00	0.00
90	0.018	0.00	0.00	-0.065	0.26	0.17	870.026	17.640	103.14	102.74	0.00	0.00
100	0.020	0.00	0.00	-0.060	0.11	0.15	871.132	18.773	96.47	94.49	0.00	0.00
110	0.020	0.00	0.00	-0.055	0.00	0.11	872.239	19.916	96.41	95.18	0.00	0.00

Test Engineer:

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 12-Dec-11

Test Run Number: 6

Day Burns	Data lastha	1.67				
Dry Burn-Rate, kg/hr:						
Emissio	n-Rate, g/hr:	1.94				
Adjusted Emission	-Rate, g/hr	3.15				
Duration of Test, Minutes	1	10				
Dry Gas Meter Standardization	Train A	Train B				
Dry Gas Meter Beginning Reading, ft ³	860.457	7.595				
Dry Gas Meter Ending Reading, ft ³	872.239	19.916				
Barometric Pressure Correction Factor	1.016	1.016				
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011				
Dry Gas Meter Temperature Factors	1.007	1.008				
Dry Gas Meter Delta-H Correction Factors	1.000	1.000				
Dry Gas Meter STD Volume Sampled, ft³	12.230	12.756				
Dillution Tunnel Flow / Volume						
Standardized Tunnel Flow, dscfm	144.	.203				
Total Tunnel Volume, scf	15862.368					
Emission Caclulations	Train A	Train B				
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1296.964	1243.483				
Sample Particulate Mass, mg	2.5	3.1				
Total Emissions, grams	3.242	3.855				
Emission-Rate, g/hr	1.77	2.10				
Adjusted Emission Rates, g/hr	2.92	3.37				
Deviation, %	7.1	7%				
Operating Parameters	Train A	Train B				
Max Filter Temperature, °F	75.75	75.7				
Post-Test Leak Check, cfm @ in. Hg vac.	0.06@5	0.015@5				
Arrange Ciester, Confeet Terror and the Total	113.6					
Average Firebox Surface Temperture delta-T, °F						
Maximum Ambient Temperture, °F	9					
Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F						
Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	9: 6:	6				
Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	9. 6	05				
Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	9. 60 8.0 19.	5 58				
Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	9. 6	5 58				

Project Number: G100517524

Manufacturer: SBI

Model: S244
Sample ID Number: MTL-1111071416-001
Test Date: 12-Dec-11
Test Run Number: 6

EPA Method 28 Pre Burn Data

Coal Bed Range 1.7 to 2.0

Average Firebox Temp, °F Final Coal Bed Wt, lb 1.59

Interval	10												
T	ime				Tem	perature D	ata						
	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0												-1.59
1													
2													
3	30	75.4	151.5	625.3	893.3	336	472.5	501.2	544.9		0.001	4.04	-4.04
4	40	72.44	4139.7	593.6	851.5	404.8	510.2	562.2	601.5		0.001	2.28	1.76
5	50	70.79	122.1	451.5	628.1	454.1	565.6	571.6	580.7		0.001	1.75	0.53
6	60	64.87	113.2	386.8	504.9	457.5	500.9	515.8	521.1		0	1.59	0.16
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25										-			
26													
27													
28													
29													
30													

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Initial Flow

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 12-Dec-11

Test Run Number: 6

	Dilution	Dilution Tunnel					
	Delta P In. H2O	Temp,°F	Square Root				
A1	0.0175	131	0.1323				
A2	0.0200	129	0.1414				
A3	0.0175	129	0.1323				
A4	0.0150	122	0.1225				
A Center	0.0200	132	0.1414				
B1	0.0175	130	0.1323				
B2	0.0200	130	0.1414				
B3	0.0175	129	0.1323				
B4	0.0150	122	0.1225				
B Center	0.0200	131	0.1414				
Averages	0.018	128.42	0.1321				

Tunnel Diameter	8.000 inches	
Tunnel Static	-0.095 in. H2O	
Tunnel Area	0.34907 Ft2	
Pitot Correction	0.9342 factor	
Baro. Pressure	30.42	
Pitot Factor	0.88 (0.99 for standard, 0.84 or Cal. For S-Type	e j
Initial Velocity	8.181 Ft/ Sec	

149.99 Ft3/min

Test Engineer:

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 12-Dec-11

Test Run Number: 6

Calibration Reference ID	10	0.462
Set meter to Species 1	101	0-463
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

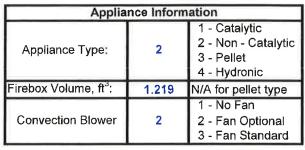
	PRE-B	URN FUE	L PROPE	RTIES	
Eq. ID No.:		Time:	8:30	Temp.,°F:	
Piece No.	Length, in.	Weight, Lb.	Moi	sture, %, Dr	
1	9.00	0.95	19.9	18.9	20.3
2	9.00	1.00	21.7	18.9	20.6
3	9.00	1.10	22.7	21.4	22.1
4	9.00	1.00	22.6	22.1	22.0
5	16.00	1.75	20.9	18.8	21.5
6	16.00	1.80	21.7	19.9	21.9
7	16.00	1.95	21.5	20.4	21.5
8	16.00	2.05	21.0	19.3	20.3
9					
10					
11					
12					
Total We	ight	11.6	Avera	ge, %db	20.9

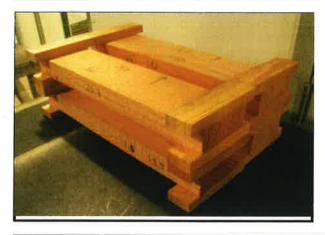
Allowable Fuel Load Range:

7.7 to 9.3

						0.0	
		EST FUE	L LOAD F	PROPERTIE	S		
Eq. ID No.:			Time:	8:45	Temp.,°F:		
Piece No.	Length,	Weigi	ht, Lb.	Mais	0/ D-		
Tiece No.	In.	2x4	4x4	IVIOIS	sture, %, Dry		
1	15.50	1.80		18.9	19.2	18.9	
2	15.50	2.20		20.2	20.2	19.7	
3	15.50	2.05		20.1	19.8	20.0	
4	15.50	2.00		19.4	19.2	19.3	
5							
6							
7							
8							
Total	s	8.1	0.0				
% of We	eight	100	0				
Total weight, wet, lb.		8.05		Average M	19.58		
Total weight	, dry, kg	3.0)5	Average M	oisture, wet	16.37	

Test Engineer:


Thypel


Run 7

Run Notes EPA Methods 28 and 5G-3

PROJECT / TEST INFORMATION									
Project Number:	G100517524								
Manufacturer:	SBI								
Model:	S244								
Sample ID Number:	MTL-1111071416-001								
Test Date:	13-Dec-11								
Test Run Number:	7								
Date tunnel cleaned:	12/1/2011								
Purpose of Test	Cat. 4								

		Test Settings
	Primary Air:	Fully Open.
5	Secondary Air:	Fixed
(Control Board:	N/A
	Blower/Fan:	Off the first 30 minutes and on-low for the reminder of the test run.
		Pre- Burn Activities
Time	Activity	
0	Time=11:42.	At this time the blower was set on and on the low position for all duration of the preburn.
42	The coal bed	d was stirred within 20 seconds
64	The coal bed	was leveled for 30 seconds and the door closed.
	1	
		Start-Up Procedure
		Loaded by 60 seconds.
Fuel-		Ajar for 90 seconds.
	Primary air:	
	Secondary air:	
(Control board:	
	Blower / fan:	Off the first 30 minutes and on-low for the reminder of the test run.
		Other Notes
he data	acquisition sys	tem was started at the same time as the preburn but didn't aquire data the first 10 minutes.

Project Number: G100517524
Manufacturer: SBI

Model: S244
Sample ID No: MTL-1111071416-001

Test Date: 13-Dec-11

Test Run No: 7

Temperature Data

Firebox Temp Start 476.52 Firebox Temp End 391.3 Firebox Delta-T 85.2

76.87	78.61									
Train A	Train B									
Max Filter Temps										

Interval	10	Dura	tion of Tes	t, Min	100									
T	ime						Te	mperature	Data					
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	73.68	129.7	375.8	477.4	457.1	422.2	510.9	515		66.09	65.72	64.8	64.72
1	10	86.1	140.9	562.5	719.2	446.1	663.6	452.5	480.9		73.28	73.07	64.95	64.845
2	20	86.27	159.2	653.8	893.5	428.2	565.8	456.1	508.9		76.86	77.32	65.2	65.06
3	30	87.71	158.1	638.1	884.3	421.3	491.6	488.1	563.5		76.87	78.27	65.405	65.235
4	40	82.36	137.3	524.9	727.1	422.1	477.4	543.8	588.2		76.7	78.45	65.5	65.36
5	50	87.36	127.8	453.2	615.3	428	471.3	559	578.4		75.64	78.61	65.665	65,455
6	60	88.07	118.3	408.1	541.4	432.6	444.6	539	541.9		74.35	77.65	65.805	65.575
7	70	88.48	113.9	375.8	491.6	428.9	424.4	509.9	508.9		73.95	76.76	65.845	65.655
8	80	81.34	107.4	345	447.6	423.5	409	479.6	474.3		72.79	75.84	66.01	65.76
9	90	89.26	98.38	317	403.6	414.9	375.7	448.8	439.1		72.09	74.84	66.07	65.89
10	100	82.6	100.9	292.3	363.2	401.8	372.4	413.5	405.6		71.46	73.83	66.015	65.87

Test Engineer:_

Gas Particulate Sampling Data

Project Number: G100517524 Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 13-Dec-11

Test Run Number: 7

Baromete	er, In. Hg	RH, %	Sample Box Correction (y) Factors					
Start	30.36	28	Meter Box (A) 1.01						
End	30.34	28	Meter Box (B)	1.011					
	67 1	1.0	400						

Leak Check,	cfm @ in Hg
Train A	Train B
0.001@5	0.002@5

Maximur	Maximum Vacuum									
Train A	Train B									
0.00	0.00									

Durat	on or resi	, IVIII	100									
							Particulate	Sampling Date	a			
l									Train A	Train B	Train A	Train B
ı	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Proportional	Proportional	Vacuum, In.	Vacuum, In.
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg	Hg
0	0.020	0.00	0.00	-0.080	7.95	7.95	872.322	19.937	99.99	100.05	0.00	0.00
10	0.020	0.00	0.00	-0,095	6.23	1.72	873.432	21.110	99.70	101.41	0.00	0.00
20	0.018	0.00	0.00	-0.100	4.19	2.04	874.516	22.255	104.14	105.87	0.00	0.00
30	0.018	0.00	0.00	-0.110	2.32	1.87	875.577	23,388	101.80	104.64	0.00	0.00
40	0.020	0.00	0.00	-0.090	1.41	0.91	876.647	24.582	95.72	102.81	0.00	0.00
50	0.020	0.00	0.00	-0.085	0.93	0.48	877.748	25.717	97.68	96.93	0.00	0.00
60	0.020	0.00	0.00	-0.080	0.64	0.29	878.870	26.822	98.71	93.58	0.00	0.00
70	0.020	0.00	0.00	-0,070	0.49	0.15	879.996	28.030	98.67	101.90	0.00	0.00
80	0.020	0.00	0.00	-0.065	0.21	0.28	881.163	29.151	101.65	94.01	0.00	0.00
90	0.020	0.00	0.00	-0.065	0.05	0.16	882.324	30.348	100.31	99.56	0.00	0.00
100	0.020	0.00	0.00	-0.065	0.00	0.05	883.496	31.545	101.50	99.78	0.00	0.00

Test Engineer:

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 13-Dec-11

Test Run Number: 7

		1.81								
Dry Burn-Rate, kg/hr:										
Emission-Rate, g/hr:										
Adjusted Emission-Rate, g/hr :										
Duration of Test, Minutes	10	00								
Dry Gas Meter Standardization	Train A	Train B								
Dry Gas Meter Beginning Reading, ft ³	872.322	19.937								
Dry Gas Meter Ending Reading, ft³	883.496	31,545								
Barometric Pressure Correction Factor	1.014	1.014								
Dry Gas Meter Calibration Factors (γ factors)	1.014	1.011								
Dry Gas Meter Temperature Factors	1.005	1.005								
Dry Gas Meter Delta-H Correction Factors	1.000	1.000								
Dry Gas Meter STD Volume Sampled, ft³	11.546	11.963								
Dillution Tunnel Flow / Volume										
Standardized Tunnel Flow, dscfm	149	.966								
Total Tunnel Volume, scf	14996.551									
Emission Caclulations	Train A	Train B								
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1298.805	1253,556								
	1200.000									
Sample Particulate Mass, mg	4.1	4.3								
Sample Particulate Mass, mg Total Emissions, grams										
Total Emissions, grams	4.1	4.3								
·	4.1 5.325	4.3 5.390								
Total Emissions, grams Emission-Rate, g/hr	4.1 5.325 3.20	4.3 5.390 3.23 4.82								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters	4.1 5.325 3.20 4.77 0.5	4.3 5.390 3.23 4.82 0% Train B								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F	4.1 5.325 3.20 4.77 0.5 Train A 76.87	4.3 5.390 3.23 4.82 0% Train B 78.61								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 22								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 22 9								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 22 9								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 87	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 22 9 4								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 8 7	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 22 9 4								
Total Emissions, grams Emission-Rate, g/hr Adjusted Emission Rates, g/hr Deviation, % Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperature, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	4.1 5.325 3.20 4.77 0.5 Train A 76.87 0.001@5 85 87 7.1 19 16 1.60	4.3 5.390 3.23 4.82 0% Train B 78.61 0.002@5 22 9 4								

Project Number: G100517524
Manufacturer: SBI

Model: \$244

Sample ID Number: MTL-1111071416-001

Average Firebox Temp, °F 519.72

Test Date: 13-Dec-11
Test Run Number: 7

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6

Final Coal Bed Wt, lb 1.75

			7.					
Interval 10								
Time		Tem	perature D	ata				
	Diluti	 Firebox	Final au	Cisaba	Ciash au	Circh au	Catalyat	

Ť	ime	Temperature Data											
Intoqual	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel	Weight
0	0	TOOIT	runner	Fide Gas	ТОР	BOLLOITI	Dack	Leit	Right	Outlet	Draπ	Weight	Loss
1	10	70.45	442.0	F00.4	744.0	400.5	000.4	004.4				12.10	(10.35)
2	20	76.45	142.9	582.1	714.8	168.5	239.4	291.1	320.3		0	9.94	2.16
3	30	80.15	152	627	826.2	252.5	364.4	380.6	419.6		-0.002	7.29	2.65
4	40	80.55 87.3	159.3	656.9	923.1	330.4	448	463.2	517.9		-0.002	4.62	2.67
5	50	76.24	152.5	612.8	893.4	394.5	432.7	533.9	599.3		-0.003	2.68	1.94
6	60	78.43	131.6 118.9	484.9 414.4	675.6 545.8	446.5 460.3	436.8 509.3	569.4 538.4	601.1 544.8		0.003	1.95 1.75	0.73 0.20
7		70.40	110.0	414.4	343.6	400.5	509.5	330.4	344.6		-0.007	1.75	0.20
8													
9													
10													
11													
12													-
13													-
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Initial Flow

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 13-Dec-11

Test Run Number: 7

	Dilution	Tunnel	
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0175	155	0.1323
A2	0.0175	155	0.1323
A3	0.0150	155	0.1225
A4	0.0125	147	0.1118
A Center	0.0175	157	0.1323
B1	0.0175	156	0.1323
B2	0.0175	155	0.1323
B3	0.0150	155	0.1225
B4	0.0125	150	0.1118
B Center	0.0175	157	0.1323
Averages	0.016	154.2	0.1247

Tunnel Diameter	8.000	inches
Tunnel Static	-0.093	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9427	factor
Baro. Pressure	30.36	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.897	Ft/ Sec

138.45 Ft3/min

Test Engineer:

TEST FUEL DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-1111071416-001

Test Date: 13-Dec-11

Test Run Number: 7

Calibration Reference ID	18	0-463
Set meter to Species 1	10	0-403
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

	PRE-BURN FUEL PROPERTIES						
Eq. ID No.:	Eq. ID No.:		Time:		8:30	Temp., °F:	
Piece No. Length, In.		Weight, Lb.	Moi	y Basis			
1	9.00	1.00	20.6	19.3	21.5		
2	9.00	1.00	21.0	19.3	21.2		
3	9.00	1.00	21.4	21.1	21.2		
4	9.00	1.00	20.9	19.5	21.0		
5	17.00	1.95	21.7 19.7 2		21.4		
6	17.00	2.00	21.9 20.3 22		22.3		
7	17.00	2.05	22.1 21.2 22		22.2		
8	17.00	2.05	22.3 19.7 23		22.0		
9		57	-x				
10							
11							
12							
Total We	eight	12.1	Avera	ge, %db	21.0		

Allowa	ble Fuel Lo	ad Range	7.7	to	9.3		
	T	EST FUEI	L LOAD F	PROPERTIE	S		
Eq. ID No.;			Time:	9:10	Temp.,°F:		
Piece No.	Length,	Weigh	nt, Lb.	Mais	ture, %, Dry	Pasia	
Fiece No.	In.	2x4	4x4	IVIOIS	tule, %, Diy	Dasis	
1	15.50	2.00		20.3	20.0	18.8	
2	15.50	2.15		19.7	19.3	19.9	
3	15.50	1.95		19.8	19.5	19.5	
4	15.50	1.85		19.2	19.9	19.0	
5							
6							
7							
8							
Totals		8.0	0.0				
% of Weight		100 0					
Total weight,	wet, lb.	7.9	95	Average Moisture, dry		19.58	
Total weight	, dry, kg	3.02		Average M	oisture, wet	16.37	

Test Engineer:

Run 8

Run Notes EPA Methods 28 and 5G-3

PROJECT / T	EST INFORMATION
Project Number:	G100517524
Manufacturer:	SBI
Model:	S244
Sample ID Number:	MTL-111071416-001
Test Date:	14-Dec-11
Test Run Number:	8 - Fan Confirmation
Date tunnel cleaned:	12/1/2011
Purpose of Test	Fan Confirmation

Appliance Information					
Appliance Type:	2	1 - Catalytic 2 - Non - Catalytic 3 - Pellet 4 - Hydronic			
Firebox Volume, ft ³ :	1.219	N/A for pellet type			
Convection Blower	2	1 - No Fan 2 - Fan Optional 3 - Fan Standard			

		Test Settings
	Primary Air:	
	condary Air:	
	ntrol Board:	
	Blower/Fan:	
		Pre- Burn Activities
	Activity	
0	Time=10:34.	The Primary air was shut when the weight was 2.65 lbs. The timer was started at the same
	time. The bl	ower was unplugged the whole day.
59	The seed he	d was leveled for 30 seconds.
J 59 .	The coad be	d was leveled for 30 seconds.
-		Start-Up Procedure
Loading o	f fuel, sec. :	Loaded by 60 seconds.
Fuel-loa	ading door	Ajar for 90 seconds.
	Primary air:	Closed
Sec	condary air:	Fixed
	ntrol board:	
	Blower / fan:	
		Other Notes
None		

TEST DATA EPA METHOD 5G-3

Temperature Data

Firebox Temp Start 384.24 Firebox Temp End 356.22 Firebox Delta-T 28.0

Max Filte	er Temps
Train A	Train B
70.84	72

Interval	10	Dura	tion of Tes	t, Min	160									
T	ime	me Temperature Data												
Interval	Duration	Room	Dillution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Train A Filter	Train B Filter	Train A DGM	Train B DGM
0	0	87.53	92.24	223.4	347.4	406.4	384.6	390.1	392.7		65.18	64.67	65.045	64.715
1	10	87.97	88.28	236.4	381.1	387.6	352.7	352.1	354		68.87	68.66	65.265	65.015
2	20	86.56	91.18	256.9	444.9	367.7	339.4	336.1	341.3		69.18	69.76	65.31	65.095
3	30	84.47	98.08	297.2	569.7	345.5	339.8	343.8	352.9		69.78	70.64	65.395	65.135
4	40	80.72	101.8	327.4	659.4	326.4	347.2	366.9	384.8		70.52	71.61	65.475	65.245
5	50	88.15	95.71	312.5	658.8	312.4	365.3	392	417.6		70.84	72	65.45	65.16
6	60	91.79	88.35	278.1	588.2	307.8	378	409.2	431.5		70.07	71.5	65.48	65.185
7	70	93.72	85.49	245.4	518.7	306.7	385.3	412.9	432.4		69.44	70.8	65,505	65.23
8	80	76.51	88.75	225.8	465.4	302.3	389.6	409.7	423.2		69.1	70.44	65.56	65.4
9	90	73.04	83.1	209.3	424.4	296.1	394.9	408.3	411.4		68.89	70.1	65.66	65.485
10	100	72.09	81.28	200.1	402.5	295.1	395.6	406	403.3		68.46	69.59	65.625	65.455
11	110	70.83	80.04	195.1	390.8	297	394.3	403.3	397.6		68.11	69.25	65.55	65.365
12	120	70.6	80.11	190.5	381.7	301.3	390.7	404.6	394.1		68.03	68.98	65.56	65.36
13	130	70.45	79.87	187.8	375.6	304.7	382.6	399.5	388.8		67.86	68.88	65.56	65.395
14	140	73.13	79.18	184	366.8	306.3	373.1	391.6	382.6		67.81	68.74	65.555	65.375
15	150	79.42	81.78	180.6	362	314.8	363.8	390.6	383.1		67.78	68,69	65,49	65.275
16	160	81.38	82.45	178.9	351.4	318.8	352.5	382.2	376.2		67.87	68.84	65.515	65.235

Test Engineer:

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 14-Dec-11

Test Run Number: 8 - Fan Confirmation

Baromete	er, In. Hg	RH, %	Sample Box Correction (y) Factors
Start	30.42	30	Meter Box (A)	1.014
End	30.36	29	Meter Box (B)	1.011
Durent	on of Tool	A Rive	400	

Leak Check, cfm @ in Hg				
Train A	Train B			
0.001@5	0.002@5			

Maximum Vacuum							
Train A	Train B						
0.00	0.00						

Durat	1011 01 1 031	, IVIII)	100									
							Particulate	Sampling Dat	а			
Time	Tunnel Delta-P	Train A Delta-H	Train B Delta-H	Flue Draft	Fuel Weight	Weight Loss	Train A Volume	Train B Volume	Train A Proportional Rate	Train B Proportional Rate	Train A Vacuum, In. Hg	Train B Vacuum, In, Hg
0	0.018	0.00	0.00	-0.075	8.00	8.00	883.515	31.570	99.96	99.96	0.00	0.00
10	0.018	0.00	0.00	-0.055	7.06	0.94	884,710	32.815	99.37	102.85	0.00	0.00
20	0.018	0.00	0.00	-0.065	6.08	0.98	885.888	34.010	98.21	98.97	0.00	0.00
30	0.018	0.00	0.00	-0.065	4.91	1.17	887.076	35.212	99.64	100.16	0.00	0.00
40	0.018	0.00	0.00	-0.070	3.77	1.14	888.260	36.419	99.62	100.89	0.00	0.00
50	0.018	0.00	0.00	-0.065	2.77	1.00	889.445	37.627	99.17	100.44	0.00	0.00
60	0.018	0.00	0.00	-0.060	2.12	0.65	890.652	38.837	100.33	99.93	0.00	0.00
70	0.018	0.00	0.00	-0.055	1.69	0.43	891.860	40.051	100.15	99.99	0.00	0.00
80	0.018	0.00	0.00	-0.055	1.48	0.21	893.067	41.264	100.36	100.18	0.00	0.00
90	0.018	0.00	0.00	-0.050	1.17	0.31	894.284	42.488	100.65	100.55	0.00	0.00
100	0.018	0.00	0.00	-0.045	0.94	0.23	895.495	43.707	99.99	99.97	0.00	0.00
110	0.018	0.00	0.00	-0.045	0.76	0.18	896.712	44.877	100.38	95.86	0.00	0.00
120	0.018	0.00	0.00	-0.045	0.57	0.19	897.920	46,110	99.65	101.03	0.00	0.00
130	0.018	0.00	0.00	-0.040	0.39	0.18	899.122	47.317	99.13	98.87	0.00	0.00
140	0.018	0.00	0.00	-0.040	0.23	0.16	900.332	48.534	99.73	99.63	0.00	0.00
150	0.018	0.00	0.00	-0.040	0.11	0.12	901.552	49.737	100.80	98.74	0.00	0.00
160	0.018	0.00	0.00	-0.040	0.00	0.11	902.788	50.971	102.18	101.36	0.00	0.00

Test Engineer:

TEST RESULTS EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 14-Dec-11

Test Run Number: 8 - Fan Confirmation

Dry Burn-Rate, kg/hr:							
Emission-Rate, g/hr:							
Adjusted Emission-Rate, g/hr							
Duration of Test, Minutes	16	60					
Dry Gas Meter Standardization	Train A	Train B					
Dry Gas Meter Beginning Reading, ft ³	883.515	31.57					
Dry Gas Meter Ending Reading, ft ³	902.788	50.971					
Barometric Pressure Correction Factor	1.016	1.016					
Dry Gas Meter Calibration Factors (y factors)	1.014	1.011					
Dry Gas Meter Temperature Factors	1.005	1.005					
Dry Gas Meter Delta-H Correction Factors	1.000	1.000					
Dry Gas Meter STD Volume Sampled, ft³	19.945	20.027					
Dillution Tunnel Flow / Volume							
Standardized Tunnel Flow, dscfm	142.272						
Total Tunnel Volume, scf	22763.595						
Emission Caclulations	Train A	Train B					
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	1141.298	1136.639					
Sample Particulate Mass, mg	9.1	8.7					
Total Emissions, grams	10.386	9.889					
Emission-Rate, g/hr	3.89	3.71					
Adjusted Emission Rates, g/hr	5.63	5.40					
Deviation, %	2.03%						
Operating Parameters	Train A	Train B					
Max Filter Temperature, °F	70.84	72					
Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	70.84 0.001@5	72 0.002 @ 5					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F		0.002@5					
Post-Test Leak Check, cfm @ in. Hg vac.	0.001@5	0.002@5 02					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	0.001 @ 5 28.	0.002@5 02 4					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties	0.001@5 28. 9. 7	0.002@5 02 4 0					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	0.001@5 28. 9	0.002@5 02 4 0					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	0.001@5 28. 9. 7	0.002@5 02 4 0					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib.	0.001@5 28. 9. 7.	0.002@5 02 4 00 00 91					
Post-Test Leak Check, cfm @ in. Hg vac. Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F Fuel Properties Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, %	0.001@5 28. 9. 7: 8.0 19.	0.002@5 02 4 00 00 91 60 2.00					

Project Number: G100517524

Manufacturer: SBI

Model: 5244

Sample ID Number: MTL-111071416-001

Test Date: 14-Dec-11

Test Run Number: 8 - Fan Confirmation

EPA Method 28 Pre Burn Data

Coal Bed Range 1.6 2.0

Average Firebox Temp, °F 416.7

Final Coal Bed Wt, Ib 2.03

Interval	10												
T	ime				Tem	perature D	ata						
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	70.46	174	415.5	558.7	455.9	561.9	538.1	557.9		0	11.10	9.07
1	10	77.08	162.4	623.3	851.2	467.2	509.4	480.7	493.8		0	9.69	1,41
2	20	79.09	168.6	648	931.2	449.2	513	504.1	532.7		0.001	6.60	3.09
3	30	82.66	161.9	627	915.1	450.1	600	553.8	594.4		0.001	4.04	2.56
4	40	80.84	142.5	558.2	839.5	461.4	682.6	601.3	641.1		0.001	2.65	1.39
5	50	82.32	108.1	311.5	605.8	474.9	601.4	568	598.1		0.001	2.54	0.11
6	60	84.52	100.1	255	513.8	468	569.4	519.9	540.8		0	2.36	0.18
7	70	82.94	97.38	228.4	460.7	455	512.5	484.5	497.8		-0.003	2.24	0.12
8	80	89.75	88.36	209.4	421.9	439.2	463.4	454.4	461.6		-0.001	2.10	0.14
9	90	88.72	85.87	195.6	386.6	422.1	424.7	422.7	427.4		0.001	2.03	0.07
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23 24													
25													
26													
27													
28													
29 30													
30													

Test Engineer:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Initial Flow

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 14-Dec-11

Test Run Number: 8 - Fan Confirmation

	Dilution		
	Delta P In. H2O	Temp,°F	Square Root
A1	0.0150	95	0.1225
A2	0.0175	95	0.1323
A3	0.0150	95	0.1225
A4	0.0125	91	0.1118
A Center	0.0175	95	0.1323
B1	0.0150	96	0.1225
B2	0.0175	96	0.1323
B3	0.0150	96	0.1225
B4	0.0100	95	0.1000
B Center	0.0175	96	0.1323
Averages	0.01525	94.96	0.1208

Tunnel Diameter	8.000	inches
Tunnel Static	-0.700	in. H2O
Tunnel Area	0.34907	Ft2
Pitot Correction	0.9130	factor
Baro. Pressure	30.42	
Pitot Factor	0.88	(0.99 for standard, 0.84 or Cal. For S-Type)
Initial Velocity	7.269	Ft/ Sec

141.31 Ft3/min

Test Engineer:

TEST FUEL DATA EPA METHOD 5G-3

Project Number: G100517524

Manufacturer: SBI

Model: S244

Sample ID Number: MTL-111071416-001

Test Date: 14-Dec-11

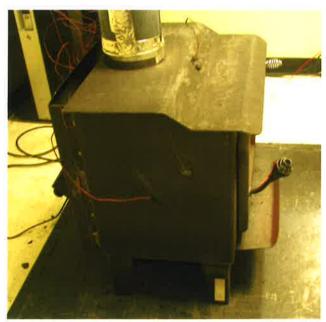
Test Run Number: 8 - Fan Confirmation

Calibration Reference ID	180-463				
Set meter to Species 1	100-403				
Set Temperature to 70F	12%	12.0			
Set pin setting to 444	22%	22.0			

	PRE-BURN FUEL PROPERTIES									
Eq. ID No.: SBI214		Time:	8:30 Temp.,°F		77					
Piece No.	Length, In.	Weight, Lb.	Moisture, %, Dry Basis							
1	9.00	0.95	22.1	22.2	22.1					
2	9.00	1.05	22.6	22.0	23.3					
3	9.00	1.00	22.2	19.8	22.1					
4	9.00	1.00	23.3	22.2	23.2					
5	16.00	1.85	22.2	21.3	21.5					
6	16.00	1.70	22.4	21.0	22.7					
7	16.00	1.70	21.9	21.2	22.7					
8	16.00	1.80	22.1	22.1	20.6					
9										
10										
11										
12										
Total Weight		11.1	Avera	ge, %db	22.0					

Allowable Fuel Load Range:

7.7 to


9.3

Allowa	ble ruel Lo	du Kange	7.7	to	9.3			
		EST FUEI	L LOAD F	PROPERTIE	S			
Eq. ID No.:	SBI214		Time:	9:30	Temp.,°F:	77		
Piece No.	Length,	Weigh	nt, Lb.	Moisture, %, Dry Basis				
1 1000 140.	ln.	2x4	4x4	IVIOIS	ture, %, Dry	Dasis		
1	15.50	2.20		19.2	18.6	21.0		
2	15.50	1.95		19.7	18.8	19.2		
3	15.50	2.00		21.9	21.7	20.9		
4	15.50	1.85		20.0	19.3	18.6		
5								
6								
7								
8								
Totals	Totals		0.0					
% of Weight		100	0					
Total weight,	Total weight, wet, lb.		00	Average Moisture, dry 19.91				
Total weight, dry, kg		3.0)3	Average M	oisture, wet	16.60		

Test Engineer

Hypel

S.B.I model S244

Side View

Sealed Unit

John Dupree US Environmental Protection Agency 1200Pennsylvania Ave NW Washington DC, 20460

January 11, 2012

Subject: SBI Stove model S244

Dear Mr. Dupree,

Stove Builders International has asked Intertek to write this letter on their behalf regarding data contained in an EPA certification report for the stove model S244. During the preburn of test run number six conducted December 12, 2011 a final coal bed weight was recorded 0.11 pounds outside the acceptable range for the fuel load. At the completion of the same test filter train 1 failed a post test leak check. Investigation of the data found the deviation between the two filters did meet the 7.5 % requirement stipulated in method 5G.

It is Stove Builders International's opinion that the two issues in this data are not significant enough to have an overall affect that would push final weighted average results outside the 7.5 gram per hour limit required for certification. They are therefore asking for a variance on the issues and the report be considered for certification.

If I can be of any assistance in this consideration please feel free to contact me at your convenience.

Bruce Davis

Intertek

Project Engineer

Banko-

22887 NF Townsend Way Fairview Oregon, 97024

Telephone: 503-676-2311 Facsimile: 503-676-2350

www.intertek.com

September 13, 2012

Letter Report No. 100709683PRT-001 Project No. G100709683

Pierre Pleau Stove Builders International Inc. 250 Rue de Copenhague St-Augustine-de-Desmaures QC G3A 2H3

email:ppleau@sbi-international.com

Ph: 418-527-3060

Subject: Comparative evaluation of six wood burning stoves designed after the 1.3 Series

Dear Mr. Pleau,

This letter represents the results of an evaluation on stove models Century S244, Century S245, Drolet Pyropak, Drolet Rocket, Enerzone Solution 1.3, and the Osburn 900.

This investigation was authorized by Quote number 500393418 dated July 11, 2012. Design drawings were received on September 11, 2012 and evaluated on September 12, 2012 at the Portland Oregon facility.

Six stove models share similar features and are designed after an EPA certified room Heater Model Series 1.3.

Design drawings were evaluated to determine similarities of the six units in overall size, shape, combustion air controls and fire box insulation. Drawings show internal fire box size to be the same at 10 3/16" deep, 8 1/4" high, and 18" wide. All appliances share a 6" flue collar and have the same primary air intake controls. Fire box insulation such as refractory appears to be the same in shape, size, and location. Insulation in the baffle also is similar in all units by location, shape, and size. In three appliances, the Century S244, Drolet Pyropak, and the Drolet Rocket there is a 1.5 inch high step in the fire box top. Distance from the top front edge of the baffle to the bottom of the top plate is the same in all six units, while area above the baffle is increased by this step. Other differences noted were cosmetic with the use of ash pans, legs, and pedestals on different models. Secondary air used as an emissions control devise is the same in all six appliances in location and design. All external shielding appeared to be similar on the six models.

This letter report completes our evaluation of the six stove models.

If there are any questions regarding the results contained in this report, or any of the other services offered by Intertek, please do not hesitate to contact the undersigned.

Please note, this Letter Report does not represent authorization for the use of any Intertek certification marks.

Completed by: Title:

Bruce S Davis **Project Engineer** Reviewed by: Title:

Jared Sorenson

Senior Associate Engineer/Team Leader

Signature:

Signature

Page 1 of 1

