

### **TEST REPORT**

**SCOPE: EMISSIONS AND OUTPUT** 

**FUEL:** EPA TEST FUEL (CRIBS)

**TEST STANDARD: EPA** 

**MODEL: OPTIMA WOOD STOVE** 

Notice to reader: Our Optima wood stove was tested as part of our S-27X Series firebox. Therefore, the S-27X Series is referenced throughout the attached test report.



(206) 859-8318 ■ 1315 S. Central Avenue ■ Unit C ■ Kent, WA 98032

United States
Environmental Protection Agency
Woodheater Certification
Test Report

HAUGH'S PRODUCTS
BRAMPTON, ONTARIO, CANADA
S-27% SERIES
NONCATALYTIC WOODHEATER

REPORT BY:

BILL NOWAK

TIM KELLY

CONFIDENTIAL

RELEASED ONLY BY AUTHORIZED PERSONNEL

DATE June 19, 1992

EEMC/BILLINGS 1744 Mullowney Lane Billings, Montana 59101

llings, Montana 5910 (406) 252-4450 EEMC/TUCSON 3925 Placita de la Escarpa

Tucson, Arizona 85715 [602] 290-8965 CONFIDENTIAL

\* \* \* \* \* \* \*

The data and information in this test report is confidential, proprietary information and is not to be released to and/or discussed with any party who is not authorized by the manufacturer or the testing laboratory to receive such data.

CONFIDENTIAL

\* \* \* \* \* \* \* 1

| The second secon |                                                                                   |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section(s)                                                                        | Page(s)                              |
| Introduction Title Page Confidentiality Statement Table of Contents Report Certification Test Report (Data) Page Number Index Individual Test Run Page Number Index Test Series Information and Discussion Stove Storage Information Stack Measurements and Sampling Port Location EPA Notifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Introduction                                                                      | i ii iii vi vii x xii xiii xiv xv    |
| Summary and Discussion of Results Woodheater Emission Test Summary Cap Graph Data Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data Summaries                                                                    | 2<br>3-5                             |
| Stove/Cat Aging Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aging                                                                             | 1                                    |
| Individual Test Runs (Raw Data)  See Introduction, Individual Test Run  Page Index for a complete, sequential  list of the data and data sequence in  the individual test runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.8kg/Hr<br>0.8-1.25 kg/hr<br>1.26-1.90 kg/hr<br>>1.90 kg/Hr<br>fan confirmation | r varies<br>varies                   |
| Calibration Data  See Test Report (Data) Page Number Index,  Item 14, for a complete, sequential listing  of the data in this section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cal Data                                                                          | varies                               |
| Stove QC Stove QC Useable firebox volume dimensions and calcul Primary air inlet dimensions and settings Secondary air inlet dimensions and settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stove QC<br>ations                                                                | varies<br>varies<br>varies<br>varies |
| Blueprints Promotional (sales) brochure Laboratory verified blueprints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Blueprints                                                                        | varies<br>varies                     |
| Manual<br>Manufacturer's Written Test Instructions<br>Manufacturer's Operating Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Manual                                                                            | 1<br>varies                          |

WST6 Form 4 Rev 1/88 Page 2 of 2

**PHOTOS** 

**Photos** 

This section contains two photographs of the fuel load for each test run and two color photographs (side and front view) of the wood heater tested and any other photographs pertinent to testing the unit.

varies

Appendices:

A - Example Calculations

B - Installation Description and Operating Instructions

#### REPORT CERTIFICATION

The sampling and analysis for the woodstove described in this report verified out under my direction and supervision. I have also reviewed to the testing data and results found in this test report and here certify that the test report is authentic and accurate.

Date\_\_\_\_\_\_ Signature Bill Mounk

VΪ

# M5H INDIVIDUAL TEST RUN PAGE INDEX The Data Sheets in the Individual Test Runs Are Organized in the Following Sequence

Table 1 Field Data - Sampling Interval Data

Computer Printouts

|    | Table 2 Field Data                                |                  |
|----|---------------------------------------------------|------------------|
|    | Table 3 Field Data Averages                       |                  |
|    | Table 4 Calculations                              |                  |
|    | Table 5 Proportional Rate Variation               |                  |
| в. | Raw Data Sheets                                   | No. of Pages     |
|    | Data Sheet #1 Computer Input Data                 | variable         |
|    | Data Sheet #2 Meterbox Data Sheets                | Variable<br>1    |
|    | Data Sheet #3 Moisture Catch Sheet                | <b>T</b>         |
|    | Data Sheet #4 Scale Sheets                        |                  |
|    |                                                   | variable         |
|    | #4-2 Initial Beaker Weights                       | variable         |
|    | #4-3 Constant Weights                             | variable         |
|    | #4-4 Scale QA Checks                              | <b>v</b> ariable |
|    | Data Sheet #5 Particulate Catch Processing Sheet  |                  |
|    | #5-1 Front Half Catch                             | 1.               |
|    | #5-2 Back Half Catch                              | 1                |
|    | #5-3 Blank Catch                                  | 1                |
|    | Data Sheet #6 Net Particulate Catch Calc Sheet    | 1                |
|    | Data Sheet #7 Particulate Calc Sheet              | <u> 1</u> .      |
|    | Data Sheet #8 Miscellaneous Test Data             | 1                |
|    | Data Sheet #9 Stove Operating Data                | 1                |
|    | Data Sheet #9A Stove Operating Data               | variable         |
|    | Data Sheet #10 Fuel Moisture                      | 1                |
|    | Data Sheet #11 Wood Density                       | 1                |
|    | Data Sheet #12 Burn Rate and Flue Gas Data        | <b>v</b> ariable |
|    | Data Sheet #13 Pre Burn Data                      | variable         |
|    | Data Sheet #14 Temperature Data                   | variable         |
|    | Data Sheet #15 Pre and Post Test Zero/Span Audits | •                |
|    | #15-1 CO <sub>2</sub>                             | 1                |
|    | #15-1 CG2<br>#15-2 C2                             | 1                |
|    | #15-3 <b>C</b> O                                  | 1                |
|    | #15-4 SO <sub>2</sub>                             | $ar{	extbf{1}}$  |
|    | #ID-4 BUZ                                         | $ar{f 1}$        |
|    | Data Sheet #16 Quality Checks                     |                  |
|    |                                                   |                  |

# PACE NUMBER INDEX

|   |     | Summary Table of Burn Rate and Emission Rate Results | Section<br>Data Summary                      | Iocation<br>Weight Avg Calc Sheet, pp.1-4 |
|---|-----|------------------------------------------------------|----------------------------------------------|-------------------------------------------|
|   | 7   | Summary Table of Other Data                          | Data Summary                                 | Data Summary Sheets, pp 5-7               |
|   | ŕ   | Wood Heater Description                              | Stove OC                                     | Wood Heater Description, p.1 (va          |
|   | 4   | Manufacturer's Testing Wood Heater Instructions      | Operators Manual                             | P.1 of Section                            |
| - | 'n  | Test Chamber Installation Description                | Installation Description                     | lon P. 1                                  |
| ÷ | • 9 | Wood Heater/Catalyst Aging Documentation             | Stove/Cat Aging                              |                                           |
|   | 7.  | Wood Heater Dimensions and Useable Firebox Volume    | Stove QC                                     |                                           |
|   | œ   | Pretest Burn Procedures                              | Individual Test Runs                         | Data Sheets #9,9A,9A-1,9A-2,13            |
|   | 6   | Pretest Facility Measurements                        | Individual Test Runs                         | Data Sheets #8,16                         |
|   | 10  | 10. Test Fuel Measurements<br>A. Load Wt.            | Individual Test Runs<br>Individual Test Runs | Data Sheet #8<br>Data Sheet #10           |

| Individual Test Rum Da                                | Installation Description<br>Installation Description<br>Installation Description                                                                       |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12. Test Run Heater Operation and Air Supply Settings | 13. Detailed Description of Sampling Systems and Locations A. Method 5H B. Proportional Gas Flow Rate System C. Stack Gas Flow Rate Measurement System |

Wood Type and Line Drawing

A. Photographs
B. Wood Type an

Test Fuel Crib Description

Load Moisture

Wood Density

Data Sheets #9,9A,9A-1,9A-2,13

P.2 P.3 P.4

Data Sheet #9A,9A-1, or 9A-2

Photographs Individual Test Run

Data Sheet #10 Data Sheet #11

Individual Test Runs Individual Test Runs

| 91#                                         |  |
|---------------------------------------------|--|
| Sheet #10                                   |  |
| P. 1<br>P. 2<br>Data                        |  |
| Cal Data<br>Cal Data<br>Individual Test Run |  |
| E E                                         |  |
|                                             |  |
|                                             |  |
| :                                           |  |
|                                             |  |

Pre and Post Test

Semi Annual

Platform Scale

14. Calibrations

1. Initial

|                                                                                                                 |                                                                                                                                                    |                                              | )                                  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|
| noonalisen parking park |                                                                                                                                                    |                                              | WST6-Form5 Page 2 of 3<br>Rev 1/88 |
|                                                                                                                 | B. Analytical Balance<br>1. Initial<br>2. Semi Annual                                                                                              | Cal Data Cal Data                            | P. 3<br>P. 4<br>Data Shoot #4      |
|                                                                                                                 | <ol> <li>Pre/Post Weighing Check</li> <li>Temperature</li> </ol>                                                                                   | Cal Data                                     | P.5                                |
|                                                                                                                 | 2. Thermocouple Readout a. Semi annual                                                                                                             | Cal Data<br>Individual Test Run              | P. 6<br>Data Sheet #16             |
| ***************************************                                                                         | <ol> <li>Dally Check</li> <li>Dry Gas Meter</li> <li>Tracer Gas Injection Thermometer</li> </ol>                                                   | Cal Data<br>Cal Data                         | P. 7                               |
|                                                                                                                 | ` <b>5</b> 5                                                                                                                                       | Cal Data                                     | P. 9<br>P. 10                      |
| Anne Bonn and and American                                                                                      | 2. Semi Annual<br>E. Barometer<br>F. Draft Gauge                                                                                                   |                                              | P. 11<br>P. 12                     |
| Sanutumikabbikissä                                                                                              |                                                                                                                                                    |                                              |                                    |
| gyężanicka Anakkini pago                                                                                        | ,<br>,                                                                                                                                             |                                              |                                    |
|                                                                                                                 | 3. Post Certification Test 4. Transfer Standard Calibrarion                                                                                        |                                              |                                    |
| nhowest vocas                                                                                                   | 5. Wet Test Meter Calibration                                                                                                                      | Cal Data<br>Cal Data                         |                                    |
|                                                                                                                 | <ol> <li>Tracer was Modameter</li> <li>Combustion Gas (CO2, O2, CO) Train Response Check</li> <li>Tracer Gas (SO2) Train Response Check</li> </ol> |                                              | P. 20<br>P. 21                     |
|                                                                                                                 |                                                                                                                                                    | Cal Data                                     |                                    |
|                                                                                                                 | 2. Zero/Span Control Chart<br>3. Pre and Post Test Zero/Span                                                                                       | Cal Data<br>Individual Test Run              | P. 23<br>Data Sheet #15—3          |
|                                                                                                                 |                                                                                                                                                    | Cal Data Cal Data                            | P. 24 P. 25 Data Sheet #15-1       |
|                                                                                                                 | 3. Pre and Post Test Zero/Span N. O2 Analyzer (Optional) 1. Calibration 2. Zero/Span Control Chart 3. Zero/Span Control Chart                      | Cal Data Cal Data Individual Test Run        | P. 26<br>P. 27<br>Data Sheet #15-2 |
|                                                                                                                 |                                                                                                                                                    |                                              | P. 28<br>P. 29<br>Data Chest #15-4 |
|                                                                                                                 | 3. Pre and Post Test Zero/Span P. Calibration Gas Certificates of Analysis                                                                         | Individual Test Runs<br>Individual Test Runs | Data Sheets #15-1,15-2,15-3,15     |

| 2. Method 3 Verification of Analysis (CO2,O2, CO,N2)<br>3. Method 6 Verification of Analysis (SO2, N2)                                                                                                            | Cal Data<br>Cal Data                                                                                                 | WST6-Form5 Page 3 of 3 Rev 1/88 P. 30-31 P. vari                                             |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
| A. Leak Checks 1. Particulate Sampling Train 2. SO <sub>2</sub> Injection System 3. Combustion Gas (OO <sub>2</sub> ,O <sub>2</sub> ,O) (CEM) Train 4. Tracer Gas (SO <sub>2</sub> ) Train B. Proportional Checks | Individual Test Runs             | P. 1 of Data Sheet #2 Data Sheet #16 Data Sheet #16 Data Sheet #16 Table 5 Computer Printout |     |
| 16. Sample Calculations<br>A. Weighed Average Emission Rate                                                                                                                                                       | Data Summary                                                                                                         | Weighted Average Calc<br>Sheets, pp.1-3                                                      | 2.5 |
| B. Dry Burn Rate C. $[v_m] - [v_m(std)]$                                                                                                                                                                          | Individual Test Runs<br>Individual Test Runs                                                                         | Data Sheet #8 Data Sheet #7 (Particulate Calc Sheet)                                         |     |
| D. Total Gas Flow Rate (QSD)                                                                                                                                                                                      |                                                                                                                      | Table 4 Computer Printout                                                                    |     |
|                                                                                                                                                                                                                   | Individual Test Runs<br>Individual Test Runs                                                                         | Table 5<br>Computer Printout<br>Table 4                                                      |     |
| F. Particulate mussion rate<br>17. Raw Test Data                                                                                                                                                                  |                                                                                                                      | Computer Printout<br>Data Sheets 1 - 16                                                      |     |
| 18. Analytical Data<br>A. Filter and Beaker Tares                                                                                                                                                                 | Individual Test Runs<br>Individual Test Runs                                                                         | Data Sheets #4-1, 4-2<br>Data Sheet #4-3,5-3                                                 |     |
| -                                                                                                                                                                                                                 | Individual Test Runs<br>Individual Test Runs<br>Individual Test Runs<br>Individual Test Runs<br>Individual Test Runs | Data Sheets #5-1,5-2 Data Sheets #5-3 Data Sheet #6 Data Sheet #7 Data Sheet #7              |     |

#### TEST SERIES INFORMATION

Unit name and model number: S-27X Series

Type:

Cat

Non-cat XX

Pellet

Manufacturer: HAUGH'S PRODUCTS

Address:

10 ATLAS COURT

BRAMPTON, ONTARIO, CANADA L6T 5C1

Contact:

TOM DAVEY

RBERNIE CAPSTICK

Phone #:

416-792-8000

Observers:

NONE

Date Recvd: 4/10/92

Aged: 4/20/92

Tested:

5/13-19/92

Tested by: EEMC using EPA Methods 28 and 5H

Test Location: 1315 S. Central, Unit C, Kent, WA 98032

Test Site Elevation: 42 feet

EEMC Field Team:

Supervisor:

Bill Nowak

Other Members: Tim Kelly

Jerry Stoddard Darla Kingman

The following pages contain (1) test unit storage information, (2) a diagram showing the height and location of the stack components and sampling ports, and (3) copies of the certification test notices and cancellations sent to the EPA.

#### STOVE STORAGE INFORMATION

The tested unit was returned to the manufacturer via common carrier, and is being stored and held in custody by the manufacturer, unless otherwise noted.

A. Temporary storage at EEMC until certification is granted

A single strap of steel banding is placed around the stove, crossing the door horizontally, and making it impossible to open the door on the unit. If it is necessary to break the banding to check some internal dimension or component, the banding is immediately replaced after work on the unit has been completed.

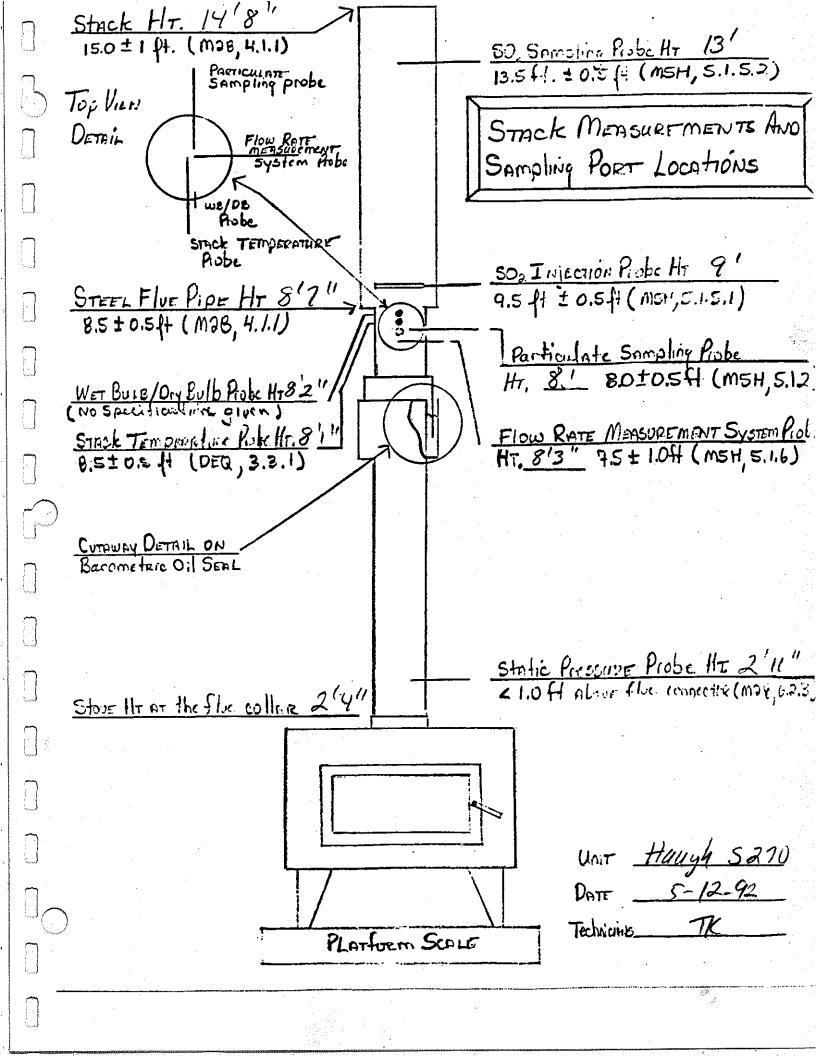
B. Permanent storage after certification has been granted

The following measures are taken to seal the unit against tampering: Steel banding is placed around the stove in a manner which prevents the stove from being opened. At least two lengths cross at right angles. An EEMC address label is placed over each crossing point, and is taped to the stove with 2" clear packing tape. These labels have the name of the stove written on them.

C. The stored unit is identified as follows:

In addition to the EEMC labels mentioned above, warning labels are affixed to the sides and top of the unit clearly identifying it as a test stove being stored pursuant to 40 CFR Part 60. These labels also have the name of the stove written on them. A sample label follows below.

#### WARNING


#### SEALED EPA TEST STOVE

DO NOT TAMPER WITH THE SEALS AND PACKAGING ON THIS STOVE

TO DO SO WILL VOID THE CERTIFICATION ON THIS STOVE

UNIT NAME

S-27X SERIES



#### Wood Heater Emission Test Summary

#### Laboratory/Wood Heater Information

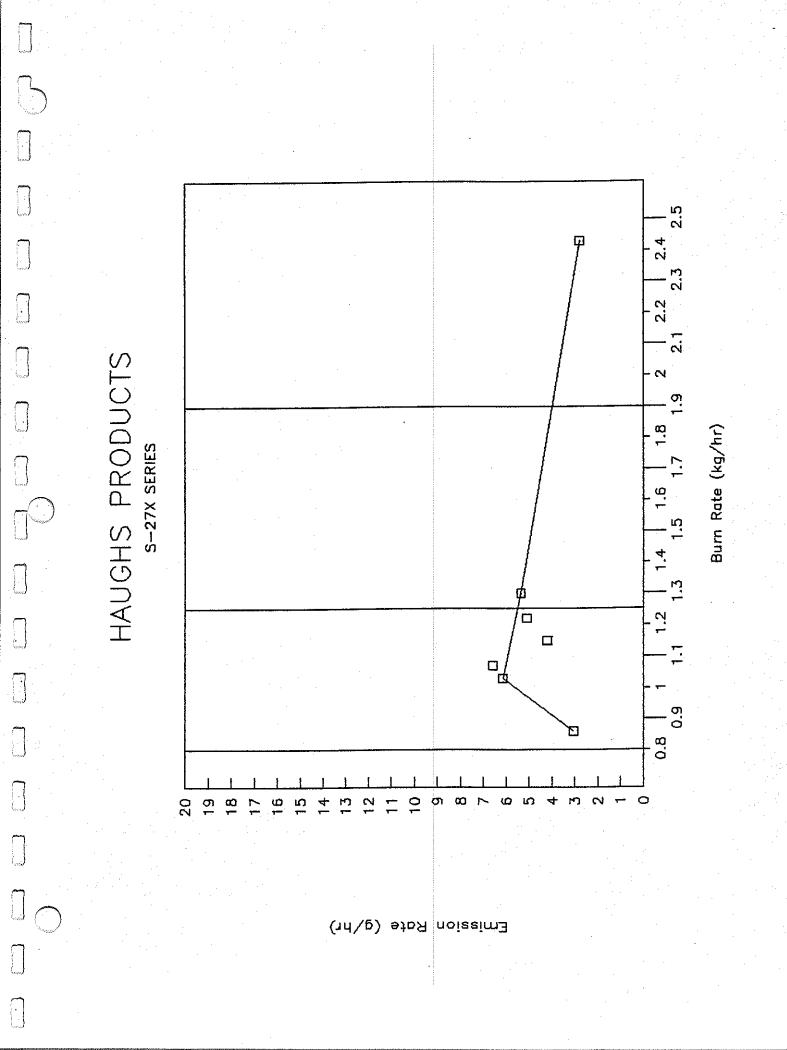
HAUGHS PRODUCTS Stove Manufacturer: S-27X SERIES Model Identification:

Stove Type> 1=cat,

2 2=noncat, 3=pellet:

EEMC Laboratory Name:

Bill Nowak Laboratory Contact: 206-859-8318 Telephone no.:


> 5/13-19/92 Test Dates:

Test Methods Used

Method 28/Other:

Sampling Method:

| · · ·   | ·               |            |                         |                            |                                 | =========                |
|---------|-----------------|------------|-------------------------|----------------------------|---------------------------------|--------------------------|
| <b></b> | : <b></b>       | Run<br>no. | Burn<br>Rate<br>(kg/hr) | Emission<br>Rate<br>(g/hr) | Heat<br>Output<br>(Btu/hr)      | Wtd Avg<br>(g/hr)<br>4.4 |
|         | 1.              |            | 0.86                    | 3.07                       | 10370                           |                          |
| :       | <u> </u>        | 2          | 1.03                    | 6.14                       | 12420                           | S12034                   |
| £       | MM              |            | 1.30                    | 5.34                       | 15676                           | Door                     |
|         | <del>-</del>  - | 1          | 2.43                    | 2.78                       | 29301                           |                          |
| · .     | • .             | 5          | 1.15                    | 4.21                       | fan confirmatio                 | n run                    |
|         |                 | 6          | 1.22                    | 5.09                       | door confirmati<br>\$12033 Door | on run                   |
|         |                 | 7          | 1.07                    | 6.58                       | door confirmati<br>812032 Door  | on run                   |



Unit: HAUGHS S-27X Page 1 of 3 WST2-Form12

# Woodstove Data Summary

|                                                               | 33    | 7      | 4     |       |   |       |       | ,         |
|---------------------------------------------------------------|-------|--------|-------|-------|---|-------|-------|-----------|
| Particulate Emissions:<br>Concentration: grains/dscf:         | .1169 | .2078  | .1442 | .0446 |   | .1302 | .1491 | .1945     |
| grams/m3:<br>Emission Rate: grams/hr:                         | 3.07  | 6.14   | 5,34  | 2.78  |   | 4.21  | 5.09  | 6.58      |
| <pre>Emission Factor: gms/kg:   (dry fuel weight basis)</pre> |       |        |       |       |   |       |       |           |
| Front Half Catch: % of total                                  | 30.39 | 35.26  | 33.58 | 66.23 |   | 25.05 | 26.19 | 23.14 %   |
| Frt & Bck Halves:                                             | .6860 | 1.1913 | .5836 | 6060. |   | .6224 | .6855 | .9627 mg  |
| Efficiency Valves:<br>Overall Appliance Efficiency            |       |        |       |       |   |       |       | 96        |
| Combustion Efficiency                                         |       |        |       |       |   |       |       | <b>₩</b>  |
| Heat Transfer Efficiency                                      |       |        |       |       | ŀ |       |       | eio<br>   |
| Heat Output:<br>Avg. BTU/hr for test cycle                    |       |        |       |       |   |       |       | BTU       |
| Fuel Burn Rates:                                              |       |        |       |       |   |       | :     |           |
| Avg Kg/hr for test cycle (Wet basis)                          |       |        |       |       |   |       |       | Kg/h      |
| Avg Kg/hr for test cycle (Dry basis)                          | 98.   | 1.03   | 1.30  | 2.43  |   | 1.15  | 1.22  | 1.07 Kg/h |

|                                     |        |        |        |        |                                         | Unit:<br>Page 2 of 3 | of 3    |             |
|-------------------------------------|--------|--------|--------|--------|-----------------------------------------|----------------------|---------|-------------|
|                                     |        |        |        |        |                                         | O 1 - 2 1 CM         | 7 111 7 |             |
| RUN # Ruel Moisture Content.        | 8      | 2      | 4      |        |                                         | 5                    | 9       | 7           |
| Kindling (Wet basis)                | 4.000  | N/A    | 4.153  | 4.610  |                                         | 4.153                | N/A     | 3.846 \$    |
| Pretest Fuel (Wet basis)            | 16.574 | 18.145 | 16.897 | 16.620 |                                         | 16.620               | 16.874  | 16.690 %    |
| Test Fuel (Wet basis)               | 17.752 | 18.279 | 18.306 | 18.256 |                                         | 17.582               | 17.167  | 17.207 %    |
|                                     |        |        |        |        |                                         |                      |         |             |
| Air/Fuel Ratio:                     |        |        |        |        |                                         |                      |         |             |
| lbs air/lbs fuel                    |        |        |        |        |                                         |                      |         |             |
| Average Stack Gas Composition:      |        |        |        |        |                                         |                      |         |             |
| Avg. & CO2                          | 5.21   | 5.82   | 6.10   | 7.29   |                                         | 6.18                 | 6.21    | 5.38 %      |
| Avg. \$ 02                          |        |        |        |        |                                         |                      |         | ese         |
| dР                                  | 1.07   | 96     | .76    | .45    |                                         | .80                  | .78     | .70 %       |
| Avg. % Excess Air                   |        |        |        |        |                                         |                      |         | 80          |
| Avg. % Moisture                     | 6.52   | 6.70   | 7.29   | 7.94   |                                         | 6.91                 | 6.62    | 6.26 %      |
|                                     |        |        |        |        |                                         |                      |         |             |
| Average Stack Gas Flow Rate:        |        |        |        |        |                                         |                      |         | ·           |
| Stack flow rate - EPA CMB           | 6.75   | 7.60   | 9.52   | 16.08  | *************************************** | 8.31                 | 8.78    | 8.70 dscfm  |
| CHO balance                         |        |        |        |        |                                         |                      |         | dscfm       |
| Tracer Gas                          | 5.981  | 6.628  | 7.875  | 8.555  |                                         | 6.157                | 6.725   | 7.317 dscfm |
| Draft (Static)                      | 036    | 041    | 048    | 064    |                                         | 049                  | 048     | 044 in. H20 |
| Proportionality - Average           | 100    | 100    | 100    | 100    |                                         | 100                  | 100     | 100         |
| Average Stack Gas Emission Factors: | 4.     |        |        |        |                                         |                      |         |             |
| CO - g/Kg                           | 169.89 | 142.24 | 111.79 | 59.77  |                                         | 115.71               | 113.71  | 113.71      |
|                                     | 145,43 | 145.94 | 145.10 | 145.05 |                                         | 133.06               | 138.27  | 122.01      |
|                                     |        |        |        |        |                                         |                      |         |             |

|                                               |       | Constant Constant |       |       | (April |                                            |                             |            |                  |
|-----------------------------------------------|-------|-------------------|-------|-------|--------|--------------------------------------------|-----------------------------|------------|------------------|
|                                               |       | e<br>e            |       |       |        | Unit: HAUGHS<br>Page 3 of 3<br>WST2-forml2 | AUGHS S-27X<br>of 3<br>rm12 | X          |                  |
| RUN #                                         | 8     | 2                 | 4     | 1     |        | 5                                          | 9                           | 7          |                  |
| Average Temperatures:                         |       |                   |       |       |        |                                            |                             |            |                  |
| Stack Gas                                     | 241   | 271               | 274   | 385   |        | 268                                        | 228                         | 211 OF     | F                |
| Primary Combustion Chamber Gas                | 734   | 801               | 861   | 1114  |        | 820                                        | 864                         | 810 OF     | Гъ. Гъ           |
| Catalytic Combustor Exit Gas                  |       |                   |       |       |        |                                            |                             |            | . ľv.            |
|                                               | 272   | 297               | 349   | 469   |        | 382                                        | 363                         | 323 OF     | r                |
| Stove Left Sidewall                           | 316   | 319               | 360   | 472   |        | 369                                        | 359                         | 332 OF     | F                |
| Stove Back                                    | 217   | 236               | 247   | 377   |        | 417                                        | 251                         | 225 OF     | fe.              |
| Stove Right Sidewall                          | 247   | 264               | 274   | 349   |        | 274                                        | 272                         | 330 OF     | Fr.              |
| Stove Bottom                                  | 332   | 359               | 371   | 444   |        | 362                                        | 353                         | 341 OF     | F+.              |
| Stove Temperature Change                      | -95   | -33               | -91   | -74   |        | -78                                        | -47                         | -90 OF     | r.               |
|                                               |       |                   |       |       |        |                                            |                             |            |                  |
| Test Chamber Environment:                     |       |                   |       |       |        |                                            |                             |            |                  |
| Avg. Barometric Pressure                      | 30.01 | 30.11             | 30.12 | 30.14 |        | 30.08                                      | 30.01                       | 30.03 in   | ı Hç             |
| Avg. Temperature                              | 78    | 62                | 74    | 82    |        | 78                                         | 82                          | 75 OF      | r.               |
| Avg. & Ambient Moisture                       | 1.20  | 1.10              | 1.20  | 1.15  |        | 1.35                                       | 1.30                        | 1.25 %     | H <sub>2</sub> ( |
| Avg. % Relative Humidity                      | 44    | 37                | 49    | 44    |        | 56                                         | 42                          | 54 &RH     | кн               |
| Avg. Air Velocity                             | 0     |                   |       |       |        |                                            |                             | /w         | m/sec            |
| Avg. Dilution Tunnel Draft<br>(If Applicable) | 0     |                   |       |       |        |                                            |                             | /uiin/     | in/H2            |
| Test Fuel Weight and Burn Time:               |       |                   |       |       |        |                                            |                             |            |                  |
| Density (Dry basis)                           | .6561 | .6171             | .4732 | .5604 |        | .4693                                      | 4934                        | /mb 6659.  | gm/cm            |
| Coal Bed Weight                               | 2.4   | 2.6               | 2.6   | 2.5   |        | 2.2                                        | 2.3                         | 2.2 1k     | lbs.             |
| Pre Test Fuel Wt (Inc Kindling)               | 25.3  | 9.2               | 27.3  | 25.6  |        | 23.8                                       | 11.3                        | 25.2 Ik    | lbs.             |
| Test Fuel Load Weight                         | 10.7  | 10.6              | 10.5  | 10.9  |        | 10.5                                       | 9.7                         | 10.7 1k    | lbs.             |
| Total Test Cycle Burn Time                    | 280   | 230               | 180   | 100   |        | 205                                        | 180                         | 225 mi     | min.             |
|                                               |       |                   |       |       |        |                                            |                             | ; 1<br>; 1 |                  |

| Unit        | 1440 | UMJ | 120  |         | <u>ب</u> |
|-------------|------|-----|------|---------|----------|
| Date        |      | 4/2 | 0/92 |         |          |
| Technicians | BN   | TK  | DK   | - 22    |          |
| •           | P    | age |      | of _/   |          |
|             |      |     | W    | ST5-Fo: | rm3      |

#### CATALYTIC COMBUSTOR AGING DATA OR

## STOVE AGING DATA WOODSTOVE TEST DATA SHEET #25

| Hr. #   Date   Time   Time   Time   Burn   Temp   Burn   Temp   Cat   Cat |          |          | T/C#     | 8                                                | 9                   |   |             |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|--------------------------------------------------|---------------------|---|-------------|----------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FI #     | Date     |          |                                                  | Secondary Burn Temp |   |             | Comments |
| 2 0900 1067 905 Acc FORL  3 1000 1123 1095  4 1100 945 846  5 1200 1941 1234  6 1300 1103 876  7 11400 439 464 ADD FUEL  8 1500 649 1096  9 1600 874 808  10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /        |          |          |                                                  |                     |   | <u></u>     |          |
| 3 1000 1183 1095<br>4 1100 445 846<br>5 1900 1941 1934<br>6 1300 189 846<br>7 1400 439 464 ADD RIEL<br>8 1500 649 1096<br>9 1600 874 807<br>10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -/-      | 772473   |          |                                                  | 905                 |   |             |          |
| 4 1100 945 849 ADD FREE  5 1900 1841 1934 6 1300 188 876 7 1400 438 464 ADD FREE  8 1800 644 1896 9 1600 874 802 10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        | ļ        | 1        |                                                  |                     |   |             |          |
| 5 PD BULL 1934 6 1300 109 896 7 1400 439 464 ADD FUEL 8 1500 660 1096 9 1600 874 803 100 1700 746 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3        |          |          |                                                  | 016                 | , |             | ADD FUEL |
| 6 13a 100 886 7 1400 439 464 ADD FUEL 8 1500 660 1096 9 1600 874 BOR 10 1700 746 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | <u> </u> |          |                                                  |                     |   | <u> </u>    | 700      |
| 7 1400 439 464 ADD FUEL  8 1500 660 1096  9 1600 874 807  10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |                                                  | 25/                 |   |             |          |
| 8 1800 Cab 1096<br>9 1600 274 802<br>10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>ص</u> |          |          |                                                  | 116.66              |   |             | ANN FUEL |
| 9 1600 874 807 10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |          |                                                  | 1201                |   |             | 100      |
| 10 1700 146 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  | 0.0                 | · |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          | 7.                                               |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10       |          | 1700     | 746                                              | 6.13                |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             | ·        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   | <del></del> |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | <u> </u> |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          | <u> </u> |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -        |          | <u> </u> |                                                  |                     |   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | <u> </u> |          | <del>                                     </del> |                     |   |             |          |

HAUGHS PRODUCTS TEST No. : CLIENT :

5/14/92 DATE: MODEL: S-27X \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* PERCENT S02 DELTA METER PERCENT TIME METER TEMP. READING H CO CO2 COCENTR. (C F) (IN. H2O) (DEG. F) ( % ) ( % ) PPM (MIN.) 0 529.200 0.150 82 0.77 3.00 575 5 0.310 82 0.65 3.70 400 530.700 83 0.63 650 10 532.903 0.120 2.00 84 0.55 534.264 0.130 3.00 625 15 85 0.67 3.10 20 535.686 0.120 650 85 0.72 25 537.057 0.150 5.60 575 86 0.59 0.160 6.00 550 30 538.608 6.10 87 0.72 0.160 550 35 540.235 0.180 88 0.44 7.40 525 40 541.868 88 0.37 6.00 475 45 543.584 0.220 50 545.481 0.220 89 0.31 7.80 475 55 547.385 0.240 89 0.24 9.60 450 549.394 0.240 190 0.15 10.10 450 60 90 0.23 65 551.413 0.220 10.00 475 70 553.325 0.220 91 0.26 475 10.40 75 555.244 0.240 91 0.23 10.60 450 0.29 91 450 80 557.269 0.240 10.80 92 0.28 85 559.295 0.240 9.80 450 92 0.33 90 561.328 0.210 9.50 475 92 95 563.254 0.210 0.29 9.80 475 565.180 93 100 0.210 0.28 8.80 475 8.00 105 567.113 0.190 93 0.37 500 110 568.950 0.170 93 0.43 7.60 525 115 570.699 0.190 93 0.47 7.50 500 120 572.536 0.170 93 0.62 7.20 525 125 574.287 0.160 93 1.25 5.60 550 130 575.959 0.130 93 1.70 4.80 600 135 577.492 93 0.130 1.86 4.60 600 93 140 579.025 0.130 1.87 4.40 600 0.130 145 580.558 93 4.10 600 1.81 93 150 582.091 0.120 1.86 3.90 625 155 93 583.563 0.120 1.83 3.80 625 160 585.035 0.120 93 1.77 3.60 625 165 586.507 0.120 93 1.72 3.50 625 170 587.979 0.120 93 1.60 3.20 625 175 93 589.450 0.120 1.58 3.10 625 180 590.922 0.110 93 1.51 2.80 650 185 93 592.337 0.110 1.49 2.70 650 190 0.110 93 593.753 1.57 2.70 650 195 93 1.59 595.168 0.100 2.70 675 200 596.531 0.100 92 1.63 2.70 675 205 597.889 93 0.100 1.70 2.70 700 0.100 210 599.203 92 1.69 2.70 700 215 600.512 92 0.100 1.78 2.70 700 220 601.822 0.100 93 1.33 3.50 700 225 603.136 92 0.100 1.28 4.20 700

| 230 | 604.445 | 0.100 | 92 | 1.27 | 4.10 | 700                                                                                                             |
|-----|---------|-------|----|------|------|-----------------------------------------------------------------------------------------------------------------|
| 235 | 605.755 | 0.100 | 92 | 1.39 | 3.90 | 700                                                                                                             |
| 240 | 607.064 | 0.100 | 92 | 1.29 | 4.00 | 700                                                                                                             |
| 245 | 608.374 | 0.100 | 92 | 1.32 | 3.90 | 700                                                                                                             |
| 250 | 609.683 | 0.100 | 92 | 1.39 | 3.80 | 700                                                                                                             |
| 255 | 610.993 | 0.100 | 92 | 1.50 | 3.70 | 700                                                                                                             |
| 260 | 612.302 | 0.100 | 92 | 1.55 | 3.50 | 700                                                                                                             |
| 265 | 613.612 | 0.100 | 92 | 1.47 | 3.50 | 700                                                                                                             |
| 270 | 614.921 | 0.100 | 92 | 1.47 | 3.30 | 700                                                                                                             |
| 275 | 616.231 | 0.100 | 92 | 1.55 | 3.10 | 700                                                                                                             |
| 280 | 617.540 | 0.100 | 92 | 1.61 | 3.00 | 700                                                                                                             |
| 285 |         |       | 92 |      |      | garage de la companya |

No eta

#### TABLE 2 ---- FIELD DATA

|      | CLIENT : HAUGHS PR       | ODUCTS      | TEST No.               | • 3     | , · |
|------|--------------------------|-------------|------------------------|---------|-----|
|      | MODEL: S-27X             |             | DATE:                  | 5/14/92 |     |
|      | METER CAL.<br>FACTOR (Y) | 1.066       | Wt. WOOD<br>BURNED(LB) | 10.7    | Lbs |
| (see | BAROMETRIC<br>PRESS.(Pb) | 30.01 in Hg | WET, FUEL MOISTURE %   | 17.752  | ક   |
|      | LEAK RATE<br>POST (Lp)   | 0.002 cfm   | Wt. PART. COLLECTED :  | 0.686   | g   |
|      | WATER VOL. (V1c)         | 134.3 M1    | METER<br>VOLUME Vm :   | 88.34   | mcf |
|      | TEST<br>TIME (MIN)       | 280 min     | HC MOLE<br>FRACTION    | 0.0132  |     |

#### TABLE 3 ----FIELD DATA AVERAGES

|       | )                     |                 |             |                  |          |                  |                   |   |
|-------|-----------------------|-----------------|-------------|------------------|----------|------------------|-------------------|---|
| 1920* | CLIENT :              | HAUGHS PRO      | DUCTS       |                  | TEST No. | :                | 3                 |   |
|       | MODEL: *****          | S-27X<br>****** | *****       | *****            | DATE:    | 5/14/92<br>***** |                   |   |
|       | AVG DELTA<br>H        |                 | 0.15 in H2O | AVG PRCNT        |          | 1.               | 07                | ક |
|       | AVG METER<br>TEMP. Tm |                 | 91 deg F    | AVG PRCNT<br>CO2 |          | 5.               | 21                | ક |
|       | AVG PPM<br>SO2        |                 | 595 PPM     |                  |          |                  | e<br>Section 1985 |   |

#### TABLE 4 -- CALCULATIONS

|   |                          | TABLE 4               | CALCULATIONS                   |                      |
|---|--------------------------|-----------------------|--------------------------------|----------------------|
|   | CLIENT: HAUGHS PRO       | DUCTS                 | TEST No. :                     | 3                    |
|   | MODEL: S-27X **********  | ******                | DATE:                          | 5/14/92<br>*******   |
|   | STD SAMPLE VOL. Vm(std)  | 90.57 dscf            | STACK GAS<br>FLOW Qsd          | 404.988 dscf/Hr<br>& |
| _ |                          |                       |                                | 6.75 dscf/min        |
|   | VOL. WATER VAPOR Vw(std) | 6.322 scf             | PARTICULATE CONCTRT. C s       | 0.0076 g/dscf        |
|   | PRCNT<br>MSTR Bws        | 6.52 %                | PARTC.EMISS. RATE E            | 3.07 g/Hr            |
|   | BURN<br>RATE BR          | 0.86 Kg/Hr            | MOLES OF GAS<br>PER Lb WOOD Nt | 0.56 Lb-mole/Lb      |
|   | CO EMISSION<br>RATE      | 145.43 g/Hr<br>&      | PART.EMISS. RATE               | 3.58 g/Kgdry<br>fuel |
|   |                          | 169.89 g/Kgdr<br>fuel | <b>Y</b>                       |                      |
|   |                          |                       |                                |                      |
|   |                          |                       |                                |                      |
|   |                          |                       |                                |                      |
|   |                          |                       |                                |                      |

TABLE 5 ---- PROPORTIONAL RATE VARIATION

| HA       | UGHS PRODI           | JCTS           |                             |              |      | TEST                   | No.:        | -       | 3     |                                               |
|----------|----------------------|----------------|-----------------------------|--------------|------|------------------------|-------------|---------|-------|-----------------------------------------------|
|          | 27X                  |                | *****                       | ****         | ***  | DATE:                  |             | 5/14/92 |       | ****                                          |
|          | TIME<br>NTEVAL<br>Ti | PPM<br>*<br>Vm | PROPRTN.<br>RATE VAR.<br>PR |              | 444  | PROPI<br>RATE<br>AVERA | RTN<br>VAR. | ****    |       |                                               |
| ==:      |                      |                | =======                     | ====         | ==== | ====                   |             | ======  | == == | ======                                        |
|          | 5                    | 898.9          | 96                          |              |      |                        | 100         |         | . 1   |                                               |
|          | 10                   | 917.9          | 98                          |              |      |                        |             |         |       |                                               |
|          | 15                   | 919.3          | 98                          |              |      |                        |             |         | i i i |                                               |
|          | 20<br>25             | 921.9<br>923.5 | 99<br>99                    |              |      | •                      |             |         |       |                                               |
|          | 30                   | 923.4          | 99                          |              |      |                        |             |         |       |                                               |
|          | 35                   | 924.9          |                             | •            |      |                        |             |         |       |                                               |
|          | 40                   | 926.6          | 99                          |              |      |                        |             |         |       | $\varphi_{i,j} = \varphi_{i,j} \varphi_{i,j}$ |
|          | 45                   | 928.7          |                             |              | •    |                        | <i>i</i>    |         |       |                                               |
|          | 50                   | 928.1          | 99                          | <b>Y</b> .   |      |                        | •           |         |       |                                               |
|          | 55                   | 930.7          | 100                         |              |      | $f_{1}+f_{2}=1$        |             | •       |       |                                               |
|          | 60                   | 929.5          | 99                          | 14.4<br>14.4 |      |                        |             |         |       |                                               |
|          | 65                   | 933.3          | 100                         |              |      |                        |             |         |       | **                                            |
|          | 70                   | 932.0          | 100                         |              |      |                        | 100         |         |       |                                               |
|          | 75                   | 934.6          | 100                         |              |      |                        |             |         |       |                                               |
|          | 80<br>85             | 934.3<br>934.0 | 100<br>100                  |              |      |                        |             |         |       | ar fe                                         |
| 900      | 90                   | 934.0          | 100                         | in the       |      |                        |             | *       |       |                                               |
| J .      | 95                   | 936.3          | 100                         |              | e.   |                        |             |         |       |                                               |
|          | 100                  | 935.4          | 100                         |              |      | * *                    |             |         |       |                                               |
|          | 105                  | 938.0          | 100                         |              |      | •                      | *           |         |       |                                               |
|          | 110                  | 938.3          | 100                         |              |      |                        | 100         |         | 24    |                                               |
|          | 115                  | 937.9          | 100                         |              |      |                        | •           |         |       | en e      |
|          | 120                  | 938.3          | 100                         |              |      |                        |             |         |       |                                               |
|          | 125                  | 939.0          | 100                         |              |      |                        |             |         |       |                                               |
|          | 130                  | 939.3          | 100                         |              |      |                        |             |         |       |                                               |
|          | 135<br>140           | 939.5          | 101                         |              |      | -                      |             |         |       | •                                             |
|          | 145                  | 939.5<br>939.5 | 101<br>101                  |              |      |                        |             |         |       | 4 - 4                                         |
|          | 150                  | 939.5          | 101                         |              |      |                        |             |         |       |                                               |
|          | 155                  | 939.6          | 101                         |              |      |                        |             |         |       | •                                             |
|          | 160                  | 939.6          | 101                         |              | -    |                        |             |         |       |                                               |
|          | 165                  | 939.6          | 101                         |              |      |                        |             |         |       |                                               |
|          | 170                  | 939.6          | 101                         | •            |      | 4.5                    | · .         |         |       |                                               |
|          | 175                  | 939.0          | 100                         |              |      |                        |             |         |       |                                               |
|          | 180                  | 939.6          | 101                         |              |      |                        |             |         |       |                                               |
|          | 185                  | 939.4          | 100                         |              |      |                        |             |         |       |                                               |
|          | 190<br>195           | 940.0          | 101                         |              |      |                        |             |         |       |                                               |
|          | 200                  | 939.4<br>940.5 | 100<br>101                  |              |      |                        |             |         |       |                                               |
|          | 205                  | 937.0          | 101                         |              |      |                        |             |         |       |                                               |
|          | 210                  | 940.2          | 101                         | 27.0         |      |                        |             |         |       |                                               |
|          | 215                  | 937.5          | 100                         |              | 11   |                        | * .         |         |       |                                               |
| <b>\</b> | 220                  | 937.4          | 100                         |              |      |                        |             |         |       |                                               |
|          | 225                  | 940.2          | 101                         |              |      |                        |             |         |       |                                               |
| 4 minus  | 230                  | 937.5          | 100                         | 400          |      | 100                    |             |         |       | •                                             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 235<br>240               | 938.2<br>937.5                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|-------|
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 245<br>250<br>255<br>260 | 938.2<br>937.5<br>938.2<br>937.5 |       |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265<br>270<br>275        | 938.2<br>937.5<br>938.2          | · · . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280<br>285<br>290        | 937.5                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
| The state of the s |                          |                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                  |       |
| land)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                  |       |

| Client Haun's Proc                                        | DATA WOODSTOVE DATA SHEET #1 |
|-----------------------------------------------------------|------------------------------|
| Client Address 10 atlas C                                 |                              |
|                                                           | Ontario, Canada LGT SCI      |
| Client Phone 4/6-792-8                                    | 000                          |
| Project No Model N                                        | Va. S 210X                   |
| Run No. 3 Date of Test 5                                  | //y/92 Est Grams/Hr          |
| Stove Type: Cat Non Cat                                   |                              |
| Data To Be Submitted To: Oregon_                          | X Colorado EPA X             |
| Burn Category: Low (<0.8 Kg/Hr)<br>Med Low (0.8 - 1.2     | Med Hi (1.26 - 1.90 Kg/Hr)   |
| Fuel % Moisture (dry) 00.00) (Data Sheet #10)             | 33 %(wet) 17.750 % 2         |
| Stack Static Pressure<br>(0.000) (Data Sheet #12)         |                              |
| Barometric Pressure(00.00) (Data Sheet #2)                |                              |
| Temperature (Average Room) Combus (00) (Data Sheet #14)   | tion Airof _                 |
| Flue Gas Moisture(00.000) (Data Sheet #7)                 | 6.5051                       |
| Ambient Moisture<br>(0.00) (Data Sheet #8)                |                              |
| Stove Weight<br>(000) (Data Sheet #8)                     | 1bs                          |
| Stove Temperature Change<br>(000) (Data Sheet #14)        | <u>-95</u> of -              |
| Particulate Emission(0.0000) (Data Sheet #7)              | gr/dscf _                    |
| Fuel Higher Heating Value (dry)<br>(0000) (CT&E Sheet)    | BTU/16                       |
| Fuel Type: Wood: X Pellet                                 | ts:                          |
| Total Fuel Consumed During Burn<br>(00.0) (Data Sheet #8) | 1007 lbs 2                   |
| Total Particulate Catch(0.0000) (Data Sheet #6)           |                              |
| f <sub>2</sub> O Captured(00.0) (Data Sheet #3)           |                              |
| Dry Gas Meter Volume(00.000) (Data Sheet #2)              | 88.340 CF V                  |

Page 1 of 3
Unit: 140615 S 27X
Run: 3 Date: 5/14/92
Operator(s): BD 58

Nozzle: Probe @ 3/8 " od

Initial Volume: 1,500

| ROTO  | PRESS:       |                  | Sampling | Ratio :        | Ð0              | : 1           | BAROME      | TER:         | 0.05         |
|-------|--------------|------------------|----------|----------------|-----------------|---------------|-------------|--------------|--------------|
| MN    | TIME         | METER<br>READING | •        | STACK<br>DSCFM | DELTA<br>H      | METER<br>TEMP | 202<br>Mqq  | ROTO<br>TEMP | PUMP<br>VACC |
| 00    | 1115         | 509 200          | ,        | 6.091          | 15              | 82            | 575         | 75           | 0            |
| 05    | D            | 530,700          |          | 8756           | 131             | 80            | 400         | 75           | 5            |
| 10    | <i>0</i> 5   | 532903           |          | 5,389.         | 112             | 83            | 650         | 75           | 15           |
| 15    | 30           | 534.064          |          | 5594           | /13             | <i>84</i>     | 605         | 76           | 0            |
| 20    | 35           | 535.626          |          | 5.378          | 118             | 85            | 650         | 16           | 0            |
| 25    | 40           | 537.051          |          | 6069           | 115             | 25            | 575         | 17           | ٥            |
| 30    | 45           | 538.608          |          | 6345           | 16              | 26            | 650         | 77           | 15           |
| 35    | 52           | 540,935          |          | 6.345          | 16              | 87            | <i>5</i> 50 | 77           | 10           |
| 40    | కోన          | 541-868          | ;        | 6634           | 18              | 83            | 5,95        | 18           | 1:0          |
| 45    | 1200         | 543.584          |          | 2333           | <i>39</i>       | <i>8</i> 8    | 475         | 78           | 1-0          |
| 50    | S            | 545,481          |          | 7333           | 188             | 89            | 475         | 18           | 1-5          |
| 55    | 0            | 547.395          |          | 7.740          | 24              | 89            | 480         | 18.          | 1.5          |
| ROTO  | PRESS:       | <u></u>          | TOTALS ( | 79,007         | 2.16)           | (100e)        | BAROME      | TER:3        |              |
| 60    | 15           | 549.394          | ·        | 7.735          | 104             | 90.           | 450         | 18           | 1.5          |
| 65    | <i>_()</i> 0 | 551413           |          | 7.308          | .00             | 90            | 4/25        | 18           | 20           |
| 70    | 15           | 553 <i>38</i> 5  |          | 7.308          | 000             | 91            | 415         | 78           | 7-5          |
| 75    | 30           | 555,044          |          | 7.735          | ad l            | 91            | 450         | 78           | 1.5          |
| 80    | 35           | 557-269          |          | 7-735          | at 4            | 91            | 450         | 78           | 15           |
| 85    | 40           | 059.895          |          | 1.101          | e24             | 90            | 2150        | 119          | 1-5          |
| 90    | 45           | 561.308          |          | 7314           | <del>4)</del> 1 | 90            | 175         | 79           | 1-5          |
| 95    | 50           | 563854           |          | 7.301          | 001             | 42            | 475         | 80           | 1,5          |
| 100   | 555          | 565/180          |          | 1287           | 181             | 93            | 45          | 81           | 1-5          |
| 105   |              | 567.113          | ,        | 6,493          | 19              | 93            | 800         | <u>81</u>    | 15           |
| 110   | 5            | 568,950          |          | 6.593          | <u> </u>        | 93            | 585         | 81           | 15           |
| 115   | 10           | 5 <b>7</b> 0,699 | /        | 6403           | 114             | 93            | 500         | 81           | 10           |
|       |              |                  |          | 87.933         | (0-58)          | (1101)        | MAX VA      |              |              |
| TOTAL | CU FT        |                  | TOTALS:  | 166930         | 4.74            | 209           | AV BP       | (            |              |

Meter Box Data Sheet Page # 2

Meter Box 45 Y Factor 1066

Leak Checks: 5 " Hg @ 000 cfm cfm cfm cfm cfm cfm

Page d of D
Unit: HAUAHS SOOX
Run: 3 Date: 5/14/40
Operator(s): BN 35

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: 1500

| ROTO                                     | PRESS:     |                  | Sampling  | Ratio :           | <u> 20</u> | . 1           | BAROM      | ETER:        | 9.99       |
|------------------------------------------|------------|------------------|-----------|-------------------|------------|---------------|------------|--------------|------------|
| MN                                       | TIME       | METER<br>READING |           | STACK<br>DSCFM    | DELTA<br>H | METER<br>TEMP | SO2<br>PPM | ROTO<br>TEMP | PUMP       |
| 120                                      | 15         | 522.536          | . "       | 6572              | 117        | 93            | 595        | 83           | 1:0        |
| 125                                      | 00         | 574.487          |           | 6073              | 16         | 93            | 50         | 88           | LO         |
| 130                                      | 25         | 575.959          |           | 5,751             | .13        | 93            | 600        | 22           | 10         |
| 135                                      | 30         | 572442           |           | 5,751             | /13        | 93            | 600        | 82           | 1.0        |
| 140                                      | 35         | 579.005          |           | 5,751             | 13         | 93            | 600        | 20           | 10         |
| 145                                      | 40         | 580,558          |           | 5.751             | .13        | 93            | 600        | 82           | 10         |
| 150                                      | 46         | 582091           |           | 5501              | .10        | 93            | 605        | 20           | 10         |
| 155                                      | 60         | 523563           |           | 55 <del>0</del> 1 | 118        | 93            | 65         | 80           | 10         |
| 160                                      | 65         | 585035           |           | 5.501             | .12        | 93            | 625        | 88           | 1.0        |
| 165                                      | 1400       | 586-507          |           | 5501              | 112        | 98            | 695        | 8            | 10         |
| 170                                      | 5          | 587.979          |           | 5.501             | 110        | 93            | 605        | 80           | 1.0        |
| 175                                      | 10         | 589.450          |           | 5.501             | o B        | 93            | 605        | 20           | 10         |
| ROTO                                     | PRESS:     |                  | TOTALS :( | 68,975            | (1.52)     | (1116)        | BAROMI     | ETER:        | <u>999</u> |
| 180                                      | 15         | 590,988          |           | 5.308             | /11        | 93            | 650        | 80           | 10         |
| 185                                      | Ð          | 590-337          |           | 5.308             | ell        | 93            | 650        | 80           | 15         |
| 190                                      | 25         | 593753           |           | 5.308             | 111        | 93            | 650        | 84)          | 15         |
| 195                                      | <i>3</i> 0 | 595-168          |           | 5,114             | 10         | 43            | 675        | 82           | 15         |
| 200                                      | 35         | 596.531          |           | 5-112             | 10         | 90            | 615        | 88           | 15         |
| 205                                      | 40         | 597.889          |           | 4,989             | ,10        | 193           | 100        | 88           | 15         |
| 210                                      | 46         | 599.803          |           | 4,909             | /10        | 90            | 700        | 80           | 15         |
| 215                                      | 50         | 600,512          |           | 4909              | 10         | 90            | 100        | 89           | 15         |
| 550                                      | <i>3</i> 5 | 601-200          |           | 4909              | 110        | 193           | 100        | 80           | 1:5        |
| 225                                      | 1500       | 603-136          | 1         | 4,909             | 10         | 90-           | 100        | 80           | <u> </u>   |
| 230                                      | 5          | 604-445          | <u> </u>  | 7,404             | ,10        | 92            | 100        | 80           | 3          |
| 235                                      | 10         | 605.755          |           | 4.909             | 10         | 92            | 100        | 182          | 12         |
|                                          |            |                  | TOTALS:(  |                   | (1.A3)     | (1110)        | MAX V      |              |            |
|                                          | _ CU FT    |                  | TOTALS:   | TO TOTAL          | 080/       | 1000          | AV BP      |              |            |
| en e |            | •                |           | 896,550           | 1,54/      | 4255          | 1200       | 1,06         |            |

996.556 7.51 4355 100.00

 Meter Box Data Sheet Page # 2
 Page 3 of 3

 Meter Box 45 Y Factor 1066
 Unit: HAUGHS SD7X

 Leak Checks: 15 "Hg @ 1000 cfm
 Run: 3 Date: 5/14/4b

 Run: 3 Date: 5/14/4b
 Operator(s): BN 55

 Inject SO2 @ 100 cc/min
 Nozzle: Probe @ 3/8 " od

Initial Volume: 1,500

| ROTO  | PRESS: | 118               | Sampling | Ratio :        | 00         | . 1           | BAROME     | ETER 🕹        | 999_     |
|-------|--------|-------------------|----------|----------------|------------|---------------|------------|---------------|----------|
| MN    | TIME   | METER<br>READING, |          | STACK<br>DSCFM | DELTA<br>H | METER<br>TEMP | 502<br>PPM | ROTO<br>TEMP  | PUMP     |
| 240   | .15    | 607-064           |          | 4909           | 10         | 92            | 700        | 80            | 5        |
| 245   | 20     | 608.374           | ·        | 4.484          | 10         | 99            | 700        | 80            | -5       |
| 250   | 05     | 1009.683          |          | 4909           | 10         | 92            | 100        | 80            | 5        |
| 255   | 30     | 610993            |          | 4,909          | 110        | 90            | 100        | 20            | 5        |
| 260   | 35     | 618.302           |          | 4909           | 10         | 90            | 700        | 20            | 5        |
| 265   | 40     | 613.612           | ,        | 4909           | 110        | 90            | 200        | 80            | 5        |
| 270   | 45     | 614901            |          | 4.909          | -10        | 90            | 700        | 80            | .5       |
| 275   | 50     | 616.231           |          | 4.939          | 110        | 90            | 100        | 20            | 12       |
| 280   | 55     | 617-540           |          | 4909           | -10        | 90            | 700        | 80            | -5       |
| 285   | 1600   |                   |          | 44.3619        | (90)       | (202)         |            |               |          |
| 290   | 5      |                   |          |                |            |               |            | <b></b>       |          |
| 295   | 10     |                   |          | 340,4177       | (8,447     | 51831         | 57%        | <u> </u>      |          |
| ROTO  | PRESS: |                   | TOTALS : | $\searrow$     |            |               | BAROM      | ETER:         |          |
| 300   |        |                   |          | 5.4812         | (11487     | 1(9)          |            |               |          |
| 305   |        |                   | '        |                |            |               |            |               |          |
| 310   |        |                   | •        |                | 2          | (551)         |            |               |          |
| 315   |        |                   | •        |                |            |               |            |               |          |
| 320   |        |                   | •        |                |            |               |            |               |          |
| 325   |        |                   |          |                |            |               |            |               |          |
| 330   |        |                   |          |                |            |               |            |               |          |
| 335   |        |                   | 1        |                |            |               |            |               |          |
| 340   |        |                   |          |                |            |               |            | <u> </u>      |          |
| 345   |        |                   |          |                |            |               |            |               |          |
| 350   |        |                   |          |                |            |               |            |               | <u> </u> |
| 355   |        |                   |          | 1 - 100        |            |               |            | <u></u>       |          |
|       |        |                   | TOTALS:  |                |            |               |            | ACC =         |          |
| TOTAL | CU FT  | 88,340            | TOTALS:  |                |            |               | AV BP      | : <u>30,0</u> | <u> </u> |

# MOISTURE SHEET Woodstove Data Sheet #3

| Balance Balance  |                                     | ance                    |                          |                         |                |              |
|------------------|-------------------------------------|-------------------------|--------------------------|-------------------------|----------------|--------------|
| Initial: Level   |                                     | oed                     |                          | Unit: <u>Hu</u>         | yyns           | <u>5270x</u> |
| Final:           |                                     | _6                      |                          | Run:                    | <u>′3</u>      |              |
| IMPINGER #1      |                                     |                         | 1                        | Date: <u>\$</u>         | 114/           | 92           |
| Final Weight     | 6829                                | grams                   | Technicia                | n(s): Init              | ial:_          | Th           |
| Initial Weight_  | 575.2                               | grams                   |                          | Fina                    | 1:             | 55_          |
| Net              | 1077                                | grams                   | Approved 1               | Ву:                     | TK             |              |
| IMPINGER #2      |                                     |                         |                          |                         |                |              |
| Final Weight     | 584.0                               | grams                   |                          |                         |                |              |
| Initial Weight_  | 576.1                               | grams                   |                          |                         |                |              |
| Net              | 7.9~                                | grams                   |                          |                         |                |              |
| IMPINGER #3      |                                     |                         |                          |                         |                | -            |
| Final Weight     | 495.6                               | grams                   |                          | •                       |                |              |
| Initial Weight   | 494.4                               | grams                   |                          | •                       |                |              |
| Net              | 1,2/                                | grams                   |                          |                         |                |              |
| IMPINGER #4 (SIL | ICA GEL)                            |                         | · .                      |                         |                |              |
| Final Weight     | 8 63,0                              | grams                   |                          |                         |                | -            |
| Initial Weight   | 845.5                               | grams                   |                          | •                       |                |              |
| Net              | 17.5                                | grams                   |                          |                         | سا             | <b>/</b>     |
|                  | T                                   | OTAL MASS               | S OF H <sub>2</sub> O CA | PTURED 13               | 3 <i>4.3</i> 0 | grams        |
| 59               | 5.0g = 29<br>0.0g = 59<br>5.0g = 88 | (50 g<br>(50 g<br>(50 g |                          | lalf Filte<br>lf Filter | #              | 262 F        |
| Notes:           |                                     |                         |                          |                         |                | -            |
|                  |                                     |                         |                          |                         |                |              |
|                  |                                     |                         |                          |                         |                |              |
|                  |                                     |                         |                          |                         |                |              |
|                  |                                     |                         |                          |                         |                |              |

913\_LGTm2,LR4,VEAT\2

| Manufact        | urer:  | S                | È 5' ' |       | Size:  | 0 mm | Lot N | o Z         | B882 0      | Grade:       | #25c | âL           |
|-----------------|--------|------------------|--------|-------|--------|------|-------|-------------|-------------|--------------|------|--------------|
|                 |        |                  |        |       | Second |      | ·     | <del></del> |             | <del> </del> |      | <del>-</del> |
| Filter F<br># W |        | Date             | Time   | Ву    | Wt     | Date | Time  | Ву          | Third<br>Wt | Date         | Time | [ :          |
| 261 FO.         | 6987   | 3/20             | 1608   | DK    | -6941  | 3/93 | 1380  | 8           |             |              |      |              |
| 262 Fo.         | 7014   |                  | 1610   |       | .7017  | 1    | 1301  |             | Hauarts     | 23           |      |              |
| 263#0           | .6988  |                  | 1612   |       | 16985  |      | 1300  |             |             |              |      |              |
| 264F0           | .6893  |                  | 1614   | (     | .6894  |      | 1303  |             |             |              |      |              |
| 265 FC          | 1.6912 |                  | 1616   | 1     | 6917   |      | 1304  |             |             |              |      |              |
| 266 FO          | .6934  |                  | 1618   |       | 16936  |      | 1395  |             |             |              |      |              |
| 267FO.          |        | 1                | 1620   | 1     | 16937  |      | Box   |             |             |              |      |              |
| 268 FO.         | 7015   |                  | 1622   | V     | 1010   |      | 1307  |             |             |              |      |              |
| 269 =0          | 6933   |                  | 1624   | A (4) | 16436  |      | 1328  |             |             |              |      |              |
| 270 FO.         |        |                  | 1626   | ł     | 16965  |      | 1300  |             |             |              |      |              |
|                 |        |                  |        |       |        |      |       |             |             |              |      | Γ            |
| 271FO.          | 6953   | 3/ <sub>20</sub> | 1628   | DL    | 695    |      | 1330  | -           |             |              |      |              |
| 272FO.          |        | 7                | 1630   |       | . 7005 |      | 1331  | -           |             |              |      |              |
| 273FO.          | 6978   |                  | 1632   |       | 16980  |      | (332  | · Community |             |              |      |              |
| 274FO.          |        | (                | 1634   |       | 6903   |      | 1333  | -           |             |              |      |              |
| 275FO.          | 6975   |                  | 1636   | ,,,   | 16975  |      | 1334  | 7           |             |              |      |              |
| 276 A O.1       | 6978   |                  | 1638   |       | 16999  |      | 1335  | Ar eller    |             |              |      |              |
| 277FO.          | 6975   |                  | 1640   |       | 16974  |      | 1336  |             |             |              |      |              |
| 278 FO.         | 6992   |                  | 1642   | 1     | .6991  |      | 1337  |             |             |              |      |              |
| 279 FO.         | 90۱ م  |                  | 1644   | (     | 6900   |      | /332  | · and · ·   |             |              |      |              |
| 280FO.          | 6994   | _ )              | 1646   |       | 6997   |      | 1339  | V           |             |              |      |              |
|                 |        |                  |        |       |        |      |       |             |             |              |      | _            |
|                 |        |                  |        |       |        |      |       |             |             |              |      |              |
|                 |        |                  |        |       |        |      |       |             |             |              |      |              |
|                 |        |                  |        |       |        | · ]  |       |             | 1 1         |              |      |              |
| Checked 1       | by Z   | 11/              | ,      |       |        |      | Dat   | e :         | 3/24/91     | Time         | 0900 | )            |

|          | QA RE | WEIGH | <u></u> |    |
|----------|-------|-------|---------|----|
| Filter # | WT    | Date  | Time    | Ву |
|          |       |       |         |    |
|          |       |       |         |    |
|          |       |       |         |    |

| √B  | DB | %RH | Date | Time | Ву  |
|-----|----|-----|------|------|-----|
| 60  | 74 | 44  | 3/20 | 1606 | DK  |
| 59. | 13 | 43  | 3/03 | 130  | tes |

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS) Into Dessicator: Date 3/17/92 Time 0900 By DK Front Half Back Half Manufacturer: SES size: 8.2 cm Lot. No.: 78 901 Grade: 25 GLASS Second Third Filter First Time Date Time Date Time Ву Ву Date DK .3849 303 3/20 1526 2618 0.3846 1341 HAUGHE RN3 26280.3822 -3827 1528 26330.3805 3810 1530 264B0.3811 1532 13824 265B0.3821 138QN 266FO.3872 1536 3888 26780.3817 1538 1348 2680.3772 1540 3818 269HO.3875 1542 -3869 27080.3813 1544 2718.0.3884 3/20 1546 OK ,3882 272B0.3818 1548 27380.3825 27460.3856 275B0.3832 27680.3862 77B0.383b 1353 278B0.3801 1600 279B0.3827 1359 1602 1400 280B0.3821 1604 Checked by

|          | QA RE                                 | WEIGH | <del></del> |    |
|----------|---------------------------------------|-------|-------------|----|
| Filter # | WT                                    | Date  | Time        | Ву |
|          |                                       |       |             |    |
|          |                                       |       |             |    |
|          | · · · · · · · · · · · · · · · · · · · |       |             |    |

| BALA          | NCE RO | OOM ENVI | RONMENTA | L COND | TION |
|---------------|--------|----------|----------|--------|------|
| WB            | DB     | %RH_     | Date     | Time   | Ву   |
| 60            | 74     | 44       | 3/20     | 1524   | DK   |
| 59            | 73     | 43       | 3/23     | 1340   | 5    |
| <del> 1</del> |        |          |          |        | 7    |

#### INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

| Beaker.      |          |              | <i>m</i> . | F                                                | Sec         |                | Date   | m            | By.             | Thi<br>Wt | rd            | Date    | Time         |           |
|--------------|----------|--------------|------------|--------------------------------------------------|-------------|----------------|--------|--------------|-----------------|-----------|---------------|---------|--------------|-----------|
| 501          | 96-8870  | Date<br>450  | Time       | By<br>DK                                         | 96.80       |                | 401    | Time<br>1332 |                 | WE        |               | Date    | TIME         | +         |
|              | 98,5625  | 720          |            | 14                                               | 48.5        |                | 101    | 1334         | 4               |           |               |         | ┪            | †         |
|              | 91.2041  | <del></del>  | 1006       | <del>                                     </del> | 91.0        |                |        | 1336         |                 |           |               |         |              | $\dagger$ |
|              |          | /            |            | <del>  /-</del>                                  | 95.00       |                |        | 1338         |                 |           | -             |         | <del> </del> | +         |
|              | 95.0582  | <del>/</del> | 1010       | /-                                               | 106.4       |                |        | 1            |                 |           |               |         |              | +         |
| 365          | 106.4506 |              | 1012       | -                                                | 100.1       | <del>304</del> |        | 1340         | ╂┼              |           |               |         |              | +         |
| 506          | 94.1600  | 9/20         | 1014       | DK                                               | 94.11       | 604            |        | 134/2        | ╂┼              | 1         |               |         |              | +         |
| 507          | 88.9867  |              | 1016       | \                                                | 82,98       | _              |        | 1344         |                 |           |               |         |              | 1         |
| 508          | 103.1077 | )            | 1018       |                                                  | 103.10      |                |        | 1346         | 1               | 51        | Au            | alls    | 22           | 1         |
|              | 95.7024  | /            | 1020       | 1                                                | 95.7        |                |        | 1348         | $I \! \uparrow$ |           | / · · ·       |         | 1            | $\dagger$ |
|              | 104.8758 | (            | 1095       |                                                  | 104-8       |                |        | 1350         |                 | シ         |               |         |              |           |
| 511          | 107.7742 | 4/20         | 1024       | ЭK                                               | 107,71      | 745            |        | 1352         |                 |           |               |         |              |           |
| 512          | 106.3852 |              | 1026       | 1                                                | 106.3       |                |        | 1354         | $\sqcap$        |           | ٠             |         |              | 1         |
|              | 99.2412  |              | 1028       | )                                                | 99.0        |                |        | 1356         |                 |           |               |         | 1            | 1         |
|              | 108.6340 | /            | 1030       | 7                                                | 108 6       |                |        | 1358         |                 |           |               |         | 1            | 7         |
|              | 106.2259 |              | 1032       | Ĺ                                                | 106 20      |                | j      | 1400         | 4 400           |           |               |         |              |           |
|              |          |              |            |                                                  |             |                |        |              |                 |           |               |         |              |           |
| <i>حا</i> اک | 105.6750 | 4/20         | 1034       | 01                                               | 105.6       | 745            |        | 1402         | 1               |           |               |         |              |           |
|              | 94.7160  |              | 1036       |                                                  | 94 .?       |                |        | 1404         | ,               |           | - <del></del> |         |              |           |
| 518          | 103.8296 |              | 1038       |                                                  | 103 8       | 300            |        | 1400         | 1               |           |               |         |              |           |
|              | 100.0063 | 17           | 1040       |                                                  | 100.0       |                |        | 1409         | :               |           |               |         |              |           |
|              | 98.6266  | (            | 1042       |                                                  | 98.6        | 967            |        | 1410         |                 |           |               |         |              |           |
|              |          |              |            |                                                  |             |                | 1      |              |                 |           |               |         |              |           |
| 521          | 97.7535  | 4/20         | 1044       | DK                                               | 97.7        | 537            |        | 1412         |                 |           |               |         |              |           |
| 522          | 103,9227 | 1            | 1046       | 1                                                | 103.9       | _              | l<br>I | 1416         | <u> </u>        |           |               |         |              |           |
| 523          | 94.9397  |              | 1048       |                                                  | 94.9        |                |        | 1418         |                 |           |               |         |              |           |
| \            | 106.8567 | /            | 1050       |                                                  | 106 8       |                | !      | 1490         | 1               |           |               |         |              |           |
|              | 95.1170  |              | 1052       | 1                                                | 9511        |                | 7      | 1439         | N/              |           |               |         |              | $\int$    |
| hecked       |          | 4            | 23         |                                                  | <del></del> |                | Date:  |              | Ł               | 92        | •             |         | 1415         |           |
|              |          | REWE         | •          | -1                                               | 1           |                |        | 1            |                 |           |               |         | CONDI        |           |
| Beaker       | # W      | T            | Date       | T                                                | ime :       | Ву             | WB     | DB           |                 | RH        | Dat<br>イル     |         | lime         | _         |
|              | ı        |              | 1          | 1                                                | 1           | ì              | 159    | 72           | 4,              | 0         | 7/12          | O = 1 h | 003 1        | 1         |

|   |             |                |             |                                           | WOO | WOODSTOVE DATA SHEET | A SHEET     | r #4-3;              | CONS         | CONSTANT FINAL WEIGHTS        | EIGHTS |       |                  | WST5-F<br>Unit H                    | WST5-Form9, Pg1, Rev4/90<br>Unit //Auduls SOJK | 1, Rev4/<br>507X | 06, |
|---|-------------|----------------|-------------|-------------------------------------------|-----|----------------------|-------------|----------------------|--------------|-------------------------------|--------|-------|------------------|-------------------------------------|------------------------------------------------|------------------|-----|
|   |             | ,              |             |                                           |     |                      | FINA        | FINAL BEAKER WEIGHTS | R WEI        | GHTS                          |        |       | •                | Kun #<br>Date:                      | 5/14/                                          | 190              |     |
|   | Beaker<br># | Into<br>Dessic | Date        | Time                                      | By  | First                | Date        | Time                 | By           | Second                        | Date   | Time  | Ř                | Third                               | <u>ا</u>                                       | T 1 me           | å   |
| ٠ | 8           |                | 5/15        |                                           | X   | 94.2410              |             | 938                  | DK(          | 940407                        | 3/5    | 15.0% | Ş                |                                     |                                                |                  |     |
|   |             |                |             |                                           |     |                      |             |                      |              |                               |        |       | 6                |                                     |                                                |                  |     |
|   | 8           |                | 5/15        | C6050                                     | OK  | 89.1641              | 3/18        | 8 940                | ΟK           | 1643                          | 3/5    | 15.89 | <b>X</b>         |                                     |                                                |                  |     |
| ٠ |             |                |             |                                           |     |                      |             |                      |              | $\bigwedge$                   |        |       | 7                |                                     |                                                |                  |     |
|   | 8           |                | 8//5        | 0000                                      | OK  | 163, 1823            | 13/19       | 930                  | DIC          | 03,1841                       | 1/2    | 11711 | S                |                                     |                                                |                  |     |
|   |             |                | -           |                                           |     |                      |             |                      |              |                               | 7      |       | 0                |                                     |                                                |                  |     |
|   | B           |                | 5/18        | 0060                                      | OK  | 95.8094              | <i>5/13</i> | 1934                 | 04           | 95-8093                       | 15/19  | 1713  | *                |                                     |                                                |                  |     |
|   |             |                |             |                                           |     |                      |             |                      |              |                               |        |       | 0                |                                     |                                                |                  |     |
|   | 000         |                | 15/5        | ଉଧ୍ଚତ                                     | 성   | 104.9182             | 318         | C45                  | DK           | 081 <i>6</i> 501              | 5/16   | 53    | $\not \geqslant$ |                                     |                                                |                  |     |
|   |             |                |             |                                           |     |                      |             |                      |              |                               | 1      |       | )<br>P           |                                     |                                                |                  |     |
|   |             |                |             |                                           |     |                      |             |                      |              |                               |        |       |                  |                                     |                                                |                  |     |
|   |             |                |             |                                           |     |                      |             |                      |              |                               |        |       |                  |                                     |                                                |                  |     |
|   |             | -              |             |                                           | Ì   |                      |             | FIN,                 | AL FI        | FINAL FILTER WEIGHTS          |        |       | ٠.               |                                     |                                                |                  |     |
|   | Filter Into | Into<br>Dessic | Date        | Time                                      | By  | First                | Date        | Time                 | By           | Second                        | Date   | Time  | By               | Third                               | Date                                           | Time             | Bv  |
|   | 882         |                | <b>2</b> /4 | ,                                         | .0  | 2858                 | 2/12        | 9/C/                 | <del> </del> | BU 0.8307                     | 5//5   | hhb   | DK.              | 03                                  | 6/B                                            | 1534             | 8   |
|   | 5           |                |             |                                           | 4   | .                    |             |                      |              |                               |        |       |                  |                                     |                                                |                  | 1   |
|   |             |                | 6/lu        | 2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3 | I   | 14637                | 5/12        | h/C/                 | (ZB          | 0.4614                        | 8/1/8  | 9776  | DK<br>OK         | 1615                                | 3778                                           | 1535             | R   |
|   |             | , <u> </u>     |             |                                           |     |                      |             |                      |              |                               |        |       |                  |                                     |                                                |                  | 5   |
|   |             |                |             |                                           | -   |                      |             | •                    |              |                               |        |       |                  |                                     |                                                |                  |     |
|   | VO.         | OA REWEIGH:    | -           | FINAL WEIGHTS                             | HTS | <u> </u>             | SCALE R     | OOM ENV              | IRONH        | ROOM ENVIRONMENTAL CONDITIONS | IONS   | 32    | ALE R            | SCALE ROOM ENVIRONMENTAL CONDITIONS | NTAL CO                                        | NDITION          | 2   |
|   |             |                |             |                                           |     | We1                  | Weighing    |                      |              |                               |        | 9     |                  |                                     |                                                |                  |     |
|   | Date        | Beaker         | # Final     | Wt                                        | Ву  | Ses                  | Session D   | Date Time            |              | WB DB                         | 7.кн   | 7     | $\dashv$         |                                     |                                                |                  |     |
| - |             |                | $\dashv$    | 1                                         |     |                      | 1 5         | 000/ 5/5             |              | 160 74                        | #      | 8     |                  |                                     |                                                | ·                |     |
|   |             | :              |             |                                           |     |                      | 2           | 18 BC                |              | DX 58 71                      | 45     | 6     |                  |                                     |                                                |                  |     |

Comments

5/14 1700 CO CO 141

4

A

Final Wr

Filter #

Date

WST7-Form1-Rev5/90

Dates: From 4 33/

Through

WOODSTOVE DATA SHEET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

| Control   Cont   | 100g                                                                             | 108               | 1.08     | 100mg   | Blank  | Blank  |                |               | <del> </del> |     |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------|----------|---------|--------|--------|----------------|---------------|--------------|-----|----------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000/                                                                           | Welght<br>// Acce | Weight   | Weight  | Filter | Beaker | 당              | A te          | ine          |     |          |      |
| Coccoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                                                                              | (X)(C)(C)         | 722.0    | 0: 00   |        |        | DK 4           | 1,93 11       | 000          | 70  | 56       |      |
| 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000                                                                             |                   | 7.655    | 38      |        |        | 200            | 100%          | 130          | 24  | 50       | 177  |
| 0.0001   0.0001   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.00000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.000   | 1,000,000                                                                        | 2000              | 0500     | 0227    |        |        |                | (PK           | 1830         | 5   | 7        | In   |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 4.74                                                                           | 00000             | 1.0001   | 000/00  |        |        |                | 15            | 104S         | 73  | 07       | 77   |
| 1900   1,000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,0000   0,00   | 188<br>88<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>8 | 2,000,0           | 1,999    | 55501   |        |        | 1 CAN          | F             | 330          | 10  | Ą        | 4/5  |
| 9 (1989)   1989   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   1089   108   | را. '                                                                            | 10,000/           | 1.0001   | 0.0999  |        |        | 7 76           |               | 07.0         | 7.7 |          |      |
| 9.9998   0.9999   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0.1000   0   | 1                                                                                | (0.000)           | 1.0001   | 6060 (  |        |        | Γ              | 130           | 1000         | 100 | 1        | 7,7  |
| 1 47474   1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1 1000   1    | 86 66 66                                                                         | 8666.6            |          | 0.1000  |        |        | 十              |               | 1            |     | /6/      | //   |
| 10 coco   6 1989   0 c 099   0 c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.99.7                                                                          | 4466              | 1000     | 0001    |        |        | +              | -<br> -<br> - |              | 15  | (9)      | 37   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99 9995                                                                          | 100001            | 0.9999   | 0 000   |        |        | 力              | 7             |              | 76  |          | 1,6  |
| 10,000   1,000   0,0999   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,   | 160,000                                                                          | 10.002            | 1,000,1  | 2007    |        |        | 1              |               |              | 100 | 80       | 0/7  |
| 10.0000   1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,000                                                                            | 10,0001           |          | 1881    |        |        | <b>d</b>       | T<br>di       |              | 7   | (90)     | 1/2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 000                                                                           | 0000 0            | 198      | 10000   |        |        |                |               |              | 74  | 9        | 47   |
| 10.0001   1.0001   0.1003   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000      | 200,00                                                                           | 2000              | 1000:1   | 2777    |        |        | Ť              | 2             | 700          | 74  | 60       | hh   |
| Composition      | 00 000                                                                           | 1000              | 1300     |         |        |        | +              | 3             | 250          | 100 | b        | *    |
| 10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   100000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   100   | 00000                                                                            | .1_               | 130      | _       |        |        | +              | 7             | 8            | 73  | 59       | 43   |
| 1440   10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100,00                                                                           | 1                 | 1,0001   | 100112  |        |        | 7              | 1 //          | 757          | 27  | 3        | 6h   |
| 1996   10,000   0,0998   0,0998   0,0998   0,0998   0,0998   0,0998   0,0998   0,0998   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0999   0,0   | 047,60                                                                           | T                 | 1997     | 10077   |        |        | 7              | 7             | So           | S   | 24       | 18/2 |
| 1 4948   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0 | 7000 00                                                                          | L                 | 0000     | 25000   |        |        | 7              | 7             | 8            | 30  | M        | 40   |
| 1,000   1,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,00   | 000                                                                              | 1                 | g 2.55.0 | 0.040   |        |        | y<br>∠<br>2    |               | 000          | 67  | ST       | լլ գ |
| 1,000   1,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,00   |                                                                                  | ₫                 | 0000     | 000010  |        |        | 2              | 1/2 6         | 000          | 14  | 09       | 25   |
| 1.0001 1.0000 1.0000 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.004999 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.00499 0.004 | 1377 H                                                                           | 100/0             | 00001    | 5550    |        |        | S              | 5/18/1/2      | 398          | 46  | \<br>(C) | 44   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 877.77                                                                           | 1                 | 00001    | 0.0999  |        |        | OK             |               | SO           | h/  | 3.0      | 7/2  |
| 11.0000 10.0002 10.0001 0.0999 10.000 00k 5/18 10.000 11 58 25.0003 10.0000 10.0099 10.000 11 58 25.0003 10.0000 10.0097 12 5/18 10.000 10.0000 12 5/18 10.000 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 10.0000 12 5/19 |                                                                                  | 7                 | 2007     | /00/    |        |        | S              | 11 44.        | 980          | 70  | 20       | 1/2  |
| 3.0000     1,0001     0,0999     11     58       3.000     1,000     1,000     10     12     51       9498     0,9994     0,0997     0,100     70     57       5696     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000     1000       5696     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000 <td>27.72</td> <td>-</td> <td>14947</td> <td>10401</td> <td></td> <td></td> <td><math>\overline{a}</math></td> <td>5//</td> <td>000</td> <td>74</td> <td>60</td> <td>777</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.72                                                                            | -                 | 14947    | 10401   |        |        | $\overline{a}$ | 5//           | 000          | 74  | 60       | 777  |
| 9993 9.9000 1,000 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000                                                                            | 1                 | 1000'1   | 0.0999  |        |        | ŽK<br>I        | 1811          | 00%          | 16  | 58       | 45   |
| 448 16000 944 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000000                                                                           | 00000             | 2007     | 1,000   |        |        | 15             | 9             | 8            | 73  | 65       | *    |
| 7 25 Q (Q) 4/3 Q | 00:00                                                                            | 7 7 7 7           | 0, 4440  | 0.099 / |        |        | Ž              | $\neg$        | 920          | 70  | 57       | ħħ   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 17 17                                                                          | 2000              | 55557    | 1005    |        |        | No.            | 119 1         | 707          | 6   | 35       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        |        |                |               |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        |        |                |               |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                |                   |          |         | -      |        |                | -             |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        |        |                |               |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        | •      |                |               |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        |        |                |               |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        |        |                |               |              |     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                   |          |         |        |        |                |               |              |     |          |      |

WST7-Form Tev5/90

Dates: From 2/4/92 Through 3/11/92

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

|       | RH       | 8       | 7       |         | 700     |         |          | -                                      | 1         |          | ر (     | <b>-</b> | 0.      | A6     | ~        | <b>.</b> |                                         | 20     | 4        | 0        | 0        |              |         |                 |        |        |        |        | ó          | 1                                        | ,        |        |         |
|-------|----------|---------|---------|---------|---------|---------|----------|----------------------------------------|-----------|----------|---------|----------|---------|--------|----------|----------|-----------------------------------------|--------|----------|----------|----------|--------------|---------|-----------------|--------|--------|--------|--------|------------|------------------------------------------|----------|--------|---------|
|       | 7 1      | 4       | />      | \$      | 278     | )<br>   | ς.<br>Σ  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 7         | 17       |         | 3/7      |         | S.     | 7        | ý        | 77                                      | 7      | 7        |          | 71       | <del>/</del> | 777     | ;  <del> </del> | 46     | 33     | 37     | 76     | 6/7        | 7                                        | 7        | 3K     | Ì       |
|       | Wet Bulb | 54      | ्रहे    | 725     | 25.     | 90      | 3        |                                        | 100       | 2 6      | ,       | ,58      | 62      | 62     | 63       | 62       | eg                                      | 75     | <b>%</b> |          | 201      | 000          | 100     | 61              | 63     | 64     | 09     | 11     | <b>8</b> 5 | (%)                                      | (3)      | 7      | 2       |
|       | Dry Bulb | 65      | 200     | 200     | 0       | 202     | 566      | R                                      | )         | 27       | 7.0     | 70       | 15      | 15     | LL       | 16       | 760                                     | 65     | 25       | 60       |          | 1            | PL.     | 72              | 77     | 18     | 73     | 72     | 70         | 13                                       | 20       | 100    | Ţ       |
|       | F        | 430     | 1,42    | 22.5    | 25.5    | 1000    |          | 300                                    | 1000      | 1500     | N.Y.    | 0060     | 1230    | 1535   | 930      | 12 40    | 0091                                    | 1880   | 6000     | 200      | 0.17     | 1000         | 15      | 1835            | )      | 1230   | 1000   | 1/30   | 0435       | 08.80                                    | 36       | 2000   | ر<br>ا  |
|       |          |         | がだり     | √I-     |         | 35      | 1.       |                                        | 1/2       | 21/2     |         | 5/16     | 2//3    | H      |          | 2/17     | 7/10                                    | 1/1/8  | 12/12    | 01/0     | 12/2     | 7/77         | 3/35    |                 | 2/27   | 2128   | 3/3    | 3//2   | 38         | (3/6                                     | 13/6° C  | 224    | - \`\   |
|       | Tech     | Ž       | S       |         | 宇       | \$      | 5        |                                        | 1         | Z        | 4       | è        | 1/10    | Q<br>X | ğ        | 10       | 岩                                       | *      | **       | 1        |          | 1            | Ď       | 1/4             | ò      | 7      | Ď<br>O | 4      |            | 200                                      | N.       | 7      | >       |
| _     | Beaker   |         |         |         |         |         |          |                                        |           |          |         |          |         |        |          |          |                                         |        |          |          |          |              |         |                 |        |        |        |        |            |                                          |          |        |         |
| Blank | Filter   |         |         |         |         |         |          |                                        |           |          |         |          |         |        |          |          |                                         |        |          |          |          |              |         |                 |        |        |        |        |            |                                          |          |        |         |
| 100mg | Weight   | 0.0144  | 1887    | 2007    | (00)    | 0001    |          | 10011                                  | 2001      | Ó. 1000  | 1000    | 0.1000   | 0,1000  | 00010  | 0.7000   | 0001.0   | 0.0944                                  | 300    | 0000     | 200/     | 0.0999   | D 1000       | 0.1000  | 6660            | 0.0999 | 0.0999 | 0.1000 | 0 (000 | 000/       | 0.000                                    | 1040     | 000    |         |
| 1.08  | Weight   | 0000    | 0000    | 1000    | 1000    | 8666    |          | 0000/                                  | 10001     | 0.9999   | 0000/   | 1,0000   | 10001   | 10001  | 0000     | 7.0000   | 1000                                    | 1000   | 00/40    | 0000/    | 1.0000   | 1.0000       | 1,000.1 | 4999            | 1.0000 | 0000   | 1.0000 | dona!  | 00000      | 2277                                     | 4000     | ,000,  |         |
| 801   | 0 0000   | 10 0002 |         | 9 9909  | 10 0000 | 6 9999  | 10,000   | 10,00                                  | 10.0000   | 16,0000  | 0000    | ۲        | T       | ۲      | 5555     | 10.0000  | 00.000                                  | Jana n | (NOO V)  | 10000,01 | 9.9999   | didded       | 2       | 7               | 8444   | 000000 | ή`     | - 1    | 2000/2     | 10,000                                   | 100001   | 10,000 | , X X X |
| × .   | 130 0000 | X/ 00/2 | 3355 55 | 1000001 | 666666  | 1000.00 | 00000,00 | 99.749.5                               | 1000.000! | 100.0003 | 7555755 | 866666   | (00.000 | 25.55  | 0000 007 | 000000   | 14/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ | C35555 | 900000   | 99,999   | 0000-001 | 10000        | 99.9999 | 6666655         |        | 2000   |        | 44 144 | 1000000    | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 2 100000 | 945646 |         |

WST7-Form Rev5/90

Dates: From 3/12

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

| 100g                                     | 108       | 1.0g          | 100mg            | Blank  | Rlank  |            | }       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |             |           |
|------------------------------------------|-----------|---------------|------------------|--------|--------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|-----------|
| Weight                                   | Weight    | Weight        | Weight           | Filter | Beaker | Tech       | Date    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry Rulh                               | 4           |           |
| $\Box$                                   | 10,000    | 00001         | 0.0998           | ı      | ł      | 1/4        | ; -     | 72.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                     | 45. DUID    | 4 KH      |
| 5/35/35                                  | 9 9999    | 1.000         | 8660.0           |        |        | 70         | 2 3     | 1212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                     |             | 7,7,1/17  |
| 365,55                                   | 10,0003   | 1000)         | (00p             |        |        | S          | 1/2/8   | 12,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                     |             |           |
| /00.0000                                 | 10.0001   | 1.0002        | 0.1000           |        |        | )<br>E     | 4—      | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,00                                   | 17          | -2,7/     |
| 8,000                                    | 10,000/01 | /200 <i>8</i> | 10010            |        |        | 730        | 12      | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                      | 46          | 7 7       |
|                                          | 100001    | 4887          | 1000             |        |        | <b>188</b> | 2/10    | TVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7117                                   | T.          |           |
| 8666 66                                  | 6 6 6 6 6 | 0.9999        | 8660.0           |        |        |            | 3/30    | 15,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70-4                                   |             | du (      |
|                                          | 10.000 A  | 5555'         | 0.0978           |        |        |            | S S     | 五不                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                    | 200         | -//       |
| 100.000                                  | 00000     | 1.0003        | 0.1003           |        |        | ž          | 3,24    | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                     | 707         | 617       |
| 75,757                                   | ٠,        | 10001         | 100g             |        |        | S          | 41K     | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                      |             |           |
| 1000001                                  | 9.9999    | 1.0001        | 0.1002           |        |        |            | 2,07    | 27.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                     | 62          | 75/       |
| 100,00                                   | 76560     | 1.000A        | 001.             |        |        | 3          |         | <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | イバー                                    | 2/2         |           |
| 4997                                     | 9.9999    | 1.0001        | 0.1000           |        |        |            | 13/14/2 | 1 Se 20 Se 2 | , 0/                                   |             | 202       |
| 25356                                    | 10,000    | 1000/1        | 000/             |        |        | <b>マンド</b> |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                     | 100         |           |
| 1 9 M Y Y P                              | 10,000    | 10001         | 1/00             |        |        |            | 19/2    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                     |             |           |
| 100.0003                                 | 10.0000   | 0000/         | 0.1000           |        |        |            |         | 10/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 70          | 7.5       |
| 4,9965                                   | 10.0000   | 2000-7        | 2007             |        |        | Τ,         |         | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,5                                    | 03          | 7.3       |
| 8666.66                                  | 9.9997    | 1-066 V       | 00010            |        |        | 2          | 十<br>北  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 70K         | 7.5       |
| 99.9997                                  | 10000     | 0 6660        | V 1000           |        |        |            | +       | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70)                                    | 57          | 46        |
| 000000                                   | 1 000 (1) | 00000         | 0000             |        |        | <b>₹</b>   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                     | 58          | 48        |
| 7777                                     | 00000     | × 7000        | 77.0             |        |        | 1          | 46      | 0236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                     | ζS          | <i>56</i> |
| 000000                                   | 90000     | 0777          | 07007            |        |        | BN         | 9//5    | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                     | 95          | 77        |
| 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, | 12.20     | 74447         | 8660             |        |        | N<br>V     | 7/1     | (300)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                                     | ÆS          | Sh        |
|                                          | 200000    | 40.00         | \$27.5<br>\$2.48 |        |        | S          | 188     | 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69                                     | S           | The       |
| 1000                                     | 2277      | 7777          | 6650'            |        |        | K          | 7,7     | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                     | 22          | 25        |
| 35.5                                     | 1986.5    | 1000          | 88               |        |        |            | 0///    | 0435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R                                      | 20          | 7/2       |
| 100 VOC                                  | 7,7,7,7   | 1999          | 0000             |        |        | ¥          | 0)/1    | 7/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                     | €:          | 42        |
| (SO 95)                                  | 2000      | 1.000.1       | 0.1003.          |        |        | ă          | 4139    | 945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                     | 58          | 43        |
| 00000                                    |           | 1,0000        | 27.75            |        |        | 9          | 777     | 030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                                    | <b>5</b> \$ | 9/10      |
| 2027                                     | 2227      | 000           | 0.0448           |        |        | Ž          | 4,45    | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80)                                    | 57,         | 47        |
| 13000                                    | ч.        | 2555          | んなべつい            |        |        | Sel Sel    | 1/1/2   | 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Q</b>                               | <b>6</b>    | dh        |
| 700,000                                  | 4666 b    | 7.0000        | 1001.0           |        |        | Š          | 4/17 (  | 3/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                     | 57          | 7/7       |
| 91111                                    | 27.442    | 0000          | 8                |        |        | Ş          | 411 1   | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                      | 83          | 200       |
| 400.000                                  | 0000      | 0.99/19       | 1001.0           |        | •      |            | ا (محار | 00 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73                                     | 59          | 460       |
| 22.77                                    | 2000/21   | 1,0003        | /00/-            |        |        |            | 7       | Obe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74                                     | 9           | Ŋħ        |
| 700.000                                  | 0000.0/   | 1.0000        | 0.0 YYY          |        |        | •          |         | 006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                     | 59          | 27.2      |
| 44.4442                                  | 10,0003   | Gooor I       | 1001             |        |        | Smile      | 4/03    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                     | 8           | 0,0       |
| •                                        |           |               |                  |        |        |            | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | )           | 2         |

#### WOODSTOVE PARTICULATE CATCH PROCESSING WOODSTOVE DATA SHEET # 5

| 3        | Unit:         | HAUG                 | HS            | SO             | )OX                                   |               |
|----------|---------------|----------------------|---------------|----------------|---------------------------------------|---------------|
| J        | Run:          | 3                    | Dat           | te: <u>5</u> / | 14/9.                                 | 1             |
| ٠        | Techn:        | ician(s              | ;> : <u> </u> | <u> </u>       |                                       |               |
| _F       |               |                      |               |                |                                       |               |
| رو       | •••           | FINAL<br>TARE<br>NET | WT:           | 94.00          | 107/                                  | . 9           |
| ONE      | <u>=</u>      | NET                  | WT:           | æ              | 63/                                   | 9             |
|          |               | FINAL                | WT:           |                | · · · · · · · · · · · · · · · · · · · | 9             |
| FONE     | =             | TARE                 | WT =          |                |                                       | 9             |
|          | <del>-</del>  | (,=,                 | •             |                |                                       | , <del></del> |
| OF       | ACETO         | NE                   |               | D              | )                                     | m l           |
| =        |               |                      |               |                |                                       |               |
| <u> </u> | •••           | FINAL                | WT:           | 89.10<br>88.91 | 43-                                   | 9             |
| TON      | =             | NET                  | WT:           |                | 713                                   | 9             |
| ર        |               | FINAL                | WT:           | 103,           | 1891                                  |               |
| -CHI     | -<br>LOR      | FINAL<br>TARE<br>NET | WT:           | 103,1          | 0777                                  | _g            |
|          | <del></del>   |                      |               | _              |                                       |               |
| 1        | _             | FINAL<br>TARE        | WT:           | 95.            | 8093<br>70 <del>0</del> 6             | -             |
| ر-       | <del></del> · | NET                  | WT:           |                | 1067-                                 | g             |
| )        |               | FINAL                | WT:           | 104-9          | 1180                                  | 9             |
| <u>}</u> | <del>-</del>  | TARE                 | WT =          | 104,8          | 493                                   | 9             |
|          |               |                      |               |                | 490-                                  |               |
|          | <del>-</del>  | TARE                 | WII           |                |                                       |               |
|          | <del></del>   |                      | -             |                |                                       |               |
|          | H-M           | FINAL<br>TARE        | WT:           |                |                                       | <u>g</u>      |
|          | _             | NET                  | WT:           |                |                                       | 9             |

m1

nı 1

m1

|                                                                          |                                               | · <del></del>                                              |
|--------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|
|                                                                          | FRONT HALF                                    |                                                            |
| FILTER #: 00 F<br>FINAL WT: 8303 !<br>TARE WT: 7017 !<br>NET WT: -1286 ! | m1:<br>desc: ACETONE                          | INAL WT: 94-8407 /<br>TARE WT: 94-1601 /<br>NET WT: 0803 / |
| FILTER #: ! FINAL WT: ! TARE WT: !                                       | m1:<br>desc: ACETONE                          | INAL WT:<br>TARE WT:<br>NET WT:                            |
|                                                                          | TOTAL VOLUME OF ACETONE USED IN WASH          | an/                                                        |
|                                                                          | BACK HALF                                     |                                                            |
| FILTER #: 960 B<br>FINAL WT: 4615<br>TARE WT: 3847                       | desc: ACETONE                                 | INAL WT: 89.1643-<br>TARE WT: 88.9876-<br>NET WT: 1773-    |
| FILTER #:<br>FINAL WT:<br>TARE WT:                                       | BEAKER #: 500 F  ml: 75  desc: METHCHLOR      | INAL WT: 103,1841-<br>TARE WT: 103,1027-<br>NET WT: 0744   |
|                                                                          | BEAKER #: F<br>ml: John desc: H2O             | INAL WT: 95,8093<br>TARE WT: 95,7006<br>NET WT: 1067       |
|                                                                          | ml: KD<br>desc: H2O                           | TARE WT: 104-9180' TARE WT: 104-875 7 NET WT: 0483         |
|                                                                          | BEAKER #:F<br>ml:<br>desc:                    | TARE WT:                                                   |
|                                                                          | BEAKER #: F  ml:                              | TARE WT:                                                   |
|                                                                          | TOTAL VOLUME OF ACETONE USED IN WASH          | 200                                                        |
|                                                                          | TOTAL VOLUME OF DICHLOF<br>USED IN EXTRACTION | RBMETHANE<br>75                                            |

TOTAL VOLUME OF DISTILLED

WATER DRIED

WSTAPP1-AppDoc19-page2 WOODSTOVE TEST DATA SHEET #6 Rev 6/90 Blank Audit: By: 1/m Kelly Date: 5/18/92
Blank Calculations: Blank Calculations: 10004 g € 200 m1 = 100000 g/m1 Acetone: Dichloromethane: , 0004 g = 75 ml = 00000533 g/ml Front Half Catch: Filters: 1086 g - (.0000 g) = 1866 g

Total Catch No. of filters Blank Value/ Net Catch ml of Acetone Back Half Catch: Filters: 0788 g - (.0000 g) = 0788 g

Total Catch No. of filters Blank Value/ Net Catch Beakers 1. Acetone/Impingers:

1. Acetone/Impingers: ml of Acetone 10004 2. Extract/Impingers:

OTUC g - 75 (2000533g) = 1010 g

Total Catch ml. of Blank Value/ Net Catch Dichloromethane ml of Dichloromethane Water/Impingers:  $\frac{1490 \text{ g}}{\text{Total Catch}} = \frac{300 \text{ (000004 g)}}{\text{ml. of water}} = \frac{1478 \text{ g}}{\text{Net Catch}}$ ml of water Total Back Half Catch Total Catch % Front Half

NET PARTICULATE CATCH CALCULATION

HAUGHS SOTY

5/14/92

Technician(s): TX TK

Unit: Run:

EPA WETHOD SH PARTICULATE CALCULATIONS HODDSTOVE TEST DATA SHEET 1.7

meter box used for the test

in degrees Absolute

computer

dec fa

Run # 3

Date 5/14/92

Technician 3N TK DK JS

WST6-Form1, Rev11/89

# MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Useable Firebox Dimensions: See QC Section Useable Volume: 1,473                                                                                    | _ft3       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Dilution Tunnel Draft (If applicable): Start O Stop O                                                                                               |            |
| Test Chamber Air Velocity: Start: O Stop: O Avg: O                                                                                                  |            |
| Wet Bulb/ Start: WB: 60 °F DB: 70 °F /. 4 % Amb Moisture 56                                                                                         | 7RH        |
| Dry Bulb Stop: WB: 59 °F DB: 78 °F 1.0 % Amb Moisture 32  % Ambient % Relative                                                                      | 7RH        |
| $\overline{\mathbf{x}} = 1.2$ Moisture $\overline{\mathbf{y}} = 44$ Humidity (                                                                      |            |
| Empty                                                                                                                                               |            |
| Stove Wt: 23/ 1bs.                                                                                                                                  |            |
|                                                                                                                                                     | bs.        |
| Empty                                                                                                                                               |            |
| Stove Wt with Stack and Ash Ash: O lbs. Total: 0                                                                                                    | bs.        |
| Kindling Wt. Paper: 3 lbs. Wood: 6.2 1                                                                                                              | bs.        |
| Pre Burn Fuel Wt. 82 + 9.4 + 1.5 Total: 19.1 1                                                                                                      | bs.        |
|                                                                                                                                                     | bs.        |
| Coal Bed Wt-lbs: Range (2.6 - 2.2) 306.9-306.51bs. Actual: 2.4 1                                                                                    | bs.        |
| Allowable Amount of Charcoal that can be removed:                                                                                                   |            |
| Coal Bed Wt. Range $\left(\frac{2.6}{\text{Upper Wt.}} + \frac{2.2}{\text{Lower Wt.}}\right)$ .25 =                                                 | bs.        |
| Test Fuel Wt-1bs: Ideal 10.3 1bs. Range: 9.3 1bs. Actual: 10.7 11                                                                                   | bs.        |
| 1.1                                                                                                                                                 | <u>cs.</u> |
|                                                                                                                                                     | 7          |
| 4 x 4's x N/A " N/A Pcs N/A 1bs. N/A;                                                                                                               | <u>z</u>   |
|                                                                                                                                                     |            |
| Est. Dry Burn <u>10,7 - (10,7 x,17752)</u> x 60 = <u>,856</u><br>Rate (Kg/Hr.) 2.2025 Z80 Est. Dry Burn Rate (Kg/H                                  | <u> </u>   |
| Est EPA Heat Output(HO <sub>E</sub> ) (19,140) X <u>(3</u> x <u>)856</u> = <u>(0 324,7</u> (Avg BTU's/Hr) Est Heat Output(HO <sub>E</sub> ) BTU's/H |            |
| Comments: 240 = ,999                                                                                                                                |            |
| 195 = 1,229                                                                                                                                         |            |

|                                                                                                                                                                                                                                                      | _                                                                                                                                       | -1                                                                                                  | 100                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Unit: 140645 S27X                                                                                                                                                                                                                                    | Run:                                                                                                                                    | _ Date: <u>5//9</u> .                                                                               | /92_ Page 9                                                                                          |
| •                                                                                                                                                                                                                                                    | OODSTOVE OPERATIN                                                                                                                       |                                                                                                     |                                                                                                      |
| FIRE STARTED: 0745                                                                                                                                                                                                                                   | PST/P                                                                                                                                   | DST                                                                                                 |                                                                                                      |
| WARM UP AND PREBURN: PR<br>up/preburn fuel charges,<br>preburn.                                                                                                                                                                                      | then set to <u>Q</u>                                                                                                                    | <u>03eD</u> a                                                                                       | ll warm-<br>t start of                                                                               |
| SECONDARY AIR:///                                                                                                                                                                                                                                    | CAT BYPASS                                                                                                                              | : _ <i>D/H</i>                                                                                      |                                                                                                      |
| CHARCOAL BED PREPARATION up/preburn charge. At 1 leveled. In stove                                                                                                                                                                                   | $\frac{1/2 \text{ min. prior to}}{1/2}$ sec.                                                                                            | loading last                                                                                        | ruei, rakeo ano                                                                                      |
| TEST: Door Wide Open du                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                     |                                                                                                      |
| PRIMARY AIR: opened full setting of                                                                                                                                                                                                                  | <u> </u>                                                                                                                                | _ •                                                                                                 |                                                                                                      |
| SECONDARY AIR: NA                                                                                                                                                                                                                                    | CAT BYPAS                                                                                                                               | s: <u>////</u>                                                                                      |                                                                                                      |
| FAN: ON/OFF during warm-                                                                                                                                                                                                                             | up ON OFF duri                                                                                                                          | ng preburn                                                                                          | ance of test run                                                                                     |
| ON OFF first30<br>Fan speed set at                                                                                                                                                                                                                   |                                                                                                                                         | <del></del>                                                                                         |                                                                                                      |
| ON OFF first<br>Fan speed set at<br>WOOD DATA: KINDLING: a                                                                                                                                                                                           |                                                                                                                                         | <del></del>                                                                                         |                                                                                                      |
| Fan speed set at                                                                                                                                                                                                                                     | mix of the grades                                                                                                                       | <del></del>                                                                                         |                                                                                                      |
| WOOD DATA: KINDLING: a                                                                                                                                                                                                                               | mix of the grades                                                                                                                       | listed below                                                                                        | SPECIES  s. arn D fir                                                                                |
| Fan speed set at<br>WOOD DATA: KINDLING: a<br>SIZE                                                                                                                                                                                                   | mix of the grades  MILL  Manke/Tacoma  Packwood                                                                                         | listed below                                                                                        | SPECIES                                                                                              |
| Fan speed set at WOOD DATA: KINDLING: a SIZE PREBURN: 2X4 TEST: 2X4                                                                                                                                                                                  | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood                                                                               | listed below  GRADE  Std or btr  #2 or btr                                                          | SPECIES  s. orn D fir  s. orn D fir                                                                  |
| Fan speed set at WOOD DATA: KINDLING: a SIZE PREBURN: 2X4  TEST: 2X4                                                                                                                                                                                 | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood                                                                               | listed below  GRADE  Std or btr  #2 or btr                                                          | SPECIES  s. orn D fir  s. orn D fir                                                                  |
| Fan speed set at                                                                                                                                                                                                                                     | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood  Packwood                                                                     | listed below  GRADE  Std or btr  #2 or btr  #2 or btr                                               | species  s. arm D fir  s. arm D fir  s. arm D fir  inches.                                           |
| Fan speed set at  WOOD DATA: KINDLING: a  SIZE  PREBURN: 2X4  TEST: 2X4  4x4  PELLET FUEL APFI#  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel  1st warm up/preburn fuel                                                     | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood  Packwood  change ( 8.2                                                       | listed below  GRADE  Std or btr  #2 or btr  #2 or btr  cher _/O or  lbs ) added                     | species  s. orn D fir  s. orn D fir  s. orn D fir  fir  inches.                                      |
| Fan speed set at  WOOD DATA: KINDLING: a  SIZE  PREBURN: 2X4  TEST: 2X4  4x4  PELLET FUEL APFI#  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel  1st warm up/preburn fuel  2nd warm up/preburn fuel                           | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood  Packwood  charge ( 9.4                                                       | listed below  GRADE  Std or btr  #2 or btr  #2 or btr  10 or btr  cher /// or or  lbs ) added       | species  s. grn D fir  s. grn D fir  s. grn D fir  de d          |
| Fan speed set at  WOOD DATA: KINDLING: a  SIZE  PREBURN: 2X4  TEST: 2X4  4x4  PELLET FUEL APFI#  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel  1st warm up/preburn fuel  2nd warm up/preburn fuel  3rd warm up/preburn fuel | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood  Packwood  charge ( 9.4)  charge ( 1.5)                                       | listed below  GRADE  Std or btr  #2 or btr  #2 or btr  cher /// or  lbs ) added  lbs ) added        | species  s. orn D fir  s. orn D fir  s. orn D fir  s. orn D fir  at 0845  at 0945  at 1040           |
| Fan speed set at  WOOD DATA: KINDLING: a  SIZE  PREBURN: 2X4  TEST: 2X4  4x4  PELLET FUEL APFI#  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel  1st warm up/preburn fuel  2nd warm up/preburn fuel                           | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood  Packwood  charge ( 9.4)  charge ( 1.5)                                       | listed below  GRADE  Std or btr  #2 or btr  #2 or btr  cher /// or  lbs ) added  lbs ) added        | species  s. orn D fir  s. orn D fir  s. orn D fir  s. orn D fir  at 0845  at 0945  at 1040           |
| Fan speed set at  WOOD DATA: KINDLING: a  SIZE  PREBURN: 2X4  TEST: 2X4  4x4  PELLET FUEL APFI#  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel  1st warm up/preburn fuel  2nd warm up/preburn fuel  3rd warm up/preburn fuel | mix of the grades  MILL  Manke/Tacoma  Packwood  Packwood  Packwood  Packwood  Charge ( 9.4  Charge ( 1.5  Charge ( 1.5)  Charge ( 1.5) | listed below  GRADE  Std or btr  #2 or btr  #2 or btr  10 or  lbs ) added  lbs ) added  lbs ) added | species  s. orn D fir  s. orn D fir  s. orn D fir  s. orn D fir  de orn D fir  18  1045  at 1040  at |

### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Unit: //4/00/43 0 & / / Run: 3 Date: 5//4/92 Technician: BN TK DK JS WST1-Form7-Rev11/89

| Room Temperature: 70 of                                                                                                        | Correction Factor: |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| NOTE: Record readings to the n<br>Uncor Values are corrected for<br>Time Test Fuel Moisture Reading<br>Calibration Checks: XY_ | temperature: Yes   |

| Рc |          |               | Top   |      |       | tom  | Sid   |      | Piece Avg |
|----|----------|---------------|-------|------|-------|------|-------|------|-----------|
| #  | Dimen    | Use           | Uncor | Cor  | Uncor | Cor  | Uncor | Cor  | Corrected |
| 1  | 21418    | K             | 4,0   | 40   | 4,5   | 4,5  | 4,0   | 4.0  | 4.167     |
| 2  |          |               |       |      |       |      |       |      |           |
| 3  |          | _             |       |      |       |      |       |      |           |
| 4  | 2x4x8    | 9             | 18.0  | A.6  | 18.0  | 19.6 | 18.5  | 20.1 | 19.767    |
| 5  | 21418    | ρ             | 18.0  | A.6  | 18.0  | 19.6 | 19,0  | 20.7 | 19,967    |
| _6 |          |               |       |      |       |      |       |      | 39.733    |
| 7  |          |               |       |      |       |      |       |      |           |
| 8  |          |               |       |      |       |      |       |      | i         |
| 9  | 2141/834 | T             | 19,5  | 21.3 | 19,5  | 21,3 | 19.0  | 20.7 | 21.100    |
| 10 | 244/83/4 | $\mathcal{T}$ | 20,0  | 21.8 | 21.0  | 22.9 | 21.0  | 22.9 | 22,533    |
| 11 | 2x4x/834 | T             | 19.5  | 21.3 | 18,5  | 20.1 | 18,5  | 20.1 | 20,500    |
| 12 | 244/83/4 | T             | 20.0  | 21.8 | 21,5  | 23.5 | 19.5  | 21.3 | 22,200    |
| 13 |          |               |       |      |       |      |       |      | (86,333)  |
| 14 |          |               |       | -    |       |      |       |      |           |
| 15 |          |               |       |      |       |      |       |      |           |
| 16 |          |               |       |      |       |      |       |      | -         |
| 17 |          |               |       |      |       |      |       |      |           |
| 18 |          |               |       |      |       |      | ••    | ·    |           |
| 19 | FEET     | T             | 19,5  | 21,3 | 19,5  | 21.3 | 19.0  | 20.7 | 21-100    |
| 20 |          |               |       |      |       |      |       |      |           |

% Moisture - Dry Basis:

% Moisture - Wet Basis:

| Kindling | Pretest Fuel | Test Load |
|----------|--------------|-----------|
| 4.1672   | 19.867 -     | 21.583    |
| 4.000 %  | 16,574-9     | 17.752-   |

To obtain Wet from Dry:  $\frac{100 \times 7}{100 + 7}$  Dry Rdg. = % Moisture, Wet Basis

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

| WOOD DENSITY DETERMINATION WOODSTOVE TEST DATA SHEET #11                          | Date: 5/14/92 Technician: BN TK DK JS WST2-form11-Rev 6/90 |
|-----------------------------------------------------------------------------------|------------------------------------------------------------|
| Wood Piece: Nominal Dimensions:                                                   | 2 x 4 x 3/2                                                |
| Depth (D):                                                                        | 3.91cm                                                     |
| Width (W):                                                                        | 9,00 cm                                                    |
| Length (L): 8.30 _cm                                                              |                                                            |
| <u>830</u> cm                                                                     | - 8,30cm                                                   |
| 8,30 cm Length X                                                                  |                                                            |
| Volume:                                                                           | <u>292,077</u> cm <sup>3</sup>                             |
| MOISTURE: Room Temperature: 7/                                                    | OF Correction Factor:                                      |
| Uncorrected Meter Readings Corrected                                              | for temperature:Yes No                                     |
| NOTE: Record moisture meter readings                                              | to the nearest 0.5%                                        |
| Uncor Cor Avg                                                                     | 7 Moisture (Dry) 2/8337                                    |
|                                                                                   | % Moisture (Wet) 17,920 %                                  |
|                                                                                   | A Moisture (wet)                                           |
|                                                                                   | le: Leveled In V Out V                                     |
|                                                                                   | Zeroed: In VOut                                            |
| x. 21.833 z                                                                       | Zeroed: In Out                                             |
| Wet Weight: 226,4 g Dry Weight: 19                                                | 1.63 g                                                     |
| % Moisture Dried Basis: 15358 % [1 - (Dry Wt ; Wet Wt)] X 100                     |                                                            |
| Into Dryer 5/14/92 Time Out of Dryer 6/30/90 MUS (Minimum Time in Dryer: 24 hrs.) | OF OF                                                      |
| Density = 19163 g : 292,077 cm (dry wt) (volume)                                  |                                                            |
| Pellet Fuel Moisture Content Determina                                            | ation                                                      |
| Tare Beaker Wt.                                                                   |                                                            |
| Wet Wt:s                                                                          | z = g                                                      |
| Gross Wet Wt. Tare Beaker Wt                                                      |                                                            |
| Dry Wt:g :                                                                        |                                                            |
| Gross Dry Wt. Tare Beaker Wt                                                      |                                                            |
| % Moisture Dried Basis:<br>[1 - (Net Dry Wt - Net Wet Wt.)] X 100                 |                                                            |

Floi 8 धु Flow **R** <u> Ŝ</u> Ŗ .5287 1. 6.7.V Press. 二三系 2055 :056 .055 :052 540. **BN.**3S Static -054 040: 240-2046 -054 -.054 052 140 **予KO** 035 :052 7052 -.038 -.042 2038 640-1053 640-037 150 475 475 625 450 450 475 450 475 500 525 500 575 9 50 575 550 550 475 250 475 525 400 47.5 tmit: Haughs 5270 Serus Date: 5/14/92 中的 25 ನೆ 20 100 <u>~</u> .20 <u>.</u> ∞. 23 8 <u>a</u> 7 26 7 22 8 5 ā 7 <u>a</u> <u>o</u> 3946 73437 34037 Stack 355 355 348 353 285 346 336 276 343 329 333 288 35 327 34,2 327 298 23 284 274 317 721 714 1/0(3) 126 139 138 <u>5</u> 133 35 136 6a1c 4/8 138 38 124 120 35 30 138 139 129 127 39 130 136 139 12 127 3 1-0 2.5 13.0 133 13.0 12.5 7. 3.5 3.5 13.0 7.3 **50** 13.0 13.2 12.5 13.0 11.2 3.2 13.2 7.0 -9 3 53 36 139 ਤ ਨ <u>و.</u> <u>و.</u> 62 三33 7,5 150 158 158 38 139 S S 15 145 154 09 <u>丁</u> اها <u>ত</u> 137 ď 137 <u>元</u> 126 12 126 25 0 1 80 90 J 0 lo 12 126 124 9 126 107 125 127 122 <u>م</u> 50 12 125 17.4 124 28.6 2.5 31.3 39.8 3.5 35.0 33.9 e\_ ~ 5.9 8.5 16.8 18.9 39.9 25.2 4.6 Г 5.7 5.4 7.8 13 တ က် 9 ÷ .23 *.*65 e m .55 26 , 28 .28 8 77. .23 43 72 ह्र. .29 .31 59 ,72 37 ₹. 29 3 ت 77 m 因 02b 023 رمام. المام: 990 10,44 029 028 633 028 643 749 910 790 .637 **,**024 015 023 629 .037 054 858 110 Ē 631 . 18.2 ار د. د 12,3 12.6 V) 10.9 8.01 王3 12.6 10.2 <u>و</u> 9 12.8 5.5 0.7 恒 ج ج エゴ ナゴ 12.7 10.7 -:0 9 و <u>=</u> \_ 3 16.5 18.2 Ŕ ---17.2 12.6 12.8 147 <u>4</u>.3 Š 10.7 S.S. 10.2 10.7 ان ان 12.3 12,6 6.0 12.7 五 <u>ه</u> و. -0. 4 22 679 433 <u>ا</u>روما *∂*Γ*a*]. 503 580 535 385 423 563 650 719 399 > Slot 425 415 404 . 429 498 617 485 459 499 504 2008 اه اه 3.0 3.0 <u>م</u> ة-9. N MODSTOVE DATA SEET 112 3,7 5 6 <u>ه</u> 9.0 0.0 ਕ ੦ <u>ر</u> S 8,0 و۔ 0 **500** Ø ĝ 3. 7. ~ ~ W <u>۔</u> ف 2. 9 6 ō N 그동 > 8 123 405 드 225 385 404 240 079 118 747 297 314 8/1 429 436 395 396 353 300 MST2-Form 14 Rev 1/88 281 381 364 321 ibs Burn left Rate 3 νŠ ۸ĺ **\_\_\_\_** 2 S ΛÌ 3 Ø ₹. 7 و\_ M و\_  $\varnothing$ 7. 3 3 ₹. 7 306.7 Scale 10s 0.5 10.2 0.0 <u>ہ۔</u> ض 8.3 10.7 16.7 ر م ا م 7.4 <del>ن</del> ف 63 ر ال ري ک 7.8 w J 2 Ŕή 7 ć 313.6 316.7 3163 317.4 317.2 313.0 316.9 315.9 34.5 317.4 312.5 309.8 309.2 315.4 315.0 312,1 311.6 311.0 310.5 310.2 38.5 308.9 314.1 369.1 분 8 8 પ્ર Ş 3,50 <u>|</u> 35 40 <u>\_</u> 40 প্ত 8 2 જે, 8 0

HOLDSTOVE DATA SKEET 112 HST2-Form 14 Rev 1/88

片

BN, JS

Jate: 5/14/92 Technician(s):

Secres vates.

S270

Unit: HAUGHS

Run:

Flo 8 .en, Flow ह ş B 8 Z 280 -1.938 Statici -4137 -025 020 Press. -,023 -.027 -.022 -.036 -.023 :022 hh0: -039 036 :030 -.029 -027 -024 -024 -022 -042 -034 .033 7.032 102 .021 -031 S S S 625 513 200 8 929 8 902 525 550 625 250 675 700 9 009 625 625 8 歪 S 625 625 9 000 48 26 .26 .25 25 26 28 28 28 28 .25 % % 28 17 **E** 33 7 74 74 25 25 74 131 2102 2728 12173 Stack 2 266 207 178 60 % 2 2 203 173 174 285 249 239 232 225 192 183 172 214 187 180 \_\_ 218 198 Calc And Sta <u>و</u> = 2 601 120 15 2 2 2 2 109 2 Ξ 2 9 8 <u>5</u> <u>~</u> 8 7 9 5 7.2 فالا S.S <u>و</u> د۔ 6.5 ė رب فـ و\_ نهـ ا ان e.S 7.5 N) 7.3 و 7 9. 73 15 N. 7.5 7.3 8 3 ۲ 120 120 25 123 120 35 129 121 124 122 120 38 132 N N 39 138 137 38 ď 139 34 112 3 三 T/C(1)T/C(2) 103 Bulb 103 103 102 102 103 103 5 101 50 0 109 90 90 <u>र</u> 9 ₽ 10 70 80 [0] <u>0</u> 108 80 109 109 60 MQ 阳 2.5 2.3 3.3 3.3 8:2 8 7 8 2.3 2.0 2.0 2.0 <u>~</u> V) T T 9 ŵ Paget 7.1 2 8 1.39 -% 33 83 . 8 8 ,25 1.70 57 78 1.28 1.27 \$ <u>ن</u> س 員 62 1.87 00 8 <u>v</u>i -1.72 7日 <u>\</u>3 .125 *-*89 3 123 . 178 Q91: اه 75 .126 .183 154 167 137 15 180 15 149 <u>1</u>8 183 174 <u>下</u> 131 790 ٧. 6.5 18.6 15.8 <u>8</u> 6.3 ビ 15,7 5.0 ∞ <u>د</u> 3.0 14.2 15.6 0.9 8.9 ەن <u>د</u>  $\infty$ 5.8 σ 2 و <u>=</u> ∞ Ξ 15.4 ∞ <u>ف</u> 亘 ف ف\_ 15.0 <del>ر</del> ر 5.0 <u>2</u> 3 5.b ا<u>و</u>.3 <u>ہ</u>۔ ص <u>خ</u> 55. 1 段 13.0 14.2 ٥ ∞ فہ 16.2 ري. اد ص فہ 5,7 3 2 2 ₹. 8 3 N 5 576 959 14 512 583 663 660 512 562 9 **658** ماماماء روع 1 663 209 624 663 Tolo. 592 ٧. 609 3 639 619 479 Š 5,6 3,6 ტ ტ 4.8 4 ਹ ਹ 3.8 w N 3. ري م 2,7 2.7 W C 7:1 \_\_\_\_ <u>+</u> 9. ó ų, 3  $\overline{\phantom{a}}$ 8 . 223 183 288 3 193 55. 122 空 .138 90, 126 113 107 108 108 ٥ 151 108 107 <u>چ</u> 151 15. 801 Ξ Rate FIE  $\mathcal{D}$ -Ø Ø  $\varnothing$  $\varnothing$  $\varnothing$ Ø  $\mathcal{C}$ \_ left 306.7 Scale 1bs 'n 0: ا. 2.0 1.2 7. 0  $\sigma$ 8 <u>ਤ</u> M Ó 6 oO, G  $\circ$ Ś 307.6 308.7 307.8 307.5 308.6 308.3 307.9 307.8 308.5 308.1 307.7 307.7 307.6 307.6 3073 307.3 308.2 308.0 307.9 307.7 307.5 307.4 308.4 301.2 프 8 2 40 (<u>5</u> 49 为 118 1315 প্র 36 ₹) 8 8 ુ  $\vec{\mathbb{U}}_{l}$ 5, 0

57 뭐 뒴 Flow 282 占 88% 8 BN,JS,TK -2.045 - 03હ - 2077 Static Press. -,022 :023 -.023 -023 -.023 -.023 :023 -.024 700 700 902 00/ 002 900 8 8 8 8 S270 Senes uate: 5/14/92 Technician(8): 6 28 28 28 82 .28 28 .28 28 4 87 [1315] 1584 4117 Stack 176 او 100 7 7 九二 178 **T/C(3)** Calc M/B 2 2 2 9 9 2 2 2 9 Dry X I <u>د</u> ا s. S s S زلا 8.8 و. در  $\infty$ עמ 122 122 122 <u>त</u> 7 (G) 121 7 T/C(1)T/C(2) Unit: HAUGHS ann 103 163 103 163 103 53 53 103 103 20 阳 2,5 2.8 2.3 6. 2.0 2.3 5.3 7.4 Rm: ..55 .32 1.85 39 1.47 ا و R 14. .158 148 153 8 53 745 145 127 <u>د</u> و 5 S <u>ه.</u> ا او:٥ 15.8 16.2 15.9 Je.3 7.5 回 او. 16.5 0.9 15.8 15.9 16.4 15.9 ا<del>ة</del> 3 は 8 625 1.655 628 -638 849 ,52 > **63** 629 1642 202 س (لا <u>ი</u> 3.5 4.0 3.0 HODOSTOVE DATA SHEET ALZ NST2-FORM 14 RBV 1/88 3.8 33.33 3.1 ŝ > 158 155 .153 )H0 138 125 ₹ 120 .132 Rate Ø  $\varnothing$ \_  $\varnothing$ Scale 159 F 7 R Ø 307.2 306.9 307.0 306.9 306.8 30k.7 387 307.1 306.8 1515 20 9 265 છ્ય

Primary Air Set at CLOSE Pumps furned on at: 1045 Secondary Air Set at NA 376.8 BN. JS TK Check WB/DB: 129/166 Unit: HAUGHS S270 SECIES Date: 5/14/92 Run: 3 Comments Fan: ON 322.0 Static 649--.064 -,046 -.073 .057 -052 --,042 -1038 -634 -: 048 -.043 -.042 -044 -.638 Temp Room 78 ф Г 28 78 [ 78 28 78 200 80 7 78 5 Catalytio 2nd Burn 1188 و آ 356 2 0 0 4C01 9-1884 923 997 1081 Page: of | 961 792 6101 1021 Firebox 1263 1055 932 396 1026 e <del>2</del> 1221 1103 903 978 1167 268 824 146 Φ Bottom 455 453 450 457 138 447 454 977 コナカ 71/17 426 424 6 7 œ Right 326 285 305 Side 367 337 349 303 367 292 3 28°E 381 31 281 Back 285 363 253 398 262 248 228 324 341 117 237 234 309 2411 Left Side 433 383 50b 393 453 375 515 7 694 403 = \$ 488 371 367 RECORD SHEET #13 4 Stove PRE BURN DATA 385 WST2-Form16 362 Top 333 bos 380 375 354 347 343 320 587 949 B 519 Stack 353 573 400 386 272 56c 265 309 294 282 278 9LC 791 274 306.9-306.51/C#-3 Rate Burn (C) w 3 و\_ 6 4 ų Scale Weight 307.9 306.8 307.3 306.9 45 307. 8 367.5 306.9 306.7 307.0 307.3 306.8 306. 308. 367.1 8 36 <del>?</del> 80-2 3 Minute ુ

| <b>EMPERATURES</b> | CORD SHEET #14 | r2-Form14 Rev1/88 |
|--------------------|----------------|-------------------|
| TEMP               | RECOR          | WSI2-             |

S710 Senso Date: 5/14/92 Technician(s): BN JS .TE 3 Unit: HAUGHS
Run: 3
Page: Of 

|                                                                    |       |              |      |               | MEVI/ 00 |         |                       | rages        | <br> -          | 4             |                 |                   | 9                  | Pk<br>Dk        |
|--------------------------------------------------------------------|-------|--------------|------|---------------|----------|---------|-----------------------|--------------|-----------------|---------------|-----------------|-------------------|--------------------|-----------------|
| 1/2                                                                | 4     | 2            | 9    | 7             | 8        | 6       | 10                    | =            | 12              | 13            | 14              | 15                | 16                 | 17              |
| unute<br>Time                                                      | Stove | Left<br>Side | Back | Right<br>Side | Bottom   | Firebox | 2nd Burn<br>Catalytic | Room<br>Temp | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | င်း<br>Box<br>Box | C. Gas<br>Impinger | SO2<br>Impinger |
| %<br> }                                                            | 320   | 367          | 228  | 180           | ተነሳ      | የይዛ     | ا 7<br>ا              | 77           | 1448            | 248           | 34              | 241               |                    | 36              |
| %<br>%<br>%                                                        | 255   | 352          | 322  | 280           | <u>-</u> | 1117    | 357                   | 77           | 8441            | 248           | 34              | 142               | 35                 | 36              |
| <b>ड/</b><br>१४                                                    | 243   | 333          | 321  | 275           | 404      | 01فا    | 545                   | 77           | Lhhl            | 248           | 34              | 241               | 35                 | 36              |
| ₹<br>%                                                             | 231   | 315          | 313  | 270           | 401      | 568     | 559                   | LL           | ባከከተ            | 817           | 34              | 142               | 35                 | 36              |
| 20<br>35/                                                          | 220   | 297          | 307  | 257           | 344      | 532     | 599                   | LL           | 1445            | 248           | 34              | 241               | 35                 | 36              |
| 57<br>20                                                           | 230   | 283          | 305  | 246           | 384      | 526     | 883                   | TL           | ከከከተ            | 248           | 34              | 142               | 35                 | 36              |
| 8/<br>3/                                                           | 247   | 273          | 308  | 243           | 37b      | 527     | 1001                  | LL           | 1443            | 8hC           | 34              | 741               | 35                 | 3b              |
| N١                                                                 | 282   | 266          | 203  | 232           | 365      | 531     | 424                   | 76           | 1442            | 248           | 34              | 241               | 35                 | 36              |
| 5/<br>8/                                                           | 294   | 266          | 161  | 231           | 358      | 115     | 1268                  | مال          | 1441            | 8hC           | 34              | 147               | 35                 | 36              |
| ₹/<br>\$\$                                                         | 320   | 265          | 184  | 234           | 351      | 592     | 1029                  | ገገ           | 1441            | 248           | 34              | 241               | 35                 | 36              |
| 50/08/                                                             | 330   | 265          | 188  | 238           | 344      | 1891    | 1138                  | 77           | 1441            | 8hC           | 34              | 141               | 35                 | 36              |
| \<br>\2<br>\2                                                      | 350   | 269          | 193  | 248           | 338      | abol    | 1251                  | 77           | 1441            | 842           | 34              | 1hC               | 35                 | 36              |
| X                                                                  | 3322  | 3551         | 3068 | 30353         | (4546)   | (5217)  | (IB27S)               | 422)         |                 |               |                 |                   |                    |                 |
| 0a<br> <br> SS                                                     | 400   | 784          | 203  | 256           | 333      | ገሪዛ     | 1224                  | 78           | 1441            | 842           | 34              | 242               | 35                 | 36              |
| \<br>3\                                                            | 4010  | 307          | 214  | 272           | 329      | 804     | 1262                  | 78           | 1441            | 248           | 34              | 242               | 35                 | 36              |
| 2/<br>2/                                                           | 413   | 318          | 233  | ILE           | 327      | 9Z8     | 1284                  | 79           | 1441            | 348           | 34              | 243               | 35                 | 36              |
| 5/<br>18/                                                          | 420   | 332          | 233  | अन्त          | 32h      | 858     | 1254                  | 79           | ולולו           | 842           | 34              | 243               | 35                 | 36              |
| $\mathcal{M}$                                                      |       | 개            | 자    | 287           | 325      | 905     | 1289                  | 79           | 1441            | 848           | hε              | 244               | 35                 | 36              |
| 2<br>2<br>2                                                        | 426   | 358          | 258  | 295           | 325      | 952     | 1220                  | <u>4</u>     | 1441            | 8hZ           | h£              | 245               | 35                 | 36              |
| 3/2<br>元                                                           | 415   | 364          | 263  | 297           | 325      | 966     | 1229                  | 79           | 1441            | 842           | h£:             | 246               | 35                 | 36              |
| 8/2                                                                |       | 368          | 205  | 306           | 325      | 9101    | 1254                  | 79           | 1441            | 842           | hε              | 247               | 35                 | 36              |
| \$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                          | 017   | 374          | 271  | 305           | 326      | 1029    | 1118                  | 79           | 1441            | 842           | ħε              | 248               | 3.S                | 36              |
| 100<br>1300<br>1300                                                |       | 383          | 368  | 313           | 329      | 958     | 1017                  | 79           | 1441            | 248           | 34              | 248               | 35                 | 36              |
| 5/<br>\\\                                                          |       | 390          | 262  | 307           | 336      | 935     | 1016                  | -14          | 1442            | 842           | 35              | 248               | 35                 | 3k              |
| 23/<br>23/<br>23/<br>23/<br>23/<br>23/<br>23/<br>23/<br>23/<br>23/ | 370   | 395          | 255  | 310           | 332      | 816     | 955                   | _<br>_ bL    | ከተተበ            | 248           | 35              | 248               | 35                 | 36              |
| X                                                                  | 4878  | प्रयहर्      | 2958 | 3493          | 3932)    | (19601) | (141823)              | K9146        |                 |               |                 |                   |                    |                 |
| X                                                                  | 8200  | שרדר         | 6026 | 6528          | PTL48    | 18981   |                       | 1868         |                 |               |                 |                   |                    |                 |

| 10   12   12   13   14   15   15   15   16   17   17   17   17   17   17   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i de la constantina della cons |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              |                      |                               |                        |         |                       |                        | <u> </u>        |               |                 |                                     |                    |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|----------------------|-------------------------------|------------------------|---------|-----------------------|------------------------|-----------------|---------------|-----------------|-------------------------------------|--------------------|-----------------------------|
| Stove Left   Back Side   Bac     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |           |              | TEM<br>RECO<br>WST2- | PERATUR<br>AD SHEE<br>-Form14 | ES<br>T #14<br>Revl/88 |         |                       | Unit:<br>Run:<br>Page: | HAUGHS          | 072           | Seeles Date     | Date: $5/14/92$ Technician(s): $6N$ | 192<br>11: GN.75   | 1 K                         |
| National Lieft   Right   Bacton   Pitrabox Gates   Pitr     | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4         | 5            | 9                    | 7                             | 8                      | 6       | 10                    | ==                     | 12              | 13            | 14              | 15                                  | 16                 | 17                          |
| Sie   347   400   248   301   33e   43e   873   80   1448   750   345   34e   33e   33e   41e   87e   76e   34g   80   1448   75e   34e   25e   28e   33e   34e   71e   80   1448   75e   25e   28e   27e   28e   27e   26e   27e   26e   27e   26e   27e   26e   27e   26e   27e   26e   27e      | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stove     | Left<br>Side | Back                 | Right<br>Side                 | Bottom                 | Firebox | 2nd Burn<br>Catalytic |                        | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | C. Cas<br>Box                       | C. Gas<br>Impinger | SO <sub>2</sub><br>Impinger |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 201315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 367       | 400          | 248                  | 301                           | 336                    | 929     | 873                   | _                      | 8441            | 348           | 35              | 348                                 |                    | 36                          |
| 26         317         396         236         289         339         891         794         890         1448         80         1448           36         296         387         238         341         870         771         80         1448           36         282         378         214         278         340         8b1         749         80         1448           46         284         360         265         340         8b2         725         80         1448           46         286         357         265         340         800         682         80         1448           46         286         357         265         340         800         682         80         1448           56         244         341         166         266         340         800         682         80         1448           56         244         341         162         266         340         800         682         90         1448           56         244         341         162         262         332         744         548         1448           56         250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $X \perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 345       | 101          | 741                  | 296                           | 339                    | የነሳ     | 828                   | 80                     | 8441            | 248           | 35              | 248                                 | 35                 | 3%                          |
| 30         294         381         341         870         771         80         1448           36         284         341         8b1         749         80         1448           36         214         278         340         8b1         749         80         1448           40         214         340         316         340         8b2         725         80         1448           55         254         349         260         262         340         8b2         1448         80         1448           55         254         349         260         682         80         1448         80         1448           55         254         340         8bc         682         79         1448         7448           55         254         340         8bc         682         79         1448         7448           56         217         354         355         74         569         74         1448           56         217         354         352         74         569         74         1448           56         210         352         352         440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>\</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 317       | 396          | 236                  | 289                           | 339                    | 168.    | 194                   | 80                     | 1448            | 248           | 35              | 247                                 | 35                 | 36                          |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55/<br>38/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 296       | 387          | 222                  | 18C                           | 341                    | 870     | 177                   | 80                     | 8441            | 248           | 35              | 247                                 | 35                 | 36                          |
| 46 249 347 208 273 340 852 725 80 1448 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | है।<br>१८                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 282       | 378          | 214                  | 278                           | 340                    | 1 ગ8    | 749                   | 80                     | 8448            | 248           | 35              | 747                                 | 35                 | 36                          |
| 14   14   14   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 269       | 367          | 208                  | 273                           | 340                    | 852     | 725                   | 80                     | 1448            | 248           | 35              | 247                                 | 35                 | 36                          |
| \$\sigma_{19}\$ \text{1.6} \text{ 3.49} \text{ 3.60} \text{ 6.82} \text{ 3.6} \text{ 1.44} \text{ 3.41} \text{ 1.65} \text{ 2.60} \text{ 3.39} \text{ 7.82} \text{ 6.60} \text{ 8.0} \text{ 1.44} \text{ 8.0} \text{ 8.0} \text{ 1.44} \text{ 8.0} \text{ 1.44} \text{ 8.0} |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 장/<br>/示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 258       | 357          | 263                  | 267                           | 340                    | 816     | 669                   | 80                     | 8441            | 248           | 35              | 248                                 | 38                 | 36                          |
| 55 244 341 195 246 339 782 6460 80 1448  56 327 338 189 252 335 747 598 79 1448  56 327 338 189 252 333 726 586 79 1448  50 203 301 183 234 330 726 549 79 1448  50 203 301 178 229 326 690 549 79 1448  50 203 301 178 229 326 690 549 79 1448  51 18 284 774 72 329 676 526 78 1448  52 198 274 176 323 323 676 520 78 1448  52 198 274 178 213 315 640 512 78 1448  53 180 277 181 213 315 640 525 79 1448  54 181 262 176 202 304 635 505 79 1448  55 180 267 176 203 304 636 557 79 1448  56 184 266 184 198 302 641 5265 79 1446  56 184 266 184 198 302 641 5265 79 1446  57 186 187 268 187 188 302 641 5265 79 1446  58 180 266 184 198 302 641 5265 79 1446  59 184 266 184 198 302 641 5265 79 1446  50 184 266 184 198 302 641 5265 79 1446  50 184 266 184 198 302 641 5265 79 1446  50 184 266 184 188 302 641 5265 79 1446  50 184 266 184 188 302 641 5265 79 1446  50 184 266 184 188 302 641 5265 79 1446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 349          | 200                  | 265                           | 340                    | 800     | 682                   | 80                     | 8441            | 248           | 35              | 248                                 | 35                 | 3%                          |
| 1448   134   192   252   335   147   598   79   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448   1448         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 244       | 341          | 195                  | 260                           | 339                    | 787     | ପ୍ରବା                 | 80                     | 1448            | 248           | 35              | 842                                 | 35                 | 25                          |
| 6. 327 338 189 252 335 747 598 79 1448<br>10 217 318 187 238 333 726 586 79 1447 75 3309 4356 2529 324 330 711 569 79 1447 75 320 321 115 569 79 1448 75 111 22 320 111 569 549 79 1448 75 111 22 320 203 323 616 535 79 1448 75 111 22 310 624 520 78 1448 75 111 22 310 624 520 78 1448 75 111 22 310 623 508 78 1448 75 114 220 304 624 525 79 1448 75 114 220 304 624 525 79 1448 75 114 225 180 227 18 205 304 624 525 79 1448 75 114 225 184 198 302 641 565 79 1448 75 114 225 184 198 302 641 565 79 1448 75 114 225 184 198 302 641 565 79 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 114 226 184 198 302 641 565 70 1448 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148 75 1148   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Lambda$ L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 236       | 334          | 192                  | 257                           | 336                    | 164     | 98 <i>م</i> ا         | 79                     | 1448            | 248           | 35              | 248                                 | 35                 | 3                           |
| 10 21 318 187 238 333 726 586 79 1447 16 2309 4356 2529 3260 4658 (86649) 957 11 5 21 11 5 21 11 5 5 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ١I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227       | 338          | 189                  | 252                           | 335                    | 747     | 598                   | 19                     | 8441            | 248           | 35              | 248                                 | 38                 | 35                          |
| 3209 4356 2529 3240 40587 (9052) (8604) 9577  20 203 301 118 234 330 711 569 79 1448  22 203 301 118 229 3240 719 79 1448  23 198 294 179 220 321 645 526 78 1448  24 191 284 173 219 315 623 508 78 1448  25 191 284 274 169 214 315 633 508 78 1448  25 180 247 169 214 315 633 505 78 1448  25 180 247 169 206 308 624 525 79 1448  25 180 265 176 203 304 636 555 79 1448  25 180 265 184 198 302 641 565 79 1446  25 180 266 184 198 302 641 565 79 1446  25 180 268 187 198 300 639 567 79 1446  25 180 268 187 198 300 639 567 79 1446  25 180 268 181 169 302 641 565 79 1446  25 180 268 181 168 300 639 567 79 1446  25 180 268 181 168 300 639 567 79 1446  25 180 268 181 168 300 639 567 79 1446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>\</u> 2\<br><u>{</u> 2\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 217       | 318          | 187                  | 238                           | 333                    | 726     | 586                   | 79                     | 1447            | 247           | 35              | 248                                 | 35                 | 36                          |
| 15 211 311 183 234 330 111 569 79 1417 175 20 203 301 128 226 249 79 1448 25 198 294 176 203 323 676 554 79 1448 35 198 294 174 220 326 676 526 78 1448 24 184 220 32 171 213 315 640 512 78 1448 24 184 226 181 274 187 187 183 505 184 520 78 1448 205 181 227 169 206 308 624 525 79 1448 206 184 226 184 525 79 1448 206 184 226 304 624 525 79 1448 206 184 226 304 624 525 79 1448 206 184 206 184 198 302 641 565 77 19 1449 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79 1444 205 310 629 567 79   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3309      | 4356         | 25.29                | 3260                          | (40583)                | (9952)  | (8604Y)               | 457                    | _               |               |                 |                                     |                    |                             |
| 20 203 301 178 229 326 690 549 79 1448 25 198 294 176 333 323 676 526 79 1448 36 195 289 174 220 331 663 526 78 1448 36 191 284 173 219 319 654 520 78 1448 36 181 274 169 214 313 623 508 78 1448 36 181 265 176 206 308 624 525 79 1448 36 181 265 176 203 304 636 557 79 1448 36 184 216 184 198 362 641 565 79 1448 36 187 268 187 198 360 639 567 79 1444 378 187 268 187 198 360 639 567 79 1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 311          | 183                  | 234                           | 330                    | 111     | 569                   | 79                     | 1447            | 247           | 35              | 248                                 | 35                 | 36                          |
| 25 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Lambda$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _         | 301          | 811                  | 229                           | 326                    | 969     | 549                   | 79                     | 8441            | 247           | 35              | 248                                 | 35                 | 36                          |
| 38 195 289 173 219 519 663 526 78 1448 24 520 78 1448 24 520 78 1448 24 520 78 1448 24 520 78 1448 24 520 78 1448 24 520 78 1448 24 520 78 1448 25 180 267 180 1448 25 58 180 267 176 208 308 624 525 79 1448 260 181 265 176 203 304 636 557 79 1448 260 181 265 176 203 304 636 557 79 1448 260 181 265 176 203 304 636 557 79 1444 260 187 268 187 268 187 148 300 639 565 565 79 1444 260 187 268 187 268 187 188 300 639 565 565 79 1444 260 187 268 187 268 187 188 300 639 565 565 79 1444 260 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 268 187 26     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ١l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 794          | ا_<br>ا              | 223                           | 323                    | مالم    | 538                   | 79                     | 8441            | 246           | 35              | 348                                 | 35                 | 98                          |
| 35 191 284 173 219 319 654 520 78 1447 7 1448 2 15 184 274 169 213 315 640 512 78 1148 2 15 184 274 169 214 313 623 508 78 1448 1448 25 180 24 525 79 1448 1448 25 180 24 525 79 1448 1448 25 180 24 525 79 1448 1446 25 184 24 525 79 1448 1446 25 184 245 184 565 184 245 184 148 300 639 567 79 1444 1446 1446 1446 24 565 184 248 187 148 300 639 567 79 1444 248 187 148 300 639 567 74 1444 248 187 188 300 639 567 74 1444 248 187 188 300 639 567 563 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | λk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 784          | 그                    | 220                           | 331                    | 663     | 526                   | 18                     | 1448            | 247           | 38              | 248                                 | 35                 | 36                          |
| 40 186 277 17 71 213 315 640 512 78 1448 2 45 184 274 169 214 313 633 508 78 1448 1 148 250 181 270 168 206 308 624 525 79 1448 1447 1440 265 184 266 184 198 302 641 565 79 1446 265 184 266 184 198 302 641 565 79 1446 265 187 268 187 198 300 639 567 79 1446 265 187 268 187 198 300 639 567 79 1446 265 187 268 187 198 300 639 567 79 1446 265 187 268 187 188 300 639 567 79 1446 265 187 268 187 188 300 639 567 568 79 1444 265 187 268 187 1830 2643 2435 251 1630 251 264 251 264 251 264 251 264 251 264 251 265 251 264 251 264 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 265 251 26     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 161       | 284          | 173                  | 219                           | 319                    | Lo S4   | 520                   | 18                     | 1447            | 346           | 35              | 248                                 | 35                 | 36                          |
| 45 184 274 169 214 313 623 508 78 1448 56 181 270 168 212 310 623 505 78 1448 55 180 267 169 206 308 624 525 79 1448 56 181 265 176 203 304 636 557 79 1446 56 184 266 184 198 302 641 565 79 1446 56 187 268 187 198 300 639 567 79 1444 628 187 268 187 198 300 639 567 79 1444 628 187 268 187 198 300 639 567 79 1444 628 187 268 187 198 300 639 567 79 1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | λl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 277          | Ē                    | 213                           | 315                    | 049     | 512                   | 18                     | १५५८            | 24 le         | 35              | 248                                 | 38                 | ગદ                          |
| 50 181 270 168 212 310 623 505 78 1448<br>55 180 267 169 206 308 624 525 79 1448<br>56 184 266 184 198 362 641 5657 79 1446<br>56 184 266 184 198 360 639 567 79 1446<br>56 184 266 187 198 360 639 567 79 1446<br>(2281) 3362 2563 3711) (1830) (6438) 943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/3/3/3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 184       | 274          | 09                   | 214                           | 313                    | 633     | 508                   | 78                     | 1448            | 2મહ           | 35              | 248                                 | 35                 | 36                          |
| 55 180 267 169 206 308 624 525 79 1448  150 181 265 176 203 304 636 557 79 1447  150 187 266 184 198 362 641 565 79 1446  150 187 268 187 198 360 639 567 79 1444  (228) 3366 2108 2569 3771 (1830) (6438) 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VΤ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -         | 270          | 891                  | 212                           | 310                    | 623     | 505                   | 78                     | 1448            | 246           | 35              | 248                                 | 35                 | 36                          |
| 500 181 265 176 203 304 636 557 79 1447 150 184 266 184 198 302 641 565 79 1446 1446 187 228 187 198 300 639 567 79 1444 1446 187 3346 2108 2569 37717 (1830) (6438) 643 187 187 187 187 187 187 187 187 187 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>V</b> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 267          | 69                   | 206                           | 308                    | 624     | 528                   | 79                     | 1448            | 246           | 35              | 247                                 | 35                 | 36                          |
| 65 184 266 184 198 362 641 565 79 1446 150 187 268 187 198 360 639 567 79 1444 (2281/3366/2108/2569/3771)/(7830)/(6438)/(443)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _         | 265          | 1-16                 | 203                           | 304                    | વકુવ    | 557                   | 79                     | 1447            | ७५८           | 35              | 747                                 | 35                 | 36                          |
| (2281/3366/2108/2569/3771) (1830) (6438) (443)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΛL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •         | 266          | 184                  | 861                           | 302                    | 149     | 565                   | 79                     | 9441            | 246           | 35              | 247                                 | 35                 | 36                          |
| 3366 2108 2569 3771) (7830) (6438)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 268          |                      | N                             | 300                    | 639     | , 567                 | 79.                    | 1444            | 246           | 35              | 247                                 | 35                 | 36                          |
| 154481101231173571173017 21 11 27 20 100 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1872      | ,जुनहर       | 2108                 | 4                             | . 1                    | (18     | $\overline{\lambda}$  | (0±0)                  |                 |               |                 |                                     |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\langle  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1370<br>1 | 115448       | 10063                | -1                            | 163067                 | 364681  | 39499                 | 3768                   |                 |               |                 |                                     |                    |                             |

| TYPERATURES  PROTECTION  TYPERAPORES  TYPERA |               | TEMPE     | ا الله الله الله | WATURA<br>CUERT               |                                         |         |                       | Lait:             | Unit: Haughs     | SZ70 SECIES   | EELES DATE      | te: 5/4/92    | Date: 5/14/92      | 1                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------------------|-------------------------------|-----------------------------------------|---------|-----------------------|-------------------|------------------|---------------|-----------------|---------------|--------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           | WST2-            | RECORD SHEET<br>WST2-Form14 1 | RECURD SHEET #14<br>WST2-Form14 Rev1/88 |         |                       | Run: 3<br>Page: 3 | 3<br>3 <b>of</b> | 8             | Jec             | hnician(s     | A DN JS            | 12, 14<br>14, 14            |
| 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2             |           | 9                | 7                             | 8                                       | 6       | 10                    | =                 | 12               | 13            | 14              | 15            | 16 322.            | 71 0                        |
| 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 3           | ge r      | Back             | ragne<br>Side                 | Bottom                                  | Firebox | 2nd Burn<br>Catalytic | Room<br>Temp      | Tube<br>Furnace  | Sample<br>Box | Impinger<br>Out | C. Gas<br>Box | C. Gas<br>Impinger | SO <sub>2</sub><br>Impinger |
| 188 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26            | <u>o-</u> | 881              | 195                           | 248                                     | 625     | 571                   |                   | ነባባተ             | ०५८           | 35              | 747           |                    | 36                          |
| 189 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77            | 7         | 190              | 195                           | 296                                     | 617     | 569                   | 78                | 9441             | 247           | 35              | 247           | 35                 | 36                          |
| 190 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7             | 13        | 192              | 194                           | 296                                     | 519     | 570                   | 78                | トサウト             | 247           | 35              | 247           | 35                 | 3%                          |
| 192 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27            | Ŋ         | 192              | 192                           | 295                                     |         | <b>564</b>            | 78                | 1447             | 747           | 35              | 747           | 38                 | 36                          |
| TTC 591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ايم           | ~         | 192              | 192                           | 794                                     | 009     | 551                   | 18                | 1447             | 747           | 35              | 247           | 35                 | 36                          |
| 193 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ň             | 280       | 95               | 193                           | 293                                     | 592     | 559                   | 78                | Lhh!             | 1             | 35              | Lh7           | 35                 | 36                          |
| 193 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %             | 282       | 188              | 196                           | 292                                     | 581     | 556                   | 78                | Lhhl             | Lh7           | 35              | LHZ           | 35                 | 36                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 285       | 186              | 188                           | 290                                     | 569     | 248                   | 78                | <b>Lhhl</b>      | 247           | 35              | 747           | 35                 | 3,6                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N             | 285       | 183              | 188                           | 284                                     | Sb2     | 243                   | 18                | Lhhi             | 147           | 35              | 247           | 35                 | 36                          |
| 172.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | バル            | 2498      |                  | (127)                         | (2643)                                  | 53697   | (5030)                | 703               |                  |               |                 |               |                    |                             |
| 55117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \ <del></del> | 1796      | [23ઓ             | 14084)                        | 18949)                                  | KT5811) | (44529)               | 出記                |                  |               |                 |               |                    |                             |
| 2723(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ഗ്ര           |           | 7-17             | 75-12                         | (332)                                   | (134X)  | (181)                 | (183)             |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J             |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı             |           |                  |                               |                                         |         |                       | AT                | START            | 322.0.        |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |                  |                               |                                         |         | -                     |                   | STDP             | 227.21        |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı             |           |                  |                               |                                         |         |                       |                   |                  | -87b-         | 7               |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĺ             |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L             |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Li            |           |                  |                               |                                         | ·       |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |           |                  |                               |                                         |         |                       | -                 |                  |               |                 |               |                    |                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |                  |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ]             |           |                  | _                             |                                         |         |                       |                   |                  |               |                 |               |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           | !:               |                               |                                         |         |                       |                   |                  |               |                 |               |                    |                             |

### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EE                                      | MC - West                | Kent,         | WA 9803       | <u>2</u> Date:         | : <u>5/14/9</u> | 2 Analy             | te: <u>CO<sub>2</sub> (</u> | (15-1)         |  |
|-----------------------------------------------|--------------------------|---------------|---------------|------------------------|-----------------|---------------------|-----------------------------|----------------|--|
| Source:                                       | HAUGHS                   | S270          | Seeie         | S Run #                | : <u>3</u>      | <del></del>         |                             | · ····         |  |
| Zero Cyl                                      | #: <u>T13</u>            | 2257          | C             | onc. <u>00.0</u> %     | CO2_            | Cyl Pre             | ess: <u>800</u>             | psi            |  |
| Certi                                         | fied by: _               | LIQUI         | O ALE         | <u> </u>               |                 |                     | Date: 10)                   | 1/91           |  |
| Span Cyl                                      | #: <u>290</u>            | 104           | C             | onc. 12.68             | CO2             | Cyl Pre             | ess: <u>900</u>             | )psi           |  |
| Certi                                         | fied by: _               | MATH          | IESON         |                        |                 |                     | Date: 10/3                  | 191            |  |
| Analyzer                                      | : Make:                  | Horiba        |               | Model:P                | IR-200          | 0                   | SN: 4070                    | 169            |  |
| Range:                                        | 0 - 25.0%                | CO2           | Aı            | nalyzer Ou             | tput:_          | 0 - 1.0             |                             | v.             |  |
| Flow:                                         | 1.5 SCFH                 | ·             | Meası         | ured by:               | Rotame          | ter: X              | Flowmete                    | r:             |  |
|                                               | Value = 2                |               |               |                        |                 |                     |                             |                |  |
| EPA Cont                                      | rol Limits               | $s = \pm 2$ . | .5% of 2!     | 5.0% CO <sub>2</sub> = | ± 0.6           | 25% CO <sub>2</sub> |                             |                |  |
| Pre Run                                       | Audit: By                | 7 <b>:</b>    | DK            | Tim                    | e:              | 035                 | Temp: <u>77</u>             | o <sub>F</sub> |  |
|                                               |                          |               |               | Audit Resu             |                 |                     |                             |                |  |
| Point #                                       | Expec<br>Meter           | ted Res       |               | Act                    | ual Res         | sponse              | + Conc.<br>Difference       | 1              |  |
|                                               |                          |               |               | 00.0                   |                 |                     |                             | .217           |  |
| Zero                                          |                          |               | 00.0<br>ما 12 |                        | .499            | <del> </del>        | 237                         | -1.879         |  |
| Span                                          | <b>8</b>                 |               | <u> </u>      | , , , ,                | . / / /         |                     |                             | 1              |  |
| Comments                                      | <u>:</u>                 |               |               |                        |                 |                     |                             |                |  |
|                                               |                          |               |               |                        |                 |                     |                             | ·              |  |
| Post Run Audit: By: 0K Time: 16/0 Temp: 77 OF |                          |               |               |                        |                 |                     |                             |                |  |
|                                               |                          |               |               | Audit Resu             | <del></del>     |                     | , <u></u>                   |                |  |
| Point                                         |                          | ted Res       | ponse         | Act                    | ual Res         | ponse               | + Conc                      | [ A ]          |  |
| ##                                            | Meter                    | DVM           | *             | Meter                  | DVM             | 8                   | Difference                  |                |  |
| Zero                                          | 00.0                     | .000          | 00.0          | 0.00                   | .000            | .054                | . 054                       | .217           |  |
| Span                                          | 50.4                     | .504          | 12.6          | 49.9                   | . 499           | 12.363              | 237                         | -1.879         |  |
| Comments                                      |                          |               |               |                        |                 |                     |                             |                |  |
|                                               |                          |               |               |                        |                 |                     |                             |                |  |
|                                               | Difference<br>ifferece = |               |               |                        | m) v 10         | ١0                  | <del> </del>                | 1              |  |
| were a Di                                     | rrrerece                 | ALL T         | (PPM) =       | mark a (hb)            | 11. A T         | , ,                 |                             |                |  |

<sup>+</sup> Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

#### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EEMC                                     | - West,         | Kent,          | WA 98032      | Date:                  | 5/14/92      | Anal             | yte: <u> </u>         | 15-2)  |  |
|------------------------------------------------|-----------------|----------------|---------------|------------------------|--------------|------------------|-----------------------|--------|--|
| source: HA                                     | UGHS S          | 270            | Series        | Run #:                 | 3_           |                  |                       |        |  |
| Zero Cyl #:                                    | T 13:           | 2257           | Coi           | nc. <u>00.0</u> %_     | 02           | Cyl Pre          | ess: <u>800</u>       | psi    |  |
| Certifie                                       | d by:           | Liau           | 10 AI         | <u>e</u>               |              |                  | Date: <u>10/7</u>     | 191    |  |
| Span Cvl #:                                    | 2900            | 24             | Co            | nc. 12.48              | 02           | Cyl Pro          | ess: <u>900</u>       | psi    |  |
| Certifie                                       | d by:           | MATH           | HESON         |                        |              |                  | Date: 10/3            | 1/91   |  |
| Analvzer:                                      | Make: 7         | eledyn         | e             | Model: 32              | 20 Ax        |                  | SN: 3746              | 5      |  |
| Range: 0 -                                     | 25.0%           | )2             | An            | alyzer Out             | put:         | 0 - 1.           | 0                     | v.     |  |
|                                                |                 |                |               |                        |              |                  | Flowmete:             |        |  |
| DD3 - 0 17-                                    | 7 25            | . 09 00        |               |                        |              |                  |                       | •      |  |
| EPA Control                                    | Limits_         | = + 2.         | 5% of 25      | .0% O <sub>2</sub> = - | 0.625        | 8 O <sub>2</sub> |                       |        |  |
| Pre Run Aud                                    | <u>it</u> : By: | ·              | DK.           | Time                   | ≥: <u>10</u> | 145              | Temp: <u>78</u>       | of     |  |
|                                                |                 |                |               | udit Dogu              | 1+0          |                  |                       |        |  |
| Point                                          | Expect          |                | ponse         | Acti                   | al Res       | ponse            | + Conc.<br>Difference | Δ.     |  |
| #                                              | Meter           | DVM            |               | Meter                  | DVM          | - 5              | Dillerence            |        |  |
| Zero                                           | 00.0            | .000           | 00.0          | 00.0                   | .003         | 7.028            | 028                   | 114    |  |
| Span                                           |                 |                |               |                        |              |                  | .148<br><u>• + 48</u> | 1.192  |  |
| Comments:                                      | Teledyne        | ∍#2. <u>Cy</u> | <u>1 * E</u>  | XD & A                 | CL 6         | AG C             | <u> </u>              |        |  |
|                                                |                 |                |               |                        |              |                  |                       |        |  |
|                                                |                 | ,,,,           |               |                        |              |                  |                       |        |  |
| Post Run Audit: By: DK Time: 1620 Temp.: 77 of |                 |                |               |                        |              |                  |                       |        |  |
| FOSC Kun Ac                                    | urc. D          |                |               | udit Resu              |              |                  | •                     |        |  |
| Point                                          | Expec           | ted Res        |               | Act                    | ual Res      | sponse           | + Conc.               | 8      |  |
| #                                              | Meter           | DVM            | 8             | Meter                  | DVM          | 8                | Difference            | 77 g   |  |
| Zero                                           | 00.0            | .000           | 00.0          | 0.00                   | .002         | -,054            | -,054                 | -, 216 |  |
| Span                                           | 12.4            | ,496           | 12.4          | 12.4                   | .493         | 12.471           | .671                  | .575   |  |
| Comments:                                      | Teledyn         | e#2 Cy         | 1 % F         | xp & A                 | ct %         | Adj t            | <u>ο</u> + Δ %        |        |  |
|                                                |                 | _              | <del></del> - | <del></del> -          |              |                  |                       |        |  |
|                                                |                 | ·              |               |                        |              |                  |                       |        |  |
| + Conc. Dif                                    | ference         | = Act          | % - Exp       | (Std) %                |              |                  | •                     |        |  |

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100 Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

## PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EEM                                 | C - West,                             | Kent,    | WA 98032   | Date:             | 5/14/9       | 2 Anal       | yte: <u>CO (</u>                        | 15-3)          |  |
|-------------------------------------------|---------------------------------------|----------|------------|-------------------|--------------|--------------|-----------------------------------------|----------------|--|
|                                           | LAUGHS                                |          |            |                   |              |              |                                         |                |  |
| Zero Cyl                                  | #: <u>T13</u>                         | 2257     | Co         | nc. <u>00.0</u> % | со           | cyl Pr       | ess: <u>800</u>                         | psi            |  |
| Certif                                    | ied by: _                             | LIGU     | 110 AIR    | 2                 |              |              | Date: 10/7                              | 191            |  |
| Span Cyl                                  | #: 2900                               | 74       | Со         | nc. 4.96%         | CO           | Cyl Pr       | ess: 900                                | )psi           |  |
| Certif                                    | ied by: _                             | MATH     | ESON       |                   |              |              | Date: 10/3                              | 1/91           |  |
| Analyzer:                                 | Make:                                 | Horiba   |            | Model: P          | IR-2000      | ) .          | SN: 408                                 | 005            |  |
| Range: 0                                  | - 10.0%                               | со       | An         | alyzer Ou         | tput:        | 0 - 1.       | 0                                       | v.             |  |
|                                           |                                       |          |            |                   |              |              | Flowmet                                 |                |  |
| EPA Span                                  | Value = 1                             | 0.0% CC  | )          |                   |              |              |                                         |                |  |
|                                           | ol Limits                             |          | ~ .        | <del></del>       |              |              | - 0                                     |                |  |
| Pre Run A                                 | udit: By                              | :        | <u>UK</u>  | Tim               | e: <u>10</u> | 50           | Temp: <u>78</u>                         | o <sub>F</sub> |  |
|                                           | · · · · · · · · · · · · · · · · · · · |          |            | udit Resu         |              |              |                                         |                |  |
| Point<br>#                                | Expec<br>Meter                        |          | ponse<br>% | Act<br>Meter      | ual Res      |              | <pre>+ Conc. Difference</pre>           | <b>△</b> %     |  |
| Zero                                      | 00.0                                  |          |            | <del></del>       |              | <del> </del> |                                         | 044            |  |
| Span                                      |                                       | .496     |            | <del></del>       |              |              |                                         | 1.174          |  |
| Comments:                                 |                                       | <u> </u> |            |                   |              |              |                                         |                |  |
|                                           | •                                     |          |            |                   |              |              |                                         |                |  |
|                                           |                                       |          |            |                   |              |              |                                         |                |  |
| Post Run Audit: By: OKTime:1625Temp.:77or |                                       |          |            |                   |              |              |                                         |                |  |
|                                           |                                       |          |            | udit Resu         | lts          |              |                                         |                |  |
| Point                                     |                                       | ted Res  | sponse     | Act               | ual Res      |              | + Conc.                                 | ۸۰             |  |
| #                                         | Meter                                 | DVM      | 8          | Meter             | DVM          | 8            | Difference                              |                |  |
| Zero                                      | 00.0                                  | .000     | 00.0       | 00.2              | .002         | .016         | .016                                    | .160           |  |
| Span                                      | 49.6                                  | . 496    | 4.96       | 48.8              | .488         | 4.967        | .007                                    | .147           |  |
| Comments:                                 |                                       |          |            |                   |              |              | . · · · · · · · · · · · · · · · · · · · | ı              |  |
|                                           |                                       |          |            |                   |              |              |                                         |                |  |
|                                           | ifference<br>fferece =                |          |            |                   | m) X 10      |              | ·                                       |                |  |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

## PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| \                                             |                   |                   |                    |                       |                    | $\frac{Z}{A}$ Anal | yte: <u>SO2</u> | (15-4) |  |
|-----------------------------------------------|-------------------|-------------------|--------------------|-----------------------|--------------------|--------------------|-----------------|--------|--|
| Source: HF                                    | NUGHS             | S270              | SERIE              | S Run #               | : 3                |                    |                 |        |  |
| Zero Cyl #:                                   | <u>T13:</u>       | 2257              | Co                 | nc.00.0 p             | om SO <sub>2</sub> | Cyl Pr             | ess: <u>800</u> | psi    |  |
| Certifie                                      | d by: _           | Liqui             | O AIR              | ··                    |                    |                    | Date: 10/       | 7/91   |  |
|                                               | -                 |                   |                    |                       |                    |                    | ess: <u>45</u>  | •      |  |
|                                               |                   |                   |                    |                       |                    |                    | Date: 9/2       |        |  |
|                                               |                   |                   |                    |                       |                    |                    | SN: 403         |        |  |
|                                               |                   |                   |                    |                       |                    |                    | 0               |        |  |
|                                               |                   |                   |                    |                       |                    |                    | Flowmete        |        |  |
|                                               |                   |                   |                    |                       | c                  |                    |                 |        |  |
| EPA Span Va<br>EPA Control                    | lue = 2<br>Limits | 500  ppr = $+2.5$ | n SO2<br>5% of 250 | 0 ppm SO <sub>2</sub> | = +62              | .5 ppm             | SO <sub>2</sub> |        |  |
| i                                             |                   |                   |                    |                       |                    |                    | Temp:           |        |  |
|                                               |                   |                   |                    | .udit Resu            | lts                |                    |                 |        |  |
| Point                                         | Expec             | ted Res           |                    | Act                   | ual Re             | sponse             | + Conc.         |        |  |
| #                                             |                   | DVM               |                    | Meter                 | DVM                | ppm                | Difference      | Δ 8    |  |
| Zero                                          | 00.0              | .000              | 00.0               | •                     | , ·                | 1                  | 8.432           | . 337  |  |
| Span                                          | 49.3              | .493              | 1232               | 49.3                  | . 493              | 1234.              | 2.000           | .162   |  |
| Comments:                                     |                   |                   |                    |                       |                    |                    |                 |        |  |
|                                               |                   |                   |                    |                       |                    |                    |                 |        |  |
|                                               | ·                 |                   |                    |                       |                    |                    |                 |        |  |
| Post Run Audit: By: DK Time: 1605 Temp: 78 of |                   |                   |                    |                       |                    |                    |                 |        |  |
| ·                                             |                   |                   | P                  | udit Resu             | lts                |                    |                 |        |  |
| Point                                         |                   | ted Res           | ponse              |                       | ual Re             |                    | + Conc.         | ₽ 8    |  |
| #                                             | Meter             | DVM               | ppm                | Meter                 | DVM                | ppm                | Difference      |        |  |
| Zero                                          | 00.0              | .000              | 00.0               | 00.1                  | .001               | 5.936              | 5.936           | . 237  |  |
| Span                                          | 49.3              | .493              | 1232               | 49.1                  | .491               | 1229-              | - 2.992         | 243    |  |
| Comments:                                     |                   |                   |                    |                       |                    |                    |                 |        |  |
|                                               |                   |                   |                    |                       |                    |                    |                 |        |  |
| + Conc. Dif                                   | ference           | = Act             | ppm - Ex           | p (Std) p             | pm                 |                    |                 |        |  |

<sup>+</sup> Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Run: 3
Date: 5/14/92
Technicians: BN TL DK TS
WST6-Form3-Rev11/89

# QUALITY CHECKS WOODSTOVE DATA SHEET #16

| Ambient = Tr:                  |                     | 61.2      | · ·           | of T/              | C#30:     | <i>63</i> ,3   |          |
|--------------------------------|---------------------|-----------|---------------|--------------------|-----------|----------------|----------|
| Thermocouple Ch                | eck (at a           | mbient):  | T/C#1:        |                    |           | 2: <u>64.3</u> | 0        |
| T/C #3: 64,5                   | °F;                 | T/C #4    | : 630         | o <sub>F</sub> ;   | T/C #     | 5: 62,2        | o        |
| r/c #6: 62,2                   | °F;                 | T/C #7    | : 62.0        | °F;                | T/C #     | 8:6116         | 0        |
| T/C #9: 63.0                   | °F;                 | T/C #1    | 0: 63.1       | o <sub>F</sub> ;   | T/C #1    | 1: 6/12        | o        |
| r/c #12: 65.5                  | or;                 | T/C #1    | 3: 64         | √_o <sub>F</sub> ; |           | 4:64.9         | o        |
| r/c #15: 646                   | o <sub>F</sub> ;    | T/C #1    | 6: 59,3       | o <sub>F</sub> ;   |           | 1:61.4         | o        |
| r/c #18: <u>68./</u>           | o <sub>F</sub> ;    | T/C #1    | 9 :           | o <sub>F</sub> ;   | T/C #2    | 0 :            | o        |
| T/C #21:                       | o <sub>F</sub> ;    | T/C #2    | 2:            | o <sub>F</sub> ;   | T/C #2    | 3 :            | o        |
| r/c #24:                       | o <sub>F</sub> ;    | T/C #2    | 5:            | o <sub>F</sub> ;   | T/C #2    | 5 <b>:</b>     | 0        |
| Comments:                      |                     |           |               |                    |           |                |          |
|                                |                     |           |               |                    |           |                |          |
|                                |                     |           |               |                    | _         |                |          |
|                                |                     |           |               |                    |           | :              |          |
| Thermocouple Rea               | adout:              |           |               |                    |           |                |          |
| Zero<br>(0°F) : <u>,2</u>      | Adj<br>oF to:       | 0         |               |                    |           | 7 Differ<br>신년 |          |
| Span<br>(2000°F):/999/7        | Adj<br>OF to:       | 2000.     | Spar<br>of (2 | 1<br>2000°F):_     | 2005.0°F  | <i>i95</i>     | <u> </u> |
| (Allowable % Dii               | ference             | = 1.5%.   | Use for       | mulas or           | Woodstor  | re Data Si     | heet     |
| 15 to calculate                | . % Diffe           | rence)    |               |                    | * .       | . •            |          |
|                                |                     |           |               |                    |           |                |          |
| Thermocouple Rea               | dout Pre            | test Line | earity (      | heck               | •         |                |          |
| 00F = 00                       |                     |           |               |                    | 00F = 3   | 99.6           | F;       |
| $600^{\circ} = \frac{60/.2}{}$ | o <sub>F;</sub> 8   | 00°F =    | 801.2         | <br>_°F; 100       | 00F = /   | 000.3 0:       | F;       |
| 1200°F= //97,8                 |                     |           |               |                    | 10°F = /3 |                | F        |
| 1800°F= 1799.6                 | o <sub>F</sub> ; 20 | 00°F = 3  | 7000.0        | o <sub>f</sub>     |           |                | •        |
|                                |                     | 4         |               |                    |           | 21 A.          | **;      |
| racer Gas (SO <sub>2</sub> )   | Injecti             | on Train  | Leak Ch       | eck: Pr            | e / Po    | st /           | • •      |
| ombustion Gas (                |                     | O) Train  | Leak Ch       | eck: Pr            | e Pr      | st /           |          |
| racer Gas (SO <sub>2</sub> )   |                     |           |               | ck: P+             | e / Pr    | ost /          |          |
| Praft (Static) (               |                     |           |               | P+                 | e / Po    |                |          |
| Coracte, 6                     | rest ver            | JACORI    |               | . L'I              |           |                | •**      |
| Scale Check Pre                | (W+_ #'s            | 3.5.      | 2-305         | T2 = 10            |           |                |          |
| Post                           | (Wt, #'             | s): 316   | .0 301        | 0.5 = 11           | 2.0       |                |          |
| Stack cleaned pr               |                     |           |               |                    |           | :              |          |
| Creaned pr                     | _01 00 0            |           |               | <del>-</del>       |           |                |          |

2 TEST No. : CLIENT : HAUGHS PRODUCTS DATE: 5/13/92 S-27X MODEL: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* PERCENT PERCENT S02 DELTA METER TIME METER CO C02 COCENTR. TEMP. READING H (DEG. F) ( % ) ( % ) PPM (IN. H2O) (C F) (MIN.) \_\_\_\_\_ ======== ====== 4.60 625 80 1.14 0.150 0 443.500 400 80 0.66 2.50 0.370 5 445.000 625 2.80 0.150 81 0.55 10 447.377 650 2.80 448.906 0.140 82 0.60 15 0.140 82 0.67 3.00 650 20 450.382 83 0.63 3.80 625 0.150 25 451.858 0.72 3.80 650 83 453.398 0.140 30 0.72 3.90 650 84 0.140 454.879 35 5.90 600 85 0.67 456.365 0.160 40 550 6.30 85 0.71 457.981 0.190 45 0.73 8.00 525 85 459.744 0.210 50 525 0.68 8.60 461.591 86 55 0.210 9.70 500 86 0.53 60 463.444 0.230 500 86 0.39 9.90 65 465.391 0.230 475 87 0.37 10.00 70 467.338 0.260 0.37 9.70 475 0.260 87 75 469.395 0.32 475 88 10.20 80 471.452 0.260 475 88 0.30 10.00 0.260 85 473.516 88 0.27 10.10 475 0.260 90 475.581 475 89 0.25 9.70 0.260 95 477.645 475 88 0.28 9.90 100 479.717 0.260 475 8.50 481.781 0.260 89 0.35 105 0.230 89 0.57 7.60 500 110 483.853 500 89 0.73 7.00 115 485.822 0.230 500 120 487.790 0.230 89 0.76 6.60 500 125 489.760 0.230 89 0.82 6.30 89 0.53 7.10 500 130 491.730 0.230 88 1.08 5.90 500 135 493.700 0.230 88 1.13 5.60 500 0.230 140 495.663 500 88 0.99 5.80 145 497.625 0.230 525 88 1.47 5.20 150 499.588 0.210 88 525 155 501.457 0.210 1.40 5.10 0.210 503.327 88 1.40 5.00 525 160 88 1.52 4.70 525 505.196 0.210 165 88 525 170 507.066 0.210 1.62 4.60 175 508.935 0.210 88 1.62 4.40 525 0.210 88 1.64 4.00 525 180 510.805 88 525 185 512.675 0.210 1.64 4.00 87 1.74 3.70 525 190 514.546 0.210195 516.410 0.210 87 1.69 3.50 525 200 518.274 0.190 87 1.62 3.50 550

0.190

0.190

0.190

0.190

0.170

205

210

215

220

225

520.053

521.832

523.612

525.391

527.170

87

87

87

87

87

1.66

1.64

1.47

1.42

1.38

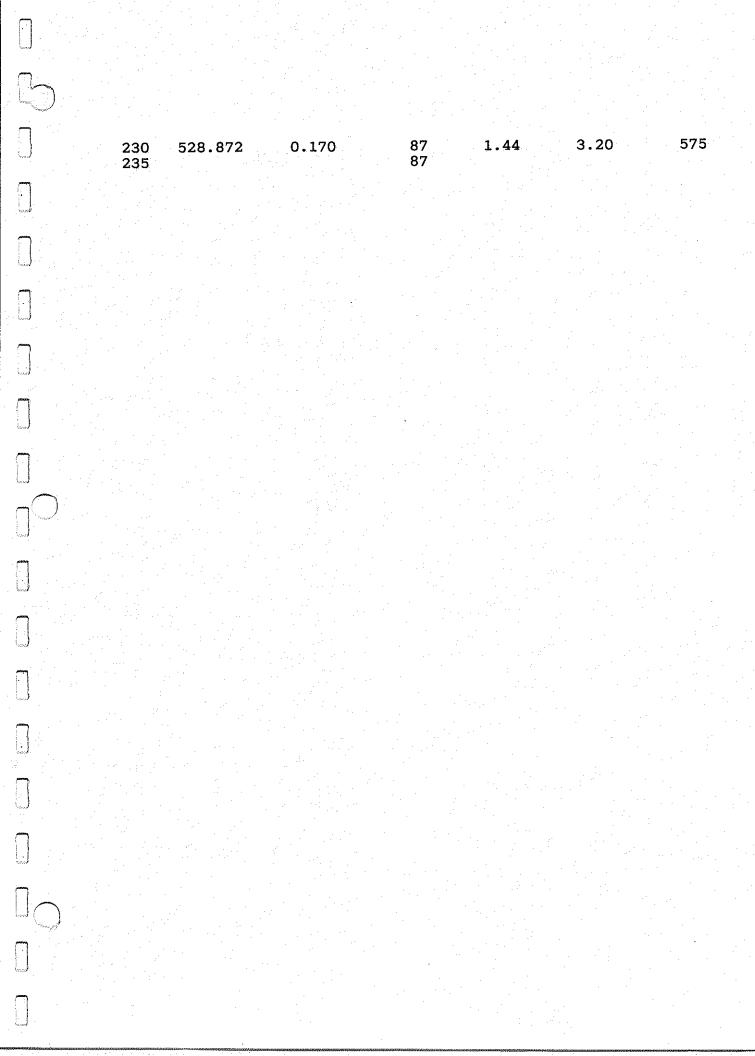
3.40

3.40

3.40

3.40

3.30


550

550

550

550

575



### TABLE 2 ---- FIELD DATA

|                    | e                       |                 |             |                         |          |        |     |
|--------------------|-------------------------|-----------------|-------------|-------------------------|----------|--------|-----|
|                    |                         | T               | ABLE 2      | FIELD DATA              |          |        |     |
| leaners J          | CLIENT :                | HAUGHS PRO      | DUCTS       |                         | TEST No. | 2      |     |
| ( <sub>men</sub> ) | MODEL:                  | S-27X<br>****** | ****        |                         | DATE:    |        |     |
| ares had           | METER CAL.<br>FACTOR (Y | ·               | 1.066       | Wt. WOOD<br>BURNED(LB)  |          | 10.6   | Lbs |
|                    | BAROMETRIC<br>PRESS.(Pb | S<br>)          | 30.11 in Hg | WET, FUEL<br>MOISTURE % |          | 18.279 | ક   |
|                    | LEAK RATE<br>POST (Lp)  | <del></del>     | 0.006 cfm   | Wt. PART.<br>COLLECTED  |          | 1.1913 | g   |
|                    | WATER<br>VOL. (V1c      | )               | 135 Ml      | METER<br>VOLUME Vm      |          | 85.372 | mcf |
|                    | TEST<br>TIME (MIN       | )               | 230 min     | HC MOLE<br>FRACTION     |          | 0.0132 |     |
|                    |                         |                 |             |                         |          |        |     |
|                    |                         |                 |             |                         |          |        |     |
|                    |                         |                 |             |                         |          |        |     |

### TABLE 3 ----FIELD DATA AVERAGES

| (maring)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLIENT :              | HAUGHS PRODUCTS      |                  | TEST No. : | 2               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------------|------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODEL:                | S-27X<br>*********** | ****             | DATE: 5/1  | 13/92<br>****** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG DELTA<br>H        | 0.21 in H20          | AVG PRCNT        |            | 0.96 %          |
| The same of the sa | AVG METER<br>TEMP. Tm |                      | AVG PRCNT<br>CO2 |            | 5.82 %          |
| No. Astron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AVG PPM               | 522 PPM              | COZ              |            | 3.02            |

#### TABLE 4 ---- CALCULATIONS

| 1 )           |                          |                        |                                |                  |                 |
|---------------|--------------------------|------------------------|--------------------------------|------------------|-----------------|
| Konn's Street | CLIENT : HAUGHS PRO      | DUCTS                  | TEST No. :                     | 2                |                 |
|               | MODEL: S-27X *********   | *****                  | DATE:                          | 5/13/92<br>***** | *****           |
| · ·           | STD SAMPLE VOL. Vm(std)  | 88.53 dscf             | STACK GAS<br>FLOW Qsd          | 456.275          | dscf/Hr<br>&    |
|               |                          | ·                      |                                | 7.60             | dscf/min        |
|               | VOL. WATER VAPOR Vw(std) |                        | PARTICULATE<br>CONCTRT. C s    | 0.0135           | g/dscf          |
|               | PRCNT<br>MSTR Bws        | 6.70 %                 | PARTC.EMISS. RATE E            | 6.14             | g/Hr            |
|               | BURN<br>RATE BR          |                        | MOLES OF GAS<br>PER Lb WOOD Nt | 0.52             | Lb-mole/Lb      |
|               | CO EMISSION RATE         | 145.94 g/Hr<br>&       | PART.EMISS. RATE               | 5.98             | g/Kgdry<br>fuel |
|               |                          | 142.24 g/Kgdry<br>fuel |                                |                  |                 |
| (a)           |                          |                        |                                |                  |                 |

TABLE 5 ---- PROPORTIONAL RATE VARIATION

| miles and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HAUGHS             | S PRODU        | CTS              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST                  | No.:          |                 | 2      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|-----------------|--------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S-27X              | *****          | ****             | ******                      | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE:                 | : 5<br>*****  | /13/92<br>***** | ****   | **** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TII<br>INTEV<br>T: | ME<br>VAL<br>i | PPM<br>*<br>Vm   | PROPRTN.<br>RATE VAR.<br>PR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROPI<br>RATE<br>AVER | RTN<br>VAR.   |                 | ·<br>· |      |
| $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =====              | ==== ==<br>5   | 983.9            | 97                          | ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 100           |                 |        | -,,- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10             | 997.5            | 99                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| iI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 15             | 1000.1           | 99                          | . A transfer of the contract o | •                     |               |                 |        |      |
| enation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 20             | 1003.1           | 99                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 173           |                 | + +    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 25             | 1002.2           | 99                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |               |                 |        |      |
| (mos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 30             | 1004.6           | 99                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 35             | 1003.8           | 99                          | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 40             | 1005.3           | 99:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| Land Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 45<br>50       | 1008.3           | 100<br>100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | +2            |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  | 55             | 1007.6           | 100                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |               |                 |        |      |
| $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 60             | 1007.0           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | •               |        | •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 65             | 1010.6           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| 64774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 70             | 1009.7           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 75             | 1012.6           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | •             | •               |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 80             | 1011.7           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | •               |        |      |
| light)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 85             | 1014.2           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| $\mathcal{A}^{(+)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 90             | 1014.7           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| NI Plant August                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 95             | 1013.2           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| land)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 100            | 1017.2           | 101<br>100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ·             |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 105<br>110     | 1013.2<br>1016.2 |                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | •             |                 | * *    |      |
| $\bigcap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 115            | 1016.5           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                  | 120            | 1016.0           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 125            | 1017.0           | 101                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| $\cap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 130            | 1017.0           | 101                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 135            | 1017.9           | 101                         | <i>a</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | (x,y) = (x,y) |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 140            | 1015.2           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| $\cap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 145            | 1014.7           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 150            | 1015.2           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| *Seriel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 155            | 1014.9           | 100<br>100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . "                   |               |                 |        |      |
| لب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 160<br>165     | 1015.4<br>1014.9 | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 170            | 1014.9           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                     |               | •               | 1.7    | ÷    |
| Come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 175            | 1014.9           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 180            | 1015.4           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ٠.            |                 |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 185            | 1015.4           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| () .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 190            | 1016.9           | 101                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |               |                 |        | •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 195            | 1014.0           | . 100                       | ·. ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |               |                 |        |      |
| i l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 200            | 1014.0           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                  | 205            | 1013.8           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        | •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 210            | 1013.8           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | •               |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 215<br>220     | 1014.4<br>1013.8 | 100<br>100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               | •               | *      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  | 225            | 1013.8           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        | •    |
| Secretary of the Secret |                    | 230            | 1014.0           | 100                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                 |        |      |

| Client Haugh's Produc                                        | A WOODSTOVE DATA SHEET #1                                            |
|--------------------------------------------------------------|----------------------------------------------------------------------|
| Client Address 10 atlas Cour                                 | nt ,                                                                 |
| Bramp Ton, On                                                | tario, Canada LGT SCI                                                |
| Client Phone 4/6-192-8000                                    | )                                                                    |
| Project No Model No,_                                        | S 210X                                                               |
| Run No. 2 Date of Test 5/13                                  | 3 <u>/92</u> Est Grams/Hr                                            |
| Stove Type: Cat Non Cat                                      |                                                                      |
| Data To Be Submitted To: Oregon 🗶                            | • • • • • • • • • • • • • • • • • • • •                              |
| Burn Category: Low (<0.8 Kg/Hr)<br>Med Low (0.8 - 1.25 K     | Med Hi (1.26 - 1.90 Kg/Hr)<br>g/Hr) <u>log( Max (&gt;1.9 Kg/Hr);</u> |
| Fuel % Moisture (dry)                                        |                                                                      |
| Stack Static Pressure(0.000) (Data Sheet #12)                |                                                                      |
| Barometric Pressure<br>(00.00) (Data Sheet #2)               | 30,11 — "Hg                                                          |
| emperature (Average Room) Combustio<br>(OO) (Data Sheet #14) |                                                                      |
| lue Gas Moisture(00.000) (Data Sheet #7)                     | 6.7018                                                               |
| mbient Moisture<br>(0.00) (Data Sheet #8)                    | 1, 1- %                                                              |
| tove Weight(000) (Data Sheet #8)                             | 1bs                                                                  |
| tove Temperature Change(000) (Data Sheet #14)                | <u>-33′</u> •                                                        |
| articulate Emission(0.0000) (Data Sheet #7)                  |                                                                      |
| uel Higher Heating Value (dry)<br>(0000) (CT&E Sheet)        | BTU/16                                                               |
| uel Type: Wood: 🗶 Pellets:                                   |                                                                      |
| otal Fuel Consumed During Burn<br>(00.0) (Data Sheet #8)     | 10.6 lbs                                                             |
| otal Particulate Catch(O.0000) (Data Sheet #6)               |                                                                      |
| Captured (00.0) (Data Sheet #3)                              | 135.0                                                                |
| ry Gas Meter Volume<br>(00.000) (Data Sheet #2)              | 85.37b CF                                                            |

Meter Box Data Sheet Page # 2

Meter Box 4 Y Factor 1006 Unit: 100 Unit: 100

Run: 0 Date: 5/13/90
Operator(s): 55

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: <u>1500</u>

| ROTO  | PRESS: | 132              | Sampling | Ratio :        | _18.5_       | . 1           | BAROM      | ETER:3       | 0,14     |
|-------|--------|------------------|----------|----------------|--------------|---------------|------------|--------------|----------|
| MN    | TIME   | METER<br>READING |          | STACK<br>DSCFM | DELTA<br>H   | METER<br>TEMP | SO2<br>PPM | ROTO<br>TEMP | PUMP     |
| 00    | 1410   | 443,500          |          | 5600           | 115          | 80            | 605        | 17           | 0        |
| 05    | 15     | 445,000          |          | 8,753          | ,37          | 80            | 400        | 27           | 5        |
| 10    | 20     | 447.377          |          | 5,602          | 115          | 81            | 605        | 77           | 1-5      |
| 15    | 25     | 448906           |          | 5,396          | 114          | 80            | 650        | 77           | 15       |
| 50    | 30     | 450,382          |          | 5-386          | ,14          | 80            | 650        | 22           | 0        |
| 25    | 35     | 451.858          |          | 5,600          | , 15         | <i>9</i> 3    | 605        | 17           | 0        |
| 30    | 40     | 453,398          |          | 5.386          | 114          | 83            | 650        | 17           | 5        |
| 35    | 45     | 454.279          |          | 5,386          | 14           | 84            | 650        | 77           | 0        |
| 40    | 50     | 456.365          |          | 5.894          | 16           | 25            | 600        | 78           | 0        |
| 45    | - 55 · | 457.981          |          | 6354           | ,19          | 25            | 550        | 18           | 15       |
| 50    | 1500   | 259.744          |          | 6655           | 01           | 85            | 525        | 18           | 10       |
| 55    | 5      | 461.591          |          | 6650           | 121          | 86            | 595        | 1/8          | 1/5      |
| ROTO  | PRESS: |                  | TOTALS : | OD-5932        | (2/15)       | (996)         | BAROM      | ETER:3       | 0,12     |
| 60    | 10     | 463.444          |          | 6,985          | <i>√</i> ∂3_ | 86.           | 500        | 18           | 15       |
| 65    | 15     | 465,391          |          | 6-985          | <i>-03</i>   | 26            | 500        | 78           | 1.5      |
| 70    | 10     | 467.338          |          | 1350           | 126          | 81            | 4/15       | 18           | 1-5      |
| 75    | . 05   | 469-395          |          | 7.350          | <i>196</i>   | 87            | 7,15       | 18           | 0.0      |
| 80    | 20     | 471-452          |          | 7,350          | 196          | 88            | 415        | 78           | 00       |
| 85    | 35     | 473.516          |          | 7.350          | 196          | 88            | 415        | 18           | 00       |
| 90    | 40     | 475.531          |          | 1350           | <i>-86</i>   | روي           | 4/5        | 72           | 20       |
| 95    | 45     | 477.645          |          | 1-350          | 126          | 89            | 45         | 78           | 20       |
| 100   | 50     | 479,717          |          | 7/35/          | 196          | 88            | 45         | 78           | 00       |
| 105   | 55     | 481.781          |          | 7.352          | 126          | 89            | 425        | 18           | 20       |
| 110   | 1600   | 483,853          |          | 6.985          | 183          | 01            | 500        | 78           |          |
| 115   | . 3    | 485.800          |          | 6445           | 113          | 102           | 800        | 18           | 1)0      |
|       |        |                  | TOTALS:  | (86750°        | 3.00         | 10547         | MAX V      |              | <u> </u> |
| TOTAL | CU FT  |                  | TOTALS:  | 154,344        | 5/15/        | 205D          | AV BP      | (0.0         |          |

Meter Box Data Sheet Page # 2

Meter Box 45 Y Factor 1.066

Leak Checks: 15 " Hg @ 200 cfm

/5 " Hg @ 200 cfm | 16.0 " Hg @ cfm | cfm | cfm | cfm |

Inject SO2 @ 100 cc/min

Page 2 of Unit: 144045 Run: 2 Date: 5/13/90Operator(s):

Nozzle: Probe @ 3/8 " od

Initial Volume: 1500

| ROTO | PRESS:   | 34               | Sampling        | Ratio:         | 185              | : 1           | BAROME     |              | 1    |
|------|----------|------------------|-----------------|----------------|------------------|---------------|------------|--------------|------|
| MN   | TIME     | METER<br>READING |                 | STACK<br>DSCFM | DELTA<br>H       | METER<br>TEMP | SO2<br>PPM | ROTO<br>TEMP | PUMP |
| 120  | 10       | 407,790          |                 | 6,990          | <i>B</i> 3       | 29            | 500        | 18           | 40   |
| 125  | 15       | 189.760          |                 | 6980           | 03               | 89            | 500        | (8)          | 20   |
| 130  | 10       | 491730           |                 | 6480           | -03              | 89            | 500        | 72           | 00   |
| 135  | 25       | 493.700          |                 | 6980           | 123              | 28            | 800        | 18           | 100  |
| 140  | 30       | 495443           |                 | 6.980          | 183              | 88            | 00         | 18           | (NO) |
| 145  | 35       | 492605           |                 | 6920           | 193              | 88            | 500        |              | 20   |
| 150  | 40       | 499-588          |                 | 6648           | 01               | 28            | 505        | 18           | 00   |
| 155  | 45       | 501.467          |                 | 6-648          | 181              | 88_           | 555        | 18           | 11-5 |
| 160  | 50       | 503.397          |                 | 6.648          | 101              | 88            | 505        | 70           | 115  |
| 165  | 55       | 505,196          |                 | 12640          | 181              | 180           | 000        |              | 1/2  |
| 170  | 1700     | 507.066          | 1               | 6648           | 101              | 88            | 505        | 78           | 1.5  |
| 175  | 5        | 508.935          |                 | 6640           | 201              | 99            | 525        | 78           | 1000 |
| ROTO | PRESS:   | <u></u>          | TOTALS :        | 181:1683       | 0.64             | 1000          | BARUM      | ETER:        |      |
| 180  | 10       | 510,805          | 1               | 6-643          | · ( <del>)</del> | 183           | 220        | 18           | 1.5  |
| 185  | 15       | 510.615          | ]               | 6643           | 181              | 80            | 200        | 78           | 15   |
| 190  | 90       | 514.546          | 1               | 9643           | <u> 191</u>      | 0             | 20         | 18           | 1/5  |
| 195  | 15       | 516,410          | <u> </u>  -<br> | 6643           | -61              | 18/           | 000        | 78           | 1.5  |
| 200  | 30       | 518,094          | ]               | 1 2/1          | 10               | 10/           | 527        | 18           | 110  |
| 205  | 35       | 590.053          | 1               | 1201           | 119              | 186           | (32)       | 78           | 110  |
| 210  | 40       | 501.830          | 1               | 6.091          | .19              | 87            | 550        | 18           | 1/5  |
| 215  | 45       | 523.610          | 1               | 6.341          | 19               | 10/           | 550        | 78           | 1,5  |
| 220  | 50       | 600.00           | <u> </u>        | 6341           | 110              | 101           | 575        | 18           | 15   |
| 225  |          | 507.170          | 7               | Calla          | 17               | 187           | 525        | 12           | 1-5  |
| 230  |          | 58812            | 4               | (10'70t)       | <u></u>          | 1959          | 1          |              | 1    |
| 235  | <u> </u> |                  | TOTALS:         |                | (990)            | 4068          | MAX V      | ACC =        | DC   |
| TOTA | L CU FT  | 85.37            |                 |                | 1011             | 82.           | AV BF      | : 30         | 11/  |
| НСОГ |          | 10006            |                 | The second     |                  | (डपी          |            |              | /    |

# MOISTURE SHEET Woodstove Data Sheet #3

| Moisture Determination                      | •                                       |                                   | 0                                 |
|---------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|
|                                             | lance<br>roed                           | Unit:                             | ways Szzy                         |
| Final:                                      | _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Run:                              | 2                                 |
| IMPINGER #1                                 |                                         | Date: 5                           | 13/92                             |
| Final Weight 6004                           | _ grams                                 | Technician(s): Ini                | <b></b>                           |
| Initial Weight 574.4                        | grams                                   | Fin                               | al: 55                            |
| Net 1080                                    | _ grams                                 | Approved By:                      | TIL                               |
| IMPINGER #2                                 |                                         |                                   |                                   |
| Final Weight 5799                           | grams                                   |                                   |                                   |
| Initial Weight 57210                        | _ grams                                 |                                   |                                   |
| Net                                         | grams                                   |                                   |                                   |
| IMPINGER #3                                 |                                         |                                   |                                   |
| Final Weight 4956                           | _ grams                                 |                                   |                                   |
| Initial Weight 4945                         | grams                                   |                                   |                                   |
| Net                                         | grams                                   |                                   |                                   |
| IMPINGER #4 (SILICA GEL)                    |                                         |                                   |                                   |
| Final Weight 8459                           | _ grams                                 |                                   |                                   |
| Initial Weight 827,9                        | grams                                   |                                   |                                   |
| Net                                         | _ grams                                 |                                   |                                   |
| <b>1</b>                                    | TOTAL MASS                              | S OF H <sub>2</sub> O CAPTURED 13 | 35.0 grams                        |
| Scale Check: 295.0g = 295.0                 | 00 g                                    | Front Half Filte                  | - #261 F                          |
| 590.0g = <u>540</u><br>885.0g = <u>88</u> 5 |                                         | Back Half Filter                  | #                                 |
| Notes:                                      | 9                                       |                                   | " <del>- (()   1   1)   -  </del> |
|                                             |                                         |                                   |                                   |
|                                             |                                         |                                   |                                   |
|                                             |                                         | ·                                 |                                   |
|                                             |                                         |                                   |                                   |

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date 3/17/92 Time 0900 By DK Front Half Back Half Size: 110 mm Lot. No.: ZB882 Grade: #25 GLASS Manufacturer: SES Third Second Filter First Date Time Time Date Time Ву Wt Date Ву Wt Ву 1300 HAUGUS enia 3/20/1608 DK 261 -10.6987 1990 1301 26290.7014 .7017 1610 263#0.6988 1300 16925 11012 -6894 1307 <u>264 FO. 6893</u> 1614 1394 265F0.6912 6917 1616 1395 16936 266 F 0.6934 1618 267F0.6936 16437 1620 268 F0.7015 1010 1307 1622 16936 269 FO.6933 1624 1329 16965 270H0.6965 1300 1626 3/20 6951 DL 1628 1330 271 Flo.6953 | . 7005 272FO.7002 1630 16980 1334 273F0.6978 1632 <u> 1333</u> 274HO.6900 10903 1634 275 FO. 6975 10915 334 1636 1335 1699 276 A0.6978 1638 16914 277#0.6975 1640 278 FO. 6992 1699 1642 6900 1339 279 10.6901 11044 .6991 1339 280F0.6994 1646 Date: 3/24/91 Time 0900 Checked by

|          | QA RE          | WEIGH |      |    |
|----------|----------------|-------|------|----|
| Filter # | WT             | Date  | Time | Ву |
|          | · <del>-</del> |       |      |    |
|          |                |       |      |    |
|          |                |       |      |    |

| BALA | NCE R | OOM ENVI | RONMENTA | L COND | TIONS |
|------|-------|----------|----------|--------|-------|
| WB   | DB    | %RH      | Date     | Time   | Ву    |
| 60   | 74    | 44       | 3/20     | 1606   | DK    |
| 59   | 13    | 43       | 3.63     | 130    | Hz.   |
|      |       |          |          |        |       |

| Into D |         |                |                      |                   |                       |      |      |        | EIGHTS (T | -        | _                                            | . :      |
|--------|---------|----------------|----------------------|-------------------|-----------------------|------|------|--------|-----------|----------|----------------------------------------------|----------|
|        |         |                |                      |                   |                       |      |      |        | B 901 c   |          |                                              |          |
| #      |         | Date           | Time                 | Ву                |                       | Date |      |        |           |          | Time                                         | Ву       |
|        | 0.3846  |                | 1526                 | DK                |                       | 303  |      | 20     | Haual:    | 5 en     | 12                                           | <u> </u> |
| 2628   | 0. 3822 |                | 1528                 |                   | -38A7                 |      | 1342 | لبا    |           | <u> </u> | <u>                                     </u> |          |
|        | 0.3805  |                | 1530                 |                   | .32/0                 | '    | 1343 |        |           | !        |                                              | <u> </u> |
| 264B   | 0.3811  |                | 1532                 |                   | -38/A                 |      | 1344 |        |           | !        | <u> </u>                                     | <u> </u> |
| 265B   | 0.3821  |                | 1534                 |                   | -3824                 |      | 1345 | $\Box$ |           | !        | <u> </u>                                     | <u> </u> |
| 2106F  | 0.3822  |                | K36                  | /                 | 138aN                 |      | 1346 |        |           |          | <u> </u>                                     | <u> </u> |
| 267P   | J. 3817 | T              | 1538                 |                   | 3888                  |      | 1347 | Ш      |           |          |                                              | <u> </u> |
| 2680   | 0.3772  |                | 1540                 |                   | 13770                 |      | 1348 |        |           |          |                                              | <u> </u> |
| 2694   | 0.3875  |                | 1542                 | $\prod I$         | 3810                  |      | 1340 |        |           |          |                                              |          |
| 270H   | 0.3813  |                | 1544                 |                   | -3869                 |      | 1350 |        |           |          | <u> </u>                                     |          |
|        |         |                |                      |                   |                       |      |      |        |           |          |                                              |          |
|        | - 1     |                |                      |                   |                       |      |      |        |           |          |                                              |          |
| 2718   | 0.3884  | 3/20           | 1546                 | 1016              | 13884                 |      | 1351 |        | ·         |          |                                              | <u> </u> |
|        | 30.3818 |                | 1548                 |                   | -3813                 |      | 1354 |        |           |          |                                              |          |
|        | 0.3825  |                | 1550                 | $\overline{\ \ }$ | 3821                  |      | 1353 |        |           |          |                                              |          |
|        | 0.3856  |                | 1552                 | 7.1               | <i>3</i> 8 <i>5</i> 3 |      | 1354 |        |           |          |                                              | <u> </u> |
| _      | 0.3832  |                | 1554                 |                   | 3830                  |      | 1355 |        |           |          |                                              | Ĺ        |
|        | 0.3862  | /_             | 1556                 |                   | 3864                  | ĺ    | 1356 |        |           |          |                                              |          |
|        | 0.3836  | $\overline{T}$ | 1558                 |                   | 383A                  |      | 1357 |        |           |          |                                              | <u> </u> |
|        | 0.3801  |                | 1600                 | )                 | 380A                  |      | /353 |        |           |          |                                              | i        |
|        | 0.3827  |                | 1602                 | 7                 | 3882                  |      | 1359 |        |           |          |                                              |          |
|        | 30.3821 | T              | 1604                 |                   | 3218                  | V    | 1400 | V      |           |          |                                              | i        |
|        |         |                | <del>/ * - /  </del> |                   |                       | ,    |      |        |           |          |                                              |          |
|        |         |                | -                    |                   |                       |      | 1    |        |           |          |                                              | ·        |
|        |         |                | 7                    |                   |                       |      |      |        | , ,       |          |                                              | i        |
| hecked | d hy    | 1//            | <i>7</i> 5           |                   | <u> </u>              |      | Dat  |        | 3/24/91   | Time     | 1911                                         | ,,       |

QA REWEIGH

| Filter # | WT | Date | Time | Ву |
|----------|----|------|------|----|
|          |    |      |      |    |
|          |    |      |      |    |
|          |    |      |      | -  |

| ne By | Time  | Date   | %RH | DB | WB |
|-------|-------|--------|-----|----|----|
| 4 DK  | 1524  | 3/20   | 44  | 74 | 60 |
| クレ    | 1340  | 3/23   | 43  | 73 | 59 |
|       | 10,10 | 10/200 |     | ري | 37 |

INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

|   | Into D      | essicato     | r: Da       | ate:                                         | 4/1:          | 1/92                                    |      | Ti       | me: <u>/</u> ( | 200        | <u> </u> | В     | 7: <u> </u> | )K           | _ |
|---|-------------|--------------|-------------|----------------------------------------------|---------------|-----------------------------------------|------|----------|----------------|------------|----------|-------|-------------|--------------|---|
|   | Beaker<br># |              | Date        | Time                                         | Ву            | Second<br>Wt                            | Date | , ,      | Time           | Ву         | Th<br>Wt | ird   | Date        | Time         |   |
|   | 501         | 96-8870      |             |                                              | DK            | 96.8274                                 | 41   | 11:11    | 332            | Ro         |          |       |             |              |   |
|   |             | 98.5625      |             | 1006                                         | $\overline{}$ | 98.5630                                 |      |          | 334            |            |          | _     |             |              |   |
|   |             | 91.2041      |             | 1008                                         | 7             | 91.2044                                 |      |          | 1336           |            | Ź        | HAU   | US          | PD           |   |
|   |             | 95.0582      |             | 1010                                         |               | 95.0584                                 |      |          | 1338           |            |          |       |             |              |   |
|   |             | 106.4506     |             | 1012                                         |               | 106.4504                                |      |          | 340            | ١. ر       |          |       |             |              | _ |
|   |             |              |             |                                              |               |                                         |      |          |                |            |          |       |             | ļ            | _ |
|   |             | 94.1600      |             | 1014                                         | <u>OK</u>     | 94.1604                                 |      |          | 34/2           |            |          |       |             | ļ            | - |
|   |             | 88.9867      |             | 1016                                         | 7             | 82,9870                                 |      | 1        | 344            |            |          | _     |             |              | _ |
|   |             | 103.1077     |             | 1018                                         | 1             | 103.1017                                |      | $\perp$  | 346            |            |          |       | _           |              |   |
|   | 509         | 95.7024      |             | 1020                                         | /             | 95,7026                                 |      |          | 1348           |            |          |       |             | 1            | _ |
|   | 510         | 104.8758     | (           | 1022                                         |               | 104-8757                                |      |          | 350            |            |          |       |             | ļ            | _ |
|   |             |              | 1,77        |                                              |               | 0-1-                                    |      |          |                |            |          | _     |             | <del> </del> | - |
|   |             | 107.7742     |             |                                              | _             | 107,71745                               |      |          | <u>352</u>     |            |          |       |             | <u> </u>     | - |
|   |             | 106.3852     |             | 1026                                         | $\rightarrow$ | 106.3855                                |      |          | 354            |            |          |       |             | <u> </u>     | _ |
|   |             | 99.2412      | /           | 1029                                         | _/            | 99.0417                                 |      |          | 1356           |            |          |       |             | <u> </u>     | _ |
|   | <i>y</i>    | 108.6340     |             | 1030                                         | /_            | 108,6344                                |      | _        | 358            | 1          |          |       |             | ļ            | _ |
|   | 515         | 106.2259     |             | 1032                                         |               | 106,2064                                |      | $\dashv$ | 1400           |            |          |       |             | <u> </u>     | _ |
|   | 516         | 145.6750     | 4/20        | 1034                                         | OI(           | 105.6745                                |      | 1        | 402            |            |          |       | <del></del> |              |   |
|   |             | 94.7160      | 1           | 1036                                         |               | 94.7160                                 |      | _        | 404            |            |          |       |             |              |   |
|   |             | 103.8296     | )           | 1038.                                        |               | 103 .8300                               |      |          | 1400           |            |          |       |             |              | • |
|   | 519         | 100.0063     | /           | 1040                                         |               | 100,0063                                |      |          | 408            |            |          |       | _           | 1            |   |
|   |             | 98.6266      |             | 1042                                         |               | 98.6967                                 |      |          | 1410           |            |          |       |             |              |   |
|   |             |              |             |                                              |               |                                         | 1    |          |                | ;          |          |       |             |              | _ |
|   | 521         | 97.7535      | 4/20        | 1044                                         | DK            | 97.7537                                 | İ    |          | 1412           |            |          |       |             |              | _ |
|   | 522         | 103.9227     |             | 1046                                         | 1             | 103.9209                                | ,    |          | 1416           | : ]        |          |       |             | <u> </u>     |   |
| • | 523         | 94.9397      |             | 1048                                         | 1             | 94.9400                                 |      |          | 1418           | ;          |          |       |             |              |   |
|   | 524         | 106.8567     | /           | 1050                                         |               | 106 ,8571                               | 1    |          | 1430           | 4          |          |       |             |              | _ |
|   | <u>\$25</u> | 95.1170      |             | 1052                                         | 1             | 95-1173                                 | V    |          | 1439           | ليبا       |          |       |             | <u> </u>     | _ |
|   | Checked     | Ву:          | -//         | 2/                                           |               | *************************************** | Date | ·        | 4/6            | 21/4       | 92       | Tim   | ie:         | 1415         | _ |
|   | <del></del> | <u>A</u> Q A | REWE        | LCH                                          | -             | <del></del>                             | BAL  | ANC      |                |            |          | RONME | NTAL        | CONDI        | i |
| • | Beaker      | # W          | T           | Date                                         | T:            | lme By                                  | WB   | _        | DB             | <b>%</b> F |          | Dat   |             | ime          | i |
|   |             |              | <del></del> | <u> </u>                                     | -             |                                         | 50   |          | 72             | 41         |          | 4/2   |             | 003          | ļ |
|   |             |              |             | <u>                                     </u> | ↓_            |                                         | (0)  |          | 74             | 40         | ĺ        | 4/8   |             | <u>330</u>   |   |
|   |             |              |             |                                              |               |                                         |      |          |                |            |          |       |             |              | l |

WST5-Form9, Pg1, Rev4/90 Unit JAUGHS SON Run # A Date: S/13/40 Time <u>S</u> 0/P Date 01<196.993 Third Ş By Ş を否 S 65 SS Time 40H <u>に</u> **Date** 5//8 61/5 ) 5/2 8 WOODSTOVE DATA SHEET #4-3: CONSTANT FINAL WEIGHTS 106,5091, 98.8019 95.00 14L 8D 96.9923 DK(191.3307 Second FINAL BEAKER WEIGHTS 入 入 By 930 DK **で**/で/ 926 UX 4 106.5290 5/18 932 Time 8C6 5/18 5/18 Date 4/18 91.3306 98.8082 1858 July 95.2141 96,9931 First 0900 DK 5/15 10900 DK By Time 5/14 3/15 5/4 Dessic Beaker Into B B

|             |       |             |              |     |               | i     | FIN/   | IL FI | FINAL FILTER WEIGHTS |      |              | ٠. | -                        |        |      |    |
|-------------|-------|-------------|--------------|-----|---------------|-------|--------|-------|----------------------|------|--------------|----|--------------------------|--------|------|----|
| Filter Into | nto   |             |              |     |               |       |        | Γ     |                      |      |              |    |                          |        |      |    |
| (D)         | essic | Dessic Date | Time         | By  | Time By First | Date  | Time   | By    | By Second            | Date | Time         | By | Date   Time   By   Third | Date   | Time | By |
| 201F        |       | 5/13        | <i>CS3</i> 1 | CAS | 2019          | M/S   | 1736 4 | S     | 1,0135               | 5//2 | 1225         | BA | 9/                       | 18 934 | 934  | X  |
|             |       |             |              | Ŏ   | (DO146)       | 5/18  | 1530   | Q.    |                      |      |              |    |                          |        |      |    |
| 1618        |       | 5/13        | <b>8</b> 8   | 37  | 155.08        | 13/14 | 1739   | 40    | (4855)               | 5/15 | CB OCCI 71/2 | 3  |                          |        |      |    |
| )           |       |             |              | )   |               |       |        | 0     |                      |      |              |    |                          |        |      |    |

|               | Weig | Sess     | <br>2 | 6        | 7 |     |
|---------------|------|----------|-------|----------|---|-----|
|               |      |          |       |          |   |     |
| HTS           |      | By       |       | By       |   | . * |
| FINAL WEIGHTS |      | Final Wt |       | Final WT |   |     |
| QA REWEIGH    |      | Beaker # |       | Filter # |   |     |
| ΨO            |      | Date     |       | Date     |   | _   |

| SCALE ROOM ENVIRONMENTAL CONDITIONS | ROOM      | ENVIR                | ONMEN         | TAL C      | ONDIT | IONS |  |
|-------------------------------------|-----------|----------------------|---------------|------------|-------|------|--|
| ghing                               |           |                      |               |            |       |      |  |
| selon                               | Date Time | Time                 | By            | WB         | DB    | %RH  |  |
| 1                                   | 2//ط      | 1718                 | 178           | <i>ħ</i> S | 20    | 177  |  |
| 2                                   | 51/5      | Boo                  | $\frac{1}{2}$ | 09         | 74    | ħħ   |  |
| 3                                   | 8//5      | $\theta \beta \beta$ | ĐΚ            | 58         | 11    | 45   |  |
| 4                                   | 9/9       | 1820                 | K.            | 55         | 73    | 43   |  |
|                                     |           |                      |               |            |       |      |  |

| SCALE KOUM ENVIKONMENIAL CONDITIONS | KUUM 1 | ENV LK | JUMEN | Y TY | MULLI | ONS |
|-------------------------------------|--------|--------|-------|------|-------|-----|
| 9                                   | ,      |        |       |      |       |     |
| 7                                   |        |        |       |      |       |     |
| 8                                   |        |        |       |      |       |     |
| 6                                   |        |        |       |      |       |     |
| Comments                            |        |        |       |      |       |     |
|                                     |        |        |       |      |       |     |

WST7-Form1-Rev5/98

Dates: From 4 23 92

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorfus Model A1205 SW 37010004

| 1000                                   | 100     | , O.   | 10000   | 1 0 1 1 | 0101   |                                        | <u> </u>      | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|----------------------------------------|---------|--------|---------|---------|--------|----------------------------------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| Weight                                 | Weight  | Weight | Weight  | Filter  | Beaker | Tech                                   | Date          | Time       | Dry Bulb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wet Bulb | Z RH    |
| 97777                                  | 10.0000 | 0.9997 | 0.1001  |         |        | Ż                                      | 4/23          | 009        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10       |         |
| 9,44,67                                | 00000   | 656    | 8       |         |        |                                        | 1.601         | 1130       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | 777     |
| 2000                                   | 20000   | 0500   | ,1820   |         |        |                                        | 1/8//         | 1830       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60       | חמן     |
| 1 hhh .hh                              | 10.0000 | 1.0001 | 0. 1000 |         |        | NOK                                    | 4,57          | 1045       | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09       | 77      |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 7000'0  | , 9998 | 55501   |         |        | on Const                               | 33/h          | 1330       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$       | 49      |
| ~ :                                    | 10,0001 | 1.0001 | 0.0999  |         |        | ИGI                                    | 1/20          | 0/0/       | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10)      | Gran 17 |
|                                        | (0.0000 | 1.0001 | 0.0909  |         |        | 1                                      | 08/           | 7480       | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.7      | 90      |
| 86.00.00                               | 9.9998  | 66660  | 0.1000  |         |        |                                        | 3/1           | 956        | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10)      | 35      |
| 11.99.7                                | 9.4999  | \$\$/  | , 1000  |         |        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1/8           | <b>E</b>   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55       | 1/2     |
| 99 9995                                | 100001  | 6.9999 | 0.0999  |         |        |                                        | 7             | 730        | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0)      | 077     |
| 180,087                                | 10,000  | 1000'1 | 000/    |         |        | S                                      | 2             | 0/0        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (20)     | 4/      |
| 808                                    | 10,0001 | 0000   | 1001    |         |        | 9                                      | 1 \           | 亦不         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9        | 45      |
| 6666 65                                | 000001  | 1.0061 | 0.0999  |         |        | Y                                      | 5/6           | 430        | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (20)     | 74      |
|                                        | DOSOC   | 10001  | ,1000   |         |        |                                        | から            | 1840       | THE STATE OF THE S | 20       | 77      |
| 800 00                                 | 10.0001 | 10001  | 0.1003  |         |        |                                        | 5/17          | 800        | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53       | 43      |
| 83668                                  | 1000001 | 10007  | 0,1001  |         |        | 10                                     | 1012          | 757        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        | 200     |
| 786.96                                 |         | 1000   | /100/   |         |        |                                        | 5/8           | los<br>los | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72       | 46      |
| 334,46                                 | _       | 6666/  | daboi   |         |        | SA<br>SA                               | 2/5           | 83         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27       | 45      |
| 99.996                                 |         | 0.9998 | 0.0998  |         |        | H                                      | 5/11          | 000/       | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130      | 72/     |
| 803,66                                 |         | 1-0000 | 00010   |         |        | 2                                      | 5//2          | 0000       | Ph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07       |         |
| 09.80                                  |         | 1,0000 | ,000    |         |        | S                                      | 6/18/         | 20/5       | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a<br>a   | 44      |
| \$666.66                               | ٦       | 1.0000 | 0.0999  |         |        | OK                                     | <i>\$1</i> 13 | 950        | 711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59       | 9,5     |
| 800°00                                 | 7       | 2007   | 10011   |         |        | S                                      | S.744         | 1636       | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30       | /b      |
| 97,438                                 | $\perp$ | 19997  | 1,099   |         |        | B√                                     | S             | 000        | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | 7:17    |
| 700.000                                |         | 10001  | 0.0999  |         |        | ĎΚ                                     |               | 0000       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58       | 45      |
| 100/003                                | 000000  | 1,000  | 1001    |         |        |                                        | 9             | 8          | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65       | 45      |
|                                        |         |        |         |         |        |                                        | ,             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        |         |         |        |                                        | İ             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |
|                                        |         |        | _       |         |        |                                        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |

Long Control

WST7-Form Rev5/90

Dates: From 3/19.
Through 403

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorfus Model A1205 SN 37010004

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1008               | 108       | 1.08            | 100mg       | Blank | Blank  |          | -             |      |                    |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-----------------|-------------|-------|--------|----------|---------------|------|--------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me I gn C          | Weight    | Weight          | Weight      |       | Beaker |          | H             |      |                    |          |
| Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont   | 4277               | 77777     | 1 0000          | 25500       |       |        | 1/2 3-1  | 2 1257        | 73   | (0)                | 42       |
| Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Cour   |                    | 1444      | 0000-1          | 0.0445      |       |        |          | 13/14/5       | ħL   | 0%                 | 44       |
| Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont   | シングレング             | 0,003     | 1000            | 689         |       |        |          | 0 88 91       | 20   | 3                  | 70       |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   | /00.000/           | 10.0001   | 7.0002          | 0.100       |       |        |          | 1 0900        | 70   | 177                | 1707     |
| 1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960      | 18,000             | 10,000,01 | (200 <i>6</i> ) | 100/0       |       |        | tz       | (100)         | 7    | 4                  | 7/2      |
| 10000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.   | 19.63.2<br>19.63.2 | 100001    | 1,000           | 0001        |       |        | 1        | 5 EM          | 711  | 1                  | 7        |
| Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooco   Cooc   | ,8666 66           | l         | -               | 8660.0      |       |        | 1        | 1500 Se       |      | 1                  | 27.00    |
| 1,0000   0,0000   1,0003   0,1003   1,000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,   | 00,000             | 10,000    | 5555'           | 0,600       |       |        | •        | -             | 122  | 200                | 7,73     |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   | 100,000            | 0000.01   | 1.0003          | A 1003      |       |        | ч-       | $\vdash$      |      | , O 3              | 4/5      |
| 9 9999   1,0001   0 1002   0 1002   0 1003   0 1004   0 1005   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0 1000   0   | 1556               | 100000    | 1,0001          | 188         |       |        |          | -             | 30   |                    | 3/5      |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000001            | 6 9999    | 1.0001          | 0.1002      |       |        |          | 1>            | 120  | \$ \<br>\$\sigma\$ | 13.      |
| 1987   9,9899   1,0001   0,1000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,   | 100,001            | 16550     | 1.000A          | 001.        |       |        |          | -<br> -<br> - | 77   | 7/2                | 2/2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 899 7            | 9. 9999   | 1.0001          | 000 0       |       |        |          |               | , 0, |                    | 202      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06886              | 10,000    | 1000/           | , 1880<br>3 |       |        |          |               | 17   | 78                 |          |
| 10 0000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10000   10   | 94.749             | p000'01   | 1000/           | 1,100       |       |        | NA VA    | 101           | 73   |                    |          |
| 1945   1920cc   1,000c   1900c   190   | 100.0003           | 10.0000   | / 0000          | 0.1000      |       |        |          | V/00/         | 7,   | Flo                | 435      |
| 10 000   0.9999   0.9999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0.4999   0   | 99995              | 10.0cc    | 00007           | , 1000      |       |        |          | 2000          | 26   | D.                 | <u> </u> |
| 10 cool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 9.9997    | 0.9997          | 0.7000      |       |        | 7        | -             | 7.2  | 76%                | 7/7      |
| 1949   12,000   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,900   1,90   | 99.9997            | 10.0001   | 0.9999          | 6.6999      |       |        | 7        |               | OL   | 26                 | 78       |
| 1900   9,111   0,999   0,1000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   | 66 66 66           | 10000     | 09999           | 0444        |       |        | 1 2 1    | 7860 9        | 87   | 25                 | 30       |
| 44443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   04443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   044443   | 000007             | 9.9999    | 0.9998          | 0'1000      |       |        | 4        |               | 90   | Ę                  | 77       |
| 1.310.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000000             | 20006     | 0 9999          | 8080        |       |        | グ        |               | 16   | 23                 | 30       |
| 1000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   | 54565              | 7, 9,996  | י מתמת          | \$2998      |       |        | 方の       | וצמצי         | 57)  | 5                  | Z/C      |
| 10000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,0000   1,   | 1000 1000          | 8,666,6   | 4999            | 6650'       |       |        | 76 147   | 4 1025        | 82   | C                  | 27       |
| 1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000      | 980-58             | (0.000)   | 10000           | 7           |       |        | 771 00   | 0 093         | 8    | 200                | 1/2      |
| 0.000 10.0003         0.0003         0.0003         0.0003         0.0004         0.0004         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.0009         0.00009         0.00009         0.0000         0.0000 <t< td=""><td>100 0000</td><td>366.5</td><td>0000</td><td>10000</td><td></td><td></td><td>//k  &gt;/[ </td><td>0011 0</td><td>12</td><td>6</td><td>45</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 0000           | 366.5     | 0000            | 10000       |       |        | //k  >/[ | 0011 0        | 12   | 6                  | 45       |
| 4978         10000         0.0998         4/12         1015         1.0000         1.0000         0.0998         35         4/15         1015         1.0000         37         4/15         1015         4/15         1.0000         37         4/15         4/15         1.0000         37         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15         4/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.000            | 50003     | 1.0002          | 0.1003      |       |        | DK 41    | 3 1945        | 73   | 58                 | th<br>d3 |
| 1000         1,000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200,000            | C 200, 5  | 10000           | 97.50°      |       |        | 1500 A   | N 1030        | B    | \$5                | 3/4      |
| 1000 1, 244 1, 1000 0 0.1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1227 P             | `T.       | 1000            | 0.0978      |       |        | 7<br>3   | 15/10/5       | 89   | 5%                 | 47       |
| 44444   1,0000   0,1001   0,1001   0,1001   0,1001   0,1001   0,1000   0,1001   0,1000   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,1001   0,   | 1777               | 7.53.67   | 2000/           | 10201       |       |        | John 41  | 1000          | B    | Ê                  | dir      |
| 10.0000 1.0000 0.0999 0.1001 0.0001 0.0000 0.0999 0.0001 0.0000 0.0999 0.0001 0.0000 0.0999 0.0001 0.0000 0.0999 0.0001 0.0000 0.0999 0.0001 0.0000 0.0999 0.0001 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.0001           | 46666     | 7.0000          | 0.1001      |       |        | OK U     | 2/6/5         | 70   | 57                 | 7/7      |
| 0.0000   0.0000   0.1001   0.1001   0.1001   0.1000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.00000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.000   | 17.14.6            | いかかかった    | -1              | 8           |       |        | いい       | # 154K        | 5    | 33                 | 200      |
| 10,0000 1,0000 0,0999 0,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10 |                    | 00000     |                 | 1001.0      |       | •      | 10/2 1/3 | ô             | 73   | 59                 | 460      |
| 10,0003 1,0000 0.0 444 0.001 10,0003 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |                    | 6000/01   | 10007           | 1001-       |       |        | 7/h) ~   | 100           | 74   | 9                  | Ωħ       |
| 5 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 10000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 10000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 10000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 | 700.000            | 0000.0/   | 1.0000          | 0.0 499     |       |        | ~        | <u> </u>      | 73   | 59                 | 43       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.9999            | 10,0003   | Gooor 1         | 1001.       |       |        |          |               | 16   | 6                  | 000      |

WST7-Form Rev5/90

Daces: From 2/6/92 Through 3/11/92

WOODSTOVE DATA SHEET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

| % RH     | 7        | 47                                        | 4/8        | 87      | 4       | 87       | ľ,      | 77        | 43      | 47       | 60      | 3/7       | 82      | No.      | 5)7:    |         | 45        | 4.8      | <i>C/p</i> | <b>80</b> ア  | 46       | 45       | 24      | 414      | 76     | 96      | 1,6     | 27     | 95      | 6/2                         | Ch        | 45           | 49              | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (7)     |
|----------|----------|-------------------------------------------|------------|---------|---------|----------|---------|-----------|---------|----------|---------|-----------|---------|----------|---------|---------|-----------|----------|------------|--------------|----------|----------|---------|----------|--------|---------|---------|--------|---------|-----------------------------|-----------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Wet Bulb |          | \S\c                                      | 15         | 58      | 25      | 7        | B       |           | 12      | 19       | (,,     | 88        | 62      | 79       | 63      | 62      | 69        | ۲۷       | B          |              | 55       | 58       | 63      | QO       | 6.7    | 63      | 64      | 160    | 65      | 8                           | (10)      | (g)          | 6,5             | \$50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09      |
| Dry Bulb | ( V      | 39                                        | <u>6</u> 2 | 70      | 68      | 75       | 72      | 12/       | 87      | 71       | 74      | 70        | 15      | 75       | 77      | 16      | 76        | 65       | 37         | 105.         | 67       | 7.1      | 11      | hL       | 17     | ニ       | 18      | 73     | 12      | $\mathcal{I}_{\mathcal{C}}$ | 73        | No           | $ \lambda_{i} $ | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75      |
| e I      | 930      |                                           | 10915      | _       | 0410    | -        | 1 00 m  | - 222 = - | 0670    | 150      | のがどの    | 3   5900  | 3 1230  | 3 1535   | 086 /50 | 1240    | 00911     | 0830     | 7 1035     | 19580 18     | 2000     | <u>5</u> | 0500    | 5 1015   | 6 1025 | 7 7     | \$ 1230 | 3 1000 | / //30  | 0935                        | 0830      | 1 (1400) 1 E |                 | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000 0  |
| Tech Dat | OK   a/6 | 3/B CS                                    | 18/2       | DK 217  | TK 2110 | DK 2/10  | 10 CX   | (A) (S)   | 10 1    | 51/c XO  |         | 110 10    | 1/2     | 1/61 00  | 110 76  | 1/2 1/1 | 1015 2114 | TK 2111  | De 1961    | 1 TO 2/1     | 1/6 13/1 | 12   3/2 | 16 2/24 | DK Jálas | W 2/23 | OK 3/12 | 16 213  | DK 3/  | 7 3/1   | 1 PW 3K                     | 1 576 3/6 | - 1          | (70 3/9         | 80 3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DI 3/10 |
| Beaker   |          |                                           |            |         |         |          |         |           |         |          |         |           |         |          |         |         |           |          |            |              |          |          |         |          |        |         |         |        |         |                             |           |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| Filter   |          |                                           |            |         |         |          |         |           |         |          |         |           |         |          |         |         |           |          |            |              |          |          |         |          |        |         |         |        |         |                             |           |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| Veight   | 0.0999   | <u>8</u>                                  | , (σας     | . 1000  | 1000    | 0. 1000  | 0,1000  | 1001      | 0001'   | Ó. 1000  | 1000    | 0.1000    | 0,1000  | 000100   | 0.1000  | 0001.0  | 0.0999    | 0000     | ,/αος,     | 1000         | 200/     | 0.0999   | D 1000  | 0.7000   | 6660'  | 0.0999  | 0.0999  | 0.1000 | 0, (000 | 000/                        | 0.0999    | 6060-        | 000/            | 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0998  |
| Weight   | 1.0000   | 10001                                     | 1,0000     | 1.000.1 | 10000   | 86660    | 10000   | 1,000     | 1.0001  | 0.9999   | 00001   | 1,0000    | 10001   | 10001    | 1.0000  | 1.0000  | 1.0001    | 10000    | 1000/      | 9490         | 1,000    | 1.0000   | 0000    | 1,000,1  | 4999   | 00001   | 0000    | 1.0000 | 1,000   | 1,0000                      | ,9999     | 6666         | 6556            | 5336/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000  |
| Weight   | 9.999    | 0,0003                                    | 0000,0     | 6 9999  | 10 0000 | 9.9999   | 10:000  | 10,000 1  | 10.0000 | 16.0000  | 0000    | 10.000.01 | 10.0001 | 0,000,01 | 9.9999  | 10.0000 | 10.0000   | 100001   | 0000001    | 10 0000      | 10000,01 | 7.4999   | didde   | 7        | 1      | 8,665.5 | 10,000  |        | L       | 0,000                       | 10.0000   | 10000        | 10.0000         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4444  |
| We ight  | 0000.007 | de la la la la la la la la la la la la la | 74.7777    | 100000  | 666666  | 1000.001 | 0000:00 | 06.7.87   | 100.000 | 100.0003 | 75/8/65 | 86666     | (00:000 | 45,375   | 100 000 |         | 60 000    | 100 0000 | 644.45     | the contract | 29,99,92 | 0000-000 |         |          |        |         | 29 794  |        | 3666    | シカラカウ                       | 736666    | 25.55        | 83666           | \$13.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75<br>\$1.75 | 100 OCD |

| WOODSTOVE PARTICULATE O                                                 | PATCH BRACECING                                                          | Unit: 7       | HAUGHS                                             | SOTY                           |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|----------------------------------------------------|--------------------------------|
| WOODSTOVE PARTICULATE O                                                 |                                                                          | Run           | Date:                                              | 5/13/92                        |
|                                                                         | r                                                                        | Technic       | ian(s): ^                                          | <u> </u>                       |
|                                                                         | FRONT HALF                                                               |               | •                                                  |                                |
| FILTER #: 001 9 FINAL WT: 70146 9 TARE WT: 6997 9 NET WT: 3155 9        | BEAKER #: 50/<br>ml: 400<br>desc: ACETOR                                 | ) .           | TARE WT: 90                                        | 6.9913-9<br>2.8974-9<br>1049-9 |
| FILTER #:<br>FINAL WT: 9<br>TARE WT: 9<br>NET WT: 9                     | BEAKER #:<br>ml:<br>desc: ACETON                                         | F:<br>:<br>NE | TARE WT:                                           | g                              |
|                                                                         | TOTAL VOLUME OF USED IN WASH                                             | ACETONE       | 6                                                  | <u> 20 / m1</u>                |
|                                                                         | BACK HALF                                                                |               |                                                    |                                |
| FILTER #: DUB<br>FINAL WT: 5504 g<br>TARE WT: 13849 g<br>NET WT: 1695 g | BEAKER #: 00 ml: desc: ACETON                                            | Fi            | NAL WT: <u>98</u><br>TARE WT: <u>98</u><br>NET WT: | 3.8079 g<br>3.5630 g<br>2449 g |
| FILTER #: g FINAL WT: g TARE WT: g NET WT: g                            | BEAKER #: 503<br>ml: 75<br>desc: METHCH                                  | ٦             | NAL WT: 9<br>FARE WT: 9<br>NET WT:                 | 1-0044                         |
|                                                                         | m1: 200<br>desc: H20                                                     | _ FI          | INAL WT: 99<br>PARE WT: 95<br>NET WT:              | 5 0 144 g                      |
|                                                                         | BEAKER #: M1: H20                                                        | F1<br>7       | NAL WT: 100<br>TARE WT: 100<br>NET WT:             | 6.5091                         |
|                                                                         | ml:<br>ml:                                                               | <u> </u>      | NAL WT:<br>FARE WT:<br>NET WT:                     |                                |
|                                                                         | BEAKER #:<br>ml:<br>desc:                                                |               |                                                    | g                              |
|                                                                         | TOTAL VOLUME OF USED IN WASH TOTAL VOLUME OF TOTAL VOLUME OF WATER DRIED | DICHLORO      |                                                    | 75 ml                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | WOODSTOVE                    | BLONKE                                           | noncessi          | NIC            | Unit:                         | HAUGH         | 5 5071                                | <u> </u>                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------------------------------------------|-------------------|----------------|-------------------------------|---------------|---------------------------------------|----------------------------------------------|
| base <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | WOODSTOV                     | E DATA                                           | SHEET # 5         |                | Run:                          | 0             | Date: <u>5 /</u>                      | 13/92                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В            | LANKS DONE                   | : <u>5/1</u> 1                                   | 190               | _              | Techni                        | cian(s)       | ZS DK                                 | TK_                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200          | m1<br>FISHER OPT             |                                                  | #: <u>4   389</u> | <br>6          | FINAL WT<br>TARE WT<br>NET WT | : [06.25<br>: | 04/9                                  |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15           | ml DICHL<br>FISHER OPT       | BEAKER<br>OROMETH                                | #:                | <br>'a         | FINAL WT                      | 96.8          |                                       | •                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ            |                              | IMA LOT<br>BEAKER :                              |                   | <u>o</u> _     | FINDI WT                      | · 66.5        | 1111                                  |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ml Distil<br><u>VEARL (G</u> | LED WATE                                         | ĘR                | _              | TARE WT<br>NET WT             | 96.5          | 06/9                                  |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | BEAKER                       | TARES                                            | ום סדאו           |                | IME: <u>0900</u>              | DATE          |                                       | 1                                            |
| rang)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BKR #        | 1ST WT                       | TIME                                             | 2ND WT            | TIME           | 3RD WT                        | TIME          | 4TH WT                                | TIME                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            | 106.0938                     | <del>                                     </del> | 106.2235          |                |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            | 96-8404                      | i -                                              | 96.8424)          |                |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F            | 96.5109                      | ·                                                | 96.5106)          | 1040           |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | CALE ROOM (                  |                                                  |                   | 1              |                               |               | : FINALS                              |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE<br>3/A3 | TIME B                       | 1                                                | DB %              | ! ∟            | DATE   TII                    |               | WB D1                                 |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/24         | 1034 81                      | سسمين فيستال بمساوعة الأستا                      | 72 42             |                | 5/14 163<br>5/15 120          | C 900         | 60 74                                 |                                              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                              |                                                  |                   |                |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                                                  |                   | <br>           |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . '          |                              | BEAKERS                                          | : FINAL V         | ! ∟<br>√EIGHTS |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BKR #        | IN DSC                       | TIME                                             | 1ST WT            | TIME           | 2ND WT                        | TIME          | 3RD WT                                | TIME                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            | 5/12                         | 0900                                             | 106.2243          | 1048           | 106,0039                      |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3            | 5/12                         | 0900                                             | 96 8431           | 1050           | 96.2422                       | 1781          |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F            | 5/12                         | 1330                                             | 96,5112           | 1700           | 96.5114                       | 1230          |                                       |                                              |
| To the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | BKR #        | 4TH WT                       | TIME                                             | STH WT            | TIME           | 6TH WT                        | TIME          | 7TH <b>WT</b>                         | TIME                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                                                  |                   |                |                               |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              |                                                  |                   |                | -                             |               |                                       |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     |                              |                                                  |                   |                | <u> </u>                      |               | · · · · · · · · · · · · · · · · · · · | <u>.                                    </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              | ٠.                                               |                   |                |                               |               |                                       |                                              |

WSTAPP1-AppDoc19-page2 WOODSTOVE TEST DATA SHEET #6 Rev 6/90 Blank Audit: By: 11m Kelly Date: 5/18/92 Blank Calculations: 200 m1 = 200 m1 = 20000 g/m1 Acetone: Dichloromethane:  $\frac{10004}{9} = \frac{2}{75} = \frac{1}{10000533} = \frac{1}{10000533}$ Front Half Catch: Filters:  $\frac{.3155 \text{ g}}{\text{Total Catch}} = \frac{(.0000 \text{ g})}{\text{No. of filters Blank Value}} = \frac{.3155 \text{ g}}{\text{Net Catch}}$ filter Beakers:  $\frac{1049}{\text{Total Catch}} = \frac{200}{\text{Ml of Acetone Blank Value}} = \frac{1045}{\text{Net Catch}}$ ml of Acetone Total Front Half Catch 1400 g Back Half Catch: Filters:  $\frac{1675}{\text{Total Catch}} = \frac{1}{\text{No. of filters Blank Value}} = \frac{1675}{\text{Net Catch}} g$ filter Beakers: 1. Acetone/Impingers:  $\frac{2449 \text{ g}}{\text{Total Catch}} = \frac{2445 \text{ g}}{\text{ml of acetone Blank Value/}} = \frac{2445 \text{ g}}{\text{Net Catch}}$ ml of Acetone \_\_\_\_ 2. Extract/Impingers:  $\frac{1003 \text{ g}}{\text{Total Catch}} = \frac{75}{\text{ml. of}} = \frac{1059 \text{ g}}{\text{Net Catch}}$ Dichloromethane ml of Dichloromethane 3. Water/Impingers:  $\frac{\cancel{9347} - g}{\text{Total Catch}} - \frac{\cancel{300} - (\cancel{000004} g)}{\text{ml. of water}} = \frac{\cancel{9334} - g}{\text{Net Catch}}$ ml of water Total Back Half Catch Total Catch % Front Half

NET PARTICULATE CATCH CALCULATION

HAUGHS SOTX

Technician(s): TC TK

Unit: Run:

| I PARTICULATE CALCULATIONS | SHFFT # 7 |
|----------------------------|-----------|
| ICULATE                    | T NATA    |
| PART                       | 75.       |
| <b>2</b> E                 | 70.07     |
| WETHOD SH I                |           |
| EP A                       |           |

Run: 2 Date: 5/13/98 Unit: HALLands SOOK Technician(1): TKS

116, H20

884636 400t WST3-Form 1

8/28/91

0000,0000 1) Vacetd): (85,370 Vanc 17.65 ) ( 106/ met) ( 30,11 " Hg: 13.6

C SULTIN > 2) VH(114): ( .04707 )( 135,0 / 11 H20 ): 6,3545-

000.000

- Bue x 100 : 6.2013 000,000 00001 . 0000 (6.3545 60t 1 88.4636 dect) (6.3545 est)

· 800c (88,436 deef) (15,43 ): (. p. 8/6/ // )

0,0000

6.95 - g/hr 00,0000 - decfa) ( 60 ): 000,000 6.698 decty 5) Estinated g/hr:

Computer printout Y factor) of the meter box used for the test for the test in degrees Absolute particulate eatch for the test average stack flow during the test noter caught during motor correction factor Tah ai H20 4 8 C 144

Unit <u>HAUGAS SJ/X</u>
Run # 2
Date <u>5//3/92</u>
Technician <u>BN 776 DE TS</u>
WST6-Form1, Rev11/89

MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Dilution Tunnel Dra                 | aft (If applicable)            | : Start O                 | S                 | top O                                         |             |
|-------------------------------------|--------------------------------|---------------------------|-------------------|-----------------------------------------------|-------------|
| Test Chamber Air Ve                 |                                |                           |                   | Avg: O                                        |             |
| •                                   |                                |                           |                   |                                               |             |
| Dry Bulb Stop:                      |                                | bient                     |                   | % Relati                                      |             |
| Empty<br>Stove Wt:                  | X = /· mols                    | 237.3                     | 1bs.              | Humidity                                      | _(          |
| Empty<br>Stove Wt with Stack        | (Inc. Oil Seal) W              |                           | lbs.Dry           | . 244.5                                       | 1           |
| Empty<br>Stove Wt with Stack        |                                |                           |                   | 304,5                                         | 1           |
| Kindling Wt. Hor                    | _                              | <u> </u>                  |                   | 0                                             | 1           |
| Pre Burn Fuel Wt.                   | 7.9 + 1.3                      |                           | Total:            | 9.2                                           | 1           |
| Total Kindling and                  | Pre Burn Fuel Wt               |                           | •                 | 9.2                                           | 11          |
| Coal Bed Wt-lbs: Rai                | nge(2,6 -2,2)36                | 7.1 - 306.71              | bs. Actua         | 1: 2.6                                        | 1           |
| Allowable Amount of                 | Charcoal that can              | be removed                | d:                |                                               |             |
| Coal Bed Wt. Range                  | Upper Wt. Lower                | $\frac{2}{\text{Wt.}}$ /2 | .25 =             | ,6                                            | 11          |
| Test Fuel Wt-1bs: Ic                | deal lbs. Rar                  | ige:                      | lbs. Actua        | 1: 10.6                                       | 11          |
| Test Fuel Size (pcs.                | , -                            | langes)                   |                   | 14                                            | Po          |
| 2 x 4's x /8 3/4                    | 4 " 4 Pc                       | :s 10.4                   | lbs.              | 100.0                                         |             |
| 4 x 4's x \(\mu/A\)                 | " <i>N/A</i> Pc                | s N/                      | 2 1bs.            | NA                                            |             |
| Est. Dry Burn /0,6                  | - (/0.6 x  1.278) x            |                           | //026<br>Dry Burn | Rate (Kg                                      | <del></del> |
| Rate (Kg/Hr.)                       |                                |                           |                   |                                               |             |
| Est EPA Hest Output( (Avg BTU's/Hr) |                                | <u>63</u> × //6           |                   | 2371.9<br>t Heat Ou<br>O <sub>E</sub> ) BTU's |             |
| Est EPA Heat Output( (Avg ETU's/Hr) | но <sub>E</sub> ) (19,140) x _ |                           | Es                |                                               |             |

| Unit: HAUGHS S27X Run: 2 Date: 5/3/92 Page 9                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOODSTOVE OPERATING DATA                                                                                                                                      |
| FIRE STARTED: HOT START PST/PDST                                                                                                                              |
| WARM UP AND PREBURN: PRIMARY AIR: set wide open for all warm- up/preburn fuel charges, then set to <u>CLOSED</u> at start of preburn.                         |
| SECONDARY AIR: NA CAT BYPASS: NA                                                                                                                              |
| CHARCOAL BED PREPARATION: raked and leveled prior to each warm- up/preburn charge. At 1 1/2 min. prior to loading last fuel, raked and leveled. In stove sec. |
| TEST: Door Wide Open during loading 0 min 39 sec                                                                                                              |
| PRIMARY AIR: opened full for first min. , then set to run setting of                                                                                          |
| SECONDARY AIR:NA CAT BYPASS:NA                                                                                                                                |
| FAN: ON OFF during warm-up ON OFF during preburn ON/QFF first 30 minutes of test ON OFF balance of test run Fan speed set at                                  |
| WOOD DATA: KINDLING: a mix of the grades listed below                                                                                                         |
| SIZE MILL GRADE SPECIES                                                                                                                                       |
| PREBURN: 2X4 Manke/Tacoma Std or btr s. orn D fir                                                                                                             |
| TEST: 2X4 Packwood #2 or btr s. orn D fir  4x4 Packwood #2 or btr s. orn D fir                                                                                |
| PELLET FUEL APFI#:                                                                                                                                            |
| All grades WCLB rules                                                                                                                                         |
| WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.                                                                            |
| 1st warm up/preburn fuel charge ( $\frac{7.9}{100}$ lbs ) added at $\frac{1220}{1000}$ .                                                                      |
| 2nd warm up/preburn fuel charge ( $13$ 1bs ) added at $1309$ .                                                                                                |
| 3rd warm up/preburn fuel charge ( lbs ) added at                                                                                                              |
| 4th warm up/preburn fuel charge ( lbs ) added at                                                                                                              |
| 5th warm up/preburn fuel charge ( lbs ) added at "                                                                                                            |

#### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

72

٥F

Run: 5/13/92 Date: Technician: BN TK DK WST1-Form7-Rev11/89

Correction Factor: \_

| Roo        | m Temper             | ature       | : <u>72</u>                | °F                                            |                     | Cor              | rection | Factor           | : <u> </u> |
|------------|----------------------|-------------|----------------------------|-----------------------------------------------|---------------------|------------------|---------|------------------|------------|
| Unc<br>Tim | or Value<br>e Test F | s are       | adings to correct loisture | ed for<br>Readin                              | tempera<br>gs taker | ture: '          | 1300    |                  | · · ·      |
| Рc         |                      |             | Top                        | )                                             | Bot                 | tom              | Sid     | е                | Piece Av   |
| #          | Dimen                | Use         | Uncor                      | Cor                                           | Uncor               |                  | Uncor   | Cor              | Correcte   |
| 1          |                      |             |                            | HO                                            | <u> </u>            | TART             |         |                  |            |
| 2          |                      |             |                            |                                               |                     |                  |         |                  |            |
| 3          |                      |             |                            |                                               |                     |                  |         |                  |            |
| 4          | 2448                 | P           | 18.5                       | 20,1                                          | 21.0                | 22.9             | 21.5    | 23,5             | (22,167)   |
| 5          |                      |             |                            | <u> </u>                                      |                     |                  |         |                  |            |
| 6          |                      |             |                            |                                               |                     |                  |         |                  |            |
| 7          |                      |             |                            |                                               |                     |                  |         |                  |            |
| 8          |                      |             |                            |                                               |                     |                  |         |                  |            |
| 9          | 214/834              | 7           | 21,0                       | 22.9                                          | 22.0                | 24.1             | 21.5    | 23,5             | 23,500     |
| 10         | 2441834              | T           | 19.5                       | 21.3                                          | 21.0                | 22.9             | 20.0    | 21.8             | 22.000     |
| 11         | 2+41834              | T           | 20.5                       | 22.4                                          | 21.0                | 22.9             | 18,5    | 20,1             | 21,800     |
| 12         | 244,183/4            |             | 21,0                       | 22.9                                          | 21.0                | 22.9             | 19.0    | 20,7             | 22.167     |
| 13         |                      | , , , , , , |                            |                                               |                     |                  |         |                  | 89.467     |
| 14         |                      |             |                            |                                               |                     |                  |         |                  |            |
| 15         |                      |             |                            |                                               |                     |                  |         |                  |            |
| 16         |                      |             |                            |                                               |                     |                  |         |                  |            |
| 17         |                      |             |                            |                                               |                     |                  |         |                  |            |
| 18         |                      |             |                            |                                               |                     |                  |         |                  |            |
| 19         | FOET                 | T           | <i>20.0</i>                | 21.8                                          | 205                 | 22.4             | 19.5    | 21,3             | 21.833     |
| 20         | ·                    |             |                            | <u>                                      </u> |                     |                  |         |                  |            |
| % M        | oisture              | - Dry       | Basis:                     | Kind1                                         |                     | etest 1<br>2.167 | 7       | est Los<br>2,367 | ad 7       |
| % м        | oisture              | - Wet       | Basis:                     | N/F                                           | 7 7 /               | 18.145           | 7, /    | 8.270            | 17         |

To obtain Wet from Dry:  $\frac{100 \times \%}{100 + \%}$  Dry Rdg. = % Moisture, Wet Basis

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

|                           | · •                     | Run#:                                            | ۷               |
|---------------------------|-------------------------|--------------------------------------------------|-----------------|
| WOOD DEN                  | SITY DETERMINATION      | Date: 5//                                        | 3/92            |
| WOODSTOV                  | E TEST DATA SHEET #11   | Technician: BN 78                                | DIL J           |
|                           |                         | WST2-fo                                          | rmll-Rev        |
|                           |                         | z x 4                                            | x 3             |
| Wood Piece:               | Nominal Dimensions:     |                                                  | <u>A</u>        |
| Depth (D):                |                         | <u> 3,95                                    </u> | cm :            |
| Width (W):                |                         | 9,00                                             | cm              |
|                           | 0112                    |                                                  |                 |
| Length (L):               | 8.48 cm                 | •                                                |                 |
|                           | 8 45 cm Length          | x = 8,478                                        | cm              |
|                           | 8.50 cm                 | ·                                                |                 |
|                           | Volume                  | : 301. 375 cm <sup>3</sup>                       | •               |
|                           |                         | (D X W X L)                                      |                 |
| MOISTURE:                 | Room Temperature:       | 3 OF Correction F                                | actor: (        |
| HOLDIOKE.                 | ROOM TEMPORALITY        |                                                  | *               |
| Uncorrected               | Meter Readings Correcte | d for temperature:Ye                             | s No            |
|                           |                         | •                                                |                 |
| NOTE: Recor               | d moisture meter readir |                                                  |                 |
|                           | Uncor Cor               | vg % Moisture (Dry)                              | 21,267          |
| !                         |                         |                                                  |                 |
| Top:                      | 19.5 21.3 2             | ug % Moisture (Wet)                              | <u> 11,53 l</u> |
| Bottom:                   | 19,0 20,7 2             |                                                  |                 |
| i                         | 770                     | cale: Leveled In \(\bullet                       | / one /         |
| Side:                     | 20,0 21,8 2             | cale: Leveled In /                               |                 |
|                           | 012672                  | Zeroed: In                                       | Out             |
| <u>X</u> :                | 0100 /2                 |                                                  |                 |
| Wet Weight .              | 221.5 g Dry Weight:     | 185,99                                           |                 |
|                           |                         | • •                                              |                 |
| % Moisture D              | ried Basis: 16030 7     |                                                  |                 |
| [1 - (Dr                  | y Wt 5 Wet Wt)] X 100   |                                                  |                 |
|                           | Date Time               | Temp                                             |                 |
| Into Dry                  |                         | XO Temp                                          | •               |
| Out of D                  | 1 100 140 1VU           | 999 or                                           |                 |
| (Minimum                  | Time in Dryer: 24 hrs.  | ) Minimum Dryer Temp                             | 100°C 🤃         |
| Density =                 | 18595 g : 301.375       | _cm3 = 16171 g/                                  | ′сш3 ✓          |
| (d                        | (volume)                |                                                  |                 |
| •                         |                         |                                                  |                 |
| <b>.</b>                  | Market Dates            | dination.                                        |                 |
| reliet fuel               | Moisture Content Determ | Hativi                                           |                 |
|                           | Wt. g                   | ·<br>·                                           |                 |
| Tare Beaker               |                         |                                                  | g               |
| Tare Beaker               | <u>.</u> •              |                                                  | o               |
| Wet Wt:                   | g ÷                     |                                                  |                 |
| Wet Wt:                   | g :g :g :g :            | Wt. Net Wet Wt.                                  |                 |
| Wet Wt:                   | s Wet Wt. Tare Beaker   |                                                  |                 |
| Wet Wt: Gros              | g ÷                     | g **                                             | g               |
| Wet Wt: Gros Dry Wt: Gros | s Wet Wt. Tare Beaker   | g **                                             | g               |

|        |                                                                                 |           |                       | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                       |           |           |        |                 |             |          |              |                                                    |              |                |                                                  |             |                                       |        |              |      |
|--------|---------------------------------------------------------------------------------|-----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|-----------|--------|-----------------|-------------|----------|--------------|----------------------------------------------------|--------------|----------------|--------------------------------------------------|-------------|---------------------------------------|--------|--------------|------|
|        |                                                                                 | HOODSTOVE |                       | 17 ST 17 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST 19 ST  | HIND FLIE GINS UNIN<br>DATA SIEET #12 | <b>2</b>  |           |        |                 |             | Unit:    | Unit: Haughs | THEAT.                                             | İ            | 527            | Z LEE                                            | Sec. 2/13/9 | 5/13                                  | $\sim$ | \<br>\_\   z | -    |
|        |                                                                                 | KSTZ-Form |                       | t Rev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 Rev 1/68                           |           |           |        |                 |             | <b>6</b> |              |                                                    | <br> -<br> - | ď              | Į.                                               |             |                                       | 11     |              |      |
| -<br>- | Odieniko.                                                                       | 307.1     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           | 2         |        |                 |             | E        | 1/0/1        | (1)T/C(2)                                          | 2)           | i              | 1/0(3)                                           | 3)          | 4                                     |        |              |      |
|        | 100                                                                             | At at     |                       | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | × ×                                   | 2<br>XCD2 | ج ح       | 202    | Tel             | \<br>\<br>\ |          | Bal          | Het<br>Bulb                                        | y<br>1h      | 7 × 7          | Calc<br>MA                                       | 77.00 15    | S,                                    | 1100   | Static       |      |
| -      | _\\                                                                             | 317.7     | 10.6                  | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184                                   | 4.6       | . bo4     | 15.3   | 15.3            | <u>ر</u>    | =        | _            | <del>!                                      </del> |              | <del>  _</del> | +                                                | 259         | 25                                    | 1      | -03d         | Flaw |
|        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                           | 317.7     | 10.6                  | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .100                                  | 2.5       | .700      | 17.8   | 17.8            | Salo.       | <b>ી</b> | 3.8          | 191                                                | 30           | 5.7            | 15                                               | 251         | 9                                     |        | -037         | 28%  |
|        | 92<br>02                                                                        | 317.5     | 10.4                  | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .116                                  | 2.8       | b89.      | 17.5   | 17.5            | hSO.        | .55      | 5.0          | 102                                                | 77.          | - 9            | ╌                                                | 714         | 25                                    | 625    | -035         | 58.7 |
| :      | 52<br>25                                                                        | 317.3     | 10.2                  | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                     | 2.8       | 1691      | 17,5   | 17.5            | .059        | ଦ୍ୱ .    | 4.7          | 103                                                |              | 7.9            | <del>                                     </del> | 205         | 276                                   | 053    | -034         | 2    |
|        | $\lambda$                                                                       | 317.1     | 10.0                  | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61.                                   | 3.0       | .683      | 17.3   | 17.3            | ବାବାଦ -     | Fol.     | 4.5          | 101                                                | 125          | 7.3            |                                                  | 107         | 276                                   | 650    | -033         | 8    |
|        | 8\2<br>%                                                                        | 316.9     | 9.8                   | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .150                                  | 3.8       | , loslo   | ોહ. હ  | 16.b            | .062        | .63      | 0.0          | 112                                                | 132          | 8.5            | 20                                               | 217         | 25                                    | 625    | -035         |      |
| ·.     | 음 <b>/</b>                                                                      |           | 9.5                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .152                                  |           | .1,52     | 16.5   | 16.5            | 1170,       | .72      | 5.3          | 7-                                                 | 134 (        | 9.1            | 21                                               | 214         | .26                                   | 920    | -035         |      |
|        | M                                                                               |           | 9.2                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 156                                   | 3.9       | - Lo47    | 16.4   | 16.4            | ורט.        | .72      | 5.<br>t      | 115                                                | 135 (        | 9.3            | 122                                              | 218         | ,26                                   | 650    | .03હ         |      |
|        | <b>\</b>                                                                        |           | 84                    | ٤,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .235                                  | 5.9       | .573      | 고<br>S | 14,5            | JO66        | . b.7    | 8.7          | L11                                                | 17           | 10.01          | 127                                              | 259         | 124                                   | 009    | 040-         |      |
|        | 3/2                                                                             | 315.5     | ন<br>%                | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -254                                  | 6.3       | .559      | 14.2   | 14.2            | 070.        | ٦.       | 8.9          | 120                                                | 150          | 11.0           | 131                                              | 292         | .22                                   | 550    | -044         |      |
|        | 2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2/<br>2 |           | 7.9                   | λ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .322                                  | 8.0       | 765       | 12.4   | 12.4            | 270.        | .73      | 0.11         | 123                                                | 151          | 12.0           | 136                                              | 329         | .21                                   | 525    | 840:         |      |
|        | 3/                                                                              | 314.5     | 고<br>-                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -347                                  | 9         | 468       | 8.     | <del>.</del> .8 | .0te7       | . lo8    | 12.7         | 121                                                | 151          | 11.3           | 135                                              | 332         | .21                                   | 525    | 640.         |      |
|        |                                                                                 |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           |           |        |                 |             |          |              |                                                    |              |                |                                                  | 29913       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |        | - 460        | F10  |
|        | 2\<br>2\<br>V                                                                   | 313,8     | г<br>9                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .392                                  | 0         | 428       | 8.01   | 10.8            | .052        | .53      | 18.3         | 124                                                | 159          | 12.3           | 138                                              | 360         | .20                                   | 200    | 052          | 1802 |
|        | $\mathbf{V}$                                                                    | 313.3     | 6.7                   | v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 340                                   | 6.6       | .423      | ۲۰۵۱   | 10.7            | . 639       | .39      | 25.4         | 121                                                | 160          | 12.3           | 138                                              | 365         | ,20                                   | 500    | -,053        | 202  |
|        | VT)                                                                             |           | 5.1                   | ن.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.<br>185                             | 000       | 124.      | JO.6   | 10.6            | .037        | .37      | 27.1         | 12                                                 | 153          | 11.3           | 137                                              | 369         | 1.19                                  | 475    | :054         | 現    |
|        | 5/3<br>55/                                                                      | _         | <u>.</u>              | ۱ و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .333                                  | <u>_</u>  | .432      | 10.9   | 10.9            | .037        | .37      | 26.3         | 8 :                                                | 57           | 10.3           | 135                                              | 364         | 91.                                   | 475    | 053          | 图    |
|        | (1)                                                                             |           | ه و<br>- <del>ز</del> | <u>ز</u> ٔ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 412                                   | 10.2      | 113       | T.01   |                 | .632        | .32      | 31.9         | Ξ                                                  | 146          | 0.0            | 134                                              | 364         | 61:                                   | 475    | :053         |      |
|        |                                                                                 | _         | 7.7                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOT :                                 | 0.0       | <u> :</u> | 10.5   | 10.5            | .030        | .30      | 33.4         | 9<br> -                                            | 引            | 9              | 134                                              | 365         | 6/                                    | 47.5   | :053         |      |
|        |                                                                                 | _         | - '                   | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 406                                   | - io      | 417       | 16.5   | 10.5            | .027        | .27      | 37.3         | 112                                                | 135          | 8.5            | 131                                              | 362         | <u>6</u>                              | 475    | :053         | _    |
|        | (   )                                                                           |           | 3.3                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .392                                  | 9.7       | 426       | 16.8   | 10,8            | .025        | .25      | 38.9         | 607                                                | 130          | ر<br>ا         | 130                                              | 365         | 91.                                   | 475    | 053          |      |
|        | ۱۱)                                                                             |           | b.7                   | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 m                                   | 5.5       | .415      | 10.5   | 10.5            | .028        | .28      | 35.3         | 901                                                | 125          |                | 130                                              | 371         | 19                                    | 475    | :053         |      |
|        | A I .                                                                           |           | 9.2                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-</del>                          | 8.5       | 494       | 1.8    | 11.8            | .035        | .35      | 24.3         | 102                                                | 119          | _<br>_ \do     | 126                                              | 352         | 61.                                   | 475    | -053         |      |
|        | <b>\</b>                                                                        |           | 2.3                   | 一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>-</del>                          | 7.6       | .500      | 12.7   | 12.7            | .056        | .57      | 13.3         | 99                                                 | 113          | 5.7            | 121                                              | 333         | . 20                                  | 200    | 150:         |      |
|        | 烈                                                                               | 309.2     | 2.1                   | ٠,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 282                                   | 7.0       | .519      | 13.1   | 13.1            | .672        | .73      | 9.6          | 9b                                                 | 911          | 5,4            | 120                                              | 312         | .20                                   | 500    | 7.047        |      |
|        |                                                                                 |           | 1                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |           |           |        |                 |             |          |              |                                                    |              |                |                                                  | 4282        |                                       |        | - 1928       | _    |
|        | X                                                                               |           | _                     | <del>- ;</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |           |           |        |                 |             |          |              |                                                    |              |                |                                                  | 7772        |                                       |        | -1 000       | Ť    |

|                                      |                                            | Ministrue | _        | AND FLIE G  | -    | W LIMIN  |        |          |               |              | 5    | ,     | Нөмен    | - 1            | SJ70 Series | 1        | Uate:          | 5/13   | 1929  |              |             |
|--------------------------------------|--------------------------------------------|-----------|----------|-------------|------|----------|--------|----------|---------------|--------------|------|-------|----------|----------------|-------------|----------|----------------|--------|-------|--------------|-------------|
|                                      | · <b></b>                                  | KST2-Form | -        | 14 Rev 1/88 |      | 4        |        |          |               |              | 24   |       | 7 M      | <br>  <b> </b> | ત           | ŀ        | Technician(s): | c(an(s | 11 BN | 0.17<br>0.74 | H           |
|                                      |                                            | 307.1     | -        |             |      |          | 2      |          | •             | !            | m    | 1/0/1 | )T/CC    | 23             |             | T/E(3)   | -              | 4      |       |              |             |
|                                      |                                            |           |          |             | 3    | 32       | 2      |          |               |              | 8    |       | _        | -              |             | -        | ľ              | SE     |       | Static       |             |
|                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\     | _         |          |             | 265  | S - S    | 16     | Z '      | 10 2          | <b>3</b>  \f |      |       | _        |                | _           | ml.      |                |        | _     |              | Com         |
|                                      | Ę<br>Į                                     | 308.9     | _        | _           | 751  | , v      | ) A    | <u> </u> | 5 5           |              | 9 5  | o r   | ╁        | -1             | ρ r         | ╌        | 276            | ╅      |       |              |             |
|                                      | \ <u>®</u>                                 | 2000      |          | -           | 5 33 | 9 ,      | 5,75   | 7.01     | - 6-          | 180-         | 78.  | +     | <b>;</b> | 7              | =           | 9        | 787            | 2      | 200   | 740          | S           |
| ٠.                                   | \\\\<br>\\\                                | 308.b     |          | 7,          | TR7. |          | :517   | 13.1     | 13.1          | .052         | .53  | 13.3  | 42       | <u> </u>       | 4.3         | <u> </u> | 280            | 20     | 500   | :043         | CC          |
|                                      | M                                          |           | ر.<br>ري | .2          | .237 | 5.9      | 549    | 13,9     | 13.9          | 901.         | 1.08 | 5.5   | īb       | -              | 4.2         | 112      | 269            | 20     | 200   | 042          | 85          |
|                                      | 3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/     | _         | <br>3    | Ø           | .225 | 5.હ      | 555    | 14.2     | 14.2          | =            | .13  | 50    | 90       | 122            | 3.6         | 011      | 264            | 20     | 500   | 040          | <b>68</b> 0 |
|                                      | */*/X/                                     |           | 1.2      | -           | .232 | 5,8<br>8 | .552   | 14.0     | 14.0          | 860.         | 66.  | 5.8   | 96       | 129 1          | 4.6         |          | 260            |        | 500   | .039         |             |
|                                      |                                            | _         |          |             | .207 | 5.2      | .5lo8  | 14.4     | 1.4           | .145         | 1.47 | 3.5   | 86       | 131 8          | 5.0         | 12       | 254            | _      | 525   | -039         |             |
|                                      | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    |           | 0        |             | .204 | 5.1      | .573   | 三の       | 14.5          | . 138        | 1.40 | 3.6   | 901      | 133            | 5.3         | 13       | 250            | 17     | 525   | .039         |             |
|                                      | 18/<br>18/<br>18/                          | 308       | ٥.       |             | .201 | 5.6      | .517   | 14.6     | ও<br><u>।</u> | .138         | 1.40 | 3. la | 100      | 133            | 5.3         | 113      | 248            |        |       | -037         |             |
|                                      | 3/5                                        | 307 9     | δ.       | -           | 58   | 7        | .58%   | 14.8     | 14.8          | . 150        | 1.52 | 3.1   | 101      | 133            | 5.6         |          | 744            | 12     |       | 1.037        |             |
| 1<br>N<br>1<br>1<br>N<br>1<br>N<br>1 | 12/2/26/26/26/26/26/26/26/26/26/26/26/26/  |           |          | -           | 181  | 9 7      | 589    | 14.9     | 14.9          | ,159         | 1.62 | 2.8   | 101      | 132            | 5,b         | 112      | 239            | .21    | _     | J.03b        |             |
|                                      | 3/\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 3078      | г.       | 8           | 571. | コゴ       | .598   | 15.2     | 15.2          | 159          | 1.62 | 2.7   | 101      | 132            | 5.b         | 112      | 237            |        |       | 03b          |             |
| •                                    |                                            |           |          |             |      |          |        |          |               |              |      |       |          |                |             |          | 3128           |        |       | 177          | F10         |
|                                      | $\Lambda L$                                |           | 9        |             | 1161 | 4.0      | 10     | 15,5     | 15.5          | 161          | 164  | 2.5   | 102      | 131            | 5.9         | 112      | 231            | 17:    | 525   | 350:         | 80,         |
|                                      | 5 (S)                                      | _         | 3        | 7           | 191. | 4.0      | 19     | 15.5     | 15.5          | 161.         | 1.64 | 2.5   | 102      | 130            | 5,9         | 112      | 226            | .21    | _     | -634         | 25          |
|                                      | S (2)                                      |           | v;       | Ø           | 677  |          | 129    | 15.7     | 15,7          | 171.         | 1.74 | 2.1   | 101      | 139            | 5.1         |          | کجد            | .21    | 525   | 034          | R           |
|                                      | $\lambda L_{c}$                            | _         | <b>ਕ</b> | 1           | =    |          | 1629   | 15.9     | 15.9          | .166         | 1.69 | 2.1   | 100      |                | 5.5         |          | 218            | .21    | 525   | :033         | 83          |
|                                      | 11                                         |           | wi c     | _           | 139  | ۷) -     | . le33 | 160      | 0.9           | 159          | 1.62 | 2.2   | 90       | 176            | 5.5         | Ξ        | 213            | .22    | 550   | .033         |             |
|                                      | ۱IJ                                        |           | ٠;<br>د  | 9           | 90   | J .      | .63c   | 16.1     | - <u>9</u>    | .163         | 1.66 | 7     | 8        | 125            | 5.4         | 9        | 211            | .22    | 550   | :033         |             |
|                                      | $\mathbf{L}\mathbf{L}$                     |           | 7.       | - 7         | 134  |          | . 138  | 16.2     | 16.2          | 101          | 19-  | 2.0   | 8        | 124            | <u>۲</u>    | 9        | 207            | .22    | 550   | 032          |             |
|                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\      |           | 7.       | 9           | 135  |          | $\neg$ | 16.2     | 16.2          | 145          | 1.47 | 2.3   | 86       | 122            | 5.3         | 601      | 204            | .22    | 550   | 032          |             |
|                                      | UU                                         |           | -        | -           | 135  | -        | .642   | -<br>6.3 | 16.3          | 140          | 1.42 | 2.4   | 86       | 121            | 5.3         | 109      | 201            | .22    | 550   | 031          |             |
|                                      | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 307.2     | -  -     | 8           | 133  | 70       | .b47   | 16.4     | 7.9           | .136         | 1.38 | 2.4   | 97       | 120            | 5.2         | 601      | 199            | .23    | 575   | 2030         | ħ           |
|                                      | 1800                                       | 367.      | a        | 1           | 177  | 3.2      | 95,7   | 16.5     | 16.5          | 142          | 1.44 | 2.2   | 97       | 119            | 5.2         | 109      | 861            | .73    | 575   | -,030        |             |
|                                      |                                            |           | 十        | 1           | 1    |          |        |          |               |              |      |       |          |                |             |          | 2330)          |        |       | - 357        |             |
|                                      |                                            | 1         | 1        | 1           | 1    |          |        |          |               |              |      |       |          |                |             |          | (12731         |        |       | -1.922       | \_          |
|                                      |                                            |           |          | : ,         |      |          |        |          |               | 7            |      |       |          |                |             | _        | 7717           |        |       | VIOV.        | 7           |

|        |                                            |              |              | TEN<br>RECO<br>WST2 | TEMPERATURES<br>RECORD SHEET<br>WST2-Form14 R | TEMPERATURES<br>RECORD SHEET #14<br>WST2-Form14 Rev1/88 |           |                       | Unit:<br>Run:<br>Page:                  | H AVEATES       | 5 527         | Serie Date:     | Date: 5/13/92<br>Technician(s): GN |                    | 7 - Y                       |
|--------|--------------------------------------------|--------------|--------------|---------------------|-----------------------------------------------|---------------------------------------------------------|-----------|-----------------------|-----------------------------------------|-----------------|---------------|-----------------|------------------------------------|--------------------|-----------------------------|
|        | T/C#                                       | 4            | ស            | 9                   | 7                                             | 8                                                       | 6         | 10                    | ======================================= | 12              | 13            | 14              | 15                                 | 16                 | 17                          |
|        | Minute<br>Time                             | Stove<br>Top | Left<br>Side | Back                | Right<br>Side                                 | Bottom                                                  | Firebox   | 2nd Burn<br>Catalytic | Room<br>Temp                            | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | C. Gas<br>Box                      | C. Gas<br>Impinger | SO <sub>2</sub><br>Impinger |
|        | 이<br>이                                     | ያዛያ          | 333          | 209                 | 266                                           | 385                                                     | 777       | P02                   | 79                                      | 1448            | 848           | ऋ               | 243                                |                    | 36                          |
| •      | δ/<br>/Σ                                   | 321          | 323          | 302                 | 259                                           | 383                                                     | 588       | 350                   | 79                                      | 1448            | 847           | 34              | 247                                | 35                 | 3b                          |
|        | 0<br>0<br>0<br>1                           | 211          | 305          | 302                 | 257                                           | 380                                                     | 512       | 084                   | 79                                      | 8441            | 842           | 34              | 842                                | 35                 | 36                          |
|        | اگا                                        | 207          | 288          | 797                 | 248                                           | 376                                                     | 507       | 08h                   | <b>Ь</b> L                              | Lhhl            | 862           | 34              | 848                                | 35                 | 36                          |
|        | 8/<br>%                                    | 201          | 27ዛ          | 292                 | 240                                           | 310                                                     | 490       | 7,61                  | 79                                      | 9441            | 848           | 34              | 842                                | 35                 | 36                          |
|        | 71                                         | 201          | 262          | 289                 | 225                                           | 364                                                     | વાવા      | 503                   | 78                                      | ከተተተ            | 248           | 34              | 248                                | 35                 | 36                          |
|        | 30<br>40                                   | 261          | 251          | 288                 | 219                                           | 358                                                     | Loh       | 648                   | 8۲                                      | ከተተበ            | 248           | 34              | 248                                | 35                 | 3k                          |
|        | 왕<br>(국                                    | 306          | 242          | 189                 | 214                                           | 351                                                     | ሀሬክ       | 0hg                   | ٦8                                      | প্রদা           | 842           | 34              | 842                                | 35                 | 36                          |
| ·<br>` | 10<br>50                                   | 216          | 235          | 176                 | 214                                           | 345                                                     | 495       | કગઠ                   | 18                                      | <u> १</u>       | 842           | 34              | 842                                | 35                 | 36                          |
|        | マ<br>(S)                                   | 2ዛገ          | 230          | ا<br>ا              | 212                                           | 340                                                     | ટ્યા      | 850                   | 28                                      | ባተተነ            | 248           | 34              | 842                                | 35                 | 36                          |
| ,      | 50<br>1500                                 | 279          | 227          | 178                 | 212                                           | 335                                                     | ખ્ડવ      | 1121                  | 18                                      | 1447            | 848           | 34              | 842                                | 38                 | 36                          |
|        | ξλ<br> Σ                                   |              | 230          | 187                 | 217                                           | 334                                                     | 772       | 1105                  | 18                                      | 1448            | 248           | 34              | 248                                | 38                 | 36                          |
| •      | X                                          | 公正9<br>分下2   |              | 7885                | 2783                                          |                                                         | (67453)   | (8137)                | (941)                                   | `               |               |                 |                                    |                    |                             |
|        | }<br>%                                     | 346          | 243          | 201                 | 240                                           | 332                                                     | 887       | 1227                  | 18                                      | 1448            | 248           | 34              | 248                                | 35                 | 36                          |
| •      | ζζ<br>/Σ                                   | 385          | 257          | 213                 | 251                                           | 333                                                     | 953       | 1180                  | 79                                      | 1448            | 248           | 34              | 248                                | 35                 | 3to                         |
| ÷      | 20/2/20/20/20/20/20/20/20/20/20/20/20/20   |              | الرو         | 220                 | 262                                           | 332                                                     | 981       | 1231                  | 79                                      | 1448            | 248           | 34              | 248                                | 35                 | 36                          |
|        | 75/                                        | 399          | 289          | 234                 | 282                                           | 333                                                     | 1050      | 1189                  | 80                                      | 1448            | 248           | 34              | 248                                | 35                 | 36                          |
|        | %\<br>%\<br>%\                             | -            | 302          | 242                 | 287                                           | 335                                                     | 1069      | 1202                  | 80                                      | 1448            | 248           | 34              | 248                                | 35                 | 36                          |
|        | XI                                         |              | 317          | 248                 | 301                                           | 337                                                     | 11011     | 1221                  | 18                                      | 1448            | 248           | 34              | 248                                | 35                 | 36                          |
|        | $M_c$                                      | _            | 334          | 259                 | 317                                           | 340                                                     | T111      | 1201                  | 8                                       | 1448            | 248           | 35              | 248                                | 35                 | 36                          |
| ٠      | 文<br>法<br>人                                | ~            | 348          | Slob                | 327                                           | 343                                                     | 1115      | 1189                  | -58                                     | 1447            | ንዛያ           | 35              | 248                                | 35                 | 36                          |
|        | ος/<br>δς/                                 | 452          | 359          | 273                 | 319                                           | 347                                                     | 0111      | 1017                  | 18                                      | 1446            | 248           | 35              | 248                                | 35                 | 36                          |
|        | \$\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | र पप्        | 369          | 275                 | 327                                           | 351                                                     | 1094      | 993                   | 81                                      | 1445            | 248           | 35              | 248                                | 35                 | 36                          |
|        | 00<br>2/<br>2/                             |              | 375          | 273                 |                                               | 356                                                     | HL01      | 957                   | 8                                       | ותמת            | 248           | 35              | 248                                | 35                 | 36                          |
|        | 元<br>(2)                                   | 393          | 318          | 268                 |                                               | - P                                                     | 1052      | 928                   | 8                                       | ነባዛዛ            | 248           | 35              | 248                                | 35                 | 36                          |
| Ē      | $X_{\lambda}$                              | (4018)       | 3842         | 23-122              | 3546                                          | $\sim$                                                  | (121,033) | (13593)               | 063                                     |                 |               |                 |                                    |                    |                             |
| -      |                                            | 17667        | 7047         | 5857                | 163291                                        | 84197                                                   | 193487    | 21732                 | 1904                                    |                 |               | -               |                                    |                    |                             |

|   |                                                                                                  |       |       | )<br>——————————————————————————————————— |                               |                                                       |             |                |        |            |      |                |                                   |          |          |
|---|--------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------|-------------------------------|-------------------------------------------------------|-------------|----------------|--------|------------|------|----------------|-----------------------------------|----------|----------|
|   | 9)                                                                                               |       |       | TEM<br>RECO                              | TEMPERATURES RECORD SHEET #14 | TEMPERATURES RECORD SHEET #14 WEIT-Enem   4 Doi: 1/80 |             |                | Unit:  | HANGH<br>3 | ء ا  | S210 Surabate: | Date:<br>Technician(s): <u>BN</u> | SA SIN   | JSJTK    |
|   | Ş                                                                                                | •     | ı     |                                          | ,                             | 7                                                     |             | 1              | i Ding | <b>5</b>   | d d  |                | ı                                 |          |          |
|   | Minute                                                                                           | Stove | Teft  | ٳؖ                                       | Right                         | »                                                     | 5           | 10<br>2nd Brem | III    | 12         | 13   | Turni name     | —                                 | 16288.4  |          |
|   | Time                                                                                             | Top   | Side  | Back                                     | Side                          | Bottom                                                | Firebox     | Catalytic      | Tenp   | Purnace    | Box  | Out            | i<br>Box<br>Sox                   | Impinger | Impinger |
|   | 0 91                                                                                             | 363   | 377   | ८७५                                      | 313                           | 365                                                   | 1026        | 188            | 18     | 1444       | 248  | 35             | 842                               | 35       | 36       |
| • | ر<br>ارة                                                                                         | 352   | 374   | 260                                      | 310                           | 367                                                   | 1011        | 852            | 81     | 1445       | 842  | 35             | 842                               | 35       | 36       |
|   | 130<br>20                                                                                        | 340   | 370   | 257                                      | 299                           | 371                                                   | 89b         | 938            | 18     | 9441       | 8/12 | 35             | 248                               | 35       | 36       |
|   | <u>يَّ</u><br>اح                                                                                 | 327   | 369   | 154                                      | 303                           | 373                                                   | <b>63</b> 8 | 862            | 18     | LHHI       | 248  | 35             | 247                               | 35       | 36       |
|   | 를<br>(유                                                                                          | 318   | 369   | 249                                      | 298                           | 375                                                   | 923         | 848            | 80     | 8441       | 248  | 35             | 246                               | 35       | 36       |
|   | 表<br>(%                                                                                          | 366   | 369   | 244                                      | 293                           | 378                                                   | 906         | 815            | 80     | 8/11/1     | 248  | 35             | 245                               | 35       | 36       |
|   | S)<br>F)                                                                                         | 297   | 370   | 242                                      | 2810                          | 380                                                   | 986         | 184            | 80     | 8441       | 248  | 35             | 245                               | 35       | 36       |
|   | 》<br>为                                                                                           | 293   | 369   | 235                                      | 284                           | 381                                                   | શું જ       | 759            | 80     | 나하         | 247  | 35             | ከተሪ                               | 35       | 36       |
|   | 05/09/                                                                                           | 285   | 367   | 232                                      | 282                           | 381                                                   | 848         | 9hL            | 80     | 8441       | 246  | 35             | 244                               | 35       | 3%       |
|   | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                          | 27.7  | 364   | 229                                      | 276                           | 379                                                   | 678         | 729            | 80     | 8441       | 24b  | 35             | 244                               | 35       | 36       |
|   | 8-1-185/<br>1-186                                                                                | 177   | 360   | 225                                      | ጋገዛ                           | 378                                                   | 814         | 719            | 80     | 8661       | 245  | 35             | 243                               | 35       | 36       |
|   | 5/2                                                                                              | 269   | 355   | 1221                                     | 260                           | 376                                                   | 795         | 1697           | 80     | 8hhl       | 245  | 35             | 244                               | 35       | 36       |
|   | X                                                                                                | 3698  | 413   | 2912                                     | 3478                          | (4504)                                                | (1081)      | (9630)         | (h9b)  |            |      |                |                                   |          |          |
|   | 85<br>√5                                                                                         | 263   | 349   | 218                                      | 256                           | 373                                                   | 772         | 77             | ۲۹.    | 8441       | SHC  | 35             | ንዛሳ                               | 35       | 36       |
|   | Ş<br>√Ω                                                                                          | 255   | 343   | 717                                      | 257                           | 371                                                   | 757         | الم            | 79     | 1448       | 245  | 35             | ንተዛ                               | 35       | 36       |
| - | 12<br>12<br>13                                                                                   | 249   | 338   | 214                                      | 252                           | 368                                                   | 738         | (o.57          | 79     | 8441       | 245  | 35             | ጋዛዛ                               | 38       | 36       |
|   | 12/2<br>12/2                                                                                     | 243   | 332   | 214                                      | 248                           | 365                                                   | ماال        | ०५०            | 78     | 1448       | 245  | 35             | 245                               | 35       | 36       |
|   | 2<br>2<br>2<br>2<br>2<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 238   | 32b   | 213                                      | 241                           | 363                                                   | <b>ી</b>    | 629            | 18     | 1448       | 246  | 35             | 245                               | 35       | 36       |
|   |                                                                                                  | 234   | 321   | 210                                      | 235                           | 360                                                   | 678         | ماام           | 78     | 1448       | 246  | 35             | 245                               | 35       | 36       |
| • |                                                                                                  |       | 316   | 209                                      | 233                           | 356                                                   | 2010        | P09            | ٦8     | 1448       | 247  | 35             | 246                               | 35       | 36       |
|   | (5)<br>(元)                                                                                       | 93k   | 312   | 268                                      | 229                           | 352                                                   | 040         | 109            | 78     | 1448       | 247  | 35             | 2ዛሴ                               | 35       | 36       |
|   |                                                                                                  | 223   | 308   | 208                                      | 223                           | 348                                                   | 631         | 598            | 28     | 8441       | 247  | 35             | 246                               | 35       | 36       |
|   | 55/                                                                                              | 220   | 303   | 206                                      | 219                           | 343                                                   | 1017        | 585            | 18     | 1448       | 247  | 35             | 246                               | 35       | 36       |
| : | 1800                                                                                             | 717   | 300   | 205                                      | 213                           | 340                                                   | 595         | 570            | 18     | 1448       | 247  | 35             | 346                               | 35       | 36 4     |
|   | À                                                                                                | 25983 |       | 2322                                     | 2606                          | (3939)                                                | (1508)      | G8537          | 6198   | VTS.       | TART | 288.4          | <u></u>                           |          |          |
|   | X                                                                                                | 13963 |       | 110911                                   | 12413                         | 16862)                                                |             | 38215)         | 3729   | S          |      | 255.0          |                                   |          |          |
| • | X                                                                                                | (297) | (319) | (236)                                    | (264)                         | (3.59)                                                | (801)       | (813)          | (64)   |            |      | - 33 4         |                                   |          |          |
|   |                                                                                                  |       |       |                                          |                               |                                                       |             |                |        |            |      |                |                                   |          |          |

| Site: EE                                         | MC - West      | , Kent,         | WA 9803             | 2 Date:                | : <u>5/13/</u> 9 | Q Analy       | yte: <u>CO<sub>2</sub> (</u> | 15-1)          |  |
|--------------------------------------------------|----------------|-----------------|---------------------|------------------------|------------------|---------------|------------------------------|----------------|--|
| Source:                                          | Haughis        | S270            | SEEIE               | S Run #                | : <u>2</u>       |               |                              |                |  |
| Zero Cyl                                         | #: <u>T13</u>  | 2257            | С                   | onc. <u>00.0</u> 9     | CO2 _            | Cyl Pre       | ess: <u>800</u>              | psi            |  |
| Certi:                                           | fied by:       | Liqui           | O AIR               | )<br>-                 | <del>-</del>     |               | Date: 10)                    | 1/91           |  |
|                                                  |                |                 |                     |                        |                  |               | ess: <u>900</u>              |                |  |
|                                                  |                |                 |                     |                        |                  |               | Date: 10/3                   | 1              |  |
|                                                  |                |                 |                     |                        |                  |               | SN: 4070                     | •              |  |
| Range:(                                          | 0 - 25.0%      | CO <sub>2</sub> | A                   | nalyzer Ou             | itput:_          | 0 - 1.0       | )                            | v.             |  |
| Flow:                                            | 1.5 SCFH       |                 | Meas                | ured by:               | Rotame           | ter: <u>X</u> | Flowmete                     | r:             |  |
|                                                  | Value = 2      |                 |                     |                        |                  |               |                              | ·              |  |
|                                                  |                |                 |                     | 5.0% CO <sub>2</sub> = |                  |               |                              |                |  |
| Pre Run A                                        | Audit: By      | 7:              | <u>DK</u>           | Tim                    | ie:              | <u> </u>      | Temp: 81                     | o <sub>F</sub> |  |
|                                                  |                |                 |                     | Audit Resu             | lts              |               |                              | <b>.</b>       |  |
| Point<br>#                                       | Expec<br>Meter | ted Res         | ponse<br>%          | Act<br>Meter           | ual Res          | ponse         | + Conc.<br>Difference        | 1              |  |
| Zero                                             |                | .000            |                     | 00.0                   |                  |               |                              | .217           |  |
| Span 50.4 .504 12.6 50.2 .502 12.437 -163 -1.292 |                |                 |                     |                        |                  |               |                              |                |  |
| Comments:                                        |                |                 |                     |                        |                  |               |                              |                |  |
|                                                  | -              |                 |                     |                        |                  |               |                              |                |  |
|                                                  |                |                 |                     |                        |                  |               |                              |                |  |
| Post Run                                         | Audit: B       | у:              | 0                   | Tim                    | e:/              | 815           | Temp:                        | 7o <u>∓</u>    |  |
|                                                  | ····           |                 |                     | udit Resu              |                  |               |                              | <u> </u>       |  |
| Point<br>#                                       | Expec<br>Meter | ted Res         | ponse<br>%          | Act<br>Meter           | ual Res          | ponse<br>%    | <u>+</u> Conc<br>Difference  | 4              |  |
| Zero                                             | 00.0           | .000            | 00.0                | 00.0                   | ,000             | .054          | .054                         | .217           |  |
| Span                                             | 50.4           | .504            | 12.6                | 50.0                   | .500             | 12.388        | -, 212                       | -1.683         |  |
| Comments:                                        |                |                 |                     |                        | , -              |               |                              |                |  |
|                                                  |                |                 |                     |                        |                  | •             |                              |                |  |
|                                                  | ifference      |                 |                     |                        | \                |               |                              |                |  |
| ∡ero * Di                                        | .rierece =     |                 | (ppm) -<br>ull Scal | Exp % (pp<br>e Value   | m) X 10          | 0             |                              |                |  |

Span % Difference =  $\frac{\text{Act } \% \text{ (ppm)} - \text{Exp } \% \text{ (ppm)}}{\text{Exp } \% \text{ (ppm)}} \times 100$ 

| Site: EEMC  | - West,         | Kent,        | WA 98032   | Pate:                | 5/13/        | 92 Ana 1          | yte: <u>02 (</u>      | 15-2)          |
|-------------|-----------------|--------------|------------|----------------------|--------------|-------------------|-----------------------|----------------|
| Source: H   | aughs S         | 3270         | Series     | Run #                | : <u> </u>   |                   |                       |                |
| Zero Cyl #: | T 13            | 2 <u>257</u> | Co         | nc.00.0 %            | 02           | Cyl Pr            | ess: <u>800</u>       | psi            |
| Certifie    | ed by:          | LIO          | 010 A1     | <u>e</u>             |              | <u></u>           | Date: <u>/0/7</u>     | 191            |
|             |                 |              |            |                      |              |                   | ess: 900              |                |
|             | -               |              |            |                      |              |                   | Date: 10/3            | 1              |
| Analyzer:   | Make:           | 'eledyn      | e          | Model: 3             | 20 Ax        |                   | SN: 3746              | 5              |
| Range: 0 -  | 25.0%           | )2           | An         | alyzer Ou            | tput:        | 0 - 1.            | 0                     | v.             |
| Flow: 1.5   | SCFH            |              | Measu      | red by:              | Rotamet      | ter: <u>X</u>     | Flowmete              | r:             |
| EPA Span Va |                 |              |            | .0% O <sub>2</sub> = | + 0.625      | 5% O <sub>2</sub> |                       |                |
| Pre Run Aud | it: By:         |              | OK         | Time                 | e:           | 335               | Temp: <u>79</u>       | o <sub>F</sub> |
|             |                 |              | A          | udit Resu            | lts          |                   |                       |                |
| Point<br>#  | Expect<br>Meter | ed Res       | ponse<br>% | Act:<br>Meter        | ual Res      | sponse<br>%       | + Conc.<br>Difference | Δ 8            |
|             |                 |              |            |                      | i            |                   | 7.003                 | -012           |
| Zero        |                 |              |            |                      |              |                   |                       |                |
| Span        |                 |              |            |                      |              |                   | , २२५                 | 1.809          |
| Comments:   | Teledyne        | #2 <u>Cy</u> | 1 * E      | xp % A               | Ct &         | Adj t             | <u>o</u> + <u>∆</u> & |                |
|             |                 |              |            |                      |              |                   |                       |                |
|             |                 |              |            |                      |              |                   |                       |                |
| Post Run Au | dit: By         | <b>':</b>    | DK         | Time                 | e: <u>18</u> | 325               | Temp.: 77             | o <sub>F</sub> |
|             |                 |              | A          | udit Resu            | lts          |                   |                       |                |
| Point<br>#  |                 | ed Res       | ponse<br>% | Act:<br>Meter        | ual Res      | ponse<br>%        | + Conc.<br>Difference | <b>A</b> 8     |
|             | Meter           | DVM          |            |                      |              |                   | 028                   |                |
| Zero        | 00.0            | .000         | 00.0       | 00.0                 | ,003         | 028               | <del></del>           | -,114          |
| Span        | 12.4            | 1496         | 12,4       | 12.3                 | .490         | 12.395            | 005                   | 042            |
| Comments:   | Teledyne        | #2 <u>CY</u> | 1 5 E      | xp & Ac              | ct %         | Adj t             | <u>ο</u> + Δ &        |                |
|             |                 |              |            |                      |              |                   |                       |                |
| + Conc. Dif | ference         | = Act        | % - Exp    | (Std) %              | <del></del>  |                   |                       |                |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

| Site: <u>EE</u>                                | MC - West,              | Kent,   | WA 98032       | Date:             | <u>5/13/9</u>  | Q Anal       | yte: <u>CO (</u>             | L5-3)                          |  |  |
|------------------------------------------------|-------------------------|---------|----------------|-------------------|----------------|--------------|------------------------------|--------------------------------|--|--|
| Source:                                        | HAUGHS                  | S270    | SERIE          | <u>S</u> Run #    | : <u>a</u>     |              |                              |                                |  |  |
| Zero Cyl                                       | #: <u>T13</u>           | 2257    | Co             | nc. <u>00.0</u> % | co             | Cyl Pr       | ess: <u>800</u>              | psi                            |  |  |
|                                                |                         |         |                |                   |                |              | Date: 10/7                   | 1                              |  |  |
|                                                |                         |         |                |                   |                |              | ess: <u>900</u>              |                                |  |  |
| Certi                                          | fied by: _              | MATH    | ESON           |                   |                |              | Date: 10/3                   | 1/91                           |  |  |
|                                                |                         |         |                |                   |                |              | SN: 408                      |                                |  |  |
| Range:                                         | 0 - 10.0%               | со      | . An           | alyzer Ou         | tput:          | 0 - 1.       | 0                            | v.                             |  |  |
| Flow:                                          | 1.5 SCFH                |         | Measu          | red by:           | Rotamet        | er: <u>X</u> | Flowmet                      | er:                            |  |  |
| EPA Span                                       | Value = l<br>rol Limits | 0.0% CC | )<br>S& of 10. | 0% CO = +         | 0.25%          | CO           |                              |                                |  |  |
|                                                |                         |         |                |                   |                |              | Temp: 80                     | OF                             |  |  |
| Pre Run                                        | Audit: By               |         |                |                   |                |              | 1emp                         |                                |  |  |
| <del></del>                                    | ·                       |         |                | udit Resu         | its_           |              | + Cong                       | <del> </del>                   |  |  |
| Point<br>#                                     |                         | ted Res |                | Meter             | DVM            | & Sponse     | <u>+</u> Conc.<br>Difference | <b>△</b> %                     |  |  |
| Zero                                           | 00.0                    | .000    | 00.0           |                   |                |              | 004                          |                                |  |  |
| Span 49.6 .496 4.96 49.4 .494 5.028 .068 1.380 |                         |         |                |                   |                |              |                              |                                |  |  |
| Comments:                                      |                         |         |                |                   |                |              |                              |                                |  |  |
| Comments:                                      |                         |         |                |                   |                |              |                              |                                |  |  |
|                                                | ·····                   |         | <del> </del>   |                   |                |              |                              |                                |  |  |
| Post Run                                       | Audit: B                | y:      | <u>OK</u>      | Tim               | e: <u>18</u>   | 30           | Temp.: 7                     | 7o <sub>F</sub>                |  |  |
|                                                |                         |         |                | udit Resu         |                |              |                              |                                |  |  |
| Point                                          |                         | ted Res |                |                   | ual Res        | ponse        | + Conc.<br>Difference        | Δ %                            |  |  |
| #                                              | Meter                   | DVM     | 8              | Meter             | DVM            |              |                              |                                |  |  |
| Zero                                           | 00.0                    | _000    | 00.0           | 00.0              | .000           | -004         | 004                          | 044                            |  |  |
| Span                                           | 49.6                    | . 496   | 4.96           | 49.1              | .491           | 4.998        | .038                         | .764                           |  |  |
| Comments                                       | •                       |         |                | ,                 |                |              |                              |                                |  |  |
|                                                | , <del>"</del>          |         |                |                   |                |              |                              |                                |  |  |
| + Conc.                                        | Difference              | = Act   | % - Exp        | (Std) %           |                |              |                              |                                |  |  |
|                                                | ifferece =              | Act %   | (ppm) -        | Exp % (pp         | <u>m)</u> x 10 | 0            |                              | er<br>Programmer<br>Programmer |  |  |
|                                                |                         | I       | ull Scal       | e Value           | <del></del>    |              |                              |                                |  |  |

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

|                                                |         |         |                   |               |               | 2 Anal       | yte: <u>SO2</u>       | 15-4)            |  |  |
|------------------------------------------------|---------|---------|-------------------|---------------|---------------|--------------|-----------------------|------------------|--|--|
| Source: HA                                     | AUGHS   | S270    | SERIE             | S Run #       | : <u>a</u>    |              |                       | ·                |  |  |
|                                                |         |         |                   |               |               | Cyl Pr       | ess: <u>800</u>       | psi              |  |  |
| Certifie                                       | -       |         | $\wedge$          |               |               |              | Date: 10/             | <b>\</b>         |  |  |
|                                                |         |         |                   | onc. 1232 p   | om SO2        | Cyl Pr       | ess: <u>45</u>        | O psi            |  |  |
| Certifie                                       |         |         | •                 |               |               |              | Date: 9/21            |                  |  |  |
|                                                |         |         |                   |               |               |              |                       |                  |  |  |
|                                                |         |         |                   |               |               |              | SN: 4030              |                  |  |  |
| Range: 0 -                                     | 2500 p  | pm SO2  | An                | alyzer Ou     | tput:_        | 0 - 1.       | 0                     | v.               |  |  |
| Flow: 1.5                                      | SCFH    |         | Measu             | red by:       | Rotamet       | er: <u>X</u> | Flowmete              | er:              |  |  |
| EPA Span Va                                    | lue = 2 | 500 ppn | n SO <sub>2</sub> |               |               | E            | go-                   |                  |  |  |
| EPA Control                                    |         |         |                   |               |               |              |                       |                  |  |  |
| Pre Run Aud                                    | it: By  | :       | DK_               | Time          | e:            | 3 <u>20</u>  | Temp: $8$             | /_o <sub>F</sub> |  |  |
|                                                |         |         |                   | udit Resu     |               |              |                       |                  |  |  |
| Point<br>"                                     |         | ted Res |                   | Act:<br>Meter |               | sponse       | + Conc.<br>Difference | Δ &              |  |  |
| #                                              | Meter   | DVM     | ppm               |               |               |              |                       |                  |  |  |
| zero 00.0 .000 00.0 00.2 .002 8.432 8.432 .337 |         |         |                   |               |               |              |                       |                  |  |  |
| Span 49.3 .493 1232 49.3 .493 1234. 2.000 .162 |         |         |                   |               |               |              |                       |                  |  |  |
| Comments:                                      |         |         | ·                 |               |               |              | •                     |                  |  |  |
|                                                |         |         |                   |               |               |              |                       |                  |  |  |
|                                                |         |         |                   |               |               |              |                       |                  |  |  |
| Post Run Au                                    | dit: B  | y:      | OK                | Time          | e: <u>/</u> / | 310          | Temp:77               | o <sub>F</sub>   |  |  |
| ·                                              |         | -       |                   | Audit Resu    | lts           |              |                       |                  |  |  |
| Point                                          | Expec   | ted Res |                   | Act           | ual Res       |              | + Conc.               | Λ.               |  |  |
| #                                              | Meter   | DVM     | ppm               | Meter         | DVM           | ppm          | Difference            | ∇ 8              |  |  |
| Zero                                           | 00.0    | .000    | 00.0              | 00.1          | .001          | 5.936        | 5.936                 | .237             |  |  |
| Span                                           | 49.3    | .493    | 1232              | 49.1          | .491          | 1229.        | -2.992                | -,243            |  |  |
| Comments:                                      |         |         |                   |               |               | ·            | •                     |                  |  |  |
|                                                |         |         |                   |               |               |              |                       |                  |  |  |
| + Conc. Dif                                    | ference | = Act   | ppm - Ex          | cp (Std) p    | pm            | <del></del>  |                       |                  |  |  |

+ Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

 $\frac{\text{In } \$ \text{ Difference} = \underbrace{\text{Act } \$ \text{ (ppm)} - \text{Exp } \$ \text{ (ppm)}}_{\text{Exp } \$ \text{ (ppm)}} X 100$ 

Run: 2
Date: 5//3/92
Technicians: ON TR DR JS
WST6-Form3-Rev11/89

# QUALITY CHECKS WOODSTOVE DATA SHEET #16

| Ambient = Tr:OF T/C#30:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermocouple Check (at ambient): T/C#1: 83.3 of; T/C#2: 87.6 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T/C #3: 594.3 of; T/C #4: 411.1 of; T/C #5: 372.6 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T/C #6: 229.8 of; T/C #7: 296.0 of; T/C #8: 402.5 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T/C #9: 1051.8 of; T/C #10: 1213.2 of; T/C #11: 78.6 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T/C #12: 1268.1 of; T/C #13: 1226 of; T/C #14: 84.3 of;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T/C #15: 188.1 of; T/C #16: 54.7 of; T/C #17: 61.6 of;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T/C #18: 90.1 of; T/C #19:of; T/C #20:of;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T/C #21:oF; T/C #22:oF; T/C #23:oF;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T/C #24: OF; T/C #25: OF; T/C #26: OF;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Comments: Hot START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thermocouple Readout:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pretest Zero/Span Check and Calibration: Zero Adj Post Test Check 7 Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zero (0°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Span Adi Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2000°F): 2003.9 °F to: 2000.0 °F (2000°F): 2003.9°F 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF; 200°F = 202.2 °F; 400°F = 399.9 °F;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = 200.2 °F; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = 200.2 °F; 400°F = 399.9 °F;  600°F = 602.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;  1200°F = 1200.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F                                                                                                                                                                                                                                                                                                                                                            |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = 200.2 °F; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = 200.2 °F; 400°F = 399.9 °F;  600°F = 602.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;  1200°F = 1200.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F                                                                                                                                                                                                                                                                                                                                                            |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = OOOOF; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;  1200°F = 1200.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F  1800°F = 1803.5 °F; 2000°F = 000.0 °F  Tracer Gas (SO <sub>2</sub> ) Injection Train Leak Check: Pre Post                                                                                                                                                                                                                                                    |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = OOOOF; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;  1200°F = 1200.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F  1800°F = 1803.5 °F; 2000°F = 000.0 °F  Tracer Gas (SO <sub>2</sub> ) Injection Train Leak Check: Pre Post                                                                                                                                                                                                                                                    |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  O°F = O°F; 200°F = OOOOF; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1000.3 °F;  1200°F = 1200.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F  1800°F = 1803.5 °F; 2000°F = 0000.0 °F  Tracer Gas (SO <sub>2</sub> ) Injection Train Leak Check: Pre Post  Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ,CO) Train Leak Check: Pre Post  Tracer Gas (SO <sub>2</sub> ) Analyzer Train Leak Check: Pre Post                                                                                             |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  0°F = .O °F; 200°F = .O °F; 400°F =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = DOO OF; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;  1200°F = 1700.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F;  1800°F = 1803.5 °F; 2000°F = 2000.0 °F  Tracer Gas (SO <sub>2</sub> ) Injection Train Leak Check: Pre Post Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ,CO) Train Leak Check: Pre Post Tracer Gas (SO <sub>2</sub> ) Analyzer Train Leak Check: Pre Post Post Draft (Static) Guage Zero Check: Pre Post Post                                           |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = O OF; 200°F = DOO OF; 400°F = 399.9 OF;  600°F = 600.5 OF; 800°F = 803.0 OF; 1000°F = 1002.3 OF;  1200°F = 1700.3 OF; 1400°F = 1401.7 OF; 1600°F = 1603.8 OF  1800°F = 1803.5 OF; 2000°F = DOO O OF  Tracer Gas (SO <sub>2</sub> ) Injection Train Leak Check: Pre Post  Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ,CO) Train Leak Check: Pre Post  Tracer Gas (SO <sub>2</sub> ) Analyzer Train Leak Check: Pre Post  Draft (Static) Guage Zero Check: Pre Post  Scale Check Pre (Wt, #'s): 321.5 - 311.5 - 10.0 |
| (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  OF = OF; 200°F = DOO OF; 400°F = 399.9 °F;  600°F = 600.5 °F; 800°F = 803.0 °F; 1000°F = 1002.3 °F;  1200°F = 1700.3 °F; 1400°F = 1401.7 °F; 1600°F = 1603.8 °F;  1800°F = 1803.5 °F; 2000°F = 2000.0 °F  Tracer Gas (SO <sub>2</sub> ) Injection Train Leak Check: Pre Post Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ,CO) Train Leak Check: Pre Post Tracer Gas (SO <sub>2</sub> ) Analyzer Train Leak Check: Pre Post Post Draft (Static) Guage Zero Check: Pre Post Post                                           |

TEST No. :

5/15/92 DATE: S-27X MODEL: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* PERCENT S<sub>0</sub>2 DELTA METER PERCENT METER TIME COCENTR. CO C02 TEMP. H READING ( % ) PPM ( 용 ) (DEG. F) (IN. H20)(MIN.)(C F) \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ 475 77 0.78 5.10 0 617.800 0.150 77 400 3.20 619.300 0.67 5 0.210 475 77 0.69 2.90 10 621.099 0.150 525 622.615 0.120 78 0.75 3.20 15 79 0.89 3.20 525 623.992 0.120 20 80 0.64 6.20 475 25 625.374 0.150 400 626.907 83 0.15 8.20 0.200 30 400 84 0.19 7.80 0.200 628.747 35 10.30 425 85 630.593 0.19 0.180 40 425 85 0.12 10.40 0.180 45 632.338 0.09 10.40 425 88 50 634.083 0.180 350 0.10 11.00 55 635.847 0.260 84 0.07 10.00 350 84 60 637.957 0.260 86 0.12 9.10 350 65 640.067 0.260 375 70 642.192 0.230 86 0.09 9.70 350 644.176 0.260 87 0.09 10.00 75 375 86 0.14 8.60 80 646.310 0.220 86 0.33 8.00 375 0.220 85 648.294 0.28 400 86 8.50 0.200 90 650.278 400 86 0.25 8.30 95 652.138 0.200 400 653.999 0.200 86 0.33 6.70 100 86 0.70 5.90 450 105 655.859 0.160 0.79 86 5.70 475 110 657.513 0.140 500 115 659.080 0.130 86 1.09 5.60 500 120 660.569 0.130 86 1.40 4.70 86 1.29 4.40 500 125 662.058 0.130 4.20 500 130 663.547 0.130 86 1.40 665.035 86 1.35 3.90 500 0.130 135 86 3.70 525 1.48 0.120 140 666.524 86 1.48 525 145 667.942 0.120 3.50 86 3.30 525 150 669.360 0.120 1.46 525 155 670.778 0.120 86 1.50 3.20 85 1.46 3.10 525 160 672.196 0.120 525 85 1.46 3.10 165 673.609 0.120 1.45 3.40 170 675.022 0.110 85 550 175 85 1.39 3.60 550 676.370 0.110 85 180 677.719 0.110 1.40 3.50 550 185 85

#### TABLE 2 ---- FIELD DATA

| tour (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CLIENT : HA                | AUGHS PRO      | DUCTS     |                          | TEST No.                        | : 4               |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|-----------|--------------------------|---------------------------------|-------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODEL: S-                  | -27X<br>****** | *****     | *****                    | DATE:<br>*****                  | 5/15/92<br>****** |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METER CAL.<br>FACTOR (Y) - |                | 1.066     | Wt. WOOD<br>BURNED(LB    | )                               | 10.5              | Lbs   |
| Name of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state | BAROMETRIC<br>PRESS.(Pb)   |                | 30.12 in  | WET, FUEL<br>Hg MOISTURE | <b>%</b>                        | 18.306            | ફ     |
| 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LEAK RATE<br>POST (Lp)     |                | 0.005 cfr | Wt. PART.<br>n COLLECTED |                                 | 0.5836            | g     |
| Sec. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WATER<br>VOL. (V1c)        | <b></b>        | 104.2 Ml  | METER<br>VOLUME Vm       | and this was used two saids but | 59.919            | mcf   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEST<br>TIME (MIN)         |                | 180 mi:   | HC MOLE<br>FRACTION      |                                 | 0.0132            | get e |

#### TABLE 3 ----FIELD DATA AVERAGES

|        | CLIENT :  | UNITOUS DE | PODUCES     |               | TEST No. | . 4                    |     |
|--------|-----------|------------|-------------|---------------|----------|------------------------|-----|
|        | MODEL:    | S-27X      | ******      |               | DATE:    | •<br>5/15/92<br>****** | *** |
| arwas) | AVG DELTA |            | 0.17 in H2O | AVG PRCNT     |          |                        |     |
|        | AVG METER | · ·        | 84 deg F    | CO  AVG PRCNT |          | 0.76                   | 8   |
| iven.  | AVG PPM   |            | 64 deg r    | CO2           |          | 6.10                   | ક   |
|        | S02       |            | • 457 PPM   |               |          |                        |     |

#### TABLE 4 CALCULATIONS

|                                              | TABLE 4 (              | CALCULATIONS                   |                      |
|----------------------------------------------|------------------------|--------------------------------|----------------------|
| CLIENT : HAUGHS PRO                          | DUCTS                  | TEST No. :                     | 4                    |
| MODEL: S-27X ************                    | ******                 | DATE: !                        | 5/15/92<br>********  |
| STD SAMPLE VOL. Vm(std)                      | 62.40 dscf             | STACK GAS<br>FLOW Qsd          | 571.338 dscf/Hr      |
|                                              |                        | J.                             | &<br>9.52 dscf/min   |
| VOL. WATER VAPOR Vw(std)                     | 4.905 scf              | PARTICULATE CONCTRT. C s       | 0.0094 g/dscf        |
| PRCNT MSTR Bws                               | 7.29 %                 | PARTC.EMISS. RATE E            | 5.34 g/Hr            |
| BURN<br>RATE BR                              | 1.30 Kg/Hr             | MOLES OF GAS<br>PER Lb WOOD Nt | 0.52 Lb-mole/Lb      |
| CO EMISSION RATE                             | 145.10 g/Hr<br>&       | PART.EMISS. RATE               | 4.12 g/Kgdry<br>fuel |
| Tanada a sa sa sa sa sa sa sa sa sa sa sa sa | 111.79 g/Kgdry<br>fuel |                                |                      |
|                                              |                        |                                |                      |
|                                              |                        |                                |                      |

TABLE 5 ---- PROPORTIONAL RATE VARIATION

|          |                                        | TABLE 5        | PROPOR                | CTIONAL R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATE VA       | KTATT       | ON    |           |           |      |
|----------|----------------------------------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------|-----------|-----------|------|
| record . | HAUGHS PRO                             | DUCTS          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST         | No.         | :     | 4         | •         |      |
|          | S-27X                                  |                | ****                  | ملد ملد داد داد داد داد داد داد داد داد داد د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DATE         | :<br>       | 5/15/ | 92        |           | **   |
|          | ************************************** | PPM            | PROPRTN.              | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROP         | RTN         |       |           |           |      |
|          | INTEVAL<br>Ti                          | *<br>Vm        | RATE VAR.<br>PR       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RATE<br>AVER | VAR.<br>AGE |       |           |           |      |
|          | =======                                |                | ========              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | =====       | ===== | ====      | =====:    | ==== |
|          | 5                                      | 752.2          | 98                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 100         | L C   | •         |           |      |
|          | 10                                     | 759.8          | 99                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *            |             |       |           |           |      |
|          | 15                                     | 759.5          | 99                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           | , i       |      |
|          | 20                                     | 761.0          | 99.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **           | * .         |       |           | •         |      |
|          | 25                                     | 762.4          | 9 <u>9</u><br>99      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •           |       |           |           |      |
|          | 30<br>. 35                             | 762.3<br>767.8 | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 200         |       |           |           |      |
|          | 40                                     | 768.9          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            |             |       |           |           |      |
|          | 45                                     | 771.5          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 50                                     | 769.4          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 55                                     | 778.5          | 101                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 60:                                    | 769.8          | 100                   | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |             |       | 2         |           |      |
|          | 65                                     | 768.4          | 100                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |       |           |           |      |
|          | 70                                     | 772.4          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 75                                     | 771.9          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 7           |       |           |           |      |
|          | 80                                     | 775.0          | 101                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 42.5        |       |           |           |      |
|          | 85<br>90                               | 772.6<br>772.6 | 100<br>100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            | 11 - 1      |       |           |           |      |
|          | 95<br>95                               | 772.6          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 100                                    | 773.0          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           | Section 1 |      |
|          | 105                                    | 772.6          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1          |             | ,     |           |           |      |
|          | 110                                    | 772.8          |                       | er<br>Line and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |       |           |           |      |
|          | 115                                    | 772.8°         | 100                   | . :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |       |           |           |      |
|          | 120                                    |                | 100                   | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |              |             |       |           |           |      |
| •        | 125                                    | 773.0          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 130                                    |                | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 135                                    | 772.5          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       | Service . |           | ٠.   |
|          | 140<br>145                             | 773.0<br>772.9 | 100<br>100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •           | 18 17 |           |           |      |
|          | 150                                    | 772.9          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 155                                    | 772.9          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 160                                    | 773.6          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 165                                    | 771.6          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 170                                    | 771.6          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 175                                    | 771.1          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 180                                    | 771.7          | 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |
|          | 185                                    |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       | 2.0       |           |      |
|          | 190                                    |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           | . *  |
|          |                                        |                | and the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |       |           |           |      |

|                                                            | WST                                             |
|------------------------------------------------------------|-------------------------------------------------|
| COMPUTER INPUT DATA                                        | WOODSTOVE DATA SHEET #1                         |
| Client Haugh's Production Court                            |                                                 |
| Client Address 10 Otlas Cou                                |                                                 |
| Bramp Ton, On                                              | tario, Canada 16T SCI                           |
| Client Phone 4/6-192-8000                                  |                                                 |
| Project No Model No.                                       |                                                 |
| Run No. 4 Date of Test 5/13                                | / 92                                            |
| Stove Type: Cat Non Cat                                    | Pellet                                          |
| Data To Be Submitted To: OregonX                           | Colorado EPA X                                  |
| Burn Category: Low (<0.8 Kg/Hr)                            | Med Hi (1.26 - 1.90 Kg/Hr) 1.39                 |
| •                                                          | g/Hr) Max (>1.9 Kg/Hr)                          |
| Fuel % Moisture (dry) 00,408                               | "(wet) 18,306                                   |
| (00.00) (Data Sheet #10)                                   | == == 10 (:                                     |
| Stack Static Pressure                                      | <u>,048 / "+</u>                                |
| (0.000) (Data Sheet #12)                                   | · 30,12                                         |
| Barometric Pressure                                        | 00/12                                           |
| (00.00) (Data Sheet #2)                                    | $2/\sqrt{2}$                                    |
| Temperature (Average Room) Combustio (00) (Data Sheet #14) | n Air 4                                         |
| Flue Gas Moisture                                          | 7.2824                                          |
| (00.000) (Data Sheet #7)                                   |                                                 |
| Ambient Moisture                                           | LA-                                             |
| (0.00) (Data Sheet #8)                                     |                                                 |
| Stove Weight                                               |                                                 |
| (000) (Data Sheet #8)                                      | 01/                                             |
| Stove Temperature Change                                   | <u> </u>                                        |
| (000) (Data Sheet #14)                                     | W.12 /                                          |
| Particulate Emission(0.0000) (Data Sheet #7)               | <u>,1442                                   </u> |
|                                                            |                                                 |
| Fuel Higher Heating Value (dry)<br>(0000) (CT&E Sheet)     | BTU/                                            |
| Fuel Type: Wood: X Pellets:                                |                                                 |
| Total Fuel Consumed During Burn                            | 10                                              |
| (00.0) (Data Sheet #8)                                     | 1                                               |
| Total Particulate Catch                                    | _ , <i>5</i> 836 ⁄                              |
| (0.0000) (Data Sheet #6)                                   | 1010                                            |
| H <sub>2</sub> O Captured                                  | 104.2                                           |
| (00.0) (Data Sheet #3)                                     |                                                 |
| Dry Gas Meter Volume                                       | 59,919                                          |
| (00.000) (Data Sheet #2)                                   |                                                 |
| Dry Gas Meter: Y Factor: 4J-1.066                          | Post Test Leak Rate 005 C                       |
| 1)PV God Massas V Massas 711 7 / //4/4                     | - FIRST LOST LOSV PSTG /L// ) - P!              |

Meter Box Data Sheet Page # 2

Meter Box 4 Y Factor 1.066

Leak Checks: 15.0 " Hg @ .005 cfm cfm cfm cfm

Unit: HAUGHS SQ7X

Run:  $\frac{4}{}$  Date:  $\frac{5/15/92}{}$ Operator(s):  $\frac{716}{}$ 

Nozzle: Probe @ 3/8 " od

Inject SO2 @ 100 cc/min

| LITCIA |         |                  |          |                |            |               |            |                 |       |
|--------|---------|------------------|----------|----------------|------------|---------------|------------|-----------------|-------|
| ROTO   | PRESS:  | /8               | Sampling | Ratio :        | _25_       | . : 1         | BAROME     | ك: TER          |       |
| MN     | TIME    | METER<br>READING |          | STACK<br>DSCFM | DELTA<br>H | METER<br>TEMP | 902<br>PPM | ROTO<br>TEMP    | PUMI  |
| 00     | 1005    | 612.800          | <i>,</i> | 7. 433         | 15         | 77            | 475        | 12              | 02    |
| 05     | n l     | 69.300           |          | 8 826          | ,21        | 72            | 400        | 12              | 0.5   |
| 10     | 15      | 621.899          |          | 1.433          | ,15        | 77            | 475        | 72              | 2.5   |
| 15     | 20      | 622615           | ;        | 6725           | 12         | 18            | 525        | 72              | 05    |
| 20     | 25      | 623,992          |          | 6.725          | 1/2        | 74            | 252        | 72              | 05    |
| 25     | 30      | L25,374          | [ .      | 7-433          | 115        | 80            | 475        | 72              | 05    |
| 30     | 75      | 626.901          |          | 8826           | , 20       | 83            | 400        | 72              | 0.2   |
| 35     | YU      | 628.147          |          | 8-816          | ,20        | 84            | 400        | 72              | 10    |
| 40     | 45      | 630 593          | [        | 8291           | .18        | 85            | 425        | 23              | 10    |
| 45     | 50      | 632.338          |          | 8.291          | 118        | 85            | 425        | 13              | 10    |
| 50     | N       | 634.083          |          | 8-291          | .18        | 88            | 425        | 23              | 15    |
| 55     | 1100    | 6358Y1           |          | 10.068         | 126        | 87            | 320        | 73              | 1 / 5 |
| ROTO   | PRESS:  | 18               | TOTALS : | (97.168)       | (2.10)     | 977           | BAROM      | _ , _ , , , , , | 30/   |
| 60     | 5       | 637.957          | -        | 10068          | , 26       | 84.           | 350        | 73              | 2,6   |
| 65     | 10      | 440.067          |          | 10.049         | ,26        | 86            | 330        | 74              | 2.0   |
| 70     |         | 642.192          | <u> </u> | 9.379          | ,23        | 86            | 375        | //              | 2.0   |
| 75     | 20      | 624.176          |          | 10,049         | ,26        | 87            | 350        | 74              | 20    |
| 80     | 25      | 646,310          | <u>[</u> | 9.379          | ,22        | 86            | 375        | 27              | 2.0   |
| 85     | 30      | 648294           | <u>[</u> | 9.379          | ,22        | 86            | 325        | 24              | 2.0   |
| 90     | 35      | 650.218          | I        | 8793           | .2D        | 86            | 700        | 74              | 20    |
| 95     | 70      | 652138           |          | 8-777          | ,20        | 86            | 400        | 25              | 2,    |
| 100    | 45      | 653.999          |          | 8-177          | ,20        | 86            | 400        | 75              | 2.0   |
| 105    | 10      | 1                | 1        | 7.802          | 1/6        | 86            | 450        | 25              | 20    |
| 110    | Ó       | 657.513          | 1        | 7391           | 14         | 86            | 475        | 25              | 1-5   |
| 115    | 1200    | 659.080          | 1        | 7.021          | ./3        | 86            | 500        | 15              | 10    |
|        |         |                  | TOTALS:  |                |            |               | MAX V      |                 |       |
| TOTÁ   | L CU FT |                  | TOTALS:  | 204032         | 1 (4.58/   | 2003          | AV BP      | :               |       |

Nozzle: Probe @ 3/8 " od

Initial Volume: \_/-500\_\_\_\_

| BOTO  | PRESS:                                          | 18       | Sampling | Ratio : | 25          | : 1   | BAROME     | TER:         | 0/2                                              |
|-------|-------------------------------------------------|----------|----------|---------|-------------|-------|------------|--------------|--------------------------------------------------|
| MN    | TIME                                            | METER    |          | STACK   | DELTA       | METER | S02<br>Mqq | ROTO<br>TEMP | PUMP                                             |
| 711.4 |                                                 | READING  | _        | DSCFM   | H 10        | TEMP  | 500        | 25           | 10                                               |
| 120   | 1205                                            | 660.569  | -        | 7.021   | ,13         | 86    |            | 15           | 05                                               |
| 125   | 10                                              | 662058   |          | 7-021   | <u>, 13</u> | 86    | 500        | 15           | 0.5                                              |
| 130   | 15                                              | 663.547  | -        | 7021    | ./3         |       | 500        | 25           |                                                  |
| 135   | . 20                                            | 665 035  |          | 7021    | , /3        | 86    | 500        | 25           | 0.5                                              |
| 140   | 25                                              | 1066 527 | ļ .      | 6687    | ,/2         | 86    | 325        | 105          |                                                  |
| 145   | 30                                              | 667.942  |          | 6.682   | 1/2         | 86    | 525        | 2)           | 05                                               |
| 150   | 35                                              | 669360   | <u>.</u> | 6687    | , /2        | 86    | 525        | ()           | 0.5                                              |
| 155   | 40                                              | 670 178  |          | 6.687   | 1/2         | 86    | 525        | 25           | 1                                                |
| 160   | 45                                              | 612.196  | ]        | 6687    | ,12         | 85    | 525        | 25           | 05                                               |
| 165   | 10)                                             | 673-1009 |          | 6687    | ,/2         | 85    | 252        | 25           | 0.5                                              |
| 170   | ις                                              | 625,122  | Ţ        | 6383    | .11         | 85    | 220        | 25           | 0.5                                              |
| 175   | 1300                                            | 676370   |          | 6383    | , 11        | 85    | 225        | 75           | 05                                               |
| ROTO  | <del>/ / _ / _ / _ / _ / _ / _ / / / / / </del> |          | TOTALS : | (a80.97 | 1.46        | 1028  | <u> </u>   | ETER:        | 1                                                |
| 180   | 5                                               | 622.719  |          | 6383    | 11          | 85    | 220        | 7-           | 0.5                                              |
| 185   | ~                                               |          |          | ļ       |             |       |            |              |                                                  |
| 190   |                                                 |          | 1        | (87.355 | 1.57        | 11113 |            |              |                                                  |
| 195   |                                                 |          |          |         |             |       | 37         |              | <u> </u>                                         |
| 200   |                                                 |          | 7        |         |             |       |            | <u> </u>     | -                                                |
| 205   |                                                 |          | 1        |         |             |       | <u> </u>   |              | <del>                                     </del> |
| 210   |                                                 |          | 1        |         |             |       |            | <u> </u>     | —                                                |
| 215   |                                                 | ,        | T        |         |             |       | <u> </u>   | <u> </u>     | <del> </del>                                     |
| 220   |                                                 |          | T        |         |             |       |            |              |                                                  |
| 225   |                                                 | ,        | 7        |         |             |       |            |              |                                                  |
| 230   | <del> </del>                                    |          | 7        |         |             |       |            |              | 1                                                |
| 235   |                                                 |          | 7        |         |             |       |            |              | <u> </u>                                         |
|       |                                                 |          | TOTALS:  |         |             |       |            | ACC =        |                                                  |
| тота  | L CU FT                                         | 59919    | TOTALS:  | 291.38  | 6.150       | 3/2/  | AV BI      | ): <u>3</u>  | 0-12-                                            |

7.875 (166) (SYV)

# MOISTURE SHEET Woodstove Data Sheet #3

Moisture Determination

|                                           | lance<br>roed | Unit: #                               | auch 5270X    |
|-------------------------------------------|---------------|---------------------------------------|---------------|
| Final:                                    |               | Run:                                  | 4             |
| IMPINGER #1                               |               | Date:                                 | 5/15/92       |
| Final Weight 658,2                        | _ grams       | Technician(s): I                      | nitial: 7     |
| Initial Weight 573.5                      | _ grams       | ·                                     | inal: TK      |
| Net <u>84.7</u>                           | _ grams       | Approved By:                          | R             |
| IMPINGER #2                               |               |                                       |               |
| Final Weight 590.0                        | grams         |                                       |               |
| Initial Weight 583.4                      | grams         |                                       |               |
| Net                                       | grams         |                                       |               |
| IMPINGER #3                               | •             | · · · · · · · · · · · · · · · · · · · |               |
| Final Weight 495.2                        | grams         |                                       |               |
| Initial Weight 491.4                      | grams         |                                       | · .           |
| Net                                       | grams         |                                       |               |
| IMPINGER #4 (SILICA GEL)                  |               |                                       | 3             |
| Final Weight 874.8                        | grams         |                                       |               |
| Initial Weight 862.7                      | grams         |                                       |               |
| Net                                       | grams         |                                       |               |
| ı                                         | OTAL MAS      | S OF H <sub>2</sub> O CAPTURED        | 1040 grams    |
| Scale Check: 295.0g = 295<br>590.0g = 590 | <u>C_D</u> g  | Front Half Fi                         | lter # 2 (3 F |
| 885.0g = <u>888</u>                       |               | Back Half File                        | ter # 263B    |
| Notes:                                    |               |                                       | ·             |
|                                           |               |                                       |               |
| ·                                         |               |                                       |               |
|                                           |               | ,                                     |               |
|                                           |               |                                       |               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | WOODSTO |                    |                 |             |              |             |                                         |                      |              | · /          |             |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------|-----------------|-------------|--------------|-------------|-----------------------------------------|----------------------|--------------|--------------|-------------|--------------|
| , coases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Into Des       | sicator | Date               | 3 <i> 17 91</i> | Z Time      | <u> 0900</u> | _ By_       | DK (F)                                  | ont                  | Half.        | Bac          | k Hali      | E            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manufact       | urer:   | <u>S &amp; S</u>   | <u> </u>        |             | Size:        | <u>0 mm</u> | Lot.No                                  | ·: <u>Z</u>          | B882         | . Grade      | <u>#250</u> | <u>GUASS</u> |
| , command of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Filter F       |         |                    |                 |             | Second       | Date        | Time                                    | Ву                   | Thir<br>Wt   | d<br>Date    | Time        | Ву           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # W<br>261 FO. | 1097 3  |                    |                 |             | 4699         | 2/03        | 1300                                    |                      | W.L.         | Date         | TIME        | Dy .         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 262 FD.        | 7011    | 1/2                | 10              |             | 7017         | 1           | 1301                                    | (7)                  |              |              |             |              |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26340          |         | 7                  | 12              | - / [       | 985          |             | 1300                                    |                      | HAU          | WES EN       | 4           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 264F0          |         |                    | 14              | 1           | 894          |             | 1303                                    |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 265 FC         |         |                    | 16              |             | 917          |             | 1304                                    |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 266 FO         |         | <u> </u>           | 18              | 1,          | 6936         |             | 1395                                    |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 267FO          | .6936   | 1 162              | 0               | / /         | 0937         |             | Boc                                     |                      |              |              |             |              |
| :.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 268 FO.        | 7015    | 16                 | 22              | 1/          | 1010         |             | 1307                                    |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 269 50         | .6933 \ | 16                 | <u> </u>        |             | ,436         |             | 1328                                    |                      |              |              | <u></u>     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 270HO.         | 6965    | 16                 | 26              | 1/1         | 0965         |             | 1300                                    |                      |              |              |             | <u> </u>     |
| , moreon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |         | ,                  |                 |             | I            |             |                                         | -                    |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 271FO.         |         | 20 16              | 28   L          | <u>) 10</u> | _            |             | 1330                                    |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 272FO.         |         | r                  | 30              | 7           | 7005         |             | 1331                                    |                      | ·            |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 273 6.         |         |                    | 32              |             | 660          |             | 1330                                    |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 274HO.         |         |                    | 34              | • ""        | 903          |             | 1333                                    |                      | <del> </del> |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 275F0.         |         |                    | 36              |             | 975          |             | 1334                                    |                      |              |              |             |              |
| toud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276 flo.       |         |                    | 38              |             | 999<br>914   |             | 1335                                    | 1                    |              | <del> </del> |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 277FO.         |         | 7                  | 10              |             | 99/          |             | 133G<br>1337                            |                      | <del></del>  |              |             |              |
| · <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 279FO.         |         |                    | 12              |             | 900          |             | 1332                                    |                      | <del>.</del> |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 280F0.         | 1.904   |                    | 46              | 16          | 997          |             | 1339                                    |                      | <del>.</del> |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20010          | 9171    | <del>-   '''</del> | 7()             |             | 17.1.        | - 4         | · • • • • • • • • • • • • • • • • • • • | - <del>\lambda</del> | <del></del>  |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |                    |                 |             |              |             |                                         |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |                    |                 |             |              | ••••        |                                         |                      |              |              |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         | 7                  |                 |             |              |             |                                         |                      | 1            | ,            |             |              |
| Transfer of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | Checked        | by      | 1/                 |                 |             |              |             | Dat                                     | e :                  | 3/24         | /9/ Time     | 090         | ıÙ           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |         |                    |                 |             |              |             |                                         |                      | • •          | -            |             | E.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         | WEIGH              | <del></del>     | <u> </u>    | <del></del>  |             | LANCE R                                 | i i                  |              | ONMENTAL     | CONDI       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Filter #       | WT      | Date               |                 | Time        | Ву           | WB          | DB                                      |                      | RH           | Date         | Time        | By           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |                    |                 |             | 4            | 60          | 74                                      | 4                    | 4            | 3/20         | 1606        | DK-          |

|          | QA KE | WEIGH | <del> </del> |    |
|----------|-------|-------|--------------|----|
| Filter # | WT    | Date  | Time         | Ву |
|          |       | •     |              |    |
|          |       |       |              |    |
|          |       |       |              |    |

| ŴВ | DB | %RH | Date | Time | Ву   |
|----|----|-----|------|------|------|
| 60 | 74 | 44  | 3/20 | 1606 | DK   |
| 59 | 13 | 43  | 303  | 130  | 1/co |

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

| anufa        | cturer:_      | <u></u> | <u> 55 </u> |          | _ Size: <u>\</u> | <u>. Z cm</u> | Lot.No | ).: <u>±</u> | <u>B 901</u>                          | rade: | the Cr | AS: |
|--------------|---------------|---------|-------------|----------|------------------|---------------|--------|--------------|---------------------------------------|-------|--------|-----|
|              | First         | 2       |             | Ву       | Second<br>Wt     | Date          | Time   | Ву           | Third<br>Wt                           | Date  | Time   | Ву  |
|              | 0.3846        | Date    |             | DK       |                  |               |        | 90           | <u> </u>                              | 2022  |        | -27 |
|              | 0.3872        |         | 1528        | -        | 3827             | Y             | 1342   | ارميال       |                                       |       |        |     |
|              | 0.3805        |         | 1530        | 1        | .32/0            |               | 1343   |              | HAUle                                 | MS.   | 204    |     |
|              | 0.3811        | /       | 1S32        | 1        | -3218            |               | 1344   |              |                                       |       |        |     |
|              | 0.3821        | /       | 1534        | 1        | -3824            |               | 1345   |              |                                       |       |        |     |
|              | 0.3822        | 1       | 1536        |          | 138aN            |               | 1346   |              |                                       |       |        |     |
|              | 0.3817        |         | 1538        | 1        | -3888            |               | 1347   |              |                                       |       |        |     |
|              | 0.3772        |         | 1540        |          | 13770            |               | 1348   |              | i                                     |       |        |     |
|              | 0.3875        |         | 1542        |          | 3810             |               | 1340   |              | !                                     |       |        |     |
|              | 0.3813        | 1       | 1544        |          | -3869            |               | 1350   |              |                                       |       |        |     |
|              |               |         |             |          |                  |               |        |              | · · · · · · · · · · · · · · · · · · · |       |        |     |
|              | -             |         |             |          |                  |               |        |              |                                       |       |        |     |
| 2718         | 0.3884        | 3/20    | 1546        | 1014     | 13884            |               | 1351   |              | ,                                     |       |        |     |
| 272          | 8185.0        |         | 1548        |          | -3813            |               | 1359   | _            |                                       |       |        |     |
| <u> 2736</u> | 0.3825        |         | 1550        |          | ,3821            |               | 1353   |              |                                       |       |        |     |
| 2748         | 0.3856        | /       | 1552        |          | /3853            |               | 1354   | _            |                                       |       |        |     |
| <u> 2750</u> | 0.3832        |         | 1554        | _/_      | <u> 3830</u>     |               | 1355   |              |                                       |       |        |     |
| 2769         | 0.3862        | _/_     | 1556        | /        | 386H             |               | 1356   |              |                                       |       |        | ·   |
|              | <u>0.383b</u> |         | 1558        | <u> </u> | 323A             |               | 13s?   |              |                                       |       |        |     |
|              | 0.3801        | _       | 1600        |          | 380A             |               | /3空    |              |                                       |       |        |     |
|              | 0.3827        |         | 1602        |          | 3822             | -             | 1359   | _            | <u> </u>                              |       |        |     |
| <u> </u>     | 0.3821        |         | 1604        |          | 3218             | V             | 1400   | 1            |                                       |       |        |     |
|              |               |         |             |          |                  |               |        |              |                                       |       |        |     |
|              |               |         | 1           |          |                  |               |        | e:(          | _ / _ /                               |       | 190    |     |

|          | QA RE | WEIGH | ·    | <del> </del> |
|----------|-------|-------|------|--------------|
| Filter # | WT    | Date  | Time | Ву           |
|          |       |       |      |              |
|          |       |       |      |              |
|          |       |       |      |              |

| BALA | NCE R | OOM ENVI | RONMENTA | L COND | ITIONS |
|------|-------|----------|----------|--------|--------|
| WB   | DB    | %RH      | Date     | Time   | Ву     |
| 60   | 74    | 44       | 3/20     | 1524   | DK     |
| 559  | 23    | 43       | 3/03     | 1340   | 5      |
| ,    |       |          |          |        |        |

INITIAL BEAKER WEIGHTS (TARE WEIGHTS) Into Dessicator: Date: 4/17/92 Time: 1000 By: DK Beaker First Second Third Date Wt Time By Date Time B Date Time Ву Wt Wt 4/01 1330 Por 96-8870 501 4001004 DK 96.8874 502 98.5625 1334 48.5630 1006 91.2044 503 91,2041 1008 1336 95.0584 504 95.0582 1010 1338 106.4504 505 106.4506 1340 1012 134/2 506 94.1600 420 1014 DK 94.1604 507 88.9867 82.9870 1344 1016 508 103.1077 103.1017 1346 1018 509 A5.7024 95,7026 1348 1020 104-8757 1350 510 104.8758 1033 511 107.7742 4/20 1024 DX 107,7745 1352 106.3855 1354 512 106.3852 1026 HAUGHS EN4 513 199.2412 99.0417 1356 1028 514 108 6344 1358 108.6340 1030 106,2264 106.2259 1032 1400 1 5/6 105.6750 4/20 1034 01(105.6745 1402 517 194.7160 194 2160 1036 1404 518 103.8296 103 .8300 1406 1038 519 1408 100.0063 100,0063 1040 198.6266 98.6267 1410 1042 97.7535 4/20 1044 DK 97.7537 1411 522 103,9227 103 9209 1416 1046 523 94.9397 94.9400 1048 1418

Checked By:

QA REWEIGH

Date: 4/21/92 Time: /4/5

BALANCE ROOM ENVIRONMENTAL CONDI

106 2571

| Beaker # | WT | Date | Time | Ву |
|----------|----|------|------|----|
|          |    |      |      |    |
|          |    |      |      |    |
| ,        |    | _    |      |    |

1050

524

106.8567

| Time | Date         | %RH | DB  | WB       |
|------|--------------|-----|-----|----------|
| 1003 | 4/20         | 46  | 72  | 59       |
| 1330 | 4/01         | 44  | 74  | (0)      |
| 1550 | 4/41         | 44  | 714 | $\omega$ |
|      | 1000<br>1330 |     |     |          |

|            |                       |      |      |              | MO | WOODSTOVE DATA SHEET         | SHEET | #4-31                | CONS  | CONSTANT FINAL WEIGHTS | ICHTS |       |          | WST5-F<br>Unit | orm9,Pg<br>42064 | WST5-Form9,Pg1,Rev4/90<br>Unit_ <i>//ハいちH</i> S Sコア | )<br>2<br>7 |
|------------|-----------------------|------|------|--------------|----|------------------------------|-------|----------------------|-------|------------------------|-------|-------|----------|----------------|------------------|-----------------------------------------------------|-------------|
|            |                       |      |      |              |    |                              |       |                      |       |                        |       |       |          | Run #          |                  | 7                                                   |             |
| J.E        |                       |      |      |              | -  |                              | FINAL | FINAL BEAKER WEIGHTS | K WEI | GHTS                   |       |       |          | Date:          | 5//3             | 15/92                                               | <br>        |
| <u>ا</u> ي | beaker into<br># Dess | ပ္   | Date | Time         | By | First                        | Date  | Time                 | By    | Second                 | Date  | Time  | By       | Third          | Date             | Time                                                | BV          |
|            | 21/2                  |      | 5//8 | )(O) 00b0    | D  | 107. 8712                    | 5/19  | 938                  |       | DK (107,8717           | 5/19  | 138   | 8        |                |                  |                                                     |             |
| 1          |                       |      |      |              |    |                              |       |                      |       |                        |       |       |          |                |                  |                                                     |             |
|            | 275                   | -    | 5/18 | 0000 DK      | ğ  | 106, 5011                    | 5/19  | 940                  | OΚÜ   | 14.5019                | 5/19  | 717   | No.      |                |                  |                                                     |             |
| ]          |                       |      |      |              |    |                              |       |                      |       | \\\                    |       |       | 5        |                |                  |                                                     |             |
| <u>.</u>   | 273                   |      | 2/18 | 5/18 0900 DY | Q  | 99,2960 5                    | 5/19  | Chb                  | 0K /  | 199.8955               | 5/4   | MU    | No.      |                |                  |                                                     |             |
| <u>.</u>   | ,                     |      | ,    |              |    | į                            |       |                      |       | X                      |       |       | <u> </u> |                |                  |                                                     |             |
|            | 277                   |      | 5/18 | 0900         | ă  | 5/18 10900 DK 108. 7011 5/19 | 8/14  | þþb                  | OK    | (1100:80               | 2/19  | 1251  | 3        |                |                  |                                                     |             |
| <u>]</u>   |                       |      |      |              |    |                              |       |                      |       |                        |       | _     |          |                |                  |                                                     |             |
|            | ンジン                   |      | 3/18 | 0060         | 걸  | 5/18 0900 DK 106, 28,75 7    | 19    | 9/16                 | DK    | [168.2891]             | 5/15  | 17039 |          |                |                  |                                                     |             |
|            |                       |      |      |              |    |                              |       |                      |       |                        |       |       | 0        |                |                  |                                                     |             |
| !          |                       |      |      |              |    |                              |       |                      |       |                        |       |       |          |                |                  |                                                     |             |
|            |                       |      | :    |              |    |                              |       |                      |       |                        |       |       |          |                |                  |                                                     |             |
| į.         |                       |      |      |              |    |                              |       | FIN,                 | AL FI | FINAL FILTER WEIGHTS   |       |       |          |                |                  |                                                     |             |
| -          | Filter Into           | Into |      | •            |    | i                            |       | i                    |       |                        |       |       |          |                |                  |                                                     |             |

|                  |   |           |    |                           |      | FIN  | AL FI | FINAL FILTER WEIGHTS |             |            |     |           |          |            |    |
|------------------|---|-----------|----|---------------------------|------|------|-------|----------------------|-------------|------------|-----|-----------|----------|------------|----|
|                  |   |           |    |                           |      |      |       |                      |             |            |     |           |          |            |    |
| Dessic Date Time |   | Time      | Ву | By First                  | Date | Time | By    | By Second            | Date        | Time       | By  | Third     | Date     | Date Time  | By |
| 5/15             |   | <u>88</u> | Ø  | 5/15 1330 BJ O. 7182      | 1918 | 5091 | DK.   | 405 DK 0,7976        | 5/18 950 BN | 950        | BNZ | 1818      | 2/2      | 5/8 1538 1 | S  |
|                  |   |           |    |                           |      |      |       |                      |             |            |     |           |          |            | 6  |
| 5,5              |   | 333       | 3  | 5/15 1330 120 0.4767 5/15 | 5/15 | 1610 | X     | DK 0.4736            | 816         | NO CSO 815 | BN  | ( OHO 1-) | ChSI als | Stell      | X  |
|                  |   |           |    |                           |      |      |       | •                    |             |            |     |           |          |            |    |
|                  | ĺ |           |    |                           |      |      |       |                      |             |            |     |           |          |            |    |

| TONS                                |          | %RH                  | 77.77      | 7          | 43                | 777    |                  |
|-------------------------------------|----------|----------------------|------------|------------|-------------------|--------|------------------|
| CONDIT                              |          | DB                   | 77/        | 1/         | 73                | 57 70  | É                |
| TAL (                               |          | WB                   | 9          | 58         | 69 73             | 51     | Ø                |
| ONMEN                               |          | By                   | 경          | 3          | \$                | ΟĶ     | \$               |
| ENVIR                               |          | Time                 | 1600       | 115 948 BN | 33                | Be     | 12               |
| ROOM                                |          | Date                 | 09/1/21/60 | 5//8       | 61/5              | 919    | 1 Kg 12 00 00 15 |
| SCALE ROOM ENVIRONMENTAL CONDITIONS | Weighing | Session Date Time By | 1          | 2          | 3                 | 4      | ır               |
| <br>-                               |          |                      |            |            |                   |        |                  |
| HTS                                 |          | Ву                   |            |            | By                |        | :<br>:           |
| WEIG                                |          | Wt                   |            |            | WT                |        |                  |
| FINAL                               |          | Final                |            |            | Final             |        |                  |
| QA REWEIGH: FINAL WEIGHTS           |          | Beaker # Final Wt By |            |            | Filter # Final WT |        |                  |
| 8                                   |          | Date                 |            |            | Date              | $\neg$ |                  |

| SCALE    | SCALE KUUM ENVIKUNMENTAL CONDITIONS | ENVIK | JUMEN. | EAL C | UNDLT | ONS |
|----------|-------------------------------------|-------|--------|-------|-------|-----|
| 9        | ,                                   |       |        |       |       |     |
| 7        |                                     |       |        |       |       |     |
| 8        |                                     |       |        |       |       |     |
| 6        |                                     |       |        |       |       |     |
| Comments | _                                   |       |        |       |       |     |
|          |                                     |       |        |       |       |     |

WST7-Form1-Rev5/90

Dates: From 4 33 3

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHRET

Scale Sartorius Model A1205 SN 37010004

| 100g            | 10g      | 1.00             | 100mg   | H lenk | Rlonk | -<br> -     | }-       | +     |          |          |                                        |
|-----------------|----------|------------------|---------|--------|-------|-------------|----------|-------|----------|----------|----------------------------------------|
| Weight          |          | Weight           | Weight  | • 🕶    | 4 40  | Tech        | A te T   | i i   | Dry Bulb | Wet Bulb | na Z                                   |
| 977775          | C000001  | 0.9997           | 0.100   |        |       | DK 4        | 123 16   | 00    | Ю        | 10       |                                        |
| 9,46,67         | 00000    | 6656             | 1000    |        |       | 100         | 1 150%   | 30    | 20       | (V)      | 7,7                                    |
| 21.000 CC       | 0000     | 0550             | 1000    |        |       |             | 1184 11  | 330   | )C       | 12       | מכון                                   |
| 1 250 000       | 00000    | 10007            | 0, 1000 |        |       | NOK 1       | _        | 345   | 73       | 09       | 47                                     |
|                 | 60000    | 1777             | 5550    |        |       | 100 P       | 1 120    | 1330  | 16       | Ą        | 49                                     |
| ~ L             | 1000,01  | 1.0001           | 0.0999  |        |       | 76          | 01 58    | 0/    | 74       | 17/      | <i>L</i> <sub>1</sub> /7               |
|                 | (0.000)  | 1.0001           | 0.0909  |        |       | 7 2         |          | 78.87 | 66       | 7,7      | 00                                     |
| 8666.66         | 9.9998   | 0.9999           | 0.1000  |        |       | S<br>S<br>S |          | 25    | 17       | 101      | pz.                                    |
| 11,991.7        | 9.4999   | 200/             | 1,000   |        |       |             | 7 1/3    | ţ     |          | 77       |                                        |
| 99 9995         | 100001   | 6.9999           | 0.0999  |        |       |             | 7        | 30    | 72       |          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| 180,000         | 7000701  | 1,000/           | 000/    |        |       |             | V        | 0/0   | 1        |          |                                        |
| 988             | 10,0001  | (2000)<br>(2000) | 1001    |        |       | 0           | 1<br>V   | X     | 176      | 13       | 45                                     |
| bbbh bh         | 10.0000  | 1.0061           | 0.0999  |        |       | JODK 4      | 9/2      | 30    | 74       | 0,7      | 100                                    |
| 1,146           | OFOC     | 10001            | , 1000  |        |       | <b>₩</b>    | Ë        | 1000  | 4        | 2        | 77                                     |
| 800.00          | Ħ        | 1:0001           | 0.100a  |        |       | Г           | 12       | 900   | 736      | 186      | 43                                     |
| 26666           | ٦        | 10007            | 0,1001  |        |       | 3           | 2        | 15.5  | 16       | 2        | 200                                    |
| 08/36           | 1        | 1000             | /00//   |        |       |             | //8/     | T So  | S)       | 72       | 46                                     |
| 225,56          | 0070     | 79999            | ,000)   |        |       |             | 911 819  | 8     | 000      | 1/2      | 24                                     |
|                 | 10.0001  | 0.999            | 0.0998  |        |       | DK S        | / 11/    | 000   | 67       | 130      | 12/                                    |
| 8837 88         | 83666    | 1.000            | 00010   |        |       | 1 2         | 7/12 0   | 900   | 14       | 09       | 75                                     |
|                 | 100/0    | ,0000            | 9990    |        |       | S           | 8118     | -5/5  | 46       | a<br>a   | 44                                     |
| 27.7.7.2        | 7000.0   | 0000             | 0.0999  |        |       |             | 5        | SD    | 74       | 59       | 70                                     |
|                 | 200,0    | 3007             | /00//   |        |       |             | $\dashv$ | 759   | 70       | Ø        | <del> </del>                           |
| <b>SILL 115</b> | 1,77     | 77.7             | 1,460   |        |       | ᅱ           | ড়       | 900   | 14       | 60       | 717                                    |
| 0000.001        | 70.00.0/ | 10001            | 0.0999  |        |       | DK 5        | 18/      | 0060  | 12       | 58       | 45                                     |
| 0000000         | 20000    | ~                | 100/    |        |       | 215         | 16 P     | 88    | 73       | 65       | 4/5                                    |
| 000000          | 1 555 5  | 0.4446           | 0.049 / |        |       |             | 7        | 0860  | 07       | 57       | hh                                     |
| 9 17 7          | 00000    | 5555             | 13401   |        |       | がら行         | 18       | 02    | B        | 186      | 77                                     |
|                 |          |                  |         |        |       | 2           |          |       |          |          |                                        |
|                 |          |                  |         |        |       |             |          |       |          |          |                                        |
|                 |          |                  |         |        |       |             |          |       |          |          |                                        |
|                 |          |                  |         |        |       |             |          |       |          |          |                                        |
|                 |          |                  |         |        |       |             |          |       |          |          |                                        |
|                 |          |                  |         |        |       |             |          | 1     |          |          |                                        |
|                 |          |                  |         |        |       |             | -        |       |          |          |                                        |
|                 |          |                  |         |        |       |             | -        | -     |          |          |                                        |

el A1205 SN 37010004 Sartorius 學 7  $\mathbb{C}$ 25 350 17 WST7-Form 4/3 444 J Mode 1 B Scale Bulb न्य प्रमुख स्टिश्रिय प्रस्कार में सि 2003 BY \$557 \$98 30 Bulb 4岁 382200000 4538 20 120 0400 570 9 630 600 Date | Time **5-5#** 3/26 WOODSTOVE DATA SHRET SCALE QA SHEET Tech SP ) ) ) が Beaker Blank Filter Blank 09999 0998 0.1003 0.0998 0.0998 0.0999 0.0998 0.0978 0.0978 0.1003 , 1000 0.1000 0.6791 0999 0660 1000/ 0.1000 8 0001.0 0001'0 48) 8 Weight 0.1002 000 3660 -1001 01/0 0.1001 0.1000 100mg 0.1001 4994 5555' ,000 A 86660 0000 0,9999 Weight 0.0007 0000 0000 .0000 100 10001 0.9999 90, 900 4000r 1000 1000 6000 0002 1.0g 000 dona a 000001 Weight 00000 0003 10,0003 9.9999 10,000 10,000 10.0000 9.9997 0.000 000000 10,0003 88/0 0.0000 9.9999 0.000.0 67999 16550 10.0001 10.0001 0000 000 0,000 Dates: From 3/ 108 0000 001 100.0003 44,9945 99.9998 0000'001 Through 80,000 19 AS12 0000 <u>00,000 0</u> 400000 00.000 0000.000 49 9999 8 - 88 1000 001 99.9999 1000,001 9499 700.000 364555 555555 49.9997 4.497 00.000 Weight 1000001 100g

WST7-Form Tev5/90

WOODSTOVE DATA SHRET #4-4 SCALE QA SHRET

Dates: From

Through

Scale Sartorius Model A1205 SN 37010004

|                 |          |          |            |         | _         |          |        |                                       | <u> </u> | -,-      |        |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |         | _         |             | _       | ·        | <del></del> | _       | _       |          |        | _        | _       | <del></del> | ,                    | _      |                |         |          | _         |
|-----------------|----------|----------|------------|---------|-----------|----------|--------|---------------------------------------|----------|----------|--------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|---------|-----------|-------------|---------|----------|-------------|---------|---------|----------|--------|----------|---------|-------------|----------------------|--------|----------------|---------|----------|-----------|
| НЖ 2            |          | 44       | 4,0        | 48      | <u>Uh</u> | 700      |        |                                       | 7.7      |          | 7/     | 150       | ΔŅ        | A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |        |         | קע       | 20      | 4         | <b>%</b> 7  | 46      | 45       | 700         | Tip.    | 76      | 46       | 4,6    | 47       | 272     | 4/2         | Ch.                  | 44     | 617            | 46      | 7/7      | 44        |
| Wet Bulb        | L        | 56       | 755        | 58      | 10        |          |        |                                       | 120      | 2 2      |        | 88        | 123       | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3    | 6.2     | 6.9      | 2       | 7         | 7.5         | 52      | 17<br>XX | 60          | S       | 6.5     | 63       | 64     | ,09      | 65      | 85          | (10)                 | \$     | 5              | St      | 09       | 33        |
| Dry Bulb        | [4]      | 30)      | 59         | 70      | (b)       | 75       | 12     | 1                                     | )        | dir.     | 177    | 70        | 15        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-     | 16      | 11/2     | 59      | 67        | 20          | 67      | 1/       | 11          | þĽ      | 12      | 17       | 13     | 73       | 12      | 70          | 13                   | 0,0    | λ,             | 18      | 75       | 0%        |
| te Tine         | 930      |          | 7 18915    | 7 1415  | 04/9      | $\vdash$ |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 76.00    | 1500     | C AXV  | 3 0000    | 1230      | 1₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 930 |         | 0091 1   | 1 0820  | 7 1035    | 1580 E      | 0067    | 9        | 4 0500      | 35 1015 | 7       | 7        |        | 3 1000   | 7 1130  | , 09%       | 0830                 | 1400 l | 1)80           | 340     | 00000    | - 1085    |
| Tech Dat        | DK   a/t | 1/E   SA | <b>.</b> I | ر اع    | 1k 21/    | 1        | I,     | 17 X                                  | 70 19    | 100      | $\Box$ | 10        | 11/2 1/2  | 10 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76     | K       | 01/2 3/1 | TK 1411 | Sur 18/11 | 1-TOC 12/1/ | 18      | @K 12/5  | 76 2/2>     | , c     | 74 2/2  | -1       | 16 26  | UK 37.   | 1/2 1/2 | Pr 3K       | 571                  | 180 3/ | (TR 3/9        | 85 34   | 3        | <b>多の</b> |
| Blank<br>Beaker |          |          |            |         |           |          |        |                                       |          |          |        |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |         |           |             |         |          |             |         |         |          |        |          |         |             |                      |        |                |         |          |           |
| Biank<br>Filter |          |          |            |         |           |          |        |                                       |          |          |        |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |          |         |           |             |         |          |             |         |         |          |        |          |         |             |                      |        |                |         |          |           |
| Weight          | 0.0999   | -8<br>-  | , (990)    | 000/    | 1000      | 0. 1000  | 0001   | 100/                                  | 0001     | 0.1000   | 10000  | 0.1000    | 0,1000    | 000110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0./000 | 0001.0  | 0.0999   | 0000    | 900/      | 0007        | 300/    | 0.0499   | 00010       | 0./000  | 6660    | 0.0777   | 22200  | 0000     | 000) \0 | 000/        | 0.0999               | 8550   | 000)           | 000/    | 0.0998   | 2 990.    |
| Weight          | 00000    | 10001    | 0000 //    | 1.000.1 | 1.0000    | 86660    | 10000  | 00001                                 | 1.000    | 0.9999   | 1,000  | 1,0000    | 10001     | 10001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000   | 1.0000  | 1.0001   | 10000   | 188       | 9990        | 2000    | 0000.    | 1.0000      | 10007   | 10000   | 000000   | 2020   | 0000     | Anna!   | 00001       | 1000                 | 675.50 | 4999           | 5000    | 0000     | 0000/     |
| Weight          | bhhh h   | (0,000.5 | 2000       | 6/3/6/6 | 10.000    | 5        | -      |                                       | 10.0000  | 16.0000  | 00000  | $\exists$ | _         | 0000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000 | 10.0000 | 10.0000  | 10.0001 | 000001    | 100000      | 1000,01 | 7.4444   | 2000        | ᆌ`      | 000000  | 7        | 0 0000 |          | L       | 1000cz      | 1                    | 40000  | 10.0000        | 00000   | 4.44.44  | 10,000    |
| Weight          | 30.000   | 020000   | 11111      | 1000001 | 77.77     | 1000,000 | 18,000 | 96,745.                               | 1000.001 | 100.0003 | 12997  |           | (00.0000) | 35.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 700000 |         |          | 104 000 | £ 124.25  | 30.00       |         | 0000.007 |             |         | 0000 00 | 000 6000 | 7      | 000 8000 | -1/2    | 1000000     | 20,22,24<br>27,22,24 | 200000 | 477774<br>1000 | \$200 K | 100 00 S | 0335.55   |

### WOODSTOVE PARTICULATE CATCH PROCESSING WOODSTOVE DATA SHEET # 5

| Unit:   | Ha     | rugh  | Sa | 10 X  |
|---------|--------|-------|----|-------|
| Run:    | 4      | Date: | 5  | 15/92 |
| Technic | cian(s | 5):   | Z  | ,     |

|                                                                    | To                                                                                             | chnician(s):                                         |                                    |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|
|                                                                    | ı e                                                                                            | ennician(s):                                         |                                    |
|                                                                    | FRONT HALF                                                                                     |                                                      |                                    |
| FILTER #: 267 F FINAL WT:                                          | BEAKER #: 500                                                                                  | FINAL WT:_/C<br>TARE WT:_/C<br>NET WT:               | 27.7745                            |
| FILTER #: g FINAL WT: g TARE WT: g NET WT: g                       | BEAKER #:<br>ml:<br>desc: ACETONE                                                              | TARE WT:                                             | g                                  |
|                                                                    | TOTAL VOLUME OF AC                                                                             | ETONE                                                |                                    |
|                                                                    | BACK HALF                                                                                      |                                                      |                                    |
| FILTER #: 2638  FINAL WT: 4740 g  TARE WT: 3810 g  NET WT: 10930 g | BEAKER #: 5/2<br>ml: 780<br>desc: ACETONE                                                      | FINAL WT: <u>/0</u><br>TARE WT: <u>/0</u><br>NET WT: | 6.5009<br>6.3855<br>1154           |
| FILTER #: g FINAL WT: g TARE WT: g NET WT: g                       | BEAKER #: 5/3<br>ml: 75<br>desc: METHCHLOR                                                     | FINAL WT:<br>TARE WT:<br>NET WT:                     | 19-8955                            |
|                                                                    | BEAKER #: 57/<br>m1: 150<br>desc: H20                                                          | FINAL WT: /0<br>TARE WT: /0<br>NET WT:               | 8.7011                             |
|                                                                    | BEAKER #: 575 m1: /50 desc: H20                                                                | FINAL WT: 10<br>TARE WT: 10<br>NET WT:               | 16.2871 g<br>16.8964 g<br>1.0607 g |
|                                                                    | BEAKER #:<br>ml:<br>desc:                                                                      | FINAL WT:<br>TARE WT:<br>NET WT:                     |                                    |
|                                                                    | BEAKER #:<br>ml:<br>desc:                                                                      | TARE WT:                                             |                                    |
|                                                                    | TOTAL VOLUME OF ACEUSED IN WASH TOTAL VOLUME OF DIGUSED IN EXTRACTION TOTAL VOLUME OF DIGUSTER | CHLOROMETHANE                                        | 180 m1<br>75 m1<br>300 m1          |

|          |              | WOODSTOVE                                              | E BLONK                                    | = opnces                          | SING    | Un                                            | it:                           | HAUGH   | 5 50                 | 7 X         |
|----------|--------------|--------------------------------------------------------|--------------------------------------------|-----------------------------------|---------|-----------------------------------------------|-------------------------------|---------|----------------------|-------------|
|          |              | WOODSTOV                                               | JE DATA                                    | SHEET #                           | 5A      | Ru                                            | ın :                          | 4       | Date: 5              | 115/96      |
|          | 1            | BLANKS DONE                                            | : <u>5/</u>                                | 1/90                              |         | Te                                            | chnic                         | cian(s) | . 22 De              | CTK         |
|          | <b>1</b> 9   | MI FISHER OPT  MI DICHL FISHER OPT  MI DISTIL  WEAR OF | ACET IMA LOT BEAKER IMA LOT BEAKER LED WAT | #: <u>5</u><br>HANE 9163<br>#: FR | 26      | TAR<br>NE<br>FINA<br>TAR<br>NE<br>FINA<br>TAR | E WT: T WT: E WT: T WT: E WT: | 96.8    | 40-8<br>40-4<br>10-6 | 9<br>9<br>9 |
|          |              | BEAKER                                                 | TARES                                      | INTO                              | DESSC:  | TIME: <u>O</u>                                | 900                           | DATE    | : <u>3/17/</u>       | 92          |
|          | BKR #        | 1ST WT                                                 | TIME                                       | 2ND WT                            | TIME    | 3RD                                           | WT                            | TIME    | 4TH W                | TIME        |
|          | <u>D</u>     | 106,0038                                               |                                            | 106.223                           | <       |                                               |                               |         |                      |             |
|          | E            | 96-8424                                                | 1308                                       | 196.8424                          | 1) 1038 |                                               |                               |         |                      |             |
| ,        | F            | 196.5109                                               | 1330                                       | 96.5106                           | 0040    |                                               |                               |         |                      |             |
|          | s            | CALE ROOM (                                            | QC : TA                                    | RES                               |         | SCA                                           | ALE RI                        | DOM QC  | : FINAL              | .s          |
|          | DATE         | TIME B                                                 |                                            | DB %                              |         | DATE                                          | TIM                           |         | WB                   | DB %        |
|          | 3/A3<br>3/24 | 1300 /te                                               |                                            | 72 43                             |         | 5/13<br>5/14                                  | 1630                          | - SW3   | 56                   | 74 40       |
|          |              |                                                        |                                            |                                   |         | 5/15                                          | /200                          | ) かい    | 60                   | 74 44       |
|          |              |                                                        |                                            |                                   |         |                                               |                               |         |                      |             |
|          |              |                                                        |                                            |                                   |         |                                               |                               |         | •                    |             |
| !        |              |                                                        | BEAKER!                                    | S: FINAL                          |         |                                               |                               | ·       |                      |             |
|          | BKR #        | IN DSC                                                 | TIME                                       | 1ST WT                            | TIME    | SND                                           | L                             | TIME    | 3RD WT               | TIME        |
|          | D            | 5/12                                                   | 0900                                       | 106.2243                          | _ I     | 106,00                                        | - '   '                       | ८६५     |                      |             |
|          | ω<br>-       | 5/12                                                   | 0900                                       | 96 8431                           | 1050    | 96.84                                         |                               | 1781    |                      |             |
| į        | F            | 5/12                                                   | 1330                                       | 96.5112                           | 1700    | 96.51                                         | 14                            | 1230    |                      |             |
|          | BKR #        | 4TH WT                                                 | TIME                                       | STH WT                            | TIME    | 6ТН                                           | WT                            | TIME    | 7TH WT               | TIME        |
|          |              |                                                        |                                            |                                   |         |                                               |                               |         |                      |             |
| <u> </u> |              |                                                        | · .                                        |                                   |         |                                               |                               |         |                      |             |
|          |              |                                                        |                                            |                                   |         |                                               |                               |         |                      |             |
|          |              |                                                        |                                            |                                   |         |                                               |                               |         |                      |             |

NET PARTICULATE CATCH CALCULATION WOODSTOVE TEST DATA SHEET #6

Unit: HAUGHS SD7 Run: 7 Date: 5/5/92 Technician(s): TX TK WSTAPP1-AppDoc19-page2 Rev 6/90

| Blank Audit: By: Im Kelly Date: 5/18/92                                                                             |
|---------------------------------------------------------------------------------------------------------------------|
| Blank Calculations:                                                                                                 |
| Acetone: /0004 g = 200 m1 = -00000 g/m1                                                                             |
| Dichloromethane: , 0004 g = 75 m1 = 0000533 g/m1                                                                    |
| Distillted Water: g =                                                                                               |
| Front Half Catch:                                                                                                   |
| Filters: 10990 g - (0000 g) = 10990 g  Total Catch No. of filters Blank Value/ Net Catch filter                     |
| Beakers: 1972 g - 100 ( 00000 g) = 10970 g  Total Catch ml of Acetone Blank Value/ ml of Acetone                    |
| Total Front Half Catch                                                                                              |
| Back Half Catch:                                                                                                    |
| Filters: 0930 g - ( .0000 g) = 0930 g  Total Catch No. of filters Blank Value/ Net Catch filter                     |
| Beakers                                                                                                             |
| 1. Acetone/Impingers:    Cooperation                                                                                |
| 2. Extract/Impingers:  OS38 g - 75 (2000533g) = 0534 g  Total Catch  Dichloromethane ml of Dichloromethane  methane |
| 3. Water/Impingers:  1274 g  Total Catch  ml. of water  Blank Value/ ml of water  Met Catch ml of water             |
| Total Back Half Catch  Total Catch  Total Catch  7836 g  7 Front Half                                               |

# EPA WETHOD SH PARTICULATE CALCULATIONS NOODSTOVE TEST DATA SHEET #7

Bun: Hauch's SDJK
Run: 4 Date: 5/15/90

NST3-Form 1 8/28/91 Technician(c): IS TK 166 - H20

1-Shh-00 0000,0000 13.6 1) Vacetdo: (59,919 Vanc 17.65 201066 Tachte 30,18" Hgi ( But 1/18)

- decf

1505T 000 000 2) VH(8td): ( .04707 )( |04.9 ... H20 ):

13839 . BH X 100 = ,018B. 0000 ' 4 9047 set : 69,4451 deets ( 4.9047 ···

4) Co: (-5836-9.) (15.43): (1442 grideof

00,0000 - dsofm)( 50 )= 000,000 deof> 5) Estinated g/hr:

computer printout meter correction factor ( Y factor) of the meter box used for the test average barometric preseure during the test or the test in degrees Absolute ater box during test cought during dec fa

Run # 4

Date 5/15/92

Technician RN TS.TK. DK

WST6-Forml, Rev11/89

# MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Useable Firebox Dimensions: See QC Section Useable Volume: 1.473 ft                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dilution Tunnel Draft (If applicable): Start O Stop O                                                                                                   |
| Test Chamber Air Velocity: Start: O Stop: O Avg: O                                                                                                      |
| Wet Bulb/ Start: WB: 56 °F DB: 66 °F /. 2 % Amb Moisture 54 %                                                                                           |
| Dry Bulb Stop: WB: 58 °F DB: 72 °F 1.2 % Amb Moisture 44 % Relative                                                                                     |
| $\overline{x} = 1.2$ Moisture $\overline{x} = 49$ Humidity (RH                                                                                          |
| Impty 220                                                                                                                                               |
| Stove Wt: 237 lbs.                                                                                                                                      |
| stove Wt with Stack (Inc. Oil Seal) Wet: 305.2 lbs.Dry: 304.4 lbs                                                                                       |
| Impty<br>Stove Wt with Stack and Ash Ash: Ø lbs. Total: Ø lbs                                                                                           |
| Cindling Wt. Paper: .3 lbs. Wood: 8.0 lbs                                                                                                               |
| re Burn Fuel Wt. 10.0 + 9.3 Total: 19.3 1bs                                                                                                             |
| otal Kindling and Pre Burn Fuel Wt 27.3 lbs                                                                                                             |
| oal Bed Wt-lbs: Range(2.6 - 2.1 ) 367.0 -306.5 lbs. Actual: 2.6 lbs                                                                                     |
| Illowable Amount of Charcoal that can be removed:  oal Bed Wt. Range $\left(\frac{2.6}{\text{Upper Wt.}} + \frac{2.1}{\text{Lower Wt.}}\right)^2$ .25 = |
| est Fuel Wt-lbs: Ideal lbs. Range: lbs. Actual: 10.5 lbs                                                                                                |
| est Fuel Size (pcs.) (.75 x 1.5 x 5" Flanges) / Pcs                                                                                                     |
| 2 x 4's x 18 <sup>3</sup> /4 " 4 Pcs 10,5 1bs. 100 7.                                                                                                   |
| 4 x 4's x NA " NA Pcs NA 1bs. NA 7                                                                                                                      |
| st. Dry Burn 10,5 - (10,5 x,18306) x 60 = 1,9982<br>ate (Kg/Hr.) 2.2025  80 Est.Dry Burn Rate (Kg/Hr                                                    |
| st EPA Heat Output(HO <sub>E</sub> ) (19,140) X <u>63</u> x <u>1898</u> = <u>15653</u> Avg BTU's/Hr)  Est Heat Output (HO <sub>E</sub> ) BTU's/Hr       |
| Omments: 125 = 1.869<br>185 = 1.263                                                                                                                     |

| Unit: HAUGHS                                                                               | 5 <u>S27X</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Run:4_                                                                | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/15/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page 9                                  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                            | WOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DSTOVE OPER                                                           | ATING DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| FIRE STARTED:                                                                              | 0725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P:                                                                    | STOPDST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| WARM UP AND P<br>up/preburn fu<br>preburn.                                                 | REBURN: PRIM<br>el charges, t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ARY AIR: se<br>hen set to                                             | t wide open<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for all war<br>at star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m-<br>rt of                             |
| SECONDARY AIR                                                                              | : <u>NA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAT BY                                                                | PASS: <u>NA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |
| CHARCOAL BED<br>up/preburn ch<br>leveled. In s                                             | arge. At 1 1/<br>tove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 min. prior<br>sec                                                   | r to loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , last fuel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | raked and                               |
| TEST: Door W                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| PRIMARY AIR: setting of                                                                    | opened full f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or first                                                              | 5 min-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , then set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to run                                  |
| SECONDARY AIR                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAT B                                                                 | YPASS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| FAN: ON OFF d<br>ON OFF first<br>Fan speed set                                             | 30 mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nutes of te                                                           | during orebust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | irn<br>F balance (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of test run                             |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| WOOD DATA: K                                                                               | INDLING: a mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x of the gr                                                           | ades li <b>sted</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| WOOD DATA: K                                                                               | INDLING: a mi<br>SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x of the gr<br>MILL                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECIES                                   |
|                                                                                            | SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | GRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ECIES<br>orn D fir                      |
|                                                                                            | SIZE<br>PREBURN: <u>2X4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MILL                                                                  | GRADE<br>ma <u>Std or</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPE<br>btr 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
|                                                                                            | SIZE<br>PREBURN: 2X4<br>TEST: 2X4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MILL  Manke/Taco  Packwood  Packwood  AM                              | GRADE  Ma Std or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SPE<br>btr 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | arn D fir                               |
|                                                                                            | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MILL  Manke/Taco  Packwood  Packwood  AM                              | GRADE  Ma Std or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SPE<br>btr 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | arn D fir                               |
| PELLET All grades WC WARM UP INFOR All pre-burn/                                           | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:  CLB rules  RMATION: Warm up fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MILL  Manke/Taco  Packwood  Packwood  AAA  pieces were                | GRADE  Ma Std or   #2 or   #2 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | spectros.  otr s.  otr s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | grn D fir grn D fir grn D fir           |
| PELLET All grades WC WARM UP INFOR All pre-burn/ 1st warm up/p                             | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:  LB rules  RMATION: warm up fuel  oreburn fuel co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MILL  Manke/Taco  Packwood  Packwood  AAA  pieces were                | GRADE  Ma Std or   #2 or   #2 or    2 or    2 or    3 or    3 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | btr 5.  otr 5.  otr 5.  otr 5.  added at (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | grn D fir grn D fir grn D fir grn D fir |
| PELLET<br>All grades WC                                                                    | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:  LB rules  RMATION: warm up fuel  oreburn fuel co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MILL  Manke/Taco  Packwood  Packwood  AAA  pieces were                | GRADE  Ma Std or   #2 or   #2 or    2 or    2 or    3 or    3 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | btr 5.  otr 5.  otr 5.  otr 5.  added at (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | grn D fir grn D fir grn D fir grn D fir |
| PELLET All grades WC WARM UP INFOR All pre-burn/                                           | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:  CLB rules  RMATION: warm up fuel preburn fuel coreburn fuel coreburn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MILL  Manke/Taco  Packwood  Packwood  Packwood  pieces were  thange ( | #2 or ! #2 or ! #2 or ! #2 or ! #2 or ! #3 or !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | btr 5.  otr 5.  otr 5.  added at (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | grn D fir grn D fir grn D fir grn D fir |
| PELLET All grades WC WARM UP INFOR All pre-burn/ 1st warm up/p                             | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:  LB rules  RMATION: warm up fuel preburn fuel coreburn  MILL  Manke/Taco  Packwood  Packwood  pieces were  charge (           | #2 or   #2 or   #2 or   #2 or   #2 or   #2 or   #3 or   #3 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or   #4 or | btr 5.  otr 5.  otr 5.  otr 5.  added at ()  added at ()  added at ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | grn D fir grn D fir grn D fir grn D fir |
| PELLET All grades WC WARM UP INFOR All pre-burn/ 1st warm up/p 2nd warm up/p 3rd warm up/p | SIZE  REBURN: 2X4  TEST: 2X4  4x4  FUEL APFI#:  LB rules  RMATION: warm up fuel breburn fuel coreburn  MILL  Manke/Taco  Packwood  Packwood  Packwood  pieces were  charge ( | #2 or   #2 or   #2 or   #2 or   #2 or   #2 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or   #3 or | btr s.  otr s.  otr s.  added at cadded rn D fir grn D fir grn D fir 3 inches. |

FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Run: 4
Date: 5/15/92
Technician: RN, JS, TK, DK

WST1-Form7-Rev11/89

Room Temperature: 70 °F Correction Factor: Ø

NOTE: Record readings to the nearest 0.5% moisture
Uncor Values are corrected for temperature: Yes \_\_\_\_\_. No\_\_\_.

Time Test Fuel Moisture Readings taken at: 0900

Calibration Checks: X Y 12.0 12.0 22.0

| Рc |            |     | Top                                   |      | Bot  | tom  | Sid  | e<br>Cor | Piece Avg     |
|----|------------|-----|---------------------------------------|------|------|------|------|----------|---------------|
| #  | Dimen      | Use | Uncor                                 | Cor  |      | Cor  |      |          |               |
| 1  | 2x4x8      | K   | 4,5                                   | 4.5  | 4,5  | 4,5  | 410  | 4.0      | 4,333         |
| 2  |            |     |                                       |      |      |      |      |          |               |
| 3  |            |     |                                       |      |      |      |      |          |               |
| 4  | 2x4x8      | P   | 18.0                                  | 19.6 | 18.5 | 20.1 | 18.0 | 19.6     | 19.767        |
| 5  | 2×4×8      | ρ   | 19.0                                  | 20,7 | 19.5 | 21.3 | 19,0 | 20.7     | 20,900        |
| 6  | ·          |     |                                       |      |      |      |      |          | (40,667)      |
| 7  |            |     |                                       |      |      |      |      |          |               |
| 8  |            |     |                                       |      |      |      |      |          |               |
| 9  | 2×4×183/4  | 1   | 21.5                                  | 23,5 | 21,5 | 232  | 21.0 | 22.9     | <u>23.300</u> |
| 10 | 2×4×183/4  | T   | 19.0                                  | 20.7 | 20,0 | 21.8 | 19,0 | 20,7     | 21,067        |
| 11 | 2x4x183/4  | T   | 21.5                                  | 23.5 | 21.0 | 22.9 | 21.0 | 22.9     | 23.100        |
| 12 | 2x4 x18314 | Τ ' | 21,0                                  | 22,9 | 21.0 | 2219 | 19.0 | 20.7     | 22,167        |
| 13 |            |     |                                       |      |      |      |      |          | (89,633       |
| 14 |            |     |                                       |      |      |      |      |          |               |
| 15 |            |     |                                       |      |      |      |      |          |               |
| 16 |            |     |                                       |      |      |      |      |          |               |
| 17 |            |     |                                       | ·    |      |      |      |          |               |
| 18 |            |     |                                       |      |      |      | •,   |          |               |
| 19 | FEET       | T   | 19.5                                  | 21.3 | 20.0 | 21.8 | 19.0 | 2017     | 21.267        |
| 20 |            |     | · · · · · · · · · · · · · · · · · · · |      |      |      |      |          |               |

% Moisture - Dry Basis:

7 Moisture - Wet Basis:

| Kindling | Pretest Fuel | Test Load |
|----------|--------------|-----------|
| 4.333 %  | 20,333 -     | 22,408 7  |
| 4.153%   | 16.897 /2    | 18.306 7  |

To obtain Wet from Dry:  $\frac{100 \times \%}{100 + \%}$  Dry Rdg. = % Moisture, Wet Basis

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

| 1 * 1          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | _             | HHUGHO           | SKI A       |
|----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|---------------|------------------|-------------|
|                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VINATION                 |                | Run#:         | 5/15/92          |             |
|                |                   | SITY DETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (MINATION<br>(A SHEET #1 | .1 T           |               | · BN.JS.T        | K, OK       |
|                | #00 <i>D</i> D101 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |               | WST2-form        | 11-Rev 6/90 |
| 17             | l Benne           | V 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )imensions:              |                | á x           | 4                | x 31/2      |
|                |                   | NOMINAL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JIMENSIONS.              |                |               | 2 <i>0</i> cm    |             |
| •              | h (D):            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | <u> </u>      | 1                | :           |
|                | h (W):            | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                | <u> </u>      | <u>/5</u>        |             |
| Leng           | th (L):           | 8,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cm                       |                | •             | _                | •           |
|                |                   | 8.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cm Len                   | gth X          | - 8,6         | 570cm            |             |
|                |                   | 8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cm                       |                | 222 18        | 0 -3             |             |
|                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 401                      | .ume:          | 333,/8        | X L)             |             |
|                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | ·             |                  | <b>a</b>    |
| MOIS           | TURE:             | Room Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erature: _               |                | oF Corr       | ection Fac       | tor:        |
| Unco           | rrected           | Meter Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lings Corre              | cted f         | or temper     | ature:Yes        | No          |
| •              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |               | •                |             |
| NOTE           | : Recor           | d moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | meter rea                |                |               | arest 0.5%       | 212-        |
|                | 1                 | Uncor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cor                      | Avg            | % Moistur     | e (Dry) <u>2</u> | 3.100 %     |
|                | Top:              | 21,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.9 2                   | Aug            | Z Moistur     | e (Wet) _/       | 8.765-8     |
|                | Bottom:           | 21,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.5 %                   |                |               |                  |             |
|                | <u> </u>          | 2110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.9 2                   | Sool           |               |                  | Out         |
|                | Side:             | UIIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 221                      | 9041           | <br>F: TeAele | d In             | 000         |
|                | Ī:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.100 2                 |                | Zeroed        | : In             | Out         |
|                |                   | 100 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 10-6           | 10            |                  | . •         |
| Wet            | Weight: _/        | 8.1.23 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dry Weig                 | ht: <u>157</u> | 760 g         |                  |             |
| % Mo           | isture D          | ried Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 15.783                 | <b></b> %      |               |                  |             |
|                | [1 - (Dr          | y Wt 🖁 Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wt)] x 10                | 0              |               |                  |             |
|                |                   | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 1                      | .me            | _ Temp        |                  |             |
|                | Into Dry          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/92                     | 0815           |               | 3/of             |             |
|                | Out of D:         | ryer 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90/4 <del>0</del>        | 1445           |               | OF Temp 1        | 00°C (212°F |
|                | 1/200             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 227 /                  | 38             | 3 _ 4         | 730 g/cm         | 3 /         |
| Dens           |                   | rv wt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (volum                   | ie)            |               | voo.             |             |
| •              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |               |                  |             |
| Do 13          | or Fuel           | Vadatura (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ontent Det               | erminat        | rion          | <u>.</u>         |             |
| rell           | er taet           | Wolernie (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ontent Dec               |                |               |                  |             |
| Tare           | Beaker            | Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | _g             |               |                  |             |
| Wet            | Wt:               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                        | g              | *             |                  | g           |
|                | Gros              | s Wet Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tare Bea                 | ker Wt.        | . Net We      | t Wt.            |             |
| Dry            | Wt:               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                        |                | <b>=</b>      |                  | 8           |
|                | Gros              | s Dry Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tare Bea                 | ker Wt.        | . Net Dr      | y Wt.            | 4           |
| % Mo           | isture D          | ried Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                        |                |               |                  | %           |
| [1 -           | (Net Dr           | y Wt - Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wet Wt.)                 | X 100          |               |                  |             |
| and the second |                   | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                          |                |               | *                |             |

|   |                            |                |               |              |                |             |                   |             | ·          |          |                |          |               |         |                                         |                                                  |                              | [_]<br>   |                                                  |                 |       |
|---|----------------------------|----------------|---------------|--------------|----------------|-------------|-------------------|-------------|------------|----------|----------------|----------|---------------|---------|-----------------------------------------|--------------------------------------------------|------------------------------|-----------|--------------------------------------------------|-----------------|-------|
|   | Samuel Services            | HOUDSTOVE      |               | DATA SHEET   | PATA SHEET #12 | ын<br>[2    |                   |             |            |          | Critti<br>Run: | <b>N</b> | 490H          |         | 523                                     | ×                                                | uate: 5//5<br>Technician(s)! | Sland     | - <u>2</u>                                       | 2/2/2           | لا    |
|   | •                          |                |               | 99/T ASU 6T  |                |             |                   |             |            |          | Pa             | Pages    |               |         | 18                                      | ŀ                                                |                              |           |                                                  | IJ              | 35    |
|   | Mirtita                    | 507.0<br>Scale | PH PH         | THE STATE OF |                | -18         | 7                 |             |            |          | m              | 1/0/1    | T/C(1)T/C(2)  | 23      |                                         | 1/0(3)                                           | 3)                           | 4         |                                                  |                 |       |
|   | 7                          |                |               |              | 3 >            | XCDZ        | Š ;               | 202         | 191        | <b>;</b> | 3 2            | Bal e    | Het<br>Bulb   | y<br>Ib | 2 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Calc<br>W/A                                      | Stark                        | S ,       | 71280                                            | Static<br>Press |       |
| • | S)                         | 317.5          | 50            | 0            | .206           | 5.1         | .995              | 15.1        | - <u>5</u> | 710.     | +-             | _        | +             |         | 4                                       | <del></del>                                      | <del> </del>                 | 十         | 1                                                | 7/70            | 1 1 1 |
|   | 8<br>2                     | 317.4          | <u>ੋਂ</u>     | -            | 129            | 3.2         | .685              | 17.4        | 17.4       | JO10.    | 10.            |          | 116           | 9/11    | 9.4                                     | 129                                              | 299                          | 2         | 007                                              | 153             | 25    |
|   | 5/                         | 316.9          | 6.6           | 3.           | .117           | 2.9         | . 695             | 17.71       | 17.6       | 890.     | 69.            | 4.3      | Ξ             |         | 0.0                                     | 2<br>2                                           | 259                          | _         | 1                                                | 840-            | 25.7. |
|   | ()<br>()<br>()<br>()<br>() | 316.5          | 9.5           | 7            | 126            | 32          | 889               | h'L!        | 17.4       | hL0.     | .75            | 4.2      | 55            |         | 9.3                                     | 133                                              | 230                          | 7         | <del>_</del>                                     | hho:            | 3     |
|   | 3/8/                       | 316.2          | 9.2           | .3           | 129            | 3.2         | .682              | 17.3        | 17.3       | 880.     | -89            | 3.b      | )<br> -<br> - | 133 (   | 9.0                                     | <del>!                                    </del> | 225                          |           | <del>!                                    </del> | hh0-            | 23    |
|   | 8                          |                | 8.8           | 4.           | .249           | 6.2         | .572              | 14.5        | 14.8       | .063     | /              |          | 115           |         | 9.4                                     |                                                  | 262                          | 61.       | 475                                              | 840-            |       |
|   | 3/<br>汉                    | 315.3          | 8,3           | 3.           | .329           | 8.2         | 502               | 12.7        | 7          | 510.     | 15             | 54.5     | 120           | 142     | 11.0                                    | 32                                               | 320                          | <i>ا:</i> | ┾┷                                               | .05lo           |       |
|   | M                          | 34.7           |               | 9            | .313           | 7.8         | .516              | 13.1        | 13,1       | 910.     | - 19           | 40.9     | 120           | 144     | 0.11                                    | 133                                              | 328                          | و۔        | 400                                              | -057            |       |
|   | 71                         | 314.0          | 7.0           | ۲-           | -417           | 16.3        | 416               | 10.5        | 10.5       | . 619    | . 19           | 54.4     | 123           | 150     | 12.5                                    |                                                  | 360                          | 1         | 425                                              | 2062            |       |
|   | 3/e                        |                | <del>ار</del> | ٩            | 420            | 10.4        | 7117              | 10.c        | 10.4       | .012     | .12            | 8 98     | 124           | 152     | 13.0                                    | 140                                              | 369                          | <u>-</u>  | 425                                              | :063            |       |
|   | 180                        |                | 5.7           | 7-           | 419            | 10.4        | P07               | 10.3        | 10.3       | 600.     | 60.            | 115.4    | 123           | 152     | 12.5                                    | 139                                              | 370                          | <u></u>   | 425                                              | 063             |       |
|   | 3/<br>  3 <br>  3          | 312.0          | 5.0           | <u></u>      | .445           | 11.6        | 384               | 9.1         | 9.7        | 010.     | 01.            | 110.3    | 122           | 152     | 12.0                                    | 138                                              | 373                          | 71.       | 350                                              | :063            |       |
|   |                            |                |               | 1            |                |             |                   |             | 43         |          |                |          |               |         |                                         | )                                                | 3673                         |           |                                                  | F. 645)         | F10   |
|   | 3/2/                       | 311.5          | 4.5           | iد,          | H0h.           | 10.0        | 421               | 10.6        | 10.6       | F00.     | 10.            | 143.1    | 120           | 148     | 11,0                                    | 135                                              | 368                          | 7-        | 350                                              | -042            | 180,  |
|   | 9 E                        | 311.0          | 0.7           | ν̈́          | .365           | 9           | .±.<br>\$\$±.     | =:<br>S:    | <u> </u>   | 210.     | .12            | 75.5     | 7-            | 142     | 8,9                                     | 131                                              | 349                          | 14        | 350                                              | . જાણ           | ¢b2   |
|   | 5/<br>\2/                  | 310.6          | 3.b           | 7.           | .390           | 9.7         | .432              | \$ 0        | 10.9       | 600.     | .09            | S.701    | 113           | 7       | 8,6                                     | 130                                              | 347                          | .15       | 375                                              | 0୩0:            | 165   |
|   |                            | 310.2          | 3.2           | 7            | .403           | 10.0        | .420              | 10.c        | 10.6       | 600 .    | 50.            | 1:1      | 112           | 138     | 8.3                                     | 130                                              | 352                          | 14        | 350                                              | -,059           | 켭     |
| ٠ | 8/X                        | 309.8          | , so          | <b>-</b>     | 348            | ا<br>ا<br>ا | .473              | 12.0        | 12.0       | P10.     | 声!             | L . 1 a  | 801           | 132     | 7'7                                     | 128                                              | 330                          | .15       | 375                                              | <b>7</b> 50;    |       |
|   |                            |                | 7.7           | 7]           | 321            | 8.0         | . <sub>4</sub> 93 | 12.5        | 12.5       | .033     | .33            | 74.7     | 101           | 129     | 4.4                                     | 123                                              | 311                          | .15       | 375                                              | 1054            |       |
|   | $^{\prime}1$               |                | 7.7           | 2            | 344            | 8.5         | - 47년             | 12.0        | 12.0       | .028     | .28            | 36.5     | 103           | 128     | 6.2                                     | 122                                              | 311                          | 16        | 400                                              | -,054           |       |
|   | X\ €                       | _              | <i>∞</i> !    | બ            | 334            | 8.3         | 784.              | 12.2        | 12.2       | .625     | .25            | 33.2     | 101           | 125     | 5.8<br>8                                | 120                                              | 306                          | 16        | 400                                              | 053             |       |
|   | ₹/<br>₹/                   | _              | 9             | 7            | 268            | ١٥          | .540              | 13.7        | 13.7       | .033     | .33            | 20.2     | 47            | 124     | 5.0                                     | 117                                              | 285                          | 91        | 001                                              | 051             |       |
|   | R<br>A                     | _              | 1.5           | 1            | . 735          | 5.9         | 515               | 14.3        | 14.3       | Pal0.    | .70            | 8.4      | 86            | 128     | 5.1                                     | 115                                              | 269                          | 81.       | 450                                              | 048             |       |
|   | \$\<br>\\                  | 308.4          | 파             | 1            | 727            | رج<br>ر     | .573              | ₹.5<br>2.5  | 14.5       | . 078    | . ٦٩           | 7.2      | 101           | 130     | 5.1                                     | 116                                              | 261                          | 61.       | 475                                              | aho:            |       |
|   |                            | 308.3          | 5.            | -            | .123           | 5.6         | 570               | コゴ          | 7.71       | 107      | 1.09           | 5.       | 102           | 131     | 5.9                                     | 116                                              | 255                          | .20       | 500                                              | P40             |       |
|   | $\sqrt{}$                  |                |               |              |                |             |                   |             |            |          |                |          |               |         |                                         |                                                  | 37447                        |           |                                                  | (449)-          |       |
|   |                            |                |               |              | P data         |             |                   | <del></del> |            |          |                |          |               |         | -                                       | -                                                | トレリナ                         | 7         |                                                  | -1.794-         | 7     |

Flow 뎚 훵 윱 2月 S 器 189L 1-- 048 Be TR 14741 1443 £03B Static Press. -038 -.035 :035 040: -.03b -033 -042 1.032 :03) -.043 1:037 1.03) 37 중: 550 900 525 525 525 550 550 200 525 525 500 525 臣 500 Uate: 5/5/9 Technician(s)! 4 7 .22 . 20 .22 (3) .22 20 20 20 7 77 7 7 7 K112 K 681 27317 2542 10148 Stack 236 229 225 190 189 241 207 202 198 2 212 प्रि <u>5</u> **1/C(3)** E E E 2 9 2 <u>5</u> 2 2 7 2 7 <u>三</u> 112 XLC Dry X L 9 6.3 **(** <u>د</u> و 9 Q 6,9 122 131 129 28 125 120 120 120 5 <u>ه</u> 123 ō 129 [c]t, T/C(1)T/C(2) Bulb 104 103 503 103 103 00 70 5 103 0 2 102 Bal 23 2.5 ارا (ع ر اه 3,0 25 3.4 Paget 3. T 2.9 2.4 Unit: 7.7 7 39 1.46 3. 1.29 - <del>4</del>8 <u>.</u> 8 .38 <u>4</u> 1.46 140 <u>4</u> R <del>9.</del>49 48 る四 138 .138 133 127 146 841 137 138 垩 ある ₹ 144 3. S 16.3 15.2 15.7 0.9 ∞ فہ is S F. 3 回 <u>ب</u> <u>۔</u> ف ā S اء 0. 16.3 ا<del>د</del> 3 5 5 5 5,7 ۆـ S .598 **63**6 646 653 549. اهـ 630 **6**62 245 183 .e | |-3 و 超光 3.3 HOODSTOVE DATA SHEET 112 HST2-Form 14 Rev 1/88 3.7 3,7 3.5 オーナ 4.2 3.9 ري م 7 3.4 3 98 .157 33 118 <u>168</u> 138 136 941. 122 五3 127 .123 <u>=</u> Burn Rate  $\varnothing$ -Scale Ins B 0 00 <del>م</del> v, တု J Ø 307.6 307.0 307.5 1307.1 307.3 308.1 308.0 97.9 307.8 3678 307.4 367.2 307.0 **L.**(8) 300 \<del>\$</del> ક જ B 9 B) B ③ 

 Primary Air Set at ,380 Pumps turned on at: 935 -.065 secondary Air Set at N. HWH Check WB/DB: 116/145 527X Date: 5/15/92 Technician(s): 80 ð Static | Comments 350.4 Fan: -063 -050 -062 - 059 -064 -064 100: -051 Temp Room Catalytic 2nd Burn Unit: 14001415 Page: / of / Firebox Q, Bottom Right Side S <u>ه</u> <u>ح</u> Back Side Left <del>4</del> LhhRECORD SHEET #13 Stove PRE BURN DATA WST2-Form16 Top Stack 7/14 T/C#-3 Rate Burn ازيدا  $\infty$ و σ ∽  $\sim$ (4 307.0 - 306.5 Scale 313,0 Weight 312,6 307.a 307,0 308.8 311.0 311.7 **308.3** 2/309, 4 45/307.6 20/310, 2 <u>40</u> 307. 9 367. 1 Time  $\bar{\lambda}$ 

|                                       |              |              | TEM   | TEMPERATURES<br>RECORD SHEET | UES<br>37 #14 |         |                       | Unit         | HAVEHS          | VCS S         |                 | Date: 5//3    | 2/92               | ş               |
|---------------------------------------|--------------|--------------|-------|------------------------------|---------------|---------|-----------------------|--------------|-----------------|---------------|-----------------|---------------|--------------------|-----------------|
|                                       |              |              | WST2  | WST2-Form14 Revl,            | Rev1/88       |         |                       | Page         | / of            | A             |                 |               | . '                | 45              |
| T/C                                   | 4            | 2            | 9     | 7                            | 8             | 6       | 10                    | 11           | 12              | 13            | 14              | 15            | 16 350.4           | 4 17            |
| - 0                                   | Stove<br>Top | Left<br>Side | Back  | Right<br>Side                | Bottom        | Firebox | 2nd Burn<br>Catalytie | Room<br>Temp | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | C. Gas<br>Box | C. Gas<br>Impinger | SO <sub>2</sub> |
| 8<br> 8<br> 8                         | 336          | 417          | 262   | 316                          | 421           | 982     | 808                   | 74           | 1441            | 842           | 34              | 842           |                    | 36              |
| <i>Q</i> ≥                            | 301          | 403          | 376   | 307                          | 420           | 674     | 720                   | 13           | 1hh1            | 248           | 34              | 8the          | 35                 | 36              |
| 5/<br>1/2                             | 304          | 386          | 378   | 297                          | 422           | 615     | 899                   | 73           | 1441            | 8th           | 34              | 8hC           | 35                 | 36              |
| ₹/<br>%                               | 270          | 355          | 360   | 275                          | 416           | 574     | h 19                  | 73           | 1441            | 248           | 34              | 248           | 35                 | 36              |
| 3                                     | 259          | 340          | 350   | 262                          | 410           | 56b     | 719                   | 72           | 1441            | 248           | 34              | 248           | 35                 | 36              |
| 13<br>18                              | OLE          | 324          | 341   | 249                          | 402           | 554     | مامااا                | 72           | Ihhi            | 848           | þε              | 848           | 35                 | 36              |
| S<br>S                                |              | 314          | 341   | 239                          | 394           | 560     | 1245                  | 72           | ihhi            | 842           | hε              | 842           | 35                 | 3%              |
| <i>y</i> y                            | 399          | 311          | 220   | 239                          | 388           | 591     | ከትሮ፣                  | 72           | hhhl            | 8hC           | hε              | 842           | 35                 | 36              |
| 多                                     | 다다           | 311          | 204   | 242                          | 376           | 653     | 1451                  | 72           | 8hh1            | 248           | hE              | 248           | 35                 | 36              |
| 5)<br>(8)                             | न<br>१८      | 325          | 213   | 250                          | 371           | 725     | 1451                  | 73           | 1448            | 248           | 34              | 248           | 38                 | 36              |
| 8/<br>8/                              | 511          | 344          | 222   | 258                          | 363           | 838     | 1394                  | 73           | 1448            | 248           | <b>3</b> 4      | 842           | 35                 | 36              |
| y<br>高                                | 521          |              | 232   | 269                          | 357           | 940     | 1406                  | 73           | 1448            | 248           | hε              | 842           | 35                 | 3b              |
| M                                     | 1446 IX      | 4191         | 3499  | 3203                         | (4737)        | (8269)  | (12844)               | 872          |                 |               |                 |               |                    |                 |
| 3/                                    | 520          | 371          | 239   | 277                          | 354           | 1003    | 1399                  | 74           | 1448            | 842           | hE              | 248           | 35                 | 36              |
| <u>S</u>                              | 486          | 383          | ንዛባ   | 286                          | 351           | 1028    | 1368                  | 기년           | 1448            | 248           | 34              | 248           | 35                 | 36              |
| 4                                     | 다그러          | 388          | 248   | 290                          | 352           | 1658    | የተዛ                   | שר           | 1448            | 248           | hE              | 248           | 35                 | 3%              |
| 2/2                                   | 164          | 394          | 255   | 295                          | 352           | 1138    | 1441                  | 74           | 1448            | 842           | h£              | 842           | 38                 | 36              |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | りしょ          | 398          | 262   | 300                          | 352           | PT(1    | L267                  | 75           | 1448            | 248           | hε              | 248           | 38                 | 36              |
|                                       | 430          | 707          | 263   | 368                          | 354           | 1180    | 1201                  | 75           | 8441            | 8/12          | 34              | 248           | 38                 | 36              |
|                                       | 415          | 400          | 764   | 311                          | 357           | 1162    | 1228                  | 76           | 1448            | 248           | 34              | 348           | 35                 | 36              |
| \$ P                                  | 419          | 398          | 266   | 314                          | 359           | 1125    | 1159                  | 76           | 1447            | 248           | 35              | 248           | 35                 | 36              |
| \{\}\<br>\\$\                         |              | 400          | 1961  | 314                          | 36ા           | 1070    | 1010                  | 75           | 1446            | 248           | 35              | 248           | 35                 | 36              |
| (Z)                                   | _            | 348          | 253   | 313                          | 364           | 1047    | 970                   | 75           | 1448            | 248           | 35              | 248           | 35                 | 36              |
| 5/1<br>5/3                            | 334          | 395          | 244   | 305                          | 366           | 1005    | 424                   | 75           | 8441            | 248           | 35              | 248           | 35                 | 36              |
|                                       | 319          | 396          | 237   | 301                          | 367           | 983     | 888                   | 76.          | 8441            | 248           | 38              | 842           | 35                 | 36              |
|                                       | 5114         |              | 3036  | 3614                         | CH2893        | (12978) | (14244)               | \$ bg        |                 |               |                 |               |                    |                 |
| X                                     | 9575         | <b>39077</b> | 1,535 | L817                         | 902P          | 21247   | /                     | FE           |                 |               |                 |               |                    |                 |

## PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EE  | MC - West                             | , Kent,      | WA 9803        | 2 Date                                 | : <u>5 15 9</u> | 2 Analy        | yte: <u>CO2</u>       | (15-1)         |
|-----------|---------------------------------------|--------------|----------------|----------------------------------------|-----------------|----------------|-----------------------|----------------|
| Source:   | Haughs                                | S270         | SERIE          | S Run                                  | #: <u>4</u>     |                | ···                   |                |
| Zero Cyl  | #: T13                                | 32257        | с              | onc. <u>00.0</u>                       | CO <sub>2</sub> | Cyl Pre        | ess: <u>800</u>       | psi            |
|           |                                       |              | _              |                                        | _               |                | Date: 10)             |                |
|           |                                       |              |                |                                        |                 |                | ess: 900              |                |
|           |                                       |              |                |                                        |                 |                | Date: 10/3            |                |
|           |                                       |              |                |                                        |                 |                | •                     | •              |
|           |                                       |              |                |                                        |                 |                | SN: 4070              |                |
| Range:    | 0 - 25.0%                             | <u>co</u> 2  | A:             | nalyzer Ou                             | tput:_          | 0 - 1.0        | )                     | v.             |
| Flow:     | 1.5 SCFH                              | <del></del>  | Meas           | ured by:                               | Rotame          | ter: <u> X</u> | Flowmete              | r:             |
| EPA Span  | Value = 2                             | 25.0% CC     | )2<br>E% of 31 | 5.0% CO2 =                             |                 | 058 GO         |                       |                |
|           |                                       |              |                |                                        |                 |                |                       |                |
| Pre Run   | Audit: By                             | 7: <u>BU</u> |                | Tin                                    | ne: <u>(</u>    | <u>430</u>     | Temp: <u>77</u>       | °F             |
| Point     | T                                     |              |                | Audit Resu                             |                 |                |                       |                |
| #         | Expec<br>Meter                        | DVM          |                | Meter                                  | DVM             | sponse<br>%    | + Conc.<br>Difference | Δ 8            |
| Zero      | 00.0                                  | .000         | 00.0           |                                        |                 |                |                       | ,217           |
| Span      | 50.4                                  |              | 1              | 49.6                                   |                 |                |                       | -2.466         |
| Comments  |                                       |              |                | ************************************** | -               |                |                       |                |
|           | <b>-</b>                              | * .          |                |                                        |                 | •              |                       |                |
|           |                                       |              |                |                                        |                 |                | •                     |                |
| Post Run  | Audit: B                              | By:          | DK             | \Tim                                   | e: /            | 320            | Temp: <u>77</u>       | o <sub>F</sub> |
| ·         |                                       | -            |                | Audit Resu                             |                 |                | <u>-</u>              |                |
| Point     | Expec                                 | ted Res      |                |                                        | ual Res         |                | + Conc                |                |
| #         | Meter                                 | DVM          | 용              | Meter                                  | DVM             | 8              | Difference            | <b>△</b> 8     |
| Zero      | 00.0                                  | .000         | 00.0           | 00.0                                   | .000            | .054           | .054                  | ,217           |
| Span      | 50.4                                  | .504         | 12.6           | 50.0                                   | .500            | 12.388         | 212                   | -1.683         |
| Comments  | · · · · · · · · · · · · · · · · · · · |              |                |                                        |                 |                |                       |                |
|           | •                                     |              |                |                                        |                 |                |                       |                |
| + Conc. D | ifference                             | = Act        | % - Exp        | (Std) %                                |                 |                |                       |                |

Zero % Difference = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET \$15

| Site: EEMC - West, Kent, WA 98032 Date: 5/15/92 Analyte: 02 (15-2)                                                  |
|---------------------------------------------------------------------------------------------------------------------|
| source: HAUGHS 5270 Series Run #: 4                                                                                 |
| Zero Cyl #: 132257 Conc.00.0 % 02 Cyl Press: 800 psi                                                                |
| Certified by: 1000 A18 Date: 10/7/91                                                                                |
| Span Cyl #: 39004 Conc. 13.4 % 02 Cyl Press: 900 psi                                                                |
| Certified by: MATHESON Date: 10/31/91                                                                               |
| Analyzer: Make: Teledyne Model: 320 Ax SN: 37465                                                                    |
| Range: 0 - 25.0% O2 Analyzer Output: 0 - 1.0 v.                                                                     |
| Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter:                                                                 |
| EPA Span Value = 25.0% O <sub>2</sub> EPA Control Limits = + 2.5% of 25.0% O <sub>2</sub> = + 0.625% O <sub>2</sub> |
| Pre Run Audit: By: BU Time: 940 Temp: 77 of                                                                         |
| a 211 Parrala                                                                                                       |
| Point Expected Response Actual Response + Conc.  Meter DVM % Meter DVM % Difference \( \Delta \) %                  |
| # Metel Div                                                                                                         |
| Zero 00.0 .000 00.0 0.0 .001 7.079079318                                                                            |
| Span 124 496 12.4 12.4 12.497 1097 1781                                                                             |
| Span Comments: Teledyne#2 Cyl % Exp % Act % Adj to + \Delta %                                                       |
|                                                                                                                     |
|                                                                                                                     |
| Post Run Audit: By: DK Time: 1330 Temp.: 77 of                                                                      |
| Audit Results                                                                                                       |
| Point Expected Response Actual Response + Conc.  Meter DVM & Meter DVM & Difference & 8                             |
| # Meter DVM 8 Meter DVM 8                                                                                           |
| zero 00.0 .000 00.0 00.0 .002054054216                                                                              |
| Span 12.4 1496 12.4 12.5 1498 12.599 199 1.604                                                                      |
| Comments: Teledyne#2 Cyl & Exp & Act & Adj to + A &                                                                 |
|                                                                                                                     |
| 4 Conc. Difference = Act % - Exp (Std) %                                                                            |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EE             | MC - West,              | Kent,                        | WA 98032      | Date:             | 5/15/92        | <u>Anal</u>  | yte: <u>CO (</u>                       | 15-3)          |
|----------------------|-------------------------|------------------------------|---------------|-------------------|----------------|--------------|----------------------------------------|----------------|
|                      | HAUGHS                  |                              |               |                   |                |              |                                        |                |
| Zero Cyl             | #: <u>T13</u>           | 2257                         | Co            | nc. <u>00.0</u> % | со             | Cyl Pr       | ess: <u>800</u>                        | psi            |
|                      |                         |                              | _             |                   |                |              | Date: 10/7                             | 1              |
|                      |                         |                              |               |                   |                |              | ess: 900                               | •              |
|                      |                         |                              |               |                   |                |              | Date: 10/3                             |                |
|                      | •                       |                              |               |                   |                |              | SN: 408                                |                |
|                      |                         |                              |               |                   |                |              | 0                                      |                |
|                      |                         |                              |               |                   |                |              |                                        |                |
|                      |                         |                              |               | red by:           | Kotamet        | .er          | Flowmet                                | - · · ·        |
| EPA Span<br>EPA Cont | Value = l<br>rol Limits | $0.0\% \text{ CC} = \pm 2.5$ | )<br>% of 10. | 0% CO = ±         | 0.25%          | со           |                                        |                |
| Pre Run              | Audit: By               | · BL                         | )             | Tim               | e: <u>9</u>    | 45           | Temp: <u>77</u>                        | o <sub>F</sub> |
|                      |                         |                              |               | udit Resu         |                |              |                                        |                |
| Point                |                         | ted Res                      | ponse         | Act               | ual Res        | ponse<br>%   | + Conc.<br>Difference                  | Δ %            |
| #                    | Meter                   | DVM                          | 8             | Meter             | <del></del>    | <del> </del> |                                        | . ,            |
| Zero                 | 00.0                    | .000                         | 00.0          | 00.0              |                |              | -,004                                  | -,044          |
| Span                 | 49.6                    | .496                         | 4.96          | 49.1              | 1491           | 4,448        | - ,038                                 | 1764           |
| Comments             | <u>; :</u>              |                              |               |                   |                |              |                                        | ÷              |
|                      | <del></del>             |                              |               | : '               |                |              |                                        |                |
|                      | 7-721                   |                              | OK            | Tim               | . 1            | 225          | Temp.: 77                              |                |
| Post Kun             | Audit: B                | у:                           |               |                   | •              |              | . 1emp                                 | <b>-</b>       |
| Point                | Fynec                   | ted Res                      |               | udit Resu<br>Act  | its<br>ual Res | ponse        | + Conc.                                | <u></u>        |
| #                    | Meter                   | DVM                          | 8             | Meter             | DVM            | 8            | Difference                             | <b>∆</b> 8     |
| Zero                 | 00.0                    | .000                         | 00.0          | 00.0              | .000           | -004         | 004                                    | 044            |
| Span                 | 49.6                    | . 496                        | 4.96          | 49.4              | . 494          | 5.028        | .068                                   | 1.380          |
| Comments             |                         |                              |               |                   |                |              | , ———————————————————————————————————— |                |
|                      | -                       |                              |               |                   |                |              |                                        |                |
| + Conc.              | Difference              | = Act                        | % - Exp       | (Std) %           | m) Y 10        | ) n          |                                        |                |
|                      | )ifferece =             | ]                            | ull Scal      | e Value           |                |              |                                        |                |
| Span % D             | ifference               | = Act S                      | k (ppm) -     | Exp % (p          | <u>pm)</u> X ] | L00          |                                        |                |

Exp % (ppm)

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

|                                     |                                                                      |                    |             |              | •            | <u>a</u> Anal  | yte: <u>SO2</u>       | (15-4)          |
|-------------------------------------|----------------------------------------------------------------------|--------------------|-------------|--------------|--------------|----------------|-----------------------|-----------------|
| Source: HAUGHS S270 SERIES Run #: 4 |                                                                      |                    |             |              |              |                |                       |                 |
|                                     | Zero Cyl #: T132257 Conc.00.0 ppm SO <sub>2</sub> Cyl Press: 800 psi |                    |             |              |              |                |                       |                 |
| Certifie                            | •                                                                    |                    |             |              |              |                | Date: 10/             | <b>.</b>        |
|                                     | ·                                                                    |                    |             |              |              |                | ess: <u>45</u>        | -               |
|                                     |                                                                      |                    | _           |              |              |                | Date: 9/2             |                 |
|                                     |                                                                      |                    |             |              |              |                |                       |                 |
|                                     |                                                                      |                    |             |              |              |                | SN: 4030              |                 |
| Range: 0 -                          | - 2500 p                                                             | pm SO <sub>2</sub> | Ar          | alyzer Ou    | tput:        | 0 - 1.         | 0                     | v.              |
| Flow: 1.5                           | SCFH                                                                 | <u></u>            | Measu       | red by:      | Rotame       | ter: <u> X</u> | Flowmete              | er:             |
| EPA Span Va                         | alue = 2                                                             | 500 ppr            | n SO2       |              |              | _              |                       |                 |
| EPA Control                         | Limits                                                               | = +2.              | <del></del> |              |              |                |                       | <u> </u>        |
| Pre Run Aud                         | <u>lit</u> : By                                                      | · BL               | )           | Time         | e:           | 0925           | Temp:                 | <u> </u>        |
|                                     |                                                                      |                    |             | udit Resu    |              |                |                       |                 |
| Point<br>#                          |                                                                      | ted Res            |             | Act<br>Meter |              | sponse<br>ppm  | + Conc.<br>Difference | <b>A</b> &      |
| #                                   | Meter                                                                | DVM                | ppm         |              |              |                |                       |                 |
| Zero                                | 00.0                                                                 | .000               | 00.0        | 0,1          |              |                |                       | ,237            |
| Span                                | 49.3                                                                 | -493               | 1232        | 49.5         | ,495         | 1238           | 6.992                 | 1568            |
| Comments:                           |                                                                      |                    |             | . 4          |              |                |                       |                 |
|                                     |                                                                      |                    |             | •            | 4            |                |                       |                 |
| ·                                   |                                                                      |                    |             |              |              |                |                       |                 |
| Post Run Au                         | ıdit: E                                                              | By:                | Ol          | C Time       | e: <u>13</u> | 315            |                       | 7o <sub>F</sub> |
|                                     |                                                                      |                    |             | Audit Resu   | lts          |                | <del></del>           |                 |
| Point                               | Expec                                                                | ted Re             | sponse      | Act          | ual Re       |                | + Conc.               | <b>₽</b> 8      |
| #                                   | Meter                                                                | DVM                | ppm         | Meter        | DVM          | ppm            | Difference            |                 |
| Zero                                | 00.0                                                                 | .000               | 00.0        | 00.2         | .002         | 8.432          | 8.432                 | . 337           |
| Span                                | 49.3                                                                 | .493               | 1232        | 49.4         | .494         | 1236.<br>496   | 4.496                 | .365            |
| Comments:                           |                                                                      |                    | · .         |              |              |                |                       | •               |
|                                     |                                                                      | •                  |             |              |              |                |                       |                 |
| + Conc. Di                          | ference                                                              | = Act              | ppm - Ex    | p (Std) p    | pm           |                |                       |                 |

+ Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Run: 4
Date: 5/15/92
Technicians: BN, JS, TK OK
WST6-Form3-Rev11/89

# QUALITY CHECKS WOODSTOVE DATA SHEET #16

| Ambient = Tr:                                                                      | <u> </u>           | 8,4              | of                 | T/C#3                                 | 0 ႏ ပ    | <del>9,</del> 5 | °                                      |
|------------------------------------------------------------------------------------|--------------------|------------------|--------------------|---------------------------------------|----------|-----------------|----------------------------------------|
| Thermocouple Ch                                                                    | eck (at a          | mbient): T       | /c#1: <u>60</u>    | <i>0,2</i> 01                         | F;T/C#2: | 60,3            | _o <sub>F</sub>                        |
| T/C #3: 60,2                                                                       | oF;                | T/C #4:_         | 59.7               | F;                                    | T/C #5:  | 59.4            | _o <sub>F</sub>                        |
| T/C #6: 59.4                                                                       | °F;                | T/C #7:_         | 59.4               | F;                                    | T/C #8:  | 58.9            | o <sub>F</sub>                         |
| T/C #9: 60./                                                                       | o <sub>F</sub> ;   | T/C #10:         | 60.0               | or,                                   | r/c #11: | 58.9            | o <sub>F</sub>                         |
| T/C #12: 63,5                                                                      | o <sub>F</sub> ;   | T/C #13:         | 60,9               | o <sub>F</sub> ,                      | r/c #14: | 61,2            | o <sub>F</sub>                         |
| T/C #15: 6/5                                                                       | or,                | T/C #16:         |                    | -                                     | c/c #17: |                 | o <sub>F</sub>                         |
| T/C #18: 644                                                                       | o <sub>F</sub> ;   | T/C #19:         |                    |                                       | C/C #20: |                 | o <sub>F</sub>                         |
| T/C #21:                                                                           | o <sub>F</sub> ;   | T/C #22:_        |                    | -                                     | C/C #23: |                 | o <sub>F</sub>                         |
| T/C #24:                                                                           | o <sub>F</sub> ;   | T/C #25:_        |                    | •                                     | :/C #26: |                 | o <sub>F</sub>                         |
| Comments:                                                                          |                    | _                | <u></u>            | <u>-</u>                              |          |                 |                                        |
| <u> </u>                                                                           |                    |                  |                    | · · · · · · · · · · · · · · · · · · · |          |                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                                                                                    |                    | · ·              |                    | <del>""</del>                         |          |                 |                                        |
|                                                                                    |                    | *                |                    | · · · · · · · · · · · · · · · · · · · |          |                 |                                        |
| Thermocouple Rea                                                                   | idout:             |                  |                    |                                       | •        | •               |                                        |
| Pretest Zero/Spa                                                                   |                    | and Calibra      |                    |                                       |          |                 |                                        |
| Zero<br>(0°F) :,2_                                                                 | Adj<br>OF to:      | O of             |                    | st Check<br>OF):  ./                  |          | Differe         | nce                                    |
| Span 100                                                                           | _                  |                  | Span               | - F ) t                               |          | 7005            |                                        |
| (2000°F):/999,2                                                                    | Adj<br>of to:      | 2000,0 °F        |                    | °F): 200                              | 1.3 °F _ | 1065            |                                        |
| (Allowable % Dif                                                                   | <del></del>        |                  | e formul           | as on Wo                              | odstove  | Data Sh         | eet                                    |
| #15 to calculate                                                                   | % Diffe            | rence)           |                    |                                       |          | •               |                                        |
|                                                                                    |                    |                  |                    |                                       |          |                 |                                        |
| Thermocouple Res                                                                   | dout Pre           | test Linear      | ity Chec           | k.                                    |          |                 |                                        |
| 0°F = 0                                                                            | oF; 2              | 00°F = <u>20</u> | /,3 °F             | ; 400°F                               | - 398    | 7.6 of          | ;                                      |
| 600°F = 600,8                                                                      | o <sub>F</sub> ; 8 | 00°F = 800       | ),9 o <sub>F</sub> | ; 1000°F                              | - 999    |                 |                                        |
| 1200°F= //97,5                                                                     |                    |                  | - A                |                                       |          |                 |                                        |
| 1800°F= 1799,2                                                                     |                    |                  |                    | ,                                     |          |                 |                                        |
|                                                                                    |                    |                  | *                  |                                       |          |                 | ٠                                      |
| Tracer Gee (SO.)                                                                   | Injecti            | on Train Le      | sk Check           | . P                                   | ./ Post  |                 |                                        |
| Tracer Gas (SO <sub>2</sub> )<br>Combustion Gas (<br>Tracer Gas (SO <sub>2</sub> ) |                    | )) Train Le      | ak Check           | · FFE                                 | Post     |                 |                                        |
| Tracer Gas (SOA)                                                                   | Angluze            | r Train Les      | k Check.           | · + FE                                | Pass     | _               |                                        |
| Draft (Static) G                                                                   |                    |                  | UNCORI             |                                       | Post     |                 |                                        |
| ure (beatie) G                                                                     | uage seri          | oneck:           |                    | rre                                   | rost     | ·               | :                                      |
| Scale Check <u>Pre</u>                                                             | (W+ #!=            | 1. 3/5/-         | 305.1              | =10                                   |          |                 |                                        |
| Dant Dant                                                                          | (W+ #1             | s): 316.8        | 301- 8             | ~100                                  |          |                 |                                        |
| Stack cleaned pr                                                                   | 107 41             | 37. JIG. V       | <u> </u>           | Yo 1/                                 |          |                 | <del></del>                            |
| Stack creaned pr                                                                   | TOT TO LI          | ie rans, le      | °                  |                                       |          |                 |                                        |

CLIENT: HAUGHS PRODUCTS

TEST No. :

| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | MODEL:   | S-27X              | ******         | :****          | DATE:         | 5/13/92<br>*****                       | *****           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|----------------|----------------|---------------|----------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME     | METER<br>READING   | DELTA<br>H     | METER<br>TEMP. | PERCENT<br>CO | PERCENT<br>CO2                         | SO2<br>COCENTR. |
| t <sub>orone</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (MIN.)   | (C F)              | (IN. H2O)      | (DEG. F)       | ( % )         | ( % )                                  | PPM             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 410 600            | 0 150          |                | 0.25          | ====================================== | 400             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>5   | 412.600<br>414.100 | 0.150<br>0.170 | 80<br>79       | 0.25<br>0.64  | 5.10<br>8.70                           | 400<br>375      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =        |                    |                |                |               |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 415.718            | 0.150          | 80             | 0.30          | 8.90                                   | 400             |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>20 | 417.241<br>418.865 | 0.170<br>0.150 | 80<br>82       | 0.06<br>0.06  | 10.00<br>11.40                         | 375<br>400      |
| .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25<br>25 | 420.399            | 0.150          | 82             | 0.09          | 12.10                                  | 400             |
| Unand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30       | 421.933            | 0.150          | 83             | 0.20          | 12.10                                  | 400             |
| 473575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35       | 423.473            | 0.130          | 84             | 0.28          | 13.10                                  | 425             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40       | 424.927            | 0.150          | 85             | 0.15          | 12.90                                  | 400             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45       | 426.478            | 0.150          | 86             | 0.10          | 7.30                                   | 400             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       | 428.029            | 0.150          | 87             | 0.13          | 6.80                                   | 400             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55       | 429.592            | 0.130          | 87             | 0.25          | 6.30                                   | 425             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60       | 431.063            |                | 87             | 0.51          | 5.50                                   | 425             |
| TWO WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65       | 432.535            | 0.130          | 87             | 0.59          | 5.30                                   | 425             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70       | 434.007            | 0.130          | 87             | 0.77          | 4.90                                   | 425             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75       | 435.479            | 0.130          | 87             | 0.86          | 4.30                                   | 425             |
| Comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80       | 436.951            | 0.130          | 87             | 0.87          | 3.70                                   | <b>4</b> 25     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 85     | 438.423            | 0.130          | 87             | 0.85          | 3.50                                   | 425             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90       | 439.895            | 0.130          | 87             | 0.83          | 3.30                                   | 425             |
| and .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95       | 441.368            | 0.130          | 86             | 0.84          | 3.50                                   | 425             |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100      | 442.834            | 0.130          | 86             | 0.80          | 3.50                                   | 425             |
| <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105      | •                  |                | 86             |               |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                    |                |                |               |                                        |                 |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                    |                |                |               |                                        |                 |

### TABLE 2 ---- FIELD DATA

| And the second | CLIENT: HAUGHS PRODUCTS    | 5               | TEST               | No.:        | 1      |     |
|----------------|----------------------------|-----------------|--------------------|-------------|--------|-----|
|                | MODEL: S-27X ***********   | ******          | DATE:              |             | 3/92   | ٠.  |
| in percent     | METER CAL. FACTOR (Y) 1.06 | ••              | . WOOD<br>RNED(LB) |             | 10.9   | Lbs |
|                | BAROMETRIC PRESS.(Pb) 30.1 |                 | I,FUEL<br>ISTURE % |             | 18.256 | 8   |
|                | LEAK RATE POST (Lp) 0.00   |                 | . PART.<br>LLECTED | ·           | 0.0909 | g   |
|                | WATER VOL. (V1c) 57.       | MET<br>7 Ml VOI | rer<br>LUME Vm     |             | 30.234 | mcf |
| $\neg$         | TEST TIME (MIN) 100        |                 | MOLE<br>ACTION     | <del></del> | 0.0132 |     |

### TABLE 3 ----FIELD DATA AVERAGES

| CLIENT:               | HAUGHS PRODUCTS     | TEST No.         | : 1                |
|-----------------------|---------------------|------------------|--------------------|
| MODEL:                | S-27X<br>********** | DATE:            | 5/13/92<br>******* |
| AVG DELTA<br>H        | 0.14 in H2O         | AVG PRCNT<br>CO  | - 0.45 %           |
| AVG METER<br>TEMP. Tm | 85 deg F            | AVG PRCNT<br>CO2 | - 7.29 %           |
| AVG PPM               | 411 DDM             |                  |                    |

### TABLE 4 ---- CALCULATIONS

| CLIENT: HAUGHS PRO       | DUCTS                | TEST No. :                     | 1 .                                    |    |
|--------------------------|----------------------|--------------------------------|----------------------------------------|----|
| MODEL: S-27X *********   | *****                | DATE: 5                        | /13/92<br>********                     | ** |
| STD SAMPLE VOL. Vm(std)  | 31.49 dscf           | STACK GAS<br>FLOW Qsd          | 964.573 dscf/Hr<br>&<br>16.08 dscf/min |    |
| VOL. WATER VAPOR Vw(std) | 2.716 scf            | PARTICULATE CONCTRT. C s       | 0.0029 g/dscf                          |    |
| PRCNT<br>MSTR Bws        | 7.94 %               | PARTC.EMISS.<br>RATE E         | 2.78 g/Hr                              |    |
| BURN<br>RATE BR          | 2.43 Kg/Hr           | MOLES OF GAS<br>PER Lb WOOD Nt | 0.47 Lb-mole/                          | Гþ |
| CO EMISSION<br>RATE      | 145.05 g/Hr &        | PART.EMISS.<br>RATE            | 1.15 g/Kgdry                           |    |
|                          | 59.77 g/Kgdr<br>fuel |                                |                                        |    |

TABLE 5 ---- PROPORTIONAL RATE VARIATION

| HAUGHS   | PRODUCTS |
|----------|----------|
| IIVOOIID | LIODOCIO |

TEST No. :

| S-27X                                   |                            | <del>.</del> . <b></b>      |          | DATE:                                   | 5/13/92                                |
|-----------------------------------------|----------------------------|-----------------------------|----------|-----------------------------------------|----------------------------------------|
| TIME<br>INTEVAL<br>Ti                   | ********<br>PPM<br>*<br>Vm | PROPRTN.<br>RATE VAR.<br>PR | ******   | PROPRTN<br>RATE VAR<br>AVERAGE          | ************************************** |
| ======================================= |                            |                             |          | ======================================= |                                        |
| 5                                       | 630.9                      | 98                          |          | 100                                     | <b>)</b>                               |
| 10                                      | 638.0                      | 99                          | •        |                                         |                                        |
| 15                                      | 640.0                      | 99                          |          | •                                       |                                        |
| 20                                      | 638.6                      | 99                          | •        | •                                       |                                        |
| 25                                      | 642.2                      | 100                         | •        |                                         |                                        |
| 30                                      | 641.6                      | 100                         |          |                                         |                                        |
| 35                                      | 643.0                      | 100                         |          |                                         |                                        |
| 40                                      | 643.8                      | 100                         |          |                                         |                                        |
| 45                                      | 645.2                      | 100                         |          |                                         | •                                      |
| 50                                      | 644.0                      | 100                         | egist to |                                         |                                        |
| 55                                      | 648.4                      | 101                         |          |                                         |                                        |
| 60                                      | 648.3                      | 101                         |          |                                         |                                        |
| 65                                      | 648.8                      | 101                         |          | 1.5                                     |                                        |
| 70                                      | 648.8                      | 101                         |          |                                         |                                        |
| 75                                      | 648.8                      | 101                         | **       |                                         |                                        |
| 80                                      | 648.8                      | 101                         |          |                                         |                                        |
| 85                                      | 648.8                      | 101                         |          |                                         |                                        |
| 90                                      | 648.8                      | 101                         | •        |                                         |                                        |
| 95                                      | 649.8                      | 101                         |          |                                         |                                        |
| 100                                     | 647.3                      | 100                         | •        |                                         |                                        |
| 105                                     |                            | ,                           | e.       |                                         |                                        |
| 110                                     |                            |                             |          |                                         |                                        |

| COMPUTER INPUT DATA WOODSTOVE DATA SHEET #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Client Address 10 atlas Court                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| Bramp Ton, Ontario, Canada LGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 501               |
| Client Phone 4/6-792-8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 6.44.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| Run No Date of Test Est Grams/Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Stove Type: Cat Non Cat Pellet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                 |
| Data To Be Submitted To: Oregon X Colorado EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>*</u>          |
| Burn Category: Low (<0.8 Kg/Hr) Med Hi (1.26 - 1.90 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) Max (>1.9 Kg/Hr) |                   |
| Fuel % Moisture (dry) <u>90.333 %(wet) 18956</u><br>(00.00) (Data Sheet #10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>%</u>          |
| Stack Static Pressure -064<br>(0.000) (Data Sheet #12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "H <sub>2</sub> 0 |
| Barometric Pressure 30,14 (00.00) (Data Sheet #2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Hg               |
| Temperature (Average Room) Combustion Air (00) (Data Sheet #14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| Flue Gas Moisture 7.9446 (00.000) (Data Sheet #7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>          |
| Ambient Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>%</b>          |
| Stove Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lbs               |
| (000) (Data Sheet #8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Stove Temperature Change (000) (Data Sheet #14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oF                |
| Particulate Emission (0.0000) (Data Sheet #7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gr/dscf           |
| Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BTU/16            |
| uel Type: Wood: X Pellets:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| otal Fuel Consumed During Burn 10,9 (00.0) (Data Sheet #8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 bs              |
| otal Particulate Catch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                 |
| 1 <sub>2</sub> 0 Captured 57.7 (00.0) (Data Sheet #3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g                 |
| Ory Gas Meter Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CF 4              |
| (00.000) (Data Sheet #2)  Try Gas Meter: Y Factor: 45-1066 Post Test Leak Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 204 CFM           |

| Meter Box Data Sheet Page # 2  Meter Box 4 J Y Factor 1.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 1<br>Unit: 4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Leak Checks: 400 " Hg @ 1003 cfm   1400 " Hg @ 2004 cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cfm   cf | Run:/             |

Nozzle: Probe @ 3/8 " od

Initial Volume: 1,500

Inject SD2 @ 100 cc/min

| MN TIME READING  OO 1030 4/2.600  OS 35 414.600  SECTION DELTA METER SD2 ROTTD PURCHES  OO 1030 4/2.600  OS 35 414.600  OS 36 414.600  OS 37 414.600  OS 37 414.600  OS 37 414.600  OS 37 414.600  OS 37 414.600  OS 37 414.600  OS 37 414.600  OS 37 415.600  OS 37 414.600  OS 37 415.600  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.605  OS 418.60 |       |        |                  |            | B 1.5            | 09          |               | DODOM      | TER. 3       | 05                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------------|------------|------------------|-------------|---------------|------------|--------------|--------------------------------------------------|
| 00 1030 4/12-600 8804 15 80 400 74 0 05 35 414-600 9391 17 79 375 74 5 10 40 415.718 8804 15 80 400 74 0 20 50 418.85 8804 15 80 400 74 0 20 50 418.85 8804 15 80 400 74 0 30 1100 491.933 8.787 15 83 700 75 0 35 5 493.473 8.55 13 84 765 76 5 35 5 494.910 8.711 15 85 400 76 16 55 35 494.910 8.711 15 85 400 76 16 55 35 49.910 885 13 87 45 76 16 55 35 43.635 8831 13 87 45 77 16 80 30 43.603 8.711 15 87 495 77 16 80 30 43.603 8.711 13 87 495 77 16 80 30 43.603 8.711 13 87 495 77 16 80 30 43.635 8.816 13 87 495 77 16 80 60 30 43.635 8.816 13 87 495 77 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.635 8.816 13 87 495 72 16 80 60 43.645 8.816 13 87 495 72 16 80 60 43.645 8.816 13 87 495 72 16 80 60 43.645 8.816 13 87 495 72 16 80 60 43.645 8.816 13 87 495 72 16 80 60 43.645 8.816 13 87 495 72 16 80 60 43.645 8.816 13 87 495 72 16 80 60 43.645 76 16 80 10 449.034 8.817 13 86 465 76 16 110 100 10 449.034 8.817 13 86 465 76 16 110 100 10 449.034 8.817 13 86 465 76 16 110 100 10 449.034 8.817 170 (915)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROTO  |        | 126              | Sampling   | r                |             | _ : 1         |            |              |                                                  |
| 05 35 4 4 00 10 40 4 5 18 15 45 4 194  20 50 4 8865 25 55 400399 30 1100 40 433 35 5 403,473 40 10 40 40 77 45 15 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 50 10 40,478 5 | MN    | TIME   | METER<br>READING |            | STACK<br>DSCFM   |             | METER<br>TEMP | SD2<br>PPM | ROTO<br>TEMP | PUMP                                             |
| 10 40 415.718 15 45 417.941 20 50 418.865 25 55 410.399 30 1100 491.932 35 5 43.473 40 10 401.997 45 15 496.478 50 20 418.904 55 25 419.535 70 410.434.007 75 45 435.479 80 60 43.403 80 60 436.951 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 60 43.895 80 6 | 00    | 1030   | 412.600          |            | 8804             | 115         | 80            | 400        | 14           | 0                                                |
| 15 45 417.941 20 80 418.865 25 65 490.359 30 1100 491.933 35 5 493.473 40 10 494.937 45 15 496.478 8.791 15 80 400 76 5 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 15 80 400 76 6 8.791 16 80 400 76 6 8.791 16 80 400 76 6 8.791 16 80 400 76 6 8.791 16 80 400 76 6 8.791 16 80 400 76 6 8.791 16 80 400 76 6 8.791 16 80 400 | 05    | 35     | 414/100          | ,          | 9.391            | 117         | 19            | 375        | 74           | 15                                               |
| 20 50 41845 25 55 490.399 30 1100 491-933 35 5 493.473 40 10 494-97 45 15 496.478 50 10 498.999 8.771 15 80 400 76 16 50 10 498.999 8.771 15 80 400 76 16 50 10 498.999 8.771 15 80 400 76 16 50 10 498.999 8.771 15 80 400 76 16 50 30 431.063 65 35 439.535 70 40 434.007 75 45 435.479 80 60 436.451 85 65 438.493 90 1700 439.895 95 5 441.368 100 10 449.024 105 15 110 90 115 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10    | 40     | 415.718          |            | 8.804            | 15          | 80            | 400        | 14           |                                                  |
| 25 65 400399 30 1100 491932 35 5 403.473 40 10 204997 45 15 496.478 50 20 -08.099 8.711 15 86 400 76 16 50 20 -08.099 8.711 15 86 400 76 16 55 25 43.535 70 40 435.479 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 436951 80 80 80 80 80 80 80 80 80 80 80 80 80 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15    | 45     | 417.841          |            | 9,391            | 117         | 80            | 325        | 14           | 0                                                |
| 30 1100 491933 35 5 493.473 40 10 494997 45 15 496.478 50 10 498.994 8.711 15 85 400 76 16 50 10 498.994 8.711 15 86 400 76 16 55 15 497.570 8.85 13 87 495 77 16 60 30 431063 65 35 438.535 70 40 434.007 75 45 435.479 80 60 436951 80 60 436951 80 60 436951 80 60 438.493 90 1900 439.895 95 5 441388 100 10 449.834 100 10 449.834 100 10 10 449.834 110 100 115 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20    | 50     | 418,865          | _          | 8804             | -15         | 88            | 400        | 1/4          | 15                                               |
| 35 5 493.473 8 8 5 76 5 76 5 76 76 76 76 76 76 76 76 76 76 76 76 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25    | 55     | 400,399          |            | 804              | 15          | 80            | ×100       | 14           |                                                  |
| 40 10 49497 8,11 15 85 400 16 5  45 15 496.478 871 15 86 400 76 16  50 20 498.099 871 15 87 400 76 16  55 25 49.535 8,331 13 87 45 77 16  60 30 431.063 8,331 13 87 45 77 16  60 30 43.6951 80 80 13 87 45 78 16  80 60 436.951 80 80 13 87 45 78 16  80 60 436.951 80 80 13 87 45 78 16  80 60 436.951 80 80 13 87 45 78 16  80 60 436.951 80 80 13 87 45 78 16  80 60 436.951 80 80 13 87 45 78 16  80 60 436.951 80 80 13 87 45 78 16  80 80 436.951 80 80 13 87 45 78 16  80 80 436.951 80 80 13 87 45 78 16  80 80 436.951 80 80 13 87 45 78 16  80 80 436.951 80 80 13 87 45 78 16  80 80 436.951 80 80 13 87 45 78 16  80 80 40 436.951 80 80 13 87 45 78 16  80 80 40 436.951 80 80 13 87 45 78 16  80 80 40 436.951 80 80 13 87 45 78 16  80 80 40 400 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 10 80 | 30    | 1100   | 401-933          | <u>.</u>   | 8,787            | 115         | 83,           | 700        | 15           | 0                                                |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35    | 5      | 403.473          | ·          |                  | /13         | 84            | 165        | 16           | 5                                                |
| 50 DD - 18.049 8.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40    | 10     | 404907           |            | 8,771            | 15          | 25            | 400        | 16           | 5                                                |
| 55 05 19.590   80.591   80.585   13 87 185 76   16 60 30   431.063   80.535   80.31   13 87 195 77   10 65 35   435.479   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951   80.60   436.951  | 45    | 15     | 426.478          |            | 8171             | 15          | 80            | 400        | - 77         | 10                                               |
| ROTO PRESS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50    | 10     | 408.009          |            | 8.771            | _/6         | 87            | 400        | 16           | 10                                               |
| 60 30 431063   8331 .13 87 465 77 1.0  65 35 439.535   8.931 .13 87 465 77 1.0  70 40 434.007   8.916 .13 87 465 78 1.0  80 60 436.951   8.916 .13 87 465 78 1.0  85 65 438.403   8.931 .13 87 465 77 1.0  90 1000 439.895   8.931 .13 87 465 77 1.0  95 5 441.368   8.947 .13 86 465 76 1.0  100 10 440.934   8.947 .13 86 465 76 1.0  110 100 10 440.934   8.947 .13 86 465 76 1.0  1115 15 15   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948   1948    | 55    | 05     |                  | <u> </u>   |                  | <del></del> | 897           | 45         |              |                                                  |
| 55 35 439.535 8.931 13 87 495 77 10 40 434.007 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0 60 436.951 8.0  | ROTO  | PRESS: | 136              | TOTALS :   | (105,608)        | (1.80)      | 9453          | BAROM      | ETER:        |                                                  |
| 70 40 434.007 8816 113 87 495 18 16 80 60 436.951 8816 13 87 495 18 16 85 65 438.403 88.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.816 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.817 8.818 8.818 8.817 8.818 8.818 8.817 8.818 8.818 8.818 8.818 8.817 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.817 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.818 8.81 | 60    | 30     | 431-063          | <u>[</u> . | 8331             | 173         | 87.           | 45         | 77           | 1,0                                              |
| 75 45 435419 80 60 436951 80 65 13 87 45 18 16 80 60 436951 80 80 60 436951 80 80 60 436951 80 80 80 80 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65    | 35     | 430,535          | <u>[</u>   | 8931             |             | 87            | 495        | 77           | 10                                               |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70    | 40     | 434-007          | <u>.</u>   | 8216             |             | 87            | 495        |              | 10                                               |
| 85 65 438,403 8,316 8,316 8,315 78 12<br>90 1900 439,895 8,31 13 87 45 77 12<br>95 5 441368 8,347 13 86 465 76 12<br>100 10 449,934 8,347 13 86 465 76 12<br>110 90 115 15 170519 (1-17) (1914) 115 115 115 115 115 115 115 115 115 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75    | 45     | 435,479          | <u>[</u> . | 8216             | <u> </u>    |               | 45         |              | 10                                               |
| 90 1900 - 39.895 8.831 13 87 85 77 10 8.831 13 86 45 76 10 8.847 13 86 45 76 10 100 10 449.234 8.847 13 86 45 75 10 110 100 1010 1010 1010 1010 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80    | 60     | 436951           | <u>.</u>   | 806              |             | <u> </u>      | 765        |              | <del>                                     </del> |
| 95 5 441-368<br>100 10 449.234<br>105 15<br>110 00<br>115 05<br>TOTALS: 000<br>1179.659 (0.97) (1716) (915)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85    | 65     | 438,403          | <u>k</u>   | 8,216            |             | -             | 245        | 78           | 1.0                                              |
| 100 10 449.234 8847 13 86 46 75 74.0519 (1-17) (1919) 110 90 115 95 MAX VACC = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90    | 1000   | 439.895          | <u>k</u>   | 8,031            |             |               | 765        | 7/           | 1,0                                              |
| 105 (5 74.05 19 (1-17) (1819) 110 00 115 05 MAX VACC = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95    | 5      | 441.368          | <u> </u>   | 8,041            |             | 86            | 765        | 76           | 10                                               |
| 110 00<br>115 05 TOTALS: 119.659 (097) (1716) (915)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100   |        | 440-234          | 1          | 0.047            | 1/3         | 86            | 45         | 1/5          | ~                                                |
| 115 13 139.654) (097) (1716) (015) TOTALS: 129.654) (097) (1716) (015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.05  | ( )    |                  |            | 740514           | (1-17)      | (1814)        |            |              | ļ                                                |
| TOTALS: P5 MAX VACC =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110   |        |                  | 1          |                  |             |               | 1          | -            | ļ                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115   | 9<     |                  | <u> </u>   | 119,659          | (24))       |               | (4/2)      |              |                                                  |
| TOTAL CU FT (3043 CM) TOTALS (8,5557) (1417) (545) AV BR. 3014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |        |                  | I          |                  |             |               | 1          |              | D                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL | CU FT  | (304361          | TOTALS:    | [ <i>8</i> .555] | (41)        | (5454)        | AV BR      | 3211         | 1>                                               |

## MOISTURE SHEET Woodstove Data Sheet #3

| Moisture Determination                      | 1-1               |                               |                                          |                  |
|---------------------------------------------|-------------------|-------------------------------|------------------------------------------|------------------|
|                                             | Balance<br>Seroed |                               | Unit: HAUG                               | SHS SATX         |
| Final:                                      |                   |                               | Run:                                     | / .              |
| IMPINGER #1                                 | <del></del> "     |                               | Date: 5/                                 | 13/92            |
| Final Weight 640.8                          | grams             | Technici                      | an(s): Init:                             | _ )              |
| Initial Weight 593,4                        | grams             |                               | Final                                    | 1. <u>35/B</u> / |
| Net 47.4~                                   | grams             | Approved                      | Ву:                                      | TK               |
| IMPINGER #2                                 |                   |                               | en en en en en en en en en en en en en e |                  |
| Final Weight 591,3                          | grams             |                               |                                          |                  |
| Initial Weight 588,4                        | grams             |                               |                                          |                  |
| Net $99$                                    | grams             |                               |                                          |                  |
| IMPINGER #3                                 |                   |                               |                                          |                  |
| Final Weight 479,4                          | grams             |                               | •                                        |                  |
| Initial Weight 479,3                        | grams             | ·                             |                                          |                  |
| Net ·//                                     | grams             |                               |                                          |                  |
| IMPINGER #4 (SILICA GEL)                    |                   |                               |                                          |                  |
| Final Weight 827.9                          | grams             |                               |                                          | •                |
| Initial Weight 820.6                        | grams             |                               | •                                        |                  |
| . Net <u>7.3</u> ~                          | grams             |                               |                                          |                  |
|                                             | TOTAL MASS        | о <b>г</b> н <sub>2</sub> о с | APTURED <u>5</u>                         | 7.7. grams       |
| Scale Check: 295.0g = 295.0g = 590.0g = 590 | 5,00 g            | Front                         | Half Filter                              | +260F            |
| 885.0g = <u>8</u> 8                         | <u>5.0</u> 8      | Back H                        | alf Filter                               | # 260B           |
| Notes:                                      |                   | ··                            |                                          |                  |
|                                             |                   |                               |                                          |                  |
|                                             |                   | . ·                           |                                          | ٠.               |
|                                             |                   |                               |                                          |                  |
|                                             |                   |                               | ······································   |                  |
|                                             |                   |                               |                                          |                  |

| nto D      | essicato    | r: Da     | c e <u> </u> | 14 Ti | ше <u> 0900</u> | v<br>_ вà <sup>_</sup> ; | UN F   | ront          | Half           | sac      | K HAII<br>#クピュ |          |
|------------|-------------|-----------|--------------|-------|-----------------|--------------------------|--------|---------------|----------------|----------|----------------|----------|
| lanufa     | cturer:_    | <u>38</u> | <u>&gt;</u>  |       | Size:           | <u>nm</u>                | Lot.No | > • • <u></u> | <u>8882</u>    | rade:    | <u> </u>       | ias      |
| ilter<br># | First<br>Wt | Date      | Time         | Bv    | Second<br>Wt    |                          | Time   | By            | Third<br>Wt    | Date     | Time           | B,       |
|            | 16927       |           |              |       | 0.6926          |                          |        | Dχ            |                |          |                |          |
|            | 1450        |           | 1641.        |       | 0.6955          |                          | 1606   | 7             |                |          |                |          |
|            | 17007       |           | 1640         |       | 0.7023          |                          | 1608   |               |                |          |                |          |
|            | 6906        |           | 1643         |       | 0.6905          | 7                        | 1610   | 7             |                |          |                |          |
|            | ,7000       |           | 1644         | 1     | 0.6996)         | (                        | 1612   |               |                |          |                |          |
| 246F       | ,6930       |           | 1645         | 7     | 0.6932          |                          | 1614   |               |                |          |                |          |
|            | ,7000       |           | 1646         |       | 0.7004)         |                          | 1616   |               |                |          |                |          |
| 248F       | 16941       |           | 1647         | 1     | 0.6938)         |                          | 1618   |               |                |          |                |          |
| 249 F      | 690         |           | 1648         |       | 0.6920          |                          | 1620   |               |                |          | ·              | L        |
| 250F       | ,6963       |           | 1649         |       | 0.6960          | ) (                      | 1622   |               |                |          |                |          |
|            |             |           |              |       |                 |                          |        |               |                |          |                | <u> </u> |
|            | •           |           |              |       |                 |                          |        |               |                |          |                |          |
| 251F       | . 6977      |           | 1650         |       | 0.6974)         |                          | 1624   | ĎΚ            | ·              |          |                | <u> </u> |
| 252F       | . 6481      |           | 1651         |       | 0.6978)         |                          | 1626   |               | · · · · · ·    |          |                | <u> </u> |
| 253F       | .7011       |           | 1650         |       | 0.7014)         |                          | 1628   | _/_           |                |          |                |          |
| 254 F      | 6911        |           | 1653         |       | 0.6913)         |                          | 1630   | /_            |                |          |                | _        |
| 355 F      | 1/2970      |           | 1654         |       | 0.6965          |                          | 1632   |               |                |          |                | <u> </u> |
|            | .6965       |           | 1655         | -     | 0. 6963)        |                          | 1634   |               |                |          |                |          |
|            | 06947       |           | 1056         | 14    | 0.6950)         |                          | 1636   | _\            |                |          |                | _        |
| 258F       | .7008       |           | 1657         |       | 0.7007          | _/_                      | 1638   | ]             |                |          | <u> </u>       | _        |
| 259F       | ·6493       |           | 1659         |       | 0.6980)         |                          | 1640   |               |                | <u> </u> |                | <u> </u> |
| 260F       | US941D      | 4         | 1659         | 4     | 0.6943          | _ \                      | 1642   |               | HAUGHS         | eni      |                |          |
|            |             |           |              |       |                 |                          |        |               |                |          | <del> </del>   | _        |
|            |             |           |              |       |                 |                          |        |               |                |          |                | L        |
|            |             |           |              |       |                 |                          |        |               | <del>/_/</del> |          | h :            | Ļ_       |
| hecke      | d by        |           | 11/4         | 7     |                 |                          | Dat    | e:(           | 3/13/92        | Time     | 1700           | ).<br>   |

|          | QA RE         | WEIGH |      |    |
|----------|---------------|-------|------|----|
| Filter # | WT            | Date  | Time | Ву |
|          | · <del></del> |       |      |    |
|          |               |       |      |    |
|          | ······        |       |      |    |

| BALA | NCE R | OOM ENV | RONMENTA | L COND | TIONS |
|------|-------|---------|----------|--------|-------|
| WB   | DВ    | %RH     | Date     | Time   | Ву    |
| 57   | 20    | 44      | 3/11     | 1640   | Has   |
| 60   | 74    | 44      | 3/13     | 1602   | DK    |
|      |       |         |          |        |       |

| WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS) |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

| Into D                                | essicato   | or: Da      | te <u>3/9/</u> 9 | <i>[2</i> Ti                                   | me 0900   | ) By_!        | )K Fr   | ont              | Half           | _ Bac  | k Half | <del></del> |
|---------------------------------------|------------|-------------|------------------|------------------------------------------------|-----------|---------------|---------|------------------|----------------|--------|--------|-------------|
| Manufa                                | cturer:_   | <u>څ ک</u>  | S                |                                                | _ Size: 8 | <u>.2cm</u>   | Lot.No  | <u>₹</u>         | <u> 6901</u> 6 | radei  | #25g   | <u>ass</u>  |
| Filter                                | First      |             |                  |                                                | Second    |               |         |                  | Third          |        | m.t    | 77          |
| #                                     | Wt         | Date        | Time             | Ву                                             | Wt        | Date          |         | By               | Wt             | Date   | Time   | Ву          |
|                                       | 13811      | 3/11        |                  |                                                | 0.3812    |               | 1       | ĐΚ               |                |        |        |             |
|                                       | ,3789      |             | 1701             | $\overline{}$                                  | 0.3792    | 1 1           | 1524    | <del>- )  </del> |                |        |        |             |
|                                       | .3767      |             | 1700             |                                                | 0.3764)   | , , , , , , , | 1526    | -/               |                |        |        |             |
|                                       | -3810      |             | 1703             |                                                | 0.3807)   |               | 1528    | <del>  (  </del> |                |        |        | -           |
| 245 B                                 | ,382A      |             | 1704             | _                                              | 0.3819    | 1             | 1530    |                  |                |        |        | <u> </u>    |
| 246 B                                 | -38AO      |             | 1705             | 16                                             | 0.3819)   |               | 1532    |                  |                |        |        |             |
| 247 B                                 | .3950      |             | 1706             |                                                | 0.3847)   |               | 1534    | /                |                |        |        |             |
| 248 B                                 | .3810      |             | 1707             | (                                              | 0.3810)   |               | 1536    | _/_              |                | -      |        |             |
| 249 B                                 | 3830       |             | 1708             |                                                | 0.3826)   | /             | 1538    |                  |                |        |        | <u> </u>    |
| 250B                                  | 13813      |             | 1709             | (                                              | 0.3811    | \             | 1540    |                  |                |        |        |             |
| · · · · · · · · · · · · · · · · · · · |            |             |                  |                                                |           |               |         |                  |                |        |        |             |
|                                       | _          |             |                  |                                                |           |               |         |                  |                |        |        |             |
| 251 B                                 | 13817      |             | 1710             |                                                | 0.3817    | 3/13          | 1542    | DK               |                |        |        |             |
|                                       | 3801       |             | 1711             |                                                | 0.3822    |               | 1544    | 7                |                |        |        |             |
|                                       | -3810      |             | 1712             |                                                | 0.3808    |               | 1546    |                  |                |        |        |             |
|                                       | 3826       |             | 1713             |                                                | 0.3824    |               | 1548    |                  |                |        |        |             |
| 255B                                  |            |             | 1714             |                                                | 0.3761    |               | 1550    |                  |                |        |        |             |
|                                       | 13850      |             | 1715             |                                                | 0.3848)   |               | 1552    |                  |                |        |        |             |
|                                       | -3760      |             | 1716             |                                                | 0.3762    |               | 1554    |                  |                |        |        |             |
|                                       | 13830      |             | 1717             |                                                | 0.3826    | Ì             | 1556    | /                |                |        |        |             |
| 259B                                  | 13818      |             | 1718             |                                                | 0.3813    |               | 1558    |                  |                |        |        |             |
| 260B                                  | ,3870      | 4           | 1719             | 77/                                            | 0.3872    |               | 1600    | \                | HAUWIS         | RNI    |        |             |
| KUV1)                                 | 12010      | **          | 1 6 1 7          | _ <u>,                                    </u> | 0.00.20   | <del>-</del>  | ,000    |                  | <u> </u>       |        |        |             |
|                                       |            |             |                  |                                                |           |               |         |                  |                |        |        |             |
|                                       |            |             | 1                |                                                |           |               |         |                  | , .            |        |        |             |
| Checke                                | d by       | 1           | 1/11/9           | 7                                              | <u> </u>  | <u> </u>      | Dat     | نا<br>ناد:_ر     | 3/13/gr        | Time   | 1700   | )           |
| -1 M C                                | J          | <del></del> |                  |                                                |           |               |         | _                | (              | _      |        |             |
|                                       | <b>^</b> 4 | ייוושת      | TCU              |                                                |           | RA            | LANCE 1 | ROOM             | ENVIRON        | (ENTAI | CONDI  | TIC         |
|                                       | QA.        | REWE        | 1911             |                                                |           | · ~           |         | 1                |                |        |        |             |

|          | QA RE                                 | WEIGH |      |    |
|----------|---------------------------------------|-------|------|----|
| Filter # | WT                                    | Date  | Time | Ву |
|          | •                                     | ,     |      |    |
|          | <del></del>                           |       |      |    |
|          | · · · · · · · · · · · · · · · · · · · |       |      |    |
| 1        |                                       | i     | 1    |    |

| BALA | NCE R | OOM ENVI | RONMENTA | L COND | TIONS |
|------|-------|----------|----------|--------|-------|
| WB   | DB    | %RH      | Date     | Time   | Ву    |
| 57   | 20    | 44       | 3/11     | 1700   | 83    |
| 100  | 74    | 44       | 3/13     | 1520   | DK    |
|      |       |          |          |        |       |

INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

| eaker    | ssicato   |                                                  | 1    |                    |           | ond          |     |             |        |                                       |          | nird                                  |          |                                                   |          |          |
|----------|-----------|--------------------------------------------------|------|--------------------|-----------|--------------|-----|-------------|--------|---------------------------------------|----------|---------------------------------------|----------|---------------------------------------------------|----------|----------|
| #        | Wt        |                                                  | Time | Ву                 |           |              | Dat |             | Time   | By                                    | W        | <u> </u>                              | Dat      | e                                                 | Time     | +        |
| 176      | 106. 2307 | 4/13                                             | 958  | DX                 | 1062      |              | 4/  | Ч           | 104    | Sw                                    | _        |                                       |          | -+                                                |          | +        |
| 1        | 104.8297  |                                                  | 1000 | $\mathcal{L}$      | 104.8     | ļ            |     |             | 10013  |                                       | _        |                                       | ļ        |                                                   |          | +        |
|          | 108.8855  |                                                  | 1002 | _/                 |           | 859          | - 1 |             | 1045   | 1                                     | 4        |                                       | <u> </u> |                                                   |          | 4        |
| 479      | 109.8650  |                                                  | 1004 |                    | 109.8     | 653          |     |             | 1047   |                                       | /_       |                                       |          |                                                   |          | 4        |
| 480      | 107.7999  |                                                  | 1006 |                    | 107:      | 2978         | '   | -           | 1049   |                                       | <u> </u> |                                       |          | -                                                 |          | $\dashv$ |
| 481      | 96.1065   | 4/13                                             | 1008 | DK                 | 96.       |              |     |             | 1051   |                                       | /        |                                       |          |                                                   |          |          |
| 424      | 106.3740  | 7                                                | 1010 |                    | 106:      | 3744         |     |             | 1053   |                                       | /        |                                       | <u> </u> | _                                                 | <u> </u> | _        |
|          | 107.0673  |                                                  | 1012 |                    | 107.      | 0678         |     |             | 1055   |                                       | /        | <u></u>                               |          |                                                   |          | _        |
| 404      | 104.1716  | 17                                               | 1014 | 1                  |           | 1780         |     |             | 1057   |                                       | /        |                                       |          |                                                   |          | _        |
| 7.2.     | 105.3500  | 1                                                | 1016 | 1                  | 105       | 3502         |     |             | 1059   | 11                                    | /        | · · · · · · · · · · · · · · · · · · · |          |                                                   |          | -        |
| 196      | 106.3125  | 4/13                                             | 1018 | OK                 | 106       | 3199         | -   | 1           | 1101   |                                       |          |                                       |          |                                                   |          |          |
| 27       | 101. 1758 |                                                  | 1020 |                    | 101.      |              |     | 1           | 1103   |                                       | /        |                                       |          |                                                   |          |          |
| 16.3     | 9 5.5598  | 4                                                | 1022 | 1 7                |           | 5593         |     |             | 1105   |                                       | /        |                                       |          |                                                   |          |          |
| 129      | 97.1357   | <del>                                     </del> | 1024 | _                  |           | 1357         |     | 1           | 1107   |                                       | /        |                                       |          |                                                   |          |          |
| 490      | 108.2140  |                                                  | 1026 | _                  |           | 0144         |     |             | 1109   |                                       | /        |                                       |          |                                                   |          |          |
| :41      | 105.7272  | 4/,3                                             | 1025 | DK                 | 105,      | 1072         |     | <u> </u>    | 1111   | 1                                     |          |                                       |          |                                                   |          |          |
| 490      | 108.3612  |                                                  | 1030 |                    |           | 3607         |     |             | 1113   | ,                                     | V        |                                       |          |                                                   |          |          |
| 463      | 106.975   | <del></del>                                      | 1032 | 1                  |           | 9746         |     |             | 1115   | 1,79                                  | /        |                                       |          | $\Box$                                            |          |          |
| 444      | 98.8124   | 1                                                | 1034 | T /                |           | 8122         |     | 1           | 1117   |                                       | /        |                                       |          |                                                   |          |          |
| 445      | 94.9435   |                                                  | 1034 |                    |           | 944C         |     |             | 1119   | , , , , , , , , , , , , , , , , , , , |          |                                       |          |                                                   |          | _        |
| 496      | 106.7929  | 14/12                                            | 1038 | $\frac{1}{10^{K}}$ | 106.      | 1934         | -   | 1           | 1121   | 1 1                                   |          |                                       |          |                                                   |          | _        |
| 117      | 104.8081  | +==                                              | 1040 |                    | _         | 2016         | _   | 1           | 1183   |                                       |          |                                       |          |                                                   |          |          |
| 498      | 103.8561  | 1 +                                              | 104% |                    |           | 18565        |     | 1           | 1125   | 7                                     | V        | HAU                                   | ans      | RN                                                | )        |          |
| 464      | 107. 3430 |                                                  | 104  | 1 /                | _         | <i>343</i> 9 |     | Ť           | 1107   | 1                                     |          |                                       | 1        |                                                   |          |          |
| <u> </u> | 98.355    |                                                  | 104  |                    |           | 3561         | 1   | <del></del> | 117    |                                       | 1        |                                       | 1        |                                                   |          |          |
|          |           |                                                  | Nous |                    | . , , , , |              |     |             | 4/15/  |                                       |          | Ti                                    | me:      | 0                                                 | 745      |          |
|          | / Q.      | A REW                                            | EIGH |                    |           |              | В   | ALA         | NCE RO | МОС                                   | ENV      | IRONM                                 | ENT      | AL                                                | CONDI    | T        |
| eaker    | #         | WT                                               | Date | T e                | lime      | Ву           | W   |             | DB     | _                                     | RH       | <del></del>                           | te       | <del>,                                     </del> | ime      | _        |
|          |           | -                                                |      | 1                  |           |              | - 1 | 58          | 172    | 1 4                                   | 12       | - L J/                                | 13       | 10                                                | 56       | Ĺ        |

|                 |                  |      |               | WOO | WOODSTOVE DATA SHEET #4-3: | SHEET | #4-3:              | CONS                          | CONSTANT FINAL WEIGHTS | ICHTS |      |             | WSI5-F<br>Unit H | orm9, Pa | WST5-Form9, Pg1, Rev4/90<br>Unit みんしんれく スのス | 8.     |
|-----------------|------------------|------|---------------|-----|----------------------------|-------|--------------------|-------------------------------|------------------------|-------|------|-------------|------------------|----------|---------------------------------------------|--------|
|                 |                  |      |               |     |                            | FINAI | VAL BEAKER WEIGHTS | R WEI                         | GHTS                   |       |      |             | Dates            | 5/13/40  | 20                                          | 1      |
| Beaker          | r Into<br>Dessic | Date | Time          | Ву  | First                      | Date  | Time               | By                            | Second                 | Date  | Time | By          | Thirty Control   | Date     | Time                                        | 2      |
| 11/2            |                  | 5/14 | 0600          | ă   | C608'901                   | SIS   | D32                | B                             | 1808.901               | 2/18  | 913  |             | 16.3080          | 8/8      | ) pas                                       | S      |
|                 |                  |      |               |     |                            |       |                    |                               |                        |       |      |             |                  |          |                                             |        |
| \$              |                  | 5/14 | 0060          | X   | 104.8201                   | 5//5  | 1234               | BO                            | 104,8195               | 5/18  | 414  | OK          | 104.89co)        | 3/6      | 300                                         | Day.   |
| <u> </u>        |                  |      |               |     |                            |       |                    |                               |                        |       |      |             |                  |          |                                             | 6      |
| 140<br>24<br>20 |                  | 5)14 | 0980          | R   | 73,8624                    | 5/15  | 1336               | ВЛ                            | 103.8618               | 5/18  | 916  | )<br>)<br>( | 103,8619         | 200      | 80                                          | Zi.    |
| -               |                  |      |               |     |                            |       |                    |                               |                        |       |      |             |                  |          | ł                                           |        |
| 037             |                  | 2/14 | 0960          | K   | 0900 DK 107,3492           | 5/15  | 956/               | $ \mathcal{C}_{\mathcal{B}} $ | 18487                  | 5/18  | 816  | Z           | (101.3490)       | 5/18     | 0/5                                         | 8      |
|                 |                  |      |               |     |                            |       |                    |                               |                        |       | ·    |             |                  |          |                                             |        |
| 8               |                  | 5/14 | 0900 DX       | 췽   | 98,3610                    | 3/12  | ዕታሮ/               | 82                            | 1098.86                | 5/18  | 920  | Š           | 98,3603          | 1/2      | 1512                                        | 3      |
|                 |                  |      |               |     |                            |       |                    |                               |                        |       |      |             |                  |          |                                             |        |
|                 | -                |      |               |     |                            |       |                    |                               |                        |       |      |             |                  |          |                                             |        |
|                 |                  | :    |               |     |                            |       |                    |                               |                        |       |      |             |                  | -        |                                             |        |
| [               |                  |      |               |     |                            |       | FIN                | AL FI                         | FINAL FILTER WEIGHTS   |       |      |             |                  |          |                                             |        |
| Filter Into     | Into<br>Dessic   | Date | Time          | By  | First                      | Date  | Time               | B                             | Second                 | Date  | Time | BA BA       | Third            | Date     | 7.1 mo                                      | 2      |
| 38              |                  | 6/13 | 1885          | 2   | 90kV;                      | 5/14  |                    | Sago                          | (24/03)                | 5//2  | 1    | S.J.        |                  |          |                                             | ,<br>, |
|                 |                  |      |               | )   |                            | ,     |                    |                               | )                      |       |      |             |                  |          |                                             |        |
| 250 B           | - 2              | 6/13 | 6/13 1255 920 | S   | 13929                      | 2/14  | 1336               |                               | (3655)                 | 5//5  | /223 | BU          |                  |          |                                             |        |
|                 | _                |      | <del></del>   | 7   |                            | -     |                    | 2                             |                        |       |      |             |                  |          |                                             |        |

| LIONS                               |          |                      |        |          |                        |                      |   |
|-------------------------------------|----------|----------------------|--------|----------|------------------------|----------------------|---|
| CONDI                               | _        |                      |        |          |                        |                      |   |
| ENTAL                               |          |                      | _      | _        |                        |                      | Î |
| VIRONM                              | -        |                      | -      |          |                        |                      |   |
| OM EN                               | -        | -                    |        | _        |                        |                      |   |
| SCALE ROOM ENVIRONMENTAL CONDITIONS | 9        | 7                    | 8      | 6        | Commenta               |                      |   |
| CONS                                |          | ZRH                  | 15     | 44       | 45                     | 4                    |   |
| SCALE ROOM ENVIRONMENTAL CONDITIONS |          | DB                   | જ      | 74       | 7                      | 72                   |   |
| TAL C                               |          | WB                   | B      | 17 09    | JK 58 71               | 25                   |   |
| CONFIEN                             |          | By                   |        |          | X                      | Þ                    | 0 |
| ENVI                                |          | Date Time By         | 1184 F | (A) 0021 | 016 81/                | 8                    |   |
| ROOM                                |          | Date                 | 2/14   | 21/5     | 2/18                   | 6/18 150 80 80 69 72 |   |
| SCALE                               | Weighing | Session              | 1      | 2        | 3                      | 4                    | Ľ |
| ļ                                   |          |                      |        |          |                        |                      |   |
| HTS                                 |          | Ву                   |        |          | By                     |                      |   |
| QA REWEIGH: FINAL WEIGHTS           |          | Beaker # Final Wt By |        |          | Final WT               |                      |   |
| REWEIGH                             |          | Beaker #             |        |          | Date Filter # Final WT |                      |   |
| ¥ŏ                                  |          | Date                 |        |          | Date                   |                      | _ |
|                                     |          |                      |        |          |                        |                      |   |

WST7-Form1-Rev5/90

Dates: From 4 33 93

Through

WOODSTOVE DATA SHEET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

| 100g                                                        | 10g       | 1.0g        | 100mg   | Blank  | Rlank  |                                                | -                  |          |                                         |       |
|-------------------------------------------------------------|-----------|-------------|---------|--------|--------|------------------------------------------------|--------------------|----------|-----------------------------------------|-------|
| Weight                                                      |           | Weight      | Weight  | Filter | Besker | Tech Dat                                       | te Time            | Dry Bulb | 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | no 4  |
| 97777                                                       |           | 0.4447      | 0,100   |        |        | DK 4/6                                         | 1600               | KJ       | 10                                      |       |
| 19.15.75.75                                                 | ユ         | . 959.7     | 88      |        |        | 110 011                                        | 2 - 14C            | 20       | 1.00 V                                  | 7,7   |
| となれた                                                        | 0000      | 0550        | 1000    |        |        | ST CS                                          | 2 (EAC)            | 1        | 7                                       | 1,/// |
| 1664 461                                                    | 0000.01   | 1.0000      | 0. 1000 |        |        | ₹                                              | 27 1040            | 7.2      |                                         | 777   |
| /80'8)                                                      | 0,000     | , 9998      | 55501   |        |        | F                                              | 1420               | · 宋      | OB C                                    | 7,    |
| 69 999                                                      | 10,0001   | 1.000.1     | 0.0999  |        |        | -                                              | 1                  |          | 5                                       | 27    |
| 60bb bb                                                     | 0000 01   | 1.0001      | 0000    |        |        | 7                                              | 1                  | 77       | (0)                                     | 4.7   |
| 866.66                                                      | 8666.6    | 0000 V      |         |        |        | 7                                              | * 24.              | 77       | (e)                                     | 76    |
| 44,996.7                                                    | 9,4999    |             |         |        |        | 1                                              | 220                |          | . [ <i>o</i> ]                          | 38    |
| 00 00 C                                                     | 10000     | 4 909       | 1       |        |        | <b>200</b> 00 00 00 00 00 00 00 00 00 00 00 00 | (A)                | 7        | 57                                      | 1/2   |
| 160,003                                                     | 200.00    | 0. 7. 7. 7. | 0.075   |        |        | (DK   S14                                      | 1730               | 78       | 63                                      | 9/5   |
|                                                             | 7000/6    | 1000//      | , (88)  |        |        | 0                                              | 0101 9             | 75       | (70)                                    | 1/2   |
| 3000                                                        | 0000.0    | 2000        | /@/`    |        |        | N OF                                           | 1 COK              | 776      |                                         | 1     |
| 64.64.65                                                    | (0.0000   | 1000        | 0.0999  |        |        | SDK S/                                         | 6 430              | 75-      |                                         |       |
| CANAL.                                                      | 2000      | 10001       | 2000    |        |        | (A)                                            |                    | 74       | 00                                      | 7,7   |
| 800.00                                                      | 10.000.01 | 1000        | 0 1003  |        |        | 1                                              | \<br>\<br>\<br>\   | 6.5      |                                         | ×.    |
| 866666                                                      | 1         | 10001       | (000)   |        |        | 1                                              | 7007               | Ç/       | 35                                      | 43    |
| 100,00                                                      |           | 1 200       | 1001    |        |        | 7                                              | 25.7.1<br>25.7.1.1 | 77       | 3                                       | 65    |
| 04/2/20                                                     |           | 0000        |         |        |        | 0/5 mx                                         | 7                  | (Se      | 84                                      | 6/2   |
| 00 000                                                      |           | した。         | 12.5    |        |        | ┪                                              | 88                 | GB)      | S                                       | 40    |
| -11                                                         | 70.0001   | 0.994 ×     | 0.0448  |        |        | 0K 5/1                                         | 1 7000             | 77       | 7                                       | 127   |
|                                                             | 03.66     | 0000-       | 00010   |        |        | //-2                                           | 0000 2             | 7/       | 07                                      |       |
| Ù                                                           | (000/0    | ,000        | 0999    |        |        | SE SE                                          | B 120K             | 7.8      | No.                                     | 7,7   |
| 8746 74                                                     | /0000/0/  | 1.0000      | 0.0999  |        |        |                                                | 3 050              | 774      | 70                                      |       |
| 8000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>000 | 0,000     | 1,000       | 10011   |        |        | 言しく                                            |                    | 77       | , 23                                    | 747   |
| 99,998                                                      | 9,9999    | 6666        | 6660    |        |        | ħ                                              | 1                  | 7/2      | 3                                       | ///   |
| 100.0000                                                    | 10.0002   | 1.0001      | 6660 Q  |        |        | V                                              | +                  |          |                                         | *     |
| 100/003                                                     | 0000001   | 000/        | 1001    |        |        |                                                | 2000               | =   0,7  | 20                                      | 45    |
|                                                             |           |             |         |        |        | J                                              | ?                  | 7        | 04                                      | ķ     |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |
|                                                             |           |             |         |        |        |                                                |                    |          |                                         |       |

WST7-Form Rev5/90

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Dates: From 3

Through

Scale Sartorfus Model A1205 SN 37010004

| 100g      | 108             | 1.0g        | 100mg      | Blank | Blank  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |       |            |               |            |
|-----------|-----------------|-------------|------------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------------|---------------|------------|
| Welght    | <b>—</b>        | Weight      | Weight     | Ŧ     | Beaker | Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date         | Tine  | Dry Bulb   | Wet Bulb      | Z RH       |
| 26666     | 5               | 10000       | 0.0998     |       |        | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/2          | 72.27 | k .        | N             | 22         |
| 5/8/6/3/5 | 9.9999          | 1.0000      | 6.0998     |       |        | DY<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/13         | 14/5  | 77         | 0")           | 44         |
| 365,55    | 10,0003         | 1000)       | (ශුර       |       |        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/16         | 300   | 74         | G.            | 7,1        |
| /00.0000  | 10.0001         | 1.0002      | 0.1000     |       |        | 9K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/17         | 0060  | 9/         | 57            | 777        |
| (8,000    | 10,000/01       | <i>6007</i> | 0.1001     |       |        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | 200   | 7          | 44            | 46         |
| 19 692    | 100001          | 1,000       | 0001       |       |        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/20         | シア    | 74         | \$            | 7/7        |
| .8666 66  | 6 6 6 6 6       | 0.9999      | 0.0998     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/96         | 1500  | 74         | 100/          | 7,75       |
| 000000    | į               | 5555′       | 6,660      |       |        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/1/3        | BICK  | 73         | 8             | 2/7        |
| 100.000   | 0.0000          | 1.0003      | 0.1003     |       |        | ¥ã                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/24         | 0945  | 12         | 58            | 6/7        |
| 25.55     |                 | 1.0001      | 100g       |       |        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.KK         | 035   | 26         | [6]           | 7/0        |
| 1000001   | 9.9999          | 10001       | 0 1002     |       |        | UNK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/26         | 1045  | 73         | 59            | 43         |
| 100,001   | 76566           | 1.000A      | 001        |       |        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/27         | 11:40 | 77         | 63            | The        |
| 4 9997    | 9. 9999         | 1.0001      | 0.1000     |       |        | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/30         | Q.133 | 87         | 35            | 47         |
| 983556    | 00:00:00        | 1000/1      | 1000       |       |        | (2)(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/8          | 35    | 16         | 50            | 1,17       |
| 5 M.L. 16 | 10,000          | 10001       | 1/009      |       |        | STATE OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDR | 3/8/         | 19/01 | 73         | Ą             | 2/7        |
| 100.0003  | 10.0000         | 0000/       | 0.1000     |       |        | (S)K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 5760  | 7/2        | 00            | 38         |
| · •       | 10.0000         | 2000-7      | , 1000     |       |        | S. W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 476          | 0800  | 72         | 55            | 4/2        |
| 8,556 56  | 9.9997          | 0.999.7     | 0.7000     |       |        | 0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/3          | 0000  | ري/<br>(د) | 59            | 9/2        |
| 44.9997   | 1000.001        | 0.9999      | 0.0999     |       |        | OK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/3          | 0591  | 70         | 58            | 48         |
| 666666    | 1000.01         | 09999       | 0660       |       |        | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9//5         | 7860  | 83         | کې            | 30         |
| 700.000   | 6.9999          | 0,9998      | 0'1000     |       |        | BN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/15         | 1600  | SC.        | 53            | 77         |
| 400000    | 20006           | 0 9999      | 0990       |       |        | AK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1//5         | 1300  | 16         | 25            | 35         |
| 49984     |                 | 9999        | 0998       |       |        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188          | 545   | 87)        | Ş             | 7)/2       |
| 10% 3070  | 9.9             | 9999        | 6650'      |       |        | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146          | 1025  | 68         | 22            | 43         |
| 60 - 600  | 1000 00)        | 1000        | 88         |       |        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0///         | 0435  | 20         | <b>)</b>      | 1/2        |
| 100 000   | bhhh            | 9999        | 7000       |       |        | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/10         | 1400  | 12         | 83            | 1/2        |
| 100.000   | 5000 0          | 1.0002      | 0.100ai    |       |        | ă                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/13 6       | 945   | 73         | 58            | ድ <i>ի</i> |
| 700,000   | _               | /0001       | 9740       |       |        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/14         | 1030  | 7.8        | 25            | 9//        |
| 874.75    | /000 0/         | 10001       | 0.0998     |       |        | X<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.15        | 5/0/  | 80)        | 5             | Lit        |
| 127.5     | 7,447           | 2655,       | 1,044.5    |       |        | 682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/16        | 900   | ରୁ         | (c)           | dr         |
| /00.000/  | 4666 h          | 7.0000      | 0.1001     | -     |        | ØK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/11         | 516   | OL.        | 57            | 717        |
| 2,74.0    | いからかった          | 0000        | , <u>8</u> |       |        | S<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11           | 15ck  | 2          | S<br><b>S</b> | 2/2        |
| 1000 001  | 0000            | 0,9974      | 0.1001     |       | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05/1         | 0060  | 73         | 59            | 46         |
| 3255 55   | <i>6000</i> ′01 | 10003       | 1001-      |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>6/ </i> p | ObG   | 74         | 3             | 17/2       |
| 100.0000  | 0000.0/         | 1.0000      | 0.0 999    |       |        | Z<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 006   | 73         | 59            | 43         |
| 49.9995   | 10,0003         | €000r1      | 1001       |       |        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/03         | (ca)  | 76         | ુ             | 38         |

WST7-Form Rev5/90

Dates: From 2/4/92

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorius Model Al 205 SN 37010004

| na 2            | Þ        | 44      | 4/8     | 78      | 1/2     | 87       |        | 777         | 47        | 177      | 5       | 3/7       | 82       | No.      | 1        |         | 2,7     | X.       | 45        | 807        | 4/2        | 45       | 24      | 414       | 46      | 46     | 9%      | 47      | 95      | 8/7    | 52       | 44                                       | 64     | 46    | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 777        |
|-----------------|----------|---------|---------|---------|---------|----------|--------|-------------|-----------|----------|---------|-----------|----------|----------|----------|---------|---------|----------|-----------|------------|------------|----------|---------|-----------|---------|--------|---------|---------|---------|--------|----------|------------------------------------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Ver Builb       | L        | Sto     | ) X     | 58      | 75      | 2        | 70     |             | 12        | 19       | (2.1    | 58        | 62       | 79       | 63       | 62      | 62      | 2        | Ą         | 2,5        | 88         | 58       | 80      | 3         | 6.7     | 63     | 64      | ,0%     | 65      | 8      | (10)     | 4                                        | 65     | સ્ક   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8          |
| Drv Bulb        | Į¥.      | 50      | 59      | 70      | 68      | 75       | 72     | 12/2        | 87        | 77       | 74      | 70        | 15       | 75       |          | 16      | 76      | 65       | 67        | 65         | 67         | 71       | 11      | hL        | 12      | 77     | 21      | 73      | 72      | 70     | 13       | No                                       | η,     | 7.9   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P          |
| Time            | 10       | 1315    | 15160   | 2115    | 04/0    | 1500     |        | 222         | 97.60     | 1500     | DXX     | 0060      | 1230     | 1535     | 930      | 0421    | 1600    | 0820     | 1038      | 2580       | 88         | 945      | 0500    | 1015      | 1025    |        | 1230    | 000/    | 1130    | 0435   | 0830     | 1400                                     | 1) 800 | 1340  | 0650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | レきと        |
| ch Date         | K 2/6    | $\sim$  | U/8 5   | K 217   | 2110    | ı ~      | 3/60   | S<br>A<br>S | 11/2 2/12 |          |         |           | Ė        | ۳        | 7 3114   | !       | 7/18 7  | _        | Jun 19617 | 8112 3     | 18         | OK 12/21 | 14× 3   | >K   5/25 | 2/26    | 7/2/27 | 4 2128  | K 313   | 7/2/    | 12 3K  | 11/8 3/6 | ٦,                                       |        | 2 3/9 | 0/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>   |
| Te              |          | \$      |         | 0       | 77      | ď        | Ŕ      | <b>*</b>    | P         | 0        | Þ       | Ø         | 7        | \$<br>\$ | Q        | 72      | 0       | 7/4      | <b>(</b>  | <b>W</b> . | <b>7</b> * | 0        | 7       | Δ         | 7/      | ā      | 7       |         | 7       | 2      | 2        | *                                        | 9      | 8     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>¥</u>   |
| Blank<br>Beaker | ı i      |         |         |         |         |          |        |             |           |          |         |           |          |          |          |         |         |          |           |            |            |          |         |           |         |        |         |         |         |        |          |                                          |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Blank<br>Filter |          |         |         |         |         |          |        |             |           |          |         |           |          |          |          |         |         |          |           |            |            |          |         |           |         |        |         |         |         |        |          |                                          |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| 100mg<br>Weight | 0.0999   | 1001    | , 1000  | . 1600  | 1000    | 0. 1000  | 1000   | 1001        | 2001      | ð. 1000  | 7000) / | 0.1000    | 0,1000   | 00/100   | 0001.0   | 0001.0  | 0.0999  | 6000     | 000/1     | 1000       | 200/°      | 0.0999   | B 1000  | 0./000    | ,0999   | 0.0999 |         | 0.1000  | 0, (000 | 000/   | 0.0999   | 8350                                     | 000/   | 0001  | 0.0448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2550       |
| 1.0g<br>Weight  | 1.0000   | 10001   | 1,0000  | 1.000.1 | 1.0000  | 0 9998   | 10000  | 1000        | 1.0001    | 0.9999   | 00001   | 1.0000    | 1.0001   | 1,000/   | 1.0000   | 1.0000  | 1.0001  | 10000    | 10001     | 99990      | 1,0000     | 1.0000   | 1.0000  | 1,000.1   | 6666    | 1.0000 | 0000)   | 1.0000  | dono!   | 0000'  | 9999     | 60000                                    | 4999   | 55567 | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ر کرکر     |
| 108<br>Weight   | 9,9999   | 10,0003 | 0,0000  | 60666   | 10.0000 | 6 6666   | 10:000 | 100001      | 10.0000   | 16.0000  | 00000   | 10.000.01 | 1000.01  | 00000    | 9.9999   | 10.0000 | 10.0000 | 100001   | 000001    | 10000      | 1000,01    | 4.9999   | debada  | 0000 0/   | 0000 07 | 8665.5 | 10.0000 | 1       | -       | 0,0000 | 000001   | 10000                                    | 00000  | 00000 | 7. 44.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>8</u> 8 |
| 100g<br>Weight  | 133.0000 | ×1998   | 46.6664 | 1000001 | 666666  | 1900,001 | 00000  | 1.54.7.60   | 100.000   | 100.0003 | 7535765 | 84555     | (00.000) | 37.47.5  | 100.0000 | 100000  | 6666 66 | 104 4000 | 63.48.3   | 00000      | 66,666     |          | 100 000 | AND ON    | 0366 65 | 76.00  | 1000 A  | 44.4748 | 24 1999 | るがあれ   | 26666    | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 222.27 |       | 100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>10 | 25,25      |

| HODBOTOUR BOOTFOLL OFF C                                              | ores proceesing                                                                          | Unit: HAU                  | GHS 5                         | 27X                              |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|-------------------------------|----------------------------------|
| WOODSTOVE PARTICULATE C<br>WOODSTOVE DATA S                           |                                                                                          | Run: 1                     | Date: 5                       | 5/13/92                          |
|                                                                       |                                                                                          | Technician                 | (s): BN                       | 55                               |
|                                                                       | FRONT HALF                                                                               |                            |                               | -                                |
| FILTER #: 260 F  FINAL WT: 17403 9  TARE WT: 16943 9  NET WT: 10460 9 | BEAKER #: 496<br>ml: 4970<br>desc: ACETON                                                | _ FINAL<br>_ TARE<br>E NET | WT: 106.8<br>WT: 106.7<br>WT: | 1080 - 9<br>1934 - 9<br>1146 - 9 |
| FILTER #:                                                             | BEAKER #:<br>m1:<br>desc: ACETON                                                         | _ TARE                     | WT:<br>WT:<br>WT:             | 9                                |
|                                                                       | TOTAL VOLUME OF USED IN WASH                                                             | ACETONE                    | 01                            | <u>0′</u> m1                     |
| FILTER #: 260 B  FINAL WT: 3996 9  TARE WT: 3872 9  NET WT: 60059 9   | BACK HALF BEAKER #: 47 ml: 165 desc: ACETON                                              | TARE                       | WT: 104.8<br>WT: 104.8<br>WT: | 3026 <u> </u>                    |
| FILTER #: g FINAL WT: g TARE WT: g                                    | BEAKER #: 400<br>ml: 75<br>desc: METHCH                                                  | TARE                       | WT: 103.8<br>WT: 103.8<br>WT: | 5651 9                           |
|                                                                       | BEAKER #: 4GG<br>m1: 150<br>desc: H20                                                    | _ TARE                     | WT: 107.3<br>WT: 107.3<br>WT: | 139 =                            |
|                                                                       | m1: H20                                                                                  | _ TARE                     | WT: 98.3<br>WT: 98.3<br>WT:   | 040/ 9                           |
|                                                                       | BEAKER #:<br>ml:<br>desc:                                                                | _ TARE                     | WT:/                          |                                  |
|                                                                       | BEAKER #:<br>ml:<br>desc:                                                                | TARE                       | WT:                           | 9                                |
|                                                                       | TOTAL VOLUME OF USED IN WASH TOTAL VOLUME OF USED IN EXTRACT TOTAL VOLUME OF WATER DRIED | DICHLOROMET                | 16<br>HANE                    | 75 ml                            |

|                             |                                           |                                             |                                               |                         |                |             |    | Un                                | it:             | HA       | UZH                          | 5 56                                | 10 Y      | /             |
|-----------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------|----------------|-------------|----|-----------------------------------|-----------------|----------|------------------------------|-------------------------------------|-----------|---------------|
|                             | TZCCOW<br>ZCCOW                           | OVE I                                       | BLANKS<br>DATA                                | PROC<br>SHEET           | :ESSI<br>* # 5 | NG<br>A     |    |                                   | n: -            | ľ        |                              | Date:                               |           |               |
| E                           | LANKS D                                   | ONE:                                        | 5/1                                           | 1/90                    | `              | _           |    | Te                                | <br>chni        | cia      |                              | . <u> </u>                          |           |               |
| <b>15</b><br>200            | ml<br>FISHER<br>ml DI<br>FISHER<br>ml DIS | OPTIN<br>E<br>CHLOF<br>OPTIM<br>BE<br>TILLE | BEAKER<br>ROMETH<br>IA LOT<br>BAKER<br>ID WAT | #:<br>#:<br>ANE 9<br>#: | 1382<br>E      | 6           |    | TARI<br>NE<br>FINAI<br>TARI<br>NE | E WT WT WT E WT | 9        | 06.25<br>100<br>6.20<br>6.20 | 39/<br>135/<br>108/<br>106/<br>106/ |           |               |
|                             | BEAK                                      | ER                                          | TARES                                         | IN                      | ומ סד          | ESSC :      | נד | ME: <u>0</u>                      | 900             |          | DATE                         | : 3/17                              | 1/92      |               |
| BKR #                       | 1ST I                                     | WT                                          | TIME                                          | SND                     | WT             | TIME        |    | ЗRD                               | WT              | T        | IME                          | 4TH                                 | WT        | TIME          |
| D 106.8938                  |                                           |                                             |                                               |                         |                | 1036        |    |                                   |                 |          |                              | ·                                   |           | - <del></del> |
| E                           | -                                         |                                             |                                               |                         | 1038           |             |    |                                   |                 |          |                              |                                     | . <b></b> |               |
| F                           | 96.51                                     | 09/1                                        | <u>330 (</u>                                  | 96.5                    | 106)           | 1040        |    |                                   |                 | <u> </u> |                              |                                     |           |               |
| S(                          | CALE ROO                                  | OM QC                                       | : TAI                                         | RES                     | ,              |             |    | SCF                               | LE I            | ROOM     | 1 QC                         | : FIN                               | ALS       | <del></del>   |
| DATE                        | TIME                                      | BY                                          | WB                                            | DB                      | 74             |             |    | ATE                               | TI              |          |                              | WB                                  | DB        |               |
| 3/03 1300 70<br>3/24 1034 B |                                           |                                             | 59<br>58                                      | 73                      | 43             | <u> </u>    | 5  | /13<br>/M                         | 163             | 6        | OK                           | 59<br>56                            | 74        | 41            |
|                             |                                           |                                             |                                               |                         |                | <u>-</u>    | 5  | 115                               | /20             | <u>o</u> | カル                           | 40                                  | 74        | 44            |
|                             |                                           |                                             |                                               |                         |                | -           |    |                                   |                 |          |                              |                                     |           |               |
| *                           |                                           |                                             |                                               |                         |                | <u> </u>    |    |                                   |                 |          |                              | <u> </u>                            |           | _             |
|                             |                                           | B                                           | EAKERS                                        | 3: FIN                  | VAL V          | EIGHT       | 5  |                                   |                 |          |                              |                                     |           |               |
| BKR #                       | IN DS                                     | SC                                          | TIME                                          | 15T                     | WT             | TIME        |    | SND                               | WT              | TI       | ME                           | 3RD (                               | ĄΤ        | TIME          |
| D                           | D 5/12                                    |                                             | 900                                           | 106.2                   | 243            | 1048        |    | 106,0039                          |                 | 1654     |                              |                                     |           |               |
| 3                           | 5/12                                      | 0                                           | 900                                           | 96 84                   | 31             | 1050        |    | 96.2422                           |                 | 1781     |                              |                                     |           |               |
| F                           | 5/12                                      | 3                                           | 1330                                          | 96.5                    | 112            | 190         |    | 96.51                             | 14              | ร์ว่     | 30                           |                                     |           |               |
| BKR #                       | 4TH W                                     | T TIME                                      |                                               | STH WT                  |                | TIME        |    | 6ТН МТ                            |                 | TIME     |                              | 7TH V                               | JT        | TIME          |
|                             |                                           |                                             |                                               |                         |                |             | +  | <del></del>                       |                 |          |                              | <u> </u>                            | _         |               |
|                             | <u> </u>                                  |                                             |                                               |                         | <del>-</del>   | <del></del> | +  |                                   |                 | "        |                              | <u>.</u>                            |           |               |
|                             |                                           |                                             |                                               |                         | '              |             | :  |                                   | f               | _        | I                            |                                     |           |               |

Rev 6/90 Blank Audit: By: Tim Kelly Date: 5/18/92 Blank Calculations: 10004 g = 200 m1 = 100000 g/m1 Acetone: , 2004 - g ÷ 75 m1 = 20000533 g/m1 Dichloromethane: Front Half Catch: Filters:  $\frac{.0460 \text{ g}}{\text{Total Catch}} = \frac{1 - (.0000 \text{ g})}{\text{No. of filters Blank Value}} = \frac{.0466 \text{ g}}{\text{Net Catch}}$ Beakers:  $\frac{0146 \text{ g}}{\text{Total Catch}} - \frac{210 \text{ (} \infty \infty \text{Q} \text{ g})}{\text{Ml of Acetone Blank Value/}} = \frac{10142 \text{ g}}{\text{Net Catch}}$ ml of Acetone Total Front Half Catch 10600 g Back Half Catch: Filters: \_\_\_\_\_\_\_\_ g - \_\_\_\_\_\_\_ ( .0000 g) = \_\_\_\_\_\_\_\_ g No. of filters Blank Value/ Net Catch Beakers 1. Acetone/Impingers:

Obd/g

Total Catch

Total Catch

Total Catch ml of Acetone \_\_0004 2. Extract/Impingers:

OSU g

Total Catch ml. of Blank Value/ Net Catch Dichloromethane ml of Dichloromethane 3. Water/Impingers:

OQ3 g

Total Catch

Total Catch

Total Catch ml of water Total Back Half Catch

Total Catch

% Front Half

NET PARTICULATE CATCH CALCULATION WOODSTOVE TEST DATA SHEET #6

HAUGHS SOTX

Technician(s): TX TK
WSTAPP1-AppDoc19-page2

Unit:

Date:

# EPA WETHOD SH PARTICULATE CALCULATIONS NOODSTOVE TEST DATA SHEET 137

Unit: 4/4441/5 SOJY
Run: 1 Date: 5/13/99

Tochnician(1): TC55

8/28/91 dect NST3-Form 1 31.4698 0000,000 //// H20 1) Vacetd): (30,934 Va)c 17.65 xc 1066 mofx (30,14 " Hgi 13.6 このなどと言い

2) VH(etd): ( .04707 )x 57,7 "11 H20 ): 8.7159-000 0000

Jhh56 - BM X 100 = 70,00 0000 ( D) 159 60t + 31-4698 600t) 1997/89/est 3) Asu:

4) Ce: (31,4(48 dect) (15,43): 0,0000 gr/dec

00, 000 decfa) ( 60 ): de of > 5) Estinated g/hr:

notor correction factor ( Y factor) of the motor box used for the test everage barometric pressure during the test average meter temperature for the test in degrees Absolute leter box during test otal mater caught cubic fool

particulat

computer prin

# MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Useable Firebox Dimensions: See QC Section Useable Volume: 1.473                                                                                                                         | _ft <sup>3</sup> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Dilution Tunnel Draft (If applicable): Start () Stop ()                                                                                                                                  | <del></del> -    |
| Test Chamber Air Velocity: Start: O Stop: O Avg: O                                                                                                                                       | <del></del>      |
| Wet Bulb/ Start: WB: 58 °F DB: 71 °F /. 2 % Amb Moisture 46                                                                                                                              | 7RH              |
| Dry Bulb Stop: WB: 58 °F DB: 73 °F /./ 7 Amb Moisture 42                                                                                                                                 | 7.RH             |
| $\overline{X} = 1.15$ Ambient $\overline{X} = 44$ Relative Empty Humidity (                                                                                                              |                  |
| Stove Wt: 237,3 lbs.                                                                                                                                                                     |                  |
|                                                                                                                                                                                          | bs.              |
| Empty Stove Wt with Stack and Ash Ash: O lbs. Total: 1                                                                                                                                   | bs.              |
| Kindling Wt. Paper: 13 lbs. Wood: 6.0 1                                                                                                                                                  | bs.              |
| Pre Burn Fuel Wt. 10,0 + 9.6 Total: 196 1                                                                                                                                                | bs.              |
| Total Kindling and Pre Burn Fuel Wt 256 1                                                                                                                                                | bs.              |
| Coal Bed Wt-1bs: Range (2.7 - 2.2 )307.2-306.71bs. Actual: 2.5 1                                                                                                                         | bs.              |
| Allowable Amount of Charcoal that can be removed:                                                                                                                                        |                  |
| Coal Bed Wt. Range $\left(\frac{2.7}{\text{Upper Wt.}} + \frac{2.2}{\text{Lower Wt.}}\right)$ .25 =                                                                                      | .ad              |
| Test Fuel Wt-1bs: Ideal /0.3 lbs. Range: 9.3 lbs. Actual: 10.9 1                                                                                                                         | bs.              |
| •                                                                                                                                                                                        | cs.              |
| 2 x 4's x /8 3/4 " H Pcs /0.9 1bs. /00                                                                                                                                                   | 7.               |
| 4 x 4's x N/A " N/A Pcs N/A 1bs. N/A                                                                                                                                                     | 7                |
|                                                                                                                                                                                          | <u> </u>         |
| Est. Dry Burn $\frac{10.9 - (10.9 \times 10.56)}{2.2025}$ X $\frac{60}{100}$ = $\frac{2.427}{Est.Dry Burn Rate (Kg/$                                                                     | Hr)              |
| Est EPA Heat Output(HO <sub>E</sub> ) (19,140) $\times \frac{2427}{100} \times \frac{63}{63} = \frac{29268}{\text{Est Heat Out}}$ (Avg BTU's/Hr)  Est Heat Out (HO <sub>E</sub> ) BTU's/ |                  |
| Comments: 190 = 127                                                                                                                                                                      | <del></del>      |

| Unit: //AUSHS 527X Run: Date: _5//3/92 Page 9                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOODSTOVE OPERATING DATA                                                                                                                                       |
| FIRE STARTED: 0730 PST PDST                                                                                                                                    |
| WARM UP AND PREBURN: PRIMARY AIR: set wide open for all warm-<br>up/preburn fuel charges, then set to <u>WIPE OPEN</u> at start of<br>preburn.                 |
| SECONDARY AIR: NA CAT BYPASS: NA                                                                                                                               |
| CHARCOAL BED PREPARATION: raked and leveled prior to each warm-up/preburn charge. At 1 $1/2$ min. prior to loading last fuel, raked and leveled. In stove sec. |
| TEST: Door Wide Open during loading $_{-}$ $_{D}$ min $_{-}$ $_{32}$ sec                                                                                       |
| pRIMARY AIR: opened full for first 5 min., then set to run setting of WIDE OPEN                                                                                |
| SECONDARY AIR: NA CAT BYPASS: NA                                                                                                                               |
| FAN: ON OFF during warm-up ON OFF during preburn ON OFF first 30 minutes of test ON OFF balance of test run Fan speed set at                                   |
| WOOD DATA: KINDLING: a mix of the grades listed below                                                                                                          |
| SIZE MILL BRADE SPECIES                                                                                                                                        |
| PREBURN: 2X4 Manke/Tacoma Std or btr s. orn D fir                                                                                                              |
| TEST: 2X4 Packwood #2 or btr s. orn D fir 4x4 Packwood #2 or btr s. orn D fir                                                                                  |
| PELLET FUEL APFI#:WA                                                                                                                                           |
| All grades WCLB rules                                                                                                                                          |
| WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either/O or/8 inches.                                                                               |
| 1st warm up/preburn fuel charge ( 10.0 lbs ) added at 0825.                                                                                                    |
| 2nd warm up/preburn fuel charge ( $9.6$ 16s) added at $0930$ .                                                                                                 |
| 3rd warm up/preburn fuel charge ( lbs ) added at                                                                                                               |
| 4th warm up/preburn fuel charge ( lbs ) added at                                                                                                               |
| 5th warm up/preburn fuel charge ( lbs ) added at "                                                                                                             |

#### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

69

oF

Unit: /THUOMO Run: 5/13/92 Date: Technician: BN TK DK WST1-Form7-Rev11/89

Correction Factor: \_

| Roc | om Temper | catur  | e: <u>67</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | — of              |                     | Cor               | rection     | Factor   | : <u> </u> |
|-----|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|-------------|----------|------------|
| Und | or Value  | es are | eadings to correct doisture the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the correct of the corr | ed for:<br>Readin | tempera<br>gs taker | iture: '<br>: at: | 7es<br>0900 |          | <u>~</u> . |
| Pc  |           |        | Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                 |                     | tom               | Sid         |          | Piece Av   |
| #   | Dimen     | Use    | Uncor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cor               | Uncor               | Cor               | Uncor       | Cor      | Corrected  |
| 1   | 2x4x8     | K      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5               | 415                 | 4.5               | 4,5         | 4.5      | 4,833      |
| 2   |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ļ                   |                   |             | <u> </u> |            |
| 3   |           | 1      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |                   |             |          |            |
| 4   | 21418     | P      | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.1              | 18.5                | 20.1              | 18.0        | 19.6     | 19.933     |
| 5   | 1. / .    | ρ      | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.1              | 18.0                | 19.6              | 18.5        | 20.1     | 19,933     |
| 6   |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   |             |          | (39, 867)  |
| 7   |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ļ                   |                   |             | <u> </u> |            |
| 8   |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   |             |          |            |
| 9   |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   |             |          |            |
| 10  | 2x4x/834  | T      | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.7              | 19.0                | 20.7              | 18,5        | 20,1     | 20,500     |
| 11  | 2x4x1834  | T      | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.9              | 21.5                | 23,5              | 19.0        | 20,7     | 22.367     |
| 12  | 2x4x/834  | T      | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 241               | 21.5                | 23.5              | 21,0        | 22.9     | 23,500     |
| 13  | 2x4x/834  | T      | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.1              | 22.0                | 24,1              | 19.0        | a0.7     | 22,967     |
| 14  |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   |             |          | (89,333)   |
| 15  |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   |             |          |            |
| 16  |           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   |             |          | ·          |
|     |           |        | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                     |                   |             | <u> </u> | Į.         |

% Moisture - Dry Basis:

18 19

% Moisture - Wet Basis:

| Kindling | Pretest Fuel | Test Load |
|----------|--------------|-----------|
| 4,833 2  | 19.933 - 7   | 22,333    |
| 4.610 %  | 16.620 -2    | 18.256 2  |

21.8

21,3

To obtain Wet from Dry:  $\frac{100 \times \% \text{ Dry Rdg.}}{100 + \% \text{ Dry Rdg.}} = \%$  Moisture, Wet Basis

20.0

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 -  $2\overline{2}$ .5 on Meter [Uncor reading] at  $70^{\circ}$ F)

21,3

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

| Unit: 1440111 3211                                                                           |
|----------------------------------------------------------------------------------------------|
| Run#:                                                                                        |
| WOOD DENSITY DETERMINATION Date: 5/13/92                                                     |
| WOODSTOVE TEST DATA SHEET #11 Technician: BUTK DK JS WST2-form11-Rev 6/90                    |
| WST2-iormil-Rev 6/90                                                                         |
| Wood Pieces Nominal Dimensions: 2 x 4 x 3½                                                   |
| WOOD Tiete: Rominal Discussions                                                              |
| Depth (D):cm                                                                                 |
| Width (W): 9,00 cm                                                                           |
|                                                                                              |
| Length (L): 8,60 cm                                                                          |
| $\frac{8.60}{8.60}$ cm Length $\overline{X} = 8.60$ cm                                       |
| S.60 cm Eengen X - 3,60                                                                      |
| Volume: 301,860 cm <sup>3</sup>                                                              |
| $\frac{\text{D} \times \text{W} \times \text{L}}{\text{D}}$                                  |
| $\sim$                                                                                       |
| MOISTURE: Room Temperature: 70 of Correction Factor:                                         |
|                                                                                              |
| Uncorrected Meter Readings Corrected for temperature: Yes No                                 |
| mann n                                                                                       |
| NOTE: Record moisture meter readings to the nearest 0.5%                                     |
| Uncor   Cor   Avg % Moisture (Dry) <u>22.000</u> %                                           |
|                                                                                              |
| Top: 22.0 24.1 % Aug % Moisture (Wet) /8,033 %                                               |
|                                                                                              |
| Bottom: 20.0 21.8 %                                                                          |
| Side: 18.5 20.1 % Scale: Leveled In Out                                                      |
|                                                                                              |
| $\frac{1}{x}$ : $\frac{2000}{x}$ $\frac{2eroed: In \nu}{\nu} \frac{1}{\nu}$                  |
|                                                                                              |
| Wet Weight: 202,9 g Dry Weight: 109,17 g                                                     |
|                                                                                              |
| % Moisture Dried Basis: 16.604 7                                                             |
| [1 - (Dry Wt 5 Wet Wt)] X 100                                                                |
|                                                                                              |
| $\frac{\text{Date}}{5/3/92} = \frac{\text{Time}}{O900} = \frac{\text{Temp}}{233} \text{ or}$ |
|                                                                                              |
| Out of Dryer 500/40 1445 Property 24 hrs.) Minimum Dryer Temp 100°C (212°F)                  |
| (Minimum Time in Dryer: 24 Mis.) Minimum Dryer Jemp 200 0 (222 -)                            |
| Density = 169-17 g : 301,860 cm <sup>3</sup> = 5604 g/cm <sup>3</sup>                        |
| (dry wt) (volume)                                                                            |
|                                                                                              |
| Pellet Fuel Moisture Content Determination                                                   |
| retief thei woisture content pereimination                                                   |
| Tare Beaker Wtg                                                                              |
|                                                                                              |
| Wet Wt:g =g                                                                                  |
| Gross Wet Wt. Tare Beaker Wt. Net Wet Wt.                                                    |
| Dry Wt:g =g                                                                                  |
|                                                                                              |
| Gross Dry Wt. Tare Beaker Wt. Net Dry Wt.                                                    |
| % Moisture Dried Basis:%                                                                     |
| [1 - (Net Dry Wt - Net Wet Wt.)] X 100                                                       |

Flo ह ਨੂੰ 寒  $\bar{\mathfrak{O}}$ Flow **8** ä 图 -1.334 - 824° 512 Static Press. 2055 :053 505 -063 2076 1:065 000 .058 (20°) -067 .076 30, 150: H9: -073 075 :07% 1.00. 110-107 192 BXD SC1 \$3 \$3 425 425 438 42S \$3 425 435 400 37.5 375 435 00/7 歪 400 99/1 425 700 92 460 00/ Uate: 5/13/9 B 9 5 91 ف \_ Ĺ 15 <u>۔</u> ١ (8085 66612 528W 385 356 286 Stack 343 455 8CH 306 480 495 333 (N 80 980 433 345 107 280 (S) 501 321 381 32 (6)3/ SS ع 2 139 (K) 746 8  $\overline{\delta}$ <u>7</u> 139 134 131 5 123 ā <u>|</u>-149 g 5 × 527 5.6 0.0 〇 下 10.0 5. (S) 7,6 9,0 <del>2</del> 36 (5,0) 63 38 10.5 8,9 و 65 % (V) *S*≤ Dry (S) SS 5 53 <u>13</u>4 <del>2</del>69 43 8 70 184 9 137 9 99 148 7 9 6 181 0 T/C(1)T/C(2) HAU645 35 <u>و</u> \_\_ 107 28 103 53 90 ල0/ 70/ 2 133 34 E 3 801 130 Ξ 98 3 <u>a</u> 26.3 6 Bal 26.3 86.0 **○** 29.7 N N 73,1 52,0 19.7 9 S はさ 144 3 7 5 (V) <del>ر</del> ف 90 2 Paget Hun: **-**.30 . مح 25 S S 8 異 20 5 28 8 Ń Ņ 8 30, 60 8 ود 2 .13 ŏ MB 020 .025 980. 05 . 683 .013 .058 3 0/0 280 **689** 679 510 676 B 00 900 , 90 020 1884 028 75. 25. 16.9 ص قــ 13.2 五.3 <u>5</u>0 16.7 0,CI ろい 0,0 17.0 6,0 9 0.  $\infty$ 7 9 0 <u>v</u> <u>ئې</u> 1.0 12.0 15.0 0 0/2 9 7 9.9 ر م 14.3 Ę 0 = 3.2 ج اخ 5 7.0 60 60 <u>ふ</u> <u>:</u>  $^{\circ}$ N 2 وكمح 473 434 52 .668 929 349 52.4 .293 17 , 孠 38 85 597 634 S S 199 S 310 797 3 いい ۲ خ 6.3 S S (ე (ე 3. (A) 8 3 3 <u></u> → = 33 Q Q HOODSTOVE DATA SHEET 412 MST2-Form 14 Rev 1/88 8.9 0.0 ∞ فہ <u>ر</u>  $Q^{-}$ 3 37 <u>ن</u> خ 3 3. 5 Ś ⇉ DATA SHEET #12 14 Rev 1/88 -1음 **,** 346 359 7 ELC. 578 204 ठ्ठ 23 호 자 489 520 る 3 .213 25 533 797 子 9£ 운. Rate 區  $\tilde{\omega}$ ó <u>ر</u> ュー 0: 3 0 റ Ś 0 a ٥  $\circ$ 3 ત ß left 10.6 0.0 0.1 6. 83 60 <del>ر</del> 6 φ, Scale 1bs T 0 = 3  $^{\circ}$ 7 3  $\circ$ S 3179 317.6 313.0 315.3 3083 307.0 3.89.8 314.0 367.8 307.6 310.7 309.7 308.6 307.9 367.5 307.3 311.7 368.1 367.4 307.1 二 元 S P 300 40 S 83 40 12 6

Primary Air Set at OPEN7007 Secondary Air Set at /// Pumps turned on at: 108/ 192 324 Check WB/DB: Date: 5//3/ Technician(s): Comments 405.4 22 429 Fan: 163 1066 Static ,073 106.7 £ 062 1901 062 -.043 020 UNY ,073 120 76 Chural. Room 6 28 B 18 8 B 30 SZZX 6 Catalytic 2nd Burn 576 1044 1389 1775 1002 1276 278 1583 1227 1284 2897 of 13/3 Unit: //12/645 Firebox 1083 Page: 7 1315 1/62 1325 1220 869 22% 1216 1321 223 @ 9 Run: 6 Bottom いなか 453 456 745 asc 5 250 <del>ر</del>ک るとか ない 101 **₹** ブガ 77/ 8 380 Right 308 Side 368 363 330 328 332 360 3 43 79% 296 326 210 38) Back 2%6 323 287 307 353 567 23 200 506 350 188 34 449 431 Side 744 Left Z Z 282 6/h 482 804 32 807 z, ध RECORD SHEET #13 Stove PRE BURN DATA 285 817 345 32 616 Top **58**h 382 313 WST2-Form16 43% 392 22 4 S S 3 **6**83 276 322 69h Stack 424 763 405 540 374 839 52 25 32 T/C#-3 Rate Burn 7 K 80 O 6 0 307.2-306.7 Weight Scale 6×18 369 Jun 309.2 3012 315.7 3170 308.5 3000 3116 300.5 3070 310.4 307.0 Time S  $\overline{\varepsilon}$ 3 3 /ਫ Minute

TEMPERATURES
RECORD SHEET #14
WST2-Form14 Rev1/88

Unit: HW6445 S 27 X Date: 5/3/92 Run: / Technician(s):

| Site: EEMC - West, Kent, WA 98032 Date: 5/13/92 Analyte: CO2 (15-1) |                                                                            |                  |                           |                                       |                |               |                                              |                 |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------|---------------------------------------|----------------|---------------|----------------------------------------------|-----------------|--|
| source: HAUGHS S270 SERIES Run #: /                                 |                                                                            |                  |                           |                                       |                |               |                                              |                 |  |
| Zero Cyl #: T132257 Conc.00.0 % CO2 Cyl Press: 800 psi              |                                                                            |                  |                           |                                       |                |               |                                              |                 |  |
| Certi                                                               | Certified by: LIQUID AIR Date: 10/7/91                                     |                  |                           |                                       |                |               |                                              |                 |  |
|                                                                     |                                                                            |                  |                           |                                       |                |               | ess: <u>900</u>                              |                 |  |
| Certi                                                               | fied by:                                                                   | MATH             | ESON                      | · · · · · · · · · · · · · · · · · · · |                |               | Date: 10/3                                   | 191             |  |
| Analyzer                                                            | : Make:_                                                                   | Horiba           |                           | Model: I                              | PIR-200        | 0             | SN: 4070                                     | 169             |  |
| Range:                                                              | 0 - 25.0%                                                                  | CO2              | A:                        | nalyzer Ou                            | tput:_         | 0 - 1.0       | <u>)                                    </u> | v.              |  |
| Flow:                                                               | 1.5 SCFH                                                                   |                  | Meas                      | ured by:                              | Rotame         | ter: <u>X</u> | Flowmete                                     | r:              |  |
| EPA Span                                                            | Value = 2<br>rol Limits                                                    | 25.0% CC         | ) <sub>2</sub><br>58 of 2 | 5 09 00                               |                | ) F % - CO -  |                                              |                 |  |
| 1                                                                   |                                                                            |                  | )                         |                                       |                |               | Temp: 8                                      | () 05           |  |
| Te Run                                                              | Mudre. D                                                                   | · _/ <u>/)</u> ~ |                           | Audit Resu                            |                | <i>70</i> 0   | remp: O                                      | <u></u>         |  |
| Point                                                               | Exped                                                                      | ted Res          |                           | Act                                   | ual Res        | nonse         | + Conc                                       | 1               |  |
| #                                                                   | t Expected Response Actual Response + Co<br>Meter DVM % Meter DVM % Differ |                  |                           |                                       |                |               |                                              | 4               |  |
| Zero                                                                | 00.0                                                                       | .000             | 00.0                      | 00.0                                  | 1000           | 1054          | ,054                                         | ,217            |  |
| Span                                                                | 50.4                                                                       | .504             | 12.6                      | 50.0                                  | ,500           | 12.388        | -,212                                        | -1.683          |  |
| Comments                                                            | <u>:</u>                                                                   |                  |                           |                                       |                |               |                                              |                 |  |
|                                                                     |                                                                            |                  |                           |                                       |                |               |                                              |                 |  |
| Doct Doc                                                            | 3224 - 7                                                                   |                  | $\bigcirc$                |                                       | 10             | 2             | _ 70                                         |                 |  |
| Post Run                                                            | Audit: E                                                                   | ıу:              |                           |                                       |                |               | Temp: <u>78</u>                              | )o <sub>F</sub> |  |
| Point                                                               | Evnec                                                                      | ted Res          |                           | Audit Resu                            |                |               |                                              |                 |  |
| #                                                                   | Meter                                                                      | DVM              | 8                         | Meter                                 | ual Res        | ponse<br>%    | + Conc<br>Difference                         | 4               |  |
| Zero                                                                | 00.0                                                                       | .000             | 00.0                      | 00.0                                  | .000           | .054          | .054                                         | . 217           |  |
| Span                                                                | 50.4                                                                       | .504             | 12.6                      | <i>ડ</i> ઠ,                           | .502           | 12.437        | 163                                          | -1.292          |  |
| Comments                                                            | •                                                                          |                  |                           |                                       |                |               |                                              |                 |  |
|                                                                     |                                                                            |                  |                           |                                       |                |               |                                              | İ               |  |
|                                                                     | Difference                                                                 |                  |                           |                                       |                | <del></del>   |                                              |                 |  |
|                                                                     | ifferece =                                                                 | F                | ull Scal                  | e Value                               |                |               |                                              |                 |  |
| Span % Di                                                           | ifference                                                                  | = Act %          | Exp % (                   | _ Exp % (p                            | <u>om)</u> X 1 | 00            |                                              |                 |  |
| ,                                                                   | Lasp v (ppm)                                                               |                  |                           |                                       |                |               |                                              |                 |  |

| Site: EEMC                          | - West,                                                             | Kent,                         | WA 98032    | 2 Date                | : <u>5/3/4.</u> | Anal              | lyte:                                         | 02 (15                                       | 5-2)           |
|-------------------------------------|---------------------------------------------------------------------|-------------------------------|-------------|-----------------------|-----------------|-------------------|-----------------------------------------------|----------------------------------------------|----------------|
| Source: HAUGHS S270 SERIES Run #: / |                                                                     |                               |             |                       |                 |                   |                                               |                                              |                |
| Zero Cyl #:                         | Zero Cyl #: <u>T132257</u> Conc.00.0 % O2 Cyl Press: <u>800</u> psi |                               |             |                       |                 |                   |                                               |                                              |                |
| Certifie                            | ed by: _                                                            | Liqui                         | O AIR       |                       |                 |                   | Date:                                         | 10/7/9                                       | 1              |
| Span Cyl #:                         |                                                                     |                               |             |                       |                 |                   |                                               | _                                            |                |
| Certifie                            | ed by: _                                                            | MATH                          | IESON       |                       | ····            |                   | Date: _                                       | 10/31/                                       | 91             |
| Analyzer:                           | Make:                                                               | reledyn                       | e           | Model:                | 320 Ax          |                   | SN:_                                          | 37465                                        |                |
| Range: 0 -                          | 25.0%                                                               | 02                            | Ar          | alyzer O              | utput:_         | 0 - 1.            | 0                                             |                                              | v.             |
| Flow: 1.5                           | SCFH                                                                |                               | Measu       | red by:               | Rotamet         | ter: <u>X</u>     | Flow                                          | wmeter:                                      |                |
| EPA Span Va                         | lue = 2:<br>Limits                                                  | 5.0% O <sub>2</sub><br>= + 2. | 5% of 25    | 5.0% O <sub>2</sub> = | + 0.62          | 5% O <sub>2</sub> |                                               |                                              |                |
| Pre Run Aud                         |                                                                     |                               | 7           |                       |                 |                   |                                               | 80                                           | o <sub>F</sub> |
|                                     | _                                                                   | <u></u>                       |             | udit Resi             |                 |                   | ·                                             |                                              |                |
| Point                               |                                                                     |                               | ponse       | Act                   | tual Rec        | sponse            | + Co                                          | onc.                                         | Λ              |
| #                                   | Meter                                                               |                               |             | Meter                 | DVM             | - 8               | Differ                                        | ence                                         | <u>∠</u> 8     |
|                                     |                                                                     |                               |             | 0.5                   |                 |                   |                                               |                                              | 090            |
|                                     |                                                                     | 1                             |             | 12.5                  |                 |                   | ,275                                          |                                              | 1221           |
| Comments:                           | Teledyne                                                            | ≇#2 <u>Cy</u>                 | 1 % E       | xp & 2                | Act &           | Adj t             | <u>:0                                    </u> | <u>∆                                    </u> |                |
|                                     |                                                                     |                               | <del></del> |                       |                 |                   |                                               | <del>: -</del>                               |                |
|                                     |                                                                     | <del></del>                   |             | <del></del> -         |                 |                   | <del></del>                                   |                                              |                |
| Post Run Au                         | dit: By                                                             | 7:                            | DK          | Tin                   | ne: <u>/</u> 6  | 25                | Temp.:_                                       | 78                                           | o <sub>F</sub> |
|                                     |                                                                     |                               |             | udit Resu             |                 |                   | <del></del>                                   |                                              |                |
| Point<br>#                          | Expect<br>Meter                                                     | ed Res                        | ponse<br>%  | Meter                 | tual Res        | ponse<br>8        | + Con<br>Differe                              | nce f                                        | 7 8            |
| Т                                   | Merel                                                               |                               | þ           |                       |                 |                   |                                               |                                              |                |
| Zero                                | 00.0                                                                | .000                          | 00.0        | 00.4                  | .004            | 7003              | -,003                                         |                                              | 015            |
| Span                                | 12.4                                                                | .496                          | 12.4        | 12,5                  | .504            | 12.752            |                                               | - 1~                                         | .838           |
| Comments:                           | Teledyne                                                            | #2 <u>Cy</u>                  | 1 % E       | xp % /                | Act %           | Adj t             | 0 + 1                                         | 7 8                                          |                |
|                                     |                                                                     |                               |             | <del></del> -         |                 |                   |                                               | <del></del>                                  |                |
| t Cong. Dif                         | forence                                                             |                               |             | (C+3) %               |                 |                   |                                               |                                              |                |

\frac{\frac{1}{2} \text{Conc. Difference} = \text{Act \cdot - Exp (Std) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot

| Site: EEMC - West, Kent, WA 98032 Date: 5/8/92 Analyte: CO (15-3) |                         |             |                                       |                   |                                       |              |                              |                                                |
|-------------------------------------------------------------------|-------------------------|-------------|---------------------------------------|-------------------|---------------------------------------|--------------|------------------------------|------------------------------------------------|
| Source: HAUGHS S270 SERIES Run #:/                                |                         |             |                                       |                   |                                       |              |                              |                                                |
| Zero Cyl                                                          | #: <u>T13</u>           | 2257        | Co                                    | nc. <u>00.0</u> % | со                                    | Cyl Pr       | ess: <u>800</u>              | psi                                            |
| Certi                                                             | fied by: _              | Liqu        | 110 AIF                               | 2                 | · · · · · · · · · · · · · · · · · · · |              | Date: 10/7                   | 191                                            |
|                                                                   |                         |             |                                       |                   |                                       |              | ess: 900                     |                                                |
|                                                                   |                         |             |                                       |                   |                                       |              | Date: 10/3                   |                                                |
|                                                                   | •                       |             |                                       |                   |                                       |              | SN: 408                      | •                                              |
| Range:                                                            | 0 - 10.0%               | CO          | An                                    | alyzer Ou         | tput:                                 | 0 - 1.       | 0                            | v.                                             |
| Flow:                                                             | 1.5 SCFH                |             | Measu                                 | red by:           | Rotamet                               | er: <u>X</u> | Flowmet                      | er:                                            |
| EPA Span                                                          | Value = l<br>rol Limits | .0.0% CO    |                                       |                   |                                       |              |                              |                                                |
| Pre Run                                                           | Audit: By               | : <u>By</u> | <i>t</i>                              | Tim               | e:/                                   | 015          | Temp: 8                      | /o <sub>F</sub>                                |
|                                                                   | • • • •                 |             |                                       | udit Resu         |                                       |              |                              |                                                |
| Point<br>#                                                        |                         | ted Res     | ponse<br>%                            | Act<br>Meter      |                                       |              | + Conc.<br>Difference        | <b>A</b> &                                     |
| Zero                                                              |                         |             |                                       |                   |                                       |              | 004                          | 1                                              |
| Span                                                              | 49.6                    |             |                                       |                   |                                       |              |                              | 1,380                                          |
| Comments                                                          |                         |             |                                       |                   |                                       |              |                              | · · · · · · · · · · · · · · · · · · ·          |
| Commences                                                         | <u>-</u>                |             |                                       |                   |                                       |              |                              |                                                |
|                                                                   | <del></del>             | <u></u>     |                                       |                   |                                       |              |                              |                                                |
| Post Run                                                          | Audit: B                | y:          | DK                                    | Tim               | e: <u>1</u> 2                         | 140          | Temp.:                       | 7 <u>8                                    </u> |
|                                                                   |                         |             |                                       | udit Resu         | lts                                   |              |                              |                                                |
| Point #                                                           |                         | ted Res     | ponse<br>%                            | Act<br>Meter      | ual Res                               | ponse        | <u>+</u> Conc.<br>Difference | Δ &                                            |
|                                                                   | Meter                   |             | · · · · · · · · · · · · · · · · · · · | 00,0              | .000                                  | :004         | 004                          | -044                                           |
| Zero                                                              | 90.0<br>49.6            | . 496       | 4.96                                  | 49.4              | .494                                  | 5.028        | .068                         | 1.380                                          |
| Span                                                              | 77.4                    | . 716       | 1.10                                  | 7 1) 7            | - / / /                               | <u> </u>     |                              |                                                |
| Comments                                                          | :                       |             |                                       |                   |                                       |              |                              |                                                |
| <u></u>                                                           |                         |             |                                       | (0) 35 2          |                                       |              |                              |                                                |
|                                                                   | Difference              |             |                                       |                   | m\ ▼ 10                               | ١0           |                              | •                                              |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

| Site: EEMC - West, Kent, WA 98032 Date: 5/3/92 Analyte: SO2 (15-4) |                                        |         |                   |             |                    |               |                       |                |
|--------------------------------------------------------------------|----------------------------------------|---------|-------------------|-------------|--------------------|---------------|-----------------------|----------------|
|                                                                    | Source: HAUGHS S270 SERIES Run #: /    |         |                   |             |                    |               |                       |                |
|                                                                    | •                                      |         |                   |             |                    |               | ess: <u>800</u>       | psi            |
| Certifie                                                           | d by: _                                | LIQUI   | O AIR             |             |                    |               | Date: 10)             | 7/91           |
| Span Cyl #:                                                        | AL2                                    | 892     | Co                | onc. 1232 p | om SO <sub>2</sub> | Cyl Pr        | ess: 45               | <u>O</u> psi   |
|                                                                    |                                        |         | _                 |             |                    |               | Date: 9/2             |                |
| Analyzer:                                                          | Make:                                  | Horiba  |                   | Model: P    | IR-200             | 0             | SN: 403               | 019            |
|                                                                    |                                        |         |                   |             |                    |               | 0                     |                |
|                                                                    |                                        |         |                   |             |                    |               | Flowmet               |                |
| EPA Span Va<br>EPA Control                                         | lue = 2                                | 500 ppn | n SO <sub>2</sub> |             |                    |               |                       |                |
| Pre Run Aud                                                        | <u>it</u> : By                         | : BD    | <u>.</u>          | Time        | e: <u>9</u>        | 55            | Temp:                 | % of           |
| Point                                                              | Fynec                                  | ted Res |                   | udit Resu   |                    | enonse.       | + Conc.               |                |
| #                                                                  | Meter                                  |         |                   | Meter       | DVM                | ppm           | Difference            | ₽ 8            |
| Zero                                                               | 00.0                                   | .000    | 00.0              |             |                    |               | 8.432                 | , <i>3</i> 37  |
| Span                                                               | 49.3                                   | .493    | 1232              | 49.4        | ,494               | 1236.         | 4,496                 | 1365           |
| Comments:                                                          |                                        |         |                   |             |                    |               |                       |                |
|                                                                    |                                        |         | -                 |             |                    |               |                       | ;              |
| ·                                                                  | ······································ |         |                   | <u> </u>    |                    |               |                       |                |
| Post Run Au                                                        | dit: B                                 | у:      | <u>OK</u>         | Time        | e: <u>)</u>        | <u> </u>      | Temp:78               | o <sub>F</sub> |
|                                                                    | ·                                      |         |                   | udit Resu   |                    |               |                       |                |
| Point<br>#                                                         | Expec<br>Meter                         | ted Res | ponse<br>ppm      | Meter       | ual Res            | sponse<br>ppm | + Conc.<br>Difference | <b>₽</b>       |
| Zero                                                               | 00.0                                   | .000    | 00.0              | 00.2        | .002               | 8.432         |                       | .337           |
| Span                                                               | 49.3                                   | .493    | 1232              | 49.3        | .493               | 1234.         | 2.000                 | .162           |
| Comments:                                                          | <u> </u>                               |         |                   |             | <u> </u>           |               |                       | . :            |
|                                                                    | foronco                                |         | non - Fr          | n (C+4) n   |                    | ·             |                       |                |

+ Conc. Difference = Act ppm - Exp (Std) ppm
Zero % Differece = Act % (ppm) - Exp % (ppm) X 100
Full Scale Value

Span % Difference =  $\frac{\text{Act } \% \text{ (ppm)} - \text{Exp } \% \text{ (ppm)}}{\text{Exp } \% \text{ (ppm)}}$  X 100

Run: /
Date: 5//3/92
Technicians: BN TK DK JS
WST6-Form3-Rev11/89

# QUALITY CHECKS WOODSTOVE DATA SHEET #16

| Ambient = Tr:                                      | 65.3                   |                  | OF T/C           | #30: <u>64</u>   | 0,6                                           | —_°F             |
|----------------------------------------------------|------------------------|------------------|------------------|------------------|-----------------------------------------------|------------------|
| Thermocouple Check                                 | k (at ambien           | t): T/C#1:_      | 65,1             | oF;T/C#2:        | <u>.65,2</u>                                  | _of;             |
| T/C #3: 65.8                                       | of; T/C                | #4: <u>65.9</u>  | o <sub>F</sub> ; | T/C #5:          | 65.9                                          | _°F;             |
| T/C #6: 65.8                                       | o <sub>F.;</sub> T/C   | #7: <u>65.5</u>  | °F;              | T/C #8:          | 65.4                                          | oF;              |
| T/C #9: 65.7                                       | PF; T/C                | #10: 65.6        | o <sub>F</sub> ; | T/C #11:         | <i>65</i> .3                                  | o <sub>F</sub> ; |
| T/C #12: 66.0                                      | _of; T/C               | #13: <u>65.6</u> | o <sub>F</sub> , | T/C #14:         | 65,5                                          | _of;             |
| T/C #15: 65,8                                      | of; T/C                | #16: 62.7        | °;               | T/C #17:         | 64,3                                          | _°F;             |
| T/C #18: <u>68.0</u>                               | _of; T/C               | #19:             | °F;              | T/C #20:         |                                               | _of;             |
| T/C #21:                                           | _o <sub>F</sub> ;      | #22:             | o <sub>F</sub> ; | T/C #23:         |                                               | _°F;             |
| T/C #24:                                           | _of; T/C               | #25:             | o <sub>F</sub> ; | T/C #26:         |                                               | oF;              |
| Comments:                                          |                        |                  |                  |                  |                                               |                  |
|                                                    |                        |                  |                  |                  |                                               | ·.               |
|                                                    |                        |                  |                  | <u> </u>         |                                               |                  |
|                                                    |                        |                  |                  |                  | · ·                                           |                  |
| Thermocouple Read                                  | out:                   |                  | •                |                  |                                               |                  |
| Pretest Zero/Span<br>Zero                          | 4.2.5                  | Dane             | Test Che         | not %            | Differe                                       | nce              |
| (0°F) : -,3 °                                      | F to:                  | oF Zero          | (0°F):_          | 6of              | 1030                                          |                  |
| Span<br>(2000°F):2000.7                            | of to: 2000            | OF (2)           | 000°F): <u>Q</u> | 604.2°F          | <i>i</i> 41                                   |                  |
| (Allowable % Diffe                                 | erence = 1.5           |                  |                  |                  |                                               | eet              |
| #15 to calculate 7                                 | Difference             | )                | •                |                  | •                                             |                  |
|                                                    |                        |                  |                  |                  |                                               |                  |
| Thermocouple Reado                                 | out Pretest            | Linearity C      | heck             |                  |                                               |                  |
| 0°F =                                              | oF; 200°F              | = 201.6          | _°F; 400         | )°F = <u>398</u> | <u> 8                                    </u> | ;                |
| 600°F = 1,01,2                                     | o <sub>F</sub> ; 800°F | = 801.4          | _<br>_°F; 1000   | of = 1000        | 0,5 of                                        | 3                |
| 1200°F= 1/98.2                                     |                        |                  |                  |                  |                                               |                  |
| 1800°F= 1800,5                                     | _                      |                  |                  |                  | · · · · · · · · · · · · · · · · · · ·         |                  |
|                                                    | -                      |                  | •                |                  | ÷                                             |                  |
| Tracer Gas (SO2)                                   | Injection Tr           | ain Leak Ch      | eck: Pre         | Pos              | t                                             |                  |
| Combustion Gas (CO                                 |                        |                  |                  |                  |                                               |                  |
| Tracer Gas (SO <sub>2</sub> ) A                    | inalyzer Tra           | in Leak Che      | ck: Pre          | Pos              | t                                             |                  |
| Tracer Gas (SO <sub>2</sub> ) A Draft (Static) Gua | ige Zero Che           | ck:              | Pre              | Pos              | t                                             | - 2              |
| ·                                                  | -                      |                  |                  | •                | <del></del>                                   |                  |
| Scale Check Pre (V                                 | /t, #'s):              | 315.2 - 30       | 05.2=            | 10               |                                               |                  |
| Post                                               | (Wt, #'s):             | 316.8 - 30       | 6.8 = 16         | 0,0              |                                               |                  |
| Stack cleaned price                                | or to the ru           | n: Yes           | No_              |                  |                                               |                  |
|                                                    |                        |                  | . <del></del>    |                  |                                               |                  |

| MODEL:     | S-27X              |                | *****    | DATE:   | 5/18/92<br>****** | *****      |
|------------|--------------------|----------------|----------|---------|-------------------|------------|
| TIME       | METER              | DELTA          | METER    | PERCENT | PERCENT           | S02        |
| TIME       | READING            | Н              | TEMP.    | CO      | CO2               | COCENTR.   |
| (MIN.)     | (CF)               | (IN. H2O)      | (DEG. F) |         | ( % )             | PPM        |
| =======    | =======            | =======        |          |         | =======           | =======    |
| 0          | 678.000            | 0.150          | 77       |         | 4.90              | 625        |
| 5          | 679.500            | 0.260          | 77       |         | 3.40              | 475        |
| 10         | 681.495            | 0.170          | 79       |         | 2.50              | 600        |
| 15         | 683.086            | 0.170          | 81       |         | 2.90              | 600        |
| 20         | 684.690            | 0.160          | 82       |         | 3.10              | 600        |
| 25         | 686.299            | 0.180          | 83       |         | 5.60              | 575<br>550 |
| 30         | 687.985            | 0.190          | 84       |         | 6.80<br>7.30      | 550<br>550 |
| 35         | 689.753            | 0.190          | 85       |         | 10.80             | 500<br>500 |
| 40         | 691.528            | 0.230          | 86<br>87 |         | 11.00             | 500        |
| 45         | 693.487            | 0.230<br>0.230 | 87       |         | 11.70             | 500        |
| 50<br>55   | 695.454<br>697.420 | 0.230          | 88       |         | 12.00             | 500        |
| 60         | 699.394            | 0.230          | . 88     |         |                   | 500        |
| 65         | 701.369            | 0.230          | 88       |         | 10.10             | 500        |
| 70         | 703.344            | 0.230          | 89       |         | 10.50             | 500        |
| 75         | 705.326            | 0.210          | 9(       |         | 10.30             | 525        |
| 80         | 707.221            | 0.210          | 9(       |         | 9.80              | 525        |
| 85         | 709.116            | 0.210          | 90       |         | 9.80              | 525        |
| 90         | 711.011            | 0.210          | 90       |         | 9.40              | 525        |
| 95         | 712.908            | 0.190          | 9:       | 0.31    | 7.90              | 550        |
| 100        | 714.721            | 0.190          | 9:       |         | 6.80              | 550        |
| 105        | 716.537            | 0.170          | 9:       |         | 5.80              | 575        |
| 110        | 718.274            | 0.170          | 9:       |         | 5.60              | 575        |
| 115        | 720.010            | 0.170          | 91       |         | 5.50              | 575        |
| 120        | 721.747            | 0.160          | 9:       |         |                   | 600        |
| 125        | 723.412            | 0.160          | 9:       |         |                   | 600<br>600 |
| 130        | 725.076            | 0.160          | 90       |         |                   | 600        |
| 135        | 726.734            | 0.160          | 90       |         | 4.80<br>4.70      | 575 ·      |
| 140        | 728.393            | 0.170          | 89<br>90 |         | 4.60              | 600        |
| 145        | 730.117<br>731.775 | 0.160<br>0.160 | 90       |         | 4.50              | 600        |
| 150<br>155 | 733.434            | 0.160          | 9(       |         | 4.30              | 600        |
| 160        | 735.434            | 0.160          | 90       |         |                   | 600        |
| 165        |                    | 0.150          | 90       |         |                   | 625        |
| 170        |                    | 0.150          | 90       |         |                   | 625        |
| 175        |                    | 0.150          | 90       |         |                   | 625        |
| 180        |                    | 0.150          | 9(       |         |                   | 625        |
| 185        |                    | 0.150          | 90       |         |                   | 625        |
| 190        |                    | 0.150          | 9:       |         |                   | 625        |
| 195        | 746.310            | 0.140          | 9:       |         |                   | 650        |
| 200        |                    | 0.130          | 9:       |         |                   | 650        |
| 205        |                    | 0.130          | 9:       |         | 3.40              | 650        |
| 210        |                    |                | 9.       | l.      |                   |            |

#### TABLE 2 ---- FIELD DATA

| Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secretary of the Secret | CLIENT : H               | HAUGHS PRO     | DUCTS |       | •                       | TEST No.       | : 5              |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|-------|-------|-------------------------|----------------|------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | S-27X<br>***** | ·**** | ***** |                         | DATE:<br>***** | 5/18/92<br>***** |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METER CAL.<br>FACTOR (Y) |                | 1.066 |       | Wt. WOOD<br>BURNED(LB)  |                | 10.5             | Lbs |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAROMETRIC<br>PRESS.(Pb) |                | 30.08 |       | WET, FUEL<br>MOISTURE % | ~              | 17.582           | 8   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEAK RATE<br>POST (Lp)   |                | 0.002 |       | Wt. PART.<br>COLLECTED  |                | 0.6224           | g   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER<br>VOL. (V1c)      |                | 116.2 |       | METER<br>VOLUME Vm      |                | 71.383           | mcf |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST<br>TIME (MIN)       |                | 205 ı |       | HC MOLE<br>FRACTION     |                | 0.0132           |     |

### TABLE 3 ----FIELD DATA AVERAGES

|        |                       | TABLE 3            | -FIELD DATA A    | AVERAGES                |                   |     |
|--------|-----------------------|--------------------|------------------|-------------------------|-------------------|-----|
|        | CLIENT :              | HAUGHS PRODUCTS    |                  | TEST No. :              | 5                 | •   |
|        | MODEL: *****          | S-27X<br>********* | ****             | DATE: 5                 | /18/92<br>******* | k** |
|        | AVG DELTA<br>H        | 0.18 in H2O        | AVG PRCNT        | 400 MAA 1000 MM 4000 MM | 0.80              | ફ   |
| lum)   | AVG METER<br>TEMP. Tm | 88 deg F           | AVG PRCNT<br>CO2 |                         | 6.18              | ફ   |
|        | AVG PPM<br>SO2        | 573 PPM            |                  |                         |                   |     |
| Togge- |                       |                    |                  |                         |                   | . • |
|        |                       |                    |                  |                         |                   |     |

#### -- CALCULATIONS TABLE 4

|               |                            | TABLE 4               | CALCULATIONS                   |                  |                                        |
|---------------|----------------------------|-----------------------|--------------------------------|------------------|----------------------------------------|
|               | CLIENT: HAUGHS PRO         | DUCTS                 | TEST No. :                     | 5                | •                                      |
|               | MODEL: S-27X *********     | *****                 | <b>DATE:</b> 5                 | /18/92<br>****** | ****                                   |
|               | STD SAMPLE<br>VOL. Vm(std) | 73.73 dscf            | STACK GAS<br>FLOW Qsd          | 498.754          | dscf/Hr<br>&                           |
|               |                            |                       |                                | 8.31             | <del></del>                            |
| (1000)        | VOL. WATER VAPOR Vw(std)   | 5.470 scf             | PARTICULATE CONCTRT. C s       | 0.0084           | g/dscf                                 |
|               | PRCNT<br>MSTR Bws          | 6.91 %                | PARTC.EMISS. RATE E            | 4.21             | g/Hr                                   |
|               | BURN<br>RATE BR            | 1.15 Kg/Hr            | MOLES OF GAS<br>PER Lb WOOD Nt | 0.51             | Lb-mole/Lb                             |
|               | CO EMISSION RATE           | 133.06 g/Hr<br>&      | PART.EMISS.<br>RATE            | 3.66             | g/Kgdry<br>fuel                        |
| ( )           |                            | 115.71 g/Kgdr<br>fuel |                                |                  | —————————————————————————————————————— |
| Street Street |                            |                       |                                |                  |                                        |

in the second

TABLE 5 ---- PROPORTIONAL RATE VARIATION

|                   |                                                                           | IABLE 3                                                                                                                                | PROPORTIO                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - VIII(IIII I                   | 011              |                                        |        |
|-------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|---------------------------------|------------------|----------------------------------------|--------|
| * Samuel          | HAUGHS PRO                                                                | DUCTS                                                                                                                                  |                                                                    |                                        | TEST No.                        | :                | 5                                      |        |
| .]                | S-27X                                                                     | ******                                                                                                                                 | *****                                                              | ****                                   | DATE:                           | 5/18/9:<br>***** | 2<br>*****                             | ****   |
|                   | TIME<br>INTEVAL<br>Ti                                                     | PPM<br>*<br>Vm                                                                                                                         | PROPRTN.<br>RATE VAR.<br>PR                                        |                                        | PROPRTN<br>RATE VAR.<br>AVERAGE |                  |                                        |        |
|                   |                                                                           | =======                                                                                                                                | =======================================                            | =====                                  | =======                         | =====            | === ==                                 | ====== |
| oct of the second | 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65 | 988.4<br>997.5<br>1000.9<br>1006.3<br>1007.5<br>1009.9<br>1011.2<br>1013.3<br>1014.9<br>1018.1<br>1016.7<br>1019.9<br>1020.4<br>1019.5 | 97<br>98<br>98<br>99<br>99<br>99<br>99<br>100<br>100<br>100<br>100 |                                        | 100                             |                  |                                        |        |
|                   | 75<br>80<br>85<br>90<br>95<br>100                                         | 1021.2<br>1024.3<br>1024.3<br>1024.3<br>1024.4<br>1024.7                                                                               | 100<br>100<br>100<br>100<br>100                                    |                                        |                                 |                  |                                        |        |
| 22-11             | 105<br>110<br>115<br>120<br>125                                           | 1026.4<br>1026.3<br>1025.7<br>1026.3<br>1026.5                                                                                         | 101<br>101<br>101<br>101                                           |                                        |                                 |                  |                                        |        |
|                   | 130<br>135<br>140<br>145<br>150<br>155                                    | 1026.8<br>1024.1<br>1025.6<br>1021.4<br>1024.1<br>1024.7                                                                               | 101<br>100<br>101<br>100<br>100                                    |                                        |                                 |                  |                                        |        |
|                   | 160<br>165<br>170<br>175<br>180<br>185                                    | 1024.1<br>1024.7<br>1024.2<br>1024.2<br>1024.2<br>1024.2                                                                               | 100<br>100<br>100<br>100<br>100<br>100                             | ·                                      |                                 |                  | ************************************** |        |
| ton)              | 190<br>195<br>200<br>205<br>210<br>215                                    | 1023.9<br>1026.2<br>1026.5<br>1025.8                                                                                                   | 100<br>101<br>101<br>101                                           |                                        |                                 |                  |                                        |        |
| . 1               |                                                                           |                                                                                                                                        |                                                                    |                                        |                                 |                  |                                        |        |

| COMPUTER INPUT DATA WOODSTOVE DATA SHEET #1  Client Houn's Products                                              |                      |
|------------------------------------------------------------------------------------------------------------------|----------------------|
| Client Address ID Otlos Court                                                                                    |                      |
| Bramp Ton, Ontario, Canada LGT 5C1                                                                               | <u> </u>             |
| Client Phone 4/6- 792 - 8000                                                                                     |                      |
| Project No. Model No. 5210X                                                                                      | ·                    |
| Run No Date of Test Est Grams/Hr                                                                                 |                      |
| Stove Type: Cat Non Cat Pellet                                                                                   |                      |
| Data To Be Submitted To: Oregon X Colorado EPA X                                                                 |                      |
| Burn Category: Low (<0.8 Kg/Hr) Med Hi (1.26 - 1.90 Kg/Hr)<br>Med Low (0.8 - 1.25 Kg/Hr) 1/1500 Max (>1.9 Kg/Hr) |                      |
| Fuel % Moisture (dry) 01.333 %(wet) 17.589 (00.00) (Data Sheet #10)                                              | <u>%</u> ~           |
| Stack Static Pressure -049 (0.000) (Data Sheet #12)                                                              | _"H <sub>2</sub> O _ |
| Barometric Pressure 50.08 (00.00) (Data Sheet #2)                                                                | "Hg //               |
| Temperature (Average Room) Combustion Air                                                                        | °F ~                 |
| Flue Gas Moisture 6.9039 (00.000) (Data Sheet #7)                                                                | % <i>-</i> _         |
| Ambient Moisture 1/35 (0.00) (Data Sheet #8)                                                                     |                      |
| Stove Weight 237 (000) (Data Sheet #8)                                                                           | _lbs ~               |
| Stove Temperature Change                                                                                         | OF ~                 |
| Particulate Emission (1302 gr/                                                                                   | dscf                 |
| Fuel Higher Heating Value (dry)BT (0000) (CT&E Sheet)                                                            | U/16                 |
| Fuel Type: Wood: X Pellets:                                                                                      |                      |
| Total Fuel Consumed During Burn 05 (00.0) (Data Sheet #8)                                                        | _1 bs /              |
| Total Particulate Catch (0.0000) (Data Sheet #6)                                                                 | 9 ~                  |
| H <sub>2</sub> O Captured (00.0) (Data Sheet #3)                                                                 | g _/                 |
| Dry Gas Meter Volume 71-283 (00.000) (Data Sheet #2)                                                             | CF //                |
| Dry Gas Meter: Y Factor: 45-1.066 Post Test Leak Rate 1007                                                       | _CFM _               |

Meter Box Data Sheet Page # 2

Meter Box 4J Y Factor 1.066

Leak Checks: \( \frac{5.0}{16.0} \) " Hg @ \( \frac{.001}{.002} \) cfm \( \frac{16.0}{16.0} \) " Hg @ \( \frac{.002}{.002} \) cfm \( \frac{16.0}{16.0} \) " Hg @ \( \frac{16.0}{.002} \) cfm

Inject SO2 @ 100 cc/min

Page 1 of 0 Unit: HAU6HS S 27X Run: 5 Date: 5/18/92 Operator(s): 38

Nozzle: Probe @ 3/8 " od

Initial Volume: //500

| ROTO  | PRESS:  |                  | Sampling | Ratio :        | 185         | : 1           | BAROM      | ETER:2       | 0.10         |
|-------|---------|------------------|----------|----------------|-------------|---------------|------------|--------------|--------------|
| MN    | TIME    | METER<br>READING |          | STACK<br>DSCFM | DELTA<br>H  | METER<br>TEMP | 802<br>PPM | ROTO<br>TEMP | PUMP<br>VACC |
| 00    | 1035    | 678.000          |          | 5645           | 15          | 17            | 635        | 20           | 0            |
| 05    | 40      | 679.500          |          | 2414           | .26         | 17            | 475        | 13           | 5            |
| 10    | 45      | 621-495          |          | 5-869          | 117         | 79            | 600_       | 73           | 10           |
| 15    | 50      | 623096           |          | 5,869          | 17          | 8/_           | 600        | 13           | 15           |
| 20    | 55      | 684-690          |          | 5.869          | 16          | 82)           | 600        | 73           | 5            |
| 25    | 1100    | 696.099          |          | 6.185          | . <i>18</i> | 83            | 575        | 73           | 12           |
| 30    | 5       | 687.985          |          | 6.391          | ,19         | 84            | 550        | 74           | 10           |
| 35    | 10      | 629.753          |          | 6.391          | 119         | 85            | 550        | 74           | 10           |
| 40    | 15      | 691-508          |          | 7.030          | 193         | 86            | 500        | 74           | 10           |
| 45    | 20      | 693.487          |          | 7030           | ,23         | 87            | 500        | 20           | 1-0          |
| 50    | 25      | (95H54           |          | 7030           | 193         | 87            | 500        | 74           | 1.0          |
| 55    | 30      | 692496           |          | 1030           | .23         | 28            | 500        | 701.         | 10           |
| ROTO  | PRESS:  | <u> </u>         | TOTALS : | (7.693)        | (2,39)      | (996)         | BAROM      | ETER:        | 30.08        |
| 60    | 35      | 699.394          |          | 7-006          | 13          | <i>8</i> 8 ·  | 500        | 14           | 10           |
| 65    | 40      | 701.369          |          | 7-000          | <i>d</i> 3  | 88            | <u>500</u> | 74           | 1-0          |
| 70    | . 45    | 103.344          |          | 2010           | 123         | 89            | <u> </u>   | 75           | 1-0          |
| 75    | 50      | 705.306          |          | 10679          | .21         | 90            | 505        | 15           | 1.5          |
| 80    | 58      | 707,001          |          | 10-679         | 167         | 90            | 505        | 75           | 1,0          |
| 85    | 100     | 109-116          |          | 6679           | 01          | 90            | 525        | 25           | 1.0          |
| 90    | 5       | 711-011          |          | 6679           | -01         | 90            | 525        | 15           | 10           |
| 95    | 10      | 712908           |          | 6.363          | 19          | 91            | 550        | 16           | 1.0          |
| 100   | 15      | 214-201          |          | 6.363          | -19         | 91            | 550        | 76           | 1-0          |
| 105   | Đ       | 716.537          |          | 626            | 117         | 91            | 5%         | 10           | 1-0          |
| 110   | 25      | 718.074          |          | 6.06           | 17          | 91            | 575        | 76           | 10           |
| 115   | 30      | 100010           |          | 608            | 17          | 91            | 575        | 76           | 10           |
|       |         |                  | TOTALS:  | 78,7640        | (D.UB)/     | (1080)        | MAX V      |              |              |
| TOTAL | . CU FT |                  | TOTALS:  | 156,457        | 481/        | 12076         | AV BP      |              |              |

Meter Box Data Sheet Page # 2

Meter Box 45 Y Factor 1-066

Leak Checks: 150 " Hg @ 201 cfm cfm cfm cfm

Unit: Hauards SON X

Run: 5 Date: 5/0/46

Operator(s): 55

Nozzle: Probe @ 3/8 " od

Initial Volume: \_/500\_\_\_

Inject SO2 @ 100 cc/min

|      |         |                  |          |                | 10-        | · ·           | 222245     |              | 2011         |
|------|---------|------------------|----------|----------------|------------|---------------|------------|--------------|--------------|
| ROTO | PRESS:  | <u> </u>         | Sampling |                | 18.5       | . 1           |            | ETER: 3      |              |
| MN   | TIME    | METER<br>READING |          | STACK<br>DSCFM | DELTA<br>H | METER<br>TEMP | 902<br>PPM | ROTO<br>TEMP | PUMP         |
| 120  | 35      | 291.747          | ·        | 5807           | 16         | 91            | 600        | .73          | 10           |
| 125  | 40      | 203,412          |          | 5.807          | 16         | 91            | 600        | 70           | 1-0          |
| 130  | \$      | 25076            |          | 5,818          | 16         | 90            | (CO)       | 27           | 1-0          |
| 135  | 60      | 106-734          |          | 5.818          | -16        | 90            | 600        | 17           | 1-0          |
| 140  | 55      | 708393           |          | 6071           | -17        | 89            | 515        | 72           | 1.0          |
| 145  | 1300    | 730,117          |          | 5818           | 16         | 90            | 600        | 77           | 1-0          |
| 150  | 5       | 131-774          |          | 5818           | 16         | 90            | 600        | 17           | 10           |
| 155  | 10      | 733.434          |          | 5.818          | 16         | 90            | 600        | 77           | 1.0          |
| 160  | 15      | 735,092          | ţ        | 5818           | 16         | 90            | 600        | 77           | 1-0          |
| 165  | DO      | 136.751          |          | 5585           | 115        | 90            | 995        | 77           | 10           |
| 170  | 26      | 738,343          | Ī        | 5.585          | -15        | 90            | 65         | 177          | 10           |
| 175  | 30      | 739935           |          | 5,525          | -15        | 90            | 625        | 77           | 1.0          |
| ROTO | PRESS:  | -20              | TOTALS : | (69.348)       | (190)      | (1801)        | BAROM      | ETER:        | 1 .          |
| 180  | 35      | 741.507          |          | 5.575          | 115        | 90            | 625        | 18           | 10           |
| 185  | 40      | 143,119          |          | 5,575          | 15         | 90            | 605        | 10           | 10           |
| 190  | 45      | 744712           |          | 5/5/15         | 15,        | 91            | 65         | 18           | 1.0          |
| 195  | 50      | 146.310          | 1        | 5,361          | 114        | 91            | 650        | 18           | 10           |
| 200  | 55      | 747.847          | 1        | 5.351          | 113        | 91            | 650        | 19           | 1.0          |
| 205  | 1400    | 749,383          |          | 5.351          | 13         | 91            | 650        | 79           | 10           |
| 210  | 5       |                  |          | 32782)         | (85)       | (544)         | <u> </u>   | <u> </u>     |              |
| 215  | 10      |                  |          |                |            |               |            | <u> </u>     | <u> </u>     |
| 220  | 15      |                  |          | D58,593        | (756)      | (370)         | ×10-       | <u> </u>     | <u> </u>     |
| 225  | D       |                  |          |                |            | 88/           |            | <u></u>      | <u> </u>     |
| 230  | 85      |                  |          | 6,157          | (180)      | (548)         | <u> </u>   |              | <del> </del> |
| 235  | -       |                  | <u> </u> |                |            |               | <u> </u>   | <u> </u>     |              |
|      |         |                  | TOTALS:  |                | V          | 1/            |            | ACC =        | 1-5          |
| TOTA | L CU FT | 71.383           | TOTALS:  |                |            |               | AV BP      | : 30,0       | 122          |

#### MOISTURE SHEET Woodstove Data Sheet #3

| Moisture Determination Balance Bal        | ance                          | 11                  |
|-------------------------------------------|-------------------------------|---------------------|
| _,                                        | oed                           | Unit: Haugh 5270    |
| Final:                                    |                               | Run:                |
| IMPINGER #1                               |                               | Date: 5/18/92       |
| Final Weight 673.8                        | grams Technici                | an(s): Initial: Tk  |
| Initial Weight 580.0                      | grams                         | Final: TK/S         |
| Net 93,80                                 | grams Approved                | By: 76              |
| IMPINGER #2                               |                               |                     |
| Final Weight 592,3                        | grams                         |                     |
| Initial Weight 5855                       | grams                         |                     |
| Net6,8/                                   | grams                         |                     |
| IMPINGER #3                               |                               |                     |
| Final Weight 500.2                        | grams                         |                     |
| Initial Weight 498.4                      | grams                         |                     |
| Net                                       | grams                         |                     |
| IMPINGER #4 (SILICA GEL)                  |                               |                     |
| Final Weight                              | grams                         |                     |
| Initial Weight 188.5                      | grams                         |                     |
| Net 138/                                  | grams                         | ·                   |
| т                                         | OTAL MASS OF H <sub>2</sub> O | CAPTURED 1160 grams |
| Scale Check: 295.0g = 295<br>590.0g = 590 | g Front                       | Half Filter # 264 F |
| 885.0g = 88C                              | g Back                        | Half Filter # 2648  |
| Notes:                                    |                               |                     |
|                                           |                               |                     |
|                                           | <u> </u>                      |                     |
|                                           |                               |                     |
|                                           |                               |                     |

| ilter         | First   |      |                                       |    | Second |         |      |          | Third       |      |         | Τ        |
|---------------|---------|------|---------------------------------------|----|--------|---------|------|----------|-------------|------|---------|----------|
|               |         | Date |                                       |    | Wt     | Date    |      |          | Wt          | Date | Time    | By       |
| 261 FC        | 0.6987  | 3/20 | 1608                                  | DK | -6991  | 393     |      | 80       |             |      |         | ↓_       |
| 262A          | 0.70 14 |      | 1610                                  |    | .7017  |         | 1301 |          |             | ļ    |         | _        |
| 263#          | 0.6988  |      | 1612                                  |    | 16985  |         | 1300 |          |             |      |         | <u> </u> |
| 2641          | 0.6893  |      | 1614                                  |    | .6894  |         | 1303 |          | Haual       | 5 PN | 3       | <u> </u> |
| <u> 265 F</u> | 0.6912  |      | 1616                                  |    | 16917  |         | 1304 |          |             |      |         | <u> </u> |
| 266 F         | 0.6934  |      | 1618                                  |    |        | <b></b> | 1385 |          | <u> </u>    |      | ·       | ļ        |
| 267 FC        | 0.6936  | /    | 1620                                  | 1  | 16937  |         | BAC  |          |             |      | <u></u> | <u> </u> |
| 268F          | 0.7015  | /    | 1622                                  | 1  | 1010   |         | 1307 | 1        |             |      |         | _        |
| 269 F         | 0.6933  |      | 1624                                  |    | 16436  |         | 1308 |          |             |      |         |          |
| 270 FC        | 1.6965  |      | 1626                                  | į  | 16965  |         | 1300 |          |             |      |         | L        |
|               |         |      |                                       |    |        |         | ·    |          |             |      |         |          |
| 271FC         | 1.6953  | 3/20 | 1628                                  | DL | 6951   |         | 1330 |          | ,           |      |         |          |
| _             | 7002    | 7    | 1630                                  | T  | . 7005 |         | 1331 | - Linear |             |      |         |          |
|               | ).6978  |      | 1632                                  |    | 6980   |         | 1330 |          |             |      |         |          |
|               | 1.6900  |      | 1634                                  |    | 6903   |         | 1333 |          |             |      |         | L        |
| A 1 -         | ).6975  |      | 1636                                  |    | 16975  |         | 1334 |          |             |      |         |          |
|               | ).6978  | )    | 1638                                  |    | 1999   |         | 1335 |          |             |      |         | Ĺ.,      |
|               | 6975    | /    | 1640                                  | j  | 16974  |         | 1336 |          |             |      |         |          |
|               | . 6992  |      | 1642                                  | 7  | 16991  |         | 1337 | 1        |             |      |         |          |
| 279HO         |         |      | 1644                                  |    | 6900   |         | 1332 | 1        |             |      |         |          |
| 280F          | 1.6994  | )    | 1646                                  |    | 6997   | 8       | 1339 | V        |             |      |         |          |
|               |         |      |                                       |    |        |         |      | - 7      |             |      |         |          |
|               |         |      |                                       |    |        |         |      |          | <del></del> |      |         |          |
|               |         |      |                                       |    |        |         |      |          | <u></u>     |      |         |          |
|               |         |      | · · · · · · · · · · · · · · · · · · · |    |        |         |      |          | 1 .         |      |         |          |

|          | QA RE                                   | WEIGH |      |    |
|----------|-----------------------------------------|-------|------|----|
| Filter # | WT                                      | Date  | Time | Ву |
|          |                                         |       |      |    |
|          | · - · · · · · · · · · · · · · · · · · · |       |      |    |
|          |                                         |       |      |    |

, Arm

| BALA | NCE R | OOM ENVI | RONMENTA | L COND | TIONS |
|------|-------|----------|----------|--------|-------|
| WB   | DB    | %RH      | Date     | Time   | Ву    |
| 60   | 74    | 44       | 3/20     | 1606   | DK    |
| 59   | 13    | 43       | 3.63     | 130    | H/s   |
|      |       |          |          |        | ,     |

M212-LOLM2'L&Y'KEAT\An

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

| Into Dessicator | : Date 3/17/92 T | ime 0900 By DK   | Front Half   | Back Half         |
|-----------------|------------------|------------------|--------------|-------------------|
| Manufacturer:   | SèS              | Size: 8.2 cm Lot | .No.: ZB 901 | Grade: \$25 GLASS |

| ilter<br># | First<br>Wt | Date                                             | Time         | Ву                                               | Second<br>Wt | Date           | Time                   | 79                   | Third       | 7-4- | m 2         | Γ           |
|------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|----------------|------------------------|----------------------|-------------|------|-------------|-------------|
|            | 0.3846      | 3/30                                             | 111111       | DK                                               | 1 -          | 303            | 1341                   | By                   | Wt          | Date | Time        | В           |
|            | 0.3872      | 100                                              | 1526         | DK<br>¬                                          | 3827         | 000<br>1       |                        | 20                   | ·<br>       |      |             | ╀           |
|            | 0. 3805     |                                                  | 1528<br>1530 | 1                                                | ·32/O        |                | 1342                   |                      |             |      | <del></del> | ├           |
| 21. UR     | 0.3811      | <del>                                     </del> | 1532         | <del>                                     </del> | 32/A         |                | 1344                   |                      | HALLUKS     | eu s |             | ├           |
|            | 0.3821      | <del>- /-</del>                                  | 1534         | -                                                | 3824         |                | 1345                   |                      | VIHOUS      | £03  |             | ├-          |
|            | 0.3872      | /                                                | 1536         | +                                                | 38 aN        |                | 1346                   |                      |             |      | <u> </u>    | ├           |
|            | J. 3817     | <del>                                     </del> | 1538         | 1                                                | 3888         |                | 1347                   |                      |             |      |             | ⊢           |
|            | 0.3772      |                                                  | 1540         | 1                                                | 13770        |                | 1348                   |                      |             |      |             | _           |
|            | 0.3875      |                                                  | 1542         | 1                                                | 381A         | }              | 1340                   |                      |             |      |             | -           |
|            | 0.3813      |                                                  | 1544         | -                                                | 13809        | <del></del>    | 1350                   |                      |             |      |             | -           |
| 2104       | 0. 20,2     |                                                  | 1744         |                                                  | 7509         |                |                        | -                    |             |      |             | $\vdash$    |
|            |             |                                                  |              |                                                  |              |                |                        |                      |             |      |             |             |
| 2710       | 0.3884      | 3/20                                             | 15/1/        | 10V                                              | 13884        |                | 1351                   | ++                   |             |      |             | ·           |
|            | 0.3818      | /20                                              | 1548         | U/C                                              | 3813         |                | 1354                   |                      |             |      |             |             |
|            | 0.3825      | <del>/</del>                                     | 1550         | $\overline{}$                                    | 3821         |                | 1353                   |                      |             |      |             |             |
|            | 0.3856      | <del>-  </del>                                   | 1552         |                                                  | 3853         | -              | 1354                   |                      |             |      |             |             |
|            | 0.3832      | <del>-/</del>                                    | 1554         |                                                  | 3230<br>3230 | <del>-  </del> |                        | ++                   |             |      | <del></del> |             |
|            | 0.3862      | <del>- /  </del>                                 | 1556         |                                                  | 386H         |                | 1355<br>1356           |                      |             |      |             | · .         |
|            | 0.383b      | <del>-/-</del>                                   | 1558         |                                                  | 303A         |                | 13s?                   |                      |             |      |             |             |
|            | 0.3801      |                                                  | 1600         |                                                  | 3804         |                |                        |                      | <del></del> |      |             |             |
|            | 0.3827      | 1                                                | 1602         |                                                  | 3822         | -{             | <u> 1359  </u><br>1359 |                      |             |      |             | <del></del> |
| _          | 0.3821      | -                                                | 1604         |                                                  | 3218         |                | 1400                   | $\overrightarrow{J}$ |             |      |             |             |
| ~ 00 D     | U. JB & 1   |                                                  | 1007         |                                                  | 210          | <u> </u>       | 1700                   | <del>-    </del>     |             |      |             |             |
|            |             |                                                  |              |                                                  |              |                |                        |                      |             |      |             |             |
|            |             |                                                  | 7            |                                                  |              |                |                        |                      |             |      |             |             |
|            | by          | 1//                                              | 1/2          |                                                  |              |                |                        | e : _ (              | 2/2/6       |      | Deur        |             |

QA REWEIGH

|          |    | <del></del> | <del></del> |    |
|----------|----|-------------|-------------|----|
| Filter # | WT | Date        | Time        | Ву |
|          |    |             |             |    |
|          |    |             |             |    |
|          |    |             |             |    |
| <u> </u> |    | <u> </u>    | 4           |    |

| BALA | NCE R | OOM ENVI | RONMENTA | L COND | ITIONS |
|------|-------|----------|----------|--------|--------|
| WB   | DB    | %RH      | Date     | Time   | Ву     |
| 60   | 74    | 44       | 3/20     | 1524   | OK     |
| 59   | 73    | 43       | 3/23     | 1340   | 2      |
|      |       |          |          |        | 7      |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               | WOO    | WOODSTOVE DATA SHEET #4-3: | A SHEE!        | r #4-3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONS          | CONSTANT FINAL WEIGHTS        | NAL WE  | ICHTS    |          |       | WST5-1<br>Unit          | WST5-Form9, Pg1, Rev4/90<br>Unit HALLARS SOJX | 81, Rev4 | 06/1 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|--------|----------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------|---------|----------|----------|-------|-------------------------|-----------------------------------------------|----------|------|
| Rootor    | 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |               |        |                            | FIN            | FINAL BEAKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ER WEI        | WEIGHTS                       |         |          |          |       | Date:                   | 16115                                         | []       |      |
|           | ပ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date  | Time          | By     | First                      | Date           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | By            | Second                        | (       | Date     | Time     | BV    | Third                   | t at                                          | , i      |      |
| 516       | */                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/19  | 0900          | K      | 105.7142                   |                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _             | 105714                        | (निर्ड) | 5/1      | 1007     | 10    |                         | 79.0                                          | 7        | à    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               |         |          |          | 2     |                         |                                               |          | _    |
| SS        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/16  |               | S      | 94,9163                    | <u>5</u>       | à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9             | 94.9154                       | 54      | 80%      | 1012     | OK (c | 94,9153                 | 80                                            | <b>B</b> | \$   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               | ,      |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | Y                             |         |          |          |       |                         |                                               |          | 2    |
| 55        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61/€  | 0000          | N<br>N | 103.8672                   | 5/20           | 958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X             | 03,8673                       | 673     | TO ST    | 1009     | Carlo |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               |         |          |          | 7     |                         |                                               |          |      |
| 210       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/19  | #15 80        | SZ.    | 100,001                    | 6/9            | CB21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A C           | 100.0                         | 0731    | Sp.      | 1019     | X     | (48,00,00)              | 130                                           | 583      | 3    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - }   |               | 2      |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             |                               |         |          |          | ,     |                         |                                               |          | 2    |
| 270       | "/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/19  | 900           | 싱      | 98.6557                    | 15/20          | 000/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DX            | 8.65SD                        | 05      | 1695     | 10       | S.    |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               | 1       |          |          |       |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               |         |          |          |       |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :     |               |        |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               |         |          |          | -     |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            |                | FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FINAL FI      | FILTER WEIGHTS                | IGHTS   |          |          | 1     |                         |                                               |          |      |
| Filter II | Into<br>Dessic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date  | Time          | By     | First                      | Date           | Тіте                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC            | Second                        |         | Date     |          | å     | 14 d an 3               |                                               |          |      |
| 204F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~     | 16 6          | Γ,     | 0.9053                     | 5/19           | ├                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 1208                          | 7       | 2/2      | 707      | +-    | TITE                    | nare                                          | Time     | 2    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 4             | 6      |                            | _              | ├                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                               |         |          |          | \$    |                         | -                                             |          |      |
| DUMB      | NJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/16  | 哌             | 3      | 0.5193                     | 5//5           | 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07/2          | 10/0                          | 4       | 5/4      | 28,7     | , 5   | 1512                    | 5/20                                          | 5W1      | Ċ    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        | (5/10)                     | 18             | [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             |                               |         |          | 4        |       |                         |                                               | _1       |      |
| QA RI     | QA REWEIGH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FINAI | FINAL WEIGHTS | HTS    |                            | SCALE R        | OOM EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRONM         | ROOM ENVIRONMENTAL CONDITIONS | NDITTO  | SNS      | ν.       |       | SCALE DOOM ENTIDOMORRAL |                                               |          | ç    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        | Wet                        | l .            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               | -       |          | 9        | 7     | A V V                   | 11.                                           |          | 200  |
| Date Be   | Beaker #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Final | Wt            | Ву     | SeB                        |                | Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le By         | WB                            | DB      | ZRH      | 7        | -     | 2                       |                                               | 2        | 1    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            | 1              | 8/16 61/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XQ 8          | 155                           |         | 777      | 8        |       | }.<br>                  |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            | 2              | 5/4 1707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>K</b>      | _                             | 2       |          | 6        |       |                         |                                               |          |      |
| Date F    | Filter #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Final | WT            | Ã      |                            | <del>م</del> ا | 120 954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>1-      | 56                            | 70 1    | 11       | Comments | nts   |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |        |                            | 4              | 5001 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8             | 99 9                          | pl      | <i>h</i> |          |       |                         |                                               |          |      |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,     |               |        |                            | 5              | 5/23 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ž             | 100                           | a<br>a  | T.       |          |       |                         |                                               |          |      |
|           | A Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of |       |               |        |                            |                | Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Consti | of the second |                               |         |          |          | l     |                         |                                               |          | '    |

SN 37010004 \$ 11.19 Scale Sartori. Mode 1 WST7-FOF. WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET Dates: From 4 33 13

Through

松即 等 ्रर 7/2 3 7 Wet Bulb ESE OF San San S विविध 3828 go (e 9 3 3 Dry Bulb 结的 877-14981878 000, がある 0060 Time 300 Date 437 11/5 V Tech H<sub>2</sub> 39 SIG S 9 Beaker Blank Filter Blank 0.0999 0001-0.0999 4090 0001:0 0.0997 0.0998 1800 1001, Weight 0. 1000 0.0999 8 0,100 0.0999 100mg 188 0.100 1001, 0.1003 0.9997 98867 0.9996 2000 0000 1656 9000 P 2995, 2000, 2000, 2000, 0,000, 0,000, 1-0000 1-0000 1-0000 1000' 88 1000 10001 8 1.08 1000 1000 9,9999 10,0000 0,000,0 9.9997 10000 Weight 26666 0000 0.000c 0000 0/ 0,000,0 10.0002 10.0001 10.0000 0.000 10.000 4484 100001 50000 2000 000 7000'01 0000 108 1000 01 10.0001 8666.6 46.18.ht 00.000 00.000 00.000 00.000 00.000 99 999 5 180,000 20 100,000 10 80,00g 00.0000 99,998 4 4966 Q 1000,00 49. 4909 100 cm3 19.996 96.5698 99.9998 50.00 C 00 g 3

WST7-Form Rev5/90

Dates: From 3/12.
Through. 403

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorfus Model A1205 SN 37010004

|       | Z RH             | - 47     | 44,     | 44           | 44         | 56      | 7,7     | 44      | 45       | 7,5     | 1       | 42     | 70      |                                       | 7/7    | 7.5      | ×12     |        | 78      | 20      | 1.P    | 15 Ja  | da                                      | \$5    | 1/2                                         | 72     | 43               | 4/6                                   | 47          | 7/6    | 7/7     | 2/2        | 46       | 72/5    | 1. S. S. S. S. S. S. S. S. S. S. S. S. S. |
|-------|------------------|----------|---------|--------------|------------|---------|---------|---------|----------|---------|---------|--------|---------|---------------------------------------|--------|----------|---------|--------|---------|---------|--------|--------|-----------------------------------------|--------|---------------------------------------------|--------|------------------|---------------------------------------|-------------|--------|---------|------------|----------|---------|-------------------------------------------|
|       | Wet Bulb         | QP)      | 09)     | \ <u>G</u> ' | 3.7        | 77      | P)      | 00      | * L      | - R-C-  | 900     | 2/2    |         | 28                                    |        | Fo       | S C     | 767    | 200     | 2       | \$     | 25     | S                                       | S      | Sc                                          | \$     | 58               | <b>5</b> \$                           | 57,         | 200    | 57      | <b>3</b> 3 | 59       | 3       | 59                                        |
|       | Dry Bulb         | 73       | 77      | 1,7          | 9          | 1       |         | 27      | 45       |         | 140     | 177    | , 67    | 100                                   | 13     | -        | 200     | 5      | 10      | 8)      | 90     | 16     | 60                                      | 80     | B                                           | 12     | 73               | SA<br>SA                              | 80)         | ୟୁ     | OL.     | 22         | 73       | 25      | 5)                                        |
|       | te Time          | 2 1357   | 13/2/   | 0000         |            | ルジェン    | ナダデース   | #       |          | 27 07.7 | 4<br> - | #      | 7.02    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | が大が    | 70/07    | 0000    | ╀      | 13 1630 |         | ╁      | -      | ן ופלצ                                  | 1 1025 | 10 0435                                     | 00/1/0 | 13 1945          | 1030                                  | 10/5        | 1000   | 7 915   | $\exists$  | +        | -       | 102 100                                   |
|       | Tech Dat         | 1/2 /2/  |         | 1            | 10 7 4 2 T | 4       |         |         |          |         | 1       | 41.00  | 1/2     | がく                                    |        |          | 1       | 0X 47  | 1/h XO  | 7.      | 4      | //     | 3/2 CA                                  | 176 14 | 12 0 12 12 12 12 12 12 12 12 12 12 12 12 12 | ),<br> | 14K              | 1/5 OF X                              | \frac{1}{2} | 1/2 CM | (S) 4/1 | S<br>S     | 02/N X01 |         |                                           |
| Blank | Beaker           |          |         |              |            |         |         |         |          |         |         |        |         |                                       |        |          |         |        |         |         |        |        |                                         |        |                                             |        |                  |                                       |             |        |         |            |          |         |                                           |
| Blank | Filter           |          |         |              |            |         |         |         |          |         |         |        |         |                                       |        |          |         |        |         |         |        |        |                                         |        |                                             |        |                  |                                       |             |        |         |            |          |         |                                           |
| 100mg | Weight           | 1 × 2008 | ्रविद्ध | 0.100        | 18,0       | 0001    | 0.0998  |         | 7007     | 1       | 0.1002  | , 100  | 0.1000  | , 1820                                | 4000/  | 0001.0   | , 1000  | 0.7000 | 6.6999  | 6660    | 0001'0 | 8060   | \$245<br>\$245                          | 6660'  |                                             | 5550   | 600/0<br>0'/00/0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.0448      | 12.00° | 1001.0  | 887        | 1001.0   | 1001    | 10000                                     |
| 1.08  | Weight<br>/ AAAA | 2000     | 1000    | 1.0002       | 1000       | 400/    | 0.9999  | 5555    | 1.0003   | 1.0001  | 1.0001  | 1.000A | 1.0001  | 1000/1                                | 1000/  | / 0000   | 0000-1  | 0.9997 | 0.9999  | 09999   | 0,9998 | 0.9999 | 2000                                    | 1777   | 2000                                        | 1444   | 1,000,4          | 70007                                 | 000         | 7500,  | 7.000   | 0000       | 0,441    | 1000    | 4000r/                                    |
| 10g   | 10 OOOD          | 9,999    | 10,0003 | 10.0001      | 1          | 1       | 6666    |         |          |         | 9.9999  | 76550  | 9.9999  | 0,000                                 | 10,000 | 10.0000  | la occo | 9.9997 | 1000.01 |         | 9.9999 | Robhb  |                                         | 7      | 000000                                      | 2000   | 2000             |                                       | 2000        | 0,0000 | 2 247   | 1227       | 00000    | 00000   | 10,000,2                                  |
| 100g  | 999998           | 300000   | 29/492  | 100.000      | 100,00g    | 19 6067 | 8666 66 | 000,000 | 100,0000 | でかったっ   | 1000001 | 100.00 | 49.9997 | 98836                                 | 64.749 | 100.0003 | 386.43  | 864.74 | 44.9997 | 99 9999 |        | 99999  | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |        |                                             |        | 10000            | 00000                                 | 45, 2500    | 41/    | 000 m   | - 000 VO   | 9535 05  | 100.000 | 99.9995                                   |

WST7-Form Tev5/90

Dates: From

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

| 1.08 1.08 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.0000000 1.00000000 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #_MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### WOODSTOVE PARTICULATE CATCH PROCESSI WOODSTOVE DATA SHEET # 5

TOTAL VOLUME OF DICHLOROMETHANE

TOTAL VOLUME OF DISTILLED

USED IN EXTRACTION

WATER DRIED

FILTER #: 844 FINAL WT: 805 TARE WT: /6894 NET WT: /169

FILTER #: DlalB FINAL WT:\_\_ /5176 TARE WT: /

FILTER #:\_\_\_\_\_

FINAL WT:\_\_\_\_ g TARE WT:\_\_\_\_\_\_ 9

NET WT:\_\_\_\_\_\_g

NET WT:

FILTER #:\_\_\_\_\_

TARE WT:\_\_\_\_\_ g

NET WT:\_\_\_\_\_\_\_\_\_

| ATCH PROCESSING<br>HEET # 5                  | Unit: HAUGHS SON  Run: 5 Date: 5/19/40  Technician(s): 5       |
|----------------------------------------------|----------------------------------------------------------------|
| FRONT HALF                                   |                                                                |
| BEAKER #: 5/6<br>m1: 50<br>desc: ACETONE     | FINAL WT: 105,7145 g TARE WT: 05,6745 g NET WT: 0900 g         |
| BEAKER #:<br>ml:<br>desc: ACETONE            | TARE WT:                                                       |
| TOTAL VOLUME OF<br>USED IN WASH              | ACETONE m1                                                     |
| BACK HALF                                    | 1                                                              |
| m1: 255<br>desc: ACETONE                     | FINAL WT: 94-9153 g TARE WT: 94-7160 g NET WT: 1993 g          |
| BEAKER #: 5/8<br>ml: 75<br>desc: METHCHL     |                                                                |
| BEAKER #: 5/9<br>m1: <i>960</i><br>desc: H20 | FINAL WT: 100,0734 B<br>TARE WT: 100,0063 B<br>NET WT: 10671 B |
| BEAKER #: 500<br>ml: 100<br>desc: H20        | FINAL WT: 98.6559 0<br>TARE WT: 98.6067 0<br>NET WT:           |
| BEAKER #:<br>ml:<br>desc:                    | TARE WT:                                                       |
| BEAKER #:<br>ml:<br>desc:                    | TARE WT:g                                                      |
| TOTAL VOLUME OF USED IN WASH                 | ACETONE 050 / m1                                               |

m 1

|                  | WOODSTOV                                                         | E Di ONIZA                                        | - 0000                         | 'EE61     | · N/C     |                  | Un                          | it:                                | HA    | UGH   | 5 56                          | Y        | <i>t</i> |        |
|------------------|------------------------------------------------------------------|---------------------------------------------------|--------------------------------|-----------|-----------|------------------|-----------------------------|------------------------------------|-------|-------|-------------------------------|----------|----------|--------|
|                  | WOODSTO                                                          | VE DATA                                           | SHEET                          | T # 5     |           |                  | Ru                          | n: -                               | 5     | I     | ate:                          | 5 1/     | 8/96     | ,<br>, |
| E                | BLANKS DON                                                       | e: <u>5/l</u>                                     | 1/40                           |           |           |                  | Te                          | chni                               | cia   | ກ(ຣ): | <u> </u>                      | DKT      | K        |        |
| <b>15</b><br>200 | mi<br>FISHER OP<br>mi Dichu<br>FISHER OPT<br>mi Distil<br>WERK C | BEAKER<br>OROMETH<br>IMA LOT<br>BEAKER<br>LED WAT | #:<br>H:<br>IANE 9<br>#:<br>#: | 1382<br>E | ط         |                  | TARI<br>NE<br>FINAI<br>TARI | E WT<br>WT<br>WT<br>WT<br>WT<br>WT | 9     | 6.24  | 35<br>24<br>108<br>104<br>114 |          |          |        |
|                  | BEAKER                                                           | TARES                                             | IN                             | TO D      | ESSC:     | TI               | ME : <u>0</u>               | 900                                |       | DATE  | : 3/17                        | 192      |          | _      |
| BKR #            | 1ST WT                                                           | TIME                                              | SND                            | WT        | TIME      |                  | 3RD                         | WT                                 | T:    | IME   | 4TH                           | WT       | TIME     |        |
| D                | 106,0038                                                         | 1306                                              | 106.2                          | 235       | 1036      | ,                | _                           |                                    |       |       |                               |          |          |        |
| E                | 96-8484                                                          | 1398                                              | 96.81                          | 124)      | 1038      |                  |                             |                                    |       |       |                               |          | ····     | _      |
| F                | 96.5109                                                          | 1330                                              | 96.5                           | 106)      | 1040      |                  |                             |                                    |       |       |                               |          |          | =      |
| S                | CALE ROOM                                                        | QC : TA                                           | RES                            |           | , ,       |                  | SCA                         | LE                                 | 700h  | 1 QC  | : FIN                         | ALS      |          |        |
| DATE             |                                                                  | Y WB                                              | DB                             | %         | ļ  <br> - |                  | ATE                         | TIT                                |       | BY    | WB                            | DB<br>74 | 40       |        |
| 3/A-3<br>3/24    | 1300 Pa                                                          |                                                   | 73                             | 43        |           | 5                | 113                         | 163                                | 4     | OK    | 59<br>56                      | 10       |          |        |
|                  |                                                                  |                                                   |                                |           |           | <b>⊅</b> /       | 115                         | 120                                | 0     | カル    | 60                            | 74       | 179      |        |
|                  |                                                                  |                                                   |                                |           |           |                  |                             |                                    |       |       |                               |          |          |        |
|                  |                                                                  |                                                   |                                |           |           |                  |                             | · · · · · ·                        |       |       |                               |          |          |        |
|                  |                                                                  | BEAKERS                                           | 3: FIN                         | VAL V     | NEIGHTS   | 3<br><del></del> |                             | <u>,</u>                           |       |       |                               |          |          | =      |
| BKR #            | IN DSC                                                           | TIME                                              | 1ST                            | WT        | TIME      | 1                | CNS                         |                                    |       | ME    | 3RD W                         | 1T       | TIME     | _      |
| P                | 5/12                                                             | 0900                                              | 106.2                          | 243       | 1048      | +                | <del>%, &amp;</del>         |                                    | 165   | 4     |                               |          | ****     | _      |
| 3                | 5/12                                                             | 0900                                              | 96 84                          |           | 1050      |                  | <u>16.84</u>                | 28                                 | 170   | 51    |                               |          |          | _      |
| F                | 5/12                                                             | 1330                                              | 96.5                           | 112       | 1700      | 9                | 76.51                       | 14                                 | ร์วร์ | 30    |                               |          |          | =      |
| BKR #            | 4TH WT                                                           | TIME                                              | 5TH                            | ωт        | TIME      |                  | 6ТН                         | ωт                                 | ΤI    | ME    | 7TH V                         | JT       | TIME     | =      |
|                  |                                                                  |                                                   |                                |           |           | -                |                             |                                    |       |       |                               |          |          |        |
|                  |                                                                  | <u> </u>                                          |                                |           |           |                  |                             | 1                                  | •     |       |                               | 1        |          | =      |

NET PARTICULATE CATCH CALCULATION WOODSTOVE TEST DATA SHEET #6

Unit: HHUGHS STAPP1-AppDoc19-page2
Rev 6/90

| Blank Audit: By: Tim Kelly                                                          |                                              |
|-------------------------------------------------------------------------------------|----------------------------------------------|
| Blank Audit: By: //m Kelly                                                          | Date: 5/18/92                                |
| Blank Calculations:                                                                 |                                              |
| Acetone:                                                                            | -00000 g/m1                                  |
| Dichloromethane: , oood g = 75 ml =                                                 | /00000533 g/m1                               |
| Distillted Water: <a href="mailto:coop">coop</a> g ÷ 200 ml = _                     | ,000004 g/m1                                 |
| Front Half Catch:                                                                   |                                              |
| Filters: /// g - ( .0000 Total Catch No. of filters Blank Value filter              |                                              |
| Beakers: O400 g - 150 ( 0000 Q  Total Catch M1 of Acetone Blank Value/ m1 of Aceton | $g) = \frac{\sqrt{397} g}{\text{Net Catch}}$ |
| Total Front Half Cat                                                                | ch /1559/g                                   |
| Back Half Catch:                                                                    |                                              |
| Filters: 1358 g - ( .0000 Total Catch No. of filters Blank Value filter             | $g) = \frac{1358}{\text{Net Catch}}g$        |
| Beakers                                                                             |                                              |
| ml of Aceton                                                                        | $g) = \frac{1988}{\text{Net Catch}}g$        |
| 2. Extract/Impingers:                                                               |                                              |
| Total Catch ml. of Blank Value<br>Dichloromethane ml of Dichl<br>methane            |                                              |
| 3. Water/Impingers:  Odd 2 g  Total Catch  ml. of water  ml of water                | g) = 0950 g<br>Net Catch                     |
| mz vz water                                                                         |                                              |
| Total Back Half Catch<br>Total Catch<br>% Front Half                                | h 4665 8<br>(6024 8<br>05,05 %               |
|                                                                                     |                                              |

| co.                       |
|---------------------------|
| NOI                       |
| UL AI                     |
| E CALCULATION<br>SHEET #7 |
| ATE<br>TA                 |
| TICULATE<br>ST DATA       |
| Par<br>Ti                 |
| SH<br>TOVE                |
| WETHOD SH<br>HOODSTOYE    |
| EPA                       |

Date: 5/18/9 Unit: HAUGHS SOOX Technician(s): 55 TK

NST3-Form 1 8/28/91 13,1539-180 - H20 1) Vacet do: (7/383 Va)( 17.65 )(/066 act)( 30,08 " Hg: 13.6 C SUBJUNE >

0000,0000

6,4695 000,000 2) VH(std): ( .04707 )( 168 11 H20 ): -

65039 000,000 - BH X 100 = . 0000 5,4695 - est 1 73,7534 deet) 1 5ylles/ 1012 3) A&H:

. (302 0.0000 4) Ce: (13,7539 dect) (15,43): (16024/9)

g/hr 000.000 - decfa)( 50 ): 000 000 deof 5) Estimated g/hr: -

100 > ( computer print factor) of the meter box used for the test emperature for the test in degrees Absolute particulate catch for the test average stack flow during the test factor ( Botor correction dec Fa

TEMPERATURES
RECORD SHEET #14
WST2-Form14 Rev1/88

ä Unit: Run: Page:

Date: 5/18/9

|                      |        |              |             |               |           |         |                       |              | ;               | ĕ           |                 |            | j                  | 7                |
|----------------------|--------|--------------|-------------|---------------|-----------|---------|-----------------------|--------------|-----------------|-------------|-----------------|------------|--------------------|------------------|
| 17C                  | 4      | 5            | 9           | 7             | 8         | 6       | 10                    | 11           | 12              | 13          | 14              | 15         | 16                 | 17               |
| nute<br>Time         | Stove  | Left<br>Side | Back        | Right<br>Side | Bottom    | Firebox | 2nd Burn<br>Gatalytic | Roam<br>Temp | Pube<br>Purnace | Sample      | Impinger<br>Out | Ses<br>Box | C. Gas<br>Incineer | SO2<br>Implifier |
| S()                  | " 1    | 383          | 453         | 762           | ተነተ       | 366     | hel                   | ماد          | 1441            | 1<br>1<br>1 | 35              | IhC        |                    | 25               |
| چ<br>اچ<br>ا         | 334    | 376          | קילן        | 288           | 412       | 623     | <i>LS9</i>            | 75           | 1441            | 142         | 35              | 241        | 35                 | 3%               |
| <u>タ</u><br> 表       | 313    | 360          | 386         | 275           | 412       | 552     | 51,7                  | 76           | 1441            | 142         | 35              | 145        | 38                 | 36               |
| 18                   | 294    | 341          | 360         | 2 60          | 405       | 523     | ags.                  | مار          | 144             | ያሳነ         | 35              | 243        | 35                 | 36               |
| 3/<br> X             | 283    | 325          | 345         | 248           | 344       | 516     | 599                   | 76           | 1441            | bhc         | 35              |            | 35                 | 36               |
| 100                  | 295    | 310          | 335         | 242           | 390       | 520     | 883                   | 76           | 1441            | 348         | 35              | 74C        | 35                 | 36               |
| 8/<br> S             | 347    | 307          | 33.1        | רגג           | 380       | 528     | 798                   | 76           | 1443            | 8hC         | 35              | 8hC        | 35                 | 36               |
| \2\<br>\2\           | 363    | 310          | 340         | 227           | 370       | Sylv    | 1254                  | 76           | 1446            | 8hC         | 35              | 8hC        | 35                 | 36               |
| 3/<br> Y             | 197    | 318          | 357         | 578           | 361       | 596     | 1400                  | 76           | 1446            | 248         | 35              | 248        | 35                 | 36               |
| 15/<br>15/           | 530    | 331          | 379         | 239           | 352       | 743     | 1412                  | 이스           | 1447            | 8hZ         | 35              | 248        | 35                 | 36               |
| 16.                  | 204    | 348          | 344         | 247           | 346       | 836     | 1482                  | 77           | 8441            | 8hC         | 35              | 8hC        | 35                 | 36               |
| 3                    | 594    | _            | 473         | 263           | 340       | 910     | 1481                  | LL           | 8441            | ShC         | 35              | Shc        | 35                 | 36               |
| X                    | 4736   | 4075/        | 4538        | 30412         | (4581)    | (1759)  | (11887)               | 413          |                 |             |                 |            |                    |                  |
| 3/<br>(%)            | leble  | 390          | 449         | 277           | 336       | 386     | 1476                  | 78           | 8441            | 348         | 35<br>SS        | 8hc        | 35                 | 3%               |
| $\mathbf{M}$         |        | 404          | 7/17        | 290           | 334       | 297     | 1474                  | 79           | १५५८            | 8hC         | 35              | 348        | 38                 | 36               |
| 7/<br>法/             |        | م <u>ا ۲</u> | 473         | 297           | 333       | 930     | אואו                  | 79           | 8५५।            | 8hC         | 38              | 348        | 35                 | 36               |
| 2)<br>(8)            |        | 430          | 485         | 302           | 333       | 968     | 1307                  | 80           | 1448            | 8hC         | 35              | 8hC        | 35                 | 36               |
|                      | 575    | 439          | 496         | 304           | 334       | 1038    | 1131                  | 80           | 1448            | 8 ተረ        | 36              | 8hC        | 35                 | 36               |
|                      | 500    | 寻            | 504         | 308           | 338       | 1067    | 1145                  | 80           | 1448            | 8hC         | 36              | 8hC        | 35                 | 36               |
| 5/15<br> S           | 490    | 448          | 512         | 314           | 338       | 0101    | 1132                  | 80           | 1448            | 848         | 36              | 8hC        | 35                 | 38               |
|                      | 468    | 456          | <u>5</u>    | 717           | 342       | 1132    | 1002                  | 98           | 1448            | 348         | 36              | 348        | 35                 | 36               |
|                      | 7      | 구구           | 503         | 323           | 348       | 1059    | 843°                  | 80           | 1448            | 8hC         | 36              | 8hC        | 38                 | 36               |
| 19<br>20<br>20<br>10 |        | 435          | 487         | 320           | 353       | 1009    | 872                   | 98           | 8441            | 348         | ሳ운              | 8hC        | 35                 | 36               |
|                      | _ t    | 423          | <u>ال</u> م | 321           | 357       | 484     | 849                   | 18           | 8441            | 8hC         | श्              | L hC       | 35                 | 36               |
| 100 TO               | 31     | 413          | 355         | 310           | 362       | 070     | 833                   | 18           | 844             | 8h€         | 3%              | 2116       | 35                 | 36               |
| $X_{i}^{\prime}$     | 59113  | 5135         | 2885        | 31.83         | (मा६ट्री( | (12013) | (1351P)               | 688          | ,               |             |                 |            |                    |                  |
| X                    | 116647 | 19210        | 1021        | 124           | 9696      | 747TP1  | 25412d                | 18717        |                 |             |                 |            |                    |                  |

TEMPERATURES
RECORD SHEET #14
WST2-Form14 Rev1/88

Unit: #

| į              | •              | ı          | ,     |             | •       |         |                       |               |                 | 5             |                 |               | 1                  | 2               |
|----------------|----------------|------------|-------|-------------|---------|---------|-----------------------|---------------|-----------------|---------------|-----------------|---------------|--------------------|-----------------|
| T/C            | 4              | 5          | 9     | 7           | ها      | 6       | 10                    | =             | 12              | 13            | 14              | 15            | 8                  | 8 17            |
| Time           |                |            | Back  | Side        | Bottom  | Firebox | and Burn<br>Catelytic | Moorn<br>Temp | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | C. Gas<br>Box | C. Gas<br>Impinger | SO2<br>Impinaer |
|                | -              | 401        | 440   | 301         | 365     | 946     | LC8                   | 81            | Shbl            | 248           | 36              | Sho           |                    | 36              |
| 3/5            | -              | 393        | 430   | 295         | 367     | 927     | 815                   | 81            | १नेत            | 318           | 36              | ShC           | 35                 | 36              |
| <u>8</u><br> ∧ | <del>-</del> t | 386        | 121   | 293         | 398     | 905     | 794                   | 80            | ነሳ ዛገ           | 8h©           | 36              | ShC           | 35                 | 36              |
| 30             | 331            | 379        | 917   | 388         | 369     | 891     | 775                   | 79            | Lphi            | 8hC           | 36              | Sho           | 35                 | 35              |
|                | 331            | 371        | 43.1  | 385         | 369     | 874     | 762                   | 779           | 1448            | Sus           | 36              | ShC           | 35                 | 36              |
| M              |                | 364        | 467   | Src         | 368     | 858     | 766                   | 79            | 8441            | 348           | 35              | Sho           | 35                 | 36              |
| 71             | 85<br>369      | 359        | 404   | ררב         | 368     | 853     | 758                   | 19            | 8ħh1            | 8hC           | 35              | Sho           | 38                 | 36              |
| 3              | 365            | 354        | 40h   | 896         | 366     | 832     | 138                   | 79            | 84/71           | 247           | 35              | 246           | 35                 | 36              |
| $\mathbf{M}$   | 15 300         | 349        | 400   | <b>2</b> 61 | 366     | 817     | 727                   | 79            | 8441            | 246           | 38              | 246           | 35                 | 3b              |
|                | 20 295         | ह          | 341   | 259         | 364     | 306     | לור                   | 79            | 1448            | ShC           | 35              | 247           | 35                 | 36              |
| <b>列</b>       |                | अध         | 393   | 262         | 363     | 789     | 693                   | 19            | 1448            | গ্ৰন্         | 35              | Lhc           | 38                 | 36              |
| 7              | 39 283         | 335        | 389   | 255         | 36)     | 775     | 673                   | 79            | 1448            | 9hC           | 35              | Lhe.          | 35                 | 36              |
| X              | 3801           | 4315       |       | 3325        |         | (Tolon) | (9039)                | 953           |                 |               |                 |               |                    |                 |
| 11             | 35 275         | 339        | 384   | JSS1        | 358     | 761     | 969                   | <i>bL</i>     | 8551            | 246           | 35              | 740           | 35                 | 36              |
|                |                | 326        | 381   | 840         | 357     | 15.     | 638                   | bL            | 1448            | 9hC           | 35              | Lhe           | 38                 | 36              |
| 大学             | _              | 333        | 378   | 243         | 353     | 738     | هروما                 | 79            | 1448            | 246           | 35              | 247           | 35                 | 36              |
| VΤ             |                | 319        | 375   | ೯ಗಿರ        | 348     | 730     | 019                   | 79            | 1448            | 246           | 35              | 247           | 35                 | 36              |
|                | 58 258         | 315        | 371   | 335         | 345     | مالا    | 601                   | 81            | १४५८            | 246           | 38              | 7 L L C       | 35                 | 36              |
| <b>多</b>       | ;              |            | 370   | भेड़र्द     | 342     | וונ     | 294                   | 18            | 8441            | 3hC           | 35              | 247           | 35                 | 3.6             |
| 3/             | 15847          | 1813)      | 338   | (453)       | (2103)  | (4467)  | $(3711)^{-1}$         | 4723          |                 |               |                 |               |                    |                 |
|                | 5385           | 8529       | 7691  | <b>877.</b> | \ P     | MUTH    | 12750                 | 1425          |                 |               |                 |               |                    | CA              |
|                | TE8971         | 15,508     | 17516 | 11502       | (15183) | 34448)  | $\mathcal{I}$         | 3296          | 1010            | Pet           | 386.8           |               |                    |                 |
| d              | 3827           | <u>\_4</u> |       | (214)       | (362)   | (820)   | (910)                 | (18)          | رن              | 401           | 362.4           |               |                    |                 |
|                |                |            |       |             |         |         |                       | 1             |                 |               | - 4.8L-         |               |                    |                 |
|                |                |            |       |             |         |         |                       |               |                 |               |                 |               |                    |                 |
| X              |                |            |       |             |         |         |                       |               |                 |               |                 |               |                    |                 |
| X              |                |            |       |             |         |         |                       |               |                 |               |                 |               |                    |                 |

| Site: EE   | MC - West      | Kent,        | WA 9803      | <u>2</u> Date:         | 5//8/92       | <u> Analy</u> | yte: <u>CO</u> 2             | (15-1)         |
|------------|----------------|--------------|--------------|------------------------|---------------|---------------|------------------------------|----------------|
| Source:    | HAUGHS         | S270         | SEEIE        | S Run #                | :             | 5             |                              |                |
| Zero Cyl   | #: <u>T13</u>  | 2257         | C            | onc.00.0 9             | CO2_          | Cyl Pre       | ess: <u>800</u>              | psi            |
| Certi      | fied by: _     | Liqui        | O AIR        | 2                      |               |               | Date: 10)                    | 7/91           |
|            |                |              |              |                        |               |               | ess: <u>900</u>              |                |
|            |                |              |              |                        |               |               | Date: 10/3                   | 1              |
|            |                |              |              |                        |               |               | SN: 4070                     | •              |
|            |                |              |              | ·                      |               |               | )                            |                |
|            |                |              |              |                        |               | •             | Flowmete                     |                |
|            | Value = 2      |              |              | -                      |               | <del></del> _ |                              |                |
| EPA Cont   | rol Limits     | $= \pm 2$    | 5% of 2      | 5.0% CO <sub>2</sub> = | <u>+ 0.63</u> | 25% CO2       |                              |                |
| Pre Run    | Audit: By      | ' <b>:</b>   | BN           | Tim                    | e: <u>l</u>   | 005           | Temp: <u>7</u> 6             | o <sub>F</sub> |
|            | _              |              |              | Audit Resu             | 1+e           |               |                              | _              |
| Point      | Exped          |              |              | Act                    | ual Res       | ponse         | + Conc.                      | 1              |
| #          | Meter          | DVM          | ₹            | Meter                  |               |               | Difference                   | ì              |
| Zero       | 00.0           | .000         | 00.0         | 00.0                   | 1000          | 1054          | 1054                         | ,217           |
| Span       | 50.4           | -504         | ما 12        | 50.0                   | 1200          | 12.388        | -,212                        | -1.683         |
| Comments   |                |              |              |                        |               |               |                              |                |
|            |                |              |              |                        |               |               |                              |                |
|            |                |              |              |                        |               |               |                              |                |
| Post Run   | Audit: B       | у:           | <u>DK</u>    | Tim                    | e:            | 415           | Temp: 7                      | <u>7</u> °₽    |
|            |                | ·            |              | Audit Resu             |               |               |                              |                |
| Point<br># | Expec<br>Meter | ted Res      | ponse<br>%   | Act<br>Meter           | ual Res       | ponse<br>%    | <pre>+ Conc Difference</pre> | 4              |
|            |                |              |              | 00.0                   | .000          | .054          | .054                         | . 217          |
| Zero       | 00.0<br>ろんり    | .000<br>.504 | 00.0<br>12.6 | 49.9                   | .499          | 12.363        | 237                          | -1.879         |
| Span       | 50.4           | . 507        | 1λ.Ψ         | 77.1                   | .777          | 72.000        | . 4.31                       | 1.011          |
| Comments:  |                |              |              |                        |               |               |                              |                |
|            |                |              |              |                        |               |               |                              |                |
| + Conc. I  | Difference     | = Act        | % - Exp      | (Std) %                |               |               |                              |                |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Run # 5

Date 5//8/92

Technician BN/TH DK J5

WST6-Forml, Rev11/89

# MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Useable Firebox Dimensions: See QC Section Useable Volume: 1,473 ft3                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dilution Tunnel Draft (If applicable): Start ( Stop (                                                                                                 |
| Test Chamber Air Velocity: Start: O Stop: O Avg: O                                                                                                    |
| Wet Bulb/ Start: WB: 59 °F DB: 66 °F 1.4 % Amb Moisture 68 % % TRH                                                                                    |
| Dry Bulb Stop: WB: 62 °F DB: 77 °F 1.3 % Amb Moisture 44 7RH                                                                                          |
| $\overline{x} = 1.35$ Moisture $\overline{x} = 56$ Humidity (RH)                                                                                      |
| Stove Wt: $\frac{237.3}{}$ lbs.                                                                                                                       |
| Stove Wt with Stack (Inc. Oil Seal) Wet: 305,4 lbs.Dry: 304,4 lbs.                                                                                    |
| Empty Stove Wt with Stack and Ash Ash: O lbs. Total: 304.4 lbs.                                                                                       |
| Kindling Wt. Paper: 13 lbs. Wood: 6.5 lbs.                                                                                                            |
| Pre Burn Fuel Wt. 7,2 +8,6 + 1,5 Total: 17.3 1bs.                                                                                                     |
| Total Kindling and Pre Burn Fuel Wt 23.8 1bs.                                                                                                         |
| Coal Bed Wt-1bs: Range (2,6 - 2,1)307.0-30651bs. Actual: 2.2 1bs.                                                                                     |
| Allowable Amount of Charcoal that can be removed:                                                                                                     |
| Coal Bed Wt. Range $\left(\frac{\partial l}{\text{Upper Wt.}} + \frac{\partial l}{\text{Lower Wt.}}\right)^2$ .25 =                                   |
| Test Fuel Wt-1bs: Ideal 10.3 1bs. Range: 11.3-9.31bs. Actual: 10.5 1bs.                                                                               |
| Test Fuel Size (pcs.) (.75 x 1.5 x 5" Flanges) /4 Pcs.                                                                                                |
| 2 x 4's x /8 3/4 " 4 Pcs /0.5.1bs. /00.07                                                                                                             |
| 4 x 4's x D/A " N/A Pcs N/A 1bs. N/A %                                                                                                                |
| Est. Dry Burn 105 - (10,5 x,17582) x 60 = 1,1500<br>Rate (Kg/Hr.) 2.2025 Est.Dry Burn Rate (Kg/Hr)                                                    |
| Est EPA Hest Output(HO <sub>E</sub> ) (19,140) x <u>163</u> x <u>11500</u> = <u>13667</u> (Avg BTU's/Hr)  Est Heat Output (HO <sub>E</sub> ) BTU's/Hr |
| Comments: /90 = 1,240                                                                                                                                 |

| Unit: 180645 S27X Run: 5 Date: 5/18/92 Page 9                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOODSTOVE OPERATING DATA                                                                                                                                      |
| FIRE STARTED: 0245 PST PDST                                                                                                                                   |
| WARM UP AND PREBURN: PRIMARY AIR: set wide open for all warm- up/preburn fuel charges, then set to 1300 at start of preburn.                                  |
| SECONDARY AIR: UA CAT BYPASS: NA                                                                                                                              |
| CHARCOAL BED PREPARATION: raked and leveled prior to each warm- up/preburn charge. At 1 1/2 min. prior to loading last fuel, raked and leveled. In stove sec. |
| TEST: Door Wide Open during loading 4 min 30 sec                                                                                                              |
| primary Air: opened full for first min. , then set to run setting of                                                                                          |
| SECONDARY AIR: WA CAT BYPASS: WA                                                                                                                              |
| FAN: ON OFF during warm-up ON/OFF during preburn ON/OFF first minutes of test ON/OFF balance of test run Fan speed set at <u>FAN CON FIRM ATTON</u>           |
| WOOD DATA: KINDLING: a mix of the grades listed below                                                                                                         |
| SIZE MILL GRADE SPECIES                                                                                                                                       |
| PREBURN: 2X4 Manke/Tacoma Std or btr s. orn D fir                                                                                                             |
| TEST: 2X4 Packwood #2 or btr s. grn D fir 4x4 Packwood #2 or btr s. grn D fir                                                                                 |
| PELLET FUEL APFI#:                                                                                                                                            |
| All grades WCLB rules                                                                                                                                         |
| WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either _/O or _/8 inches.                                                                          |
| 1st warm up/preburn fuel charge ( 7/2 1bs ) added at 08/5                                                                                                     |
| 2nd warm up/preburn fuel charge ( 8.6 lbs ) added at 0858 .                                                                                                   |
| 3rd warm up/preburn fuel charge ( 15 lbs) added at 1051 .                                                                                                     |
| 4th warm up/preburn fuel charge ( lbs ) added at                                                                                                              |
| 5th warm up/preburm fuel charge ( lbs ) added at "                                                                                                            |

\(\)

### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Run: 5
Date: 5/8/92
Technician: BN,JS,TK, DK

| Rọc           | om Temper                                       |             | · 70         |                       |                       | Cor               | WST<br>rection   |                                                  | 7-Rev11/89<br>: <u>Ø</u> |
|---------------|-------------------------------------------------|-------------|--------------|-----------------------|-----------------------|-------------------|------------------|--------------------------------------------------|--------------------------|
| Unc           | TE: Reco<br>cor Value<br>me Test F<br>libration | s are       | correct      | ed for:<br>Readin     | e tempera<br>es taker | iture: )<br>1 at: | 1 es <u>1900</u> |                                                  | <u>/</u> .               |
| Рc            |                                                 |             | Top          | )                     | T                     | tom               | Sid              | e                                                | Piece Av<br>Correcte     |
| #             | Dimen<br>2448                                   | Use_        | Uncor<br>45  | 45                    | 4,5                   | 4,5               | 40               | 40                                               | 4,333                    |
| 1             | 2X7X 8                                          |             | 7/3          | 113_                  | 1//                   | 1770              | 770              | <del>                                     </del> | 7,000                    |
| 2             |                                                 |             | <u> </u>     |                       |                       |                   |                  |                                                  |                          |
| 3             | 2x4x8                                           | P           | 10=          | 20,1                  | 18.0                  | 19,6              | 18.5             | 20.1                                             | 19,933                   |
| 4             | 244.8                                           | ρ           | 18.5<br>18.5 | 20.1                  | 18.5                  | 20.1              | 18.0             | 19.6                                             | 19,933                   |
|               | de TX a                                         |             | 18.3         | 20.1                  | 78.5                  | au.               | 70,0             | 7110                                             | (39, 8/2)                |
| 6             |                                                 |             |              | -                     |                       |                   |                  |                                                  | Strang                   |
| 7             |                                                 |             |              |                       |                       |                   |                  |                                                  |                          |
| 8<br>9        | 2x4x 53/4                                       |             | 210          | 22.9                  | 21.5                  | 23.5              | 19.5             | 21.3                                             | 22.567                   |
|               | 244x1834                                        | <del></del> | 18,5         | 20,1                  | 19.0                  | 20.7              | 18.0             | 19.6                                             | a0,133                   |
| 1             | 2 / (0.3)                                       | 4           | 21.0         | 22.9                  | 21.0                  | 22.9              | 20.0             | 2/18                                             | 22.533                   |
| _             | DX4X1834                                        | <del></del> | 18.5         | 20,1                  | 18.5                  | 20,1              | 18.5             | 20.1                                             | 20.100                   |
|               | (XX / X / 2 · 14                                | 1           | 18.5         |                       | 7870                  | 0.07              | 7                |                                                  | CS5.333                  |
| 3             |                                                 |             |              |                       |                       |                   |                  |                                                  |                          |
| <u>4</u><br>5 |                                                 |             |              |                       |                       |                   |                  |                                                  |                          |
| 6             |                                                 |             |              |                       |                       | <u> </u>          |                  |                                                  | -                        |
| 7             |                                                 |             | <u> </u>     |                       |                       |                   |                  |                                                  |                          |
| . 8           |                                                 |             |              |                       |                       |                   | ٠.               |                                                  |                          |
| 9             | FEET                                            | T           | 19.5         | 21.3                  | 19.0                  | 20,7              | 19,0             | 20.7                                             | 20.900                   |
| 20            | 1                                               |             |              |                       |                       |                   |                  |                                                  |                          |
| 7. м          | oisture                                         | _           |              | Kind1<br>4,33<br>4,15 | 32 /                  | 9,933<br>6,620    | 7. 0             | est Lo<br>21,333<br>7,582                        | 3 7                      |
|               |                                                 | ,,          | ,            | ļ———                  |                       |                   |                  |                                                  | <u></u>                  |

To obtain Wet from Dry:  $\frac{100 \times 7}{100 + 7}$  Dry Rdg. = 7 Moisture, Wet Basis

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

| W     | OOD DEN  | SITY DETE              | RMINATION               |                           | Date:      |                    | 192 TE   |
|-------|----------|------------------------|-------------------------|---------------------------|------------|--------------------|----------|
| W     | OODSTOV  | E TEST DA              | TA SHEET #1             | l Tec                     | hnician:   | WST2-form          | 11-Rev 6 |
| Mood  | Piece    | Nominal                | Dimensions:             | á                         | ) <u>x</u> | af.                | x 3 1/2  |
|       | (D):     |                        |                         |                           | 4.1        | cm                 |          |
| -     | (W):     |                        |                         | -                         | 9.15       | C m                |          |
|       | h (L):   | 9,15                   | c m                     | •                         |            |                    |          |
| mengr | .11 (1): | 9,12                   |                         | gth X = _                 | 9.13       | 5 cm               |          |
|       |          | 9,15                   | C fm "                  |                           |            |                    |          |
|       |          | ,                      | Vol                     | ише: <u>34</u>            | (D x w x   | L) cm <sup>3</sup> |          |
| MOIST | URE:     | Room Tem               | perature: _             | 72                        | PF Corre   | ction Fac          | tor:     |
| Uncor | rected   | Meter Rea              | dings Corre             | cted for                  | tempera    | ture:Yes_          | No 🗸     |
|       |          |                        |                         |                           |            |                    |          |
| NOTE: | Recor    | d moistur              | e meter rea             |                           |            |                    |          |
|       |          | Uncor                  | Cor                     | Avg % 1                   | Moisture   | (Dry) _o           | 10.100   |
| т     | op:      | 18.5                   | 20.1 2                  | Aug Z 1                   | Moisture   | (Wet) _/           | 6,736    |
|       | ottom:   | 18,5                   | 20.1 2                  |                           |            | -                  |          |
|       | ide:     | 18,5                   | 20.1 2                  | Scale:                    | Leveled    | In_                | Out $ u$ |
| •     |          | 70,0                   |                         |                           | Zeroed:    | In /               | Out      |
| X     |          |                        | 20.100 z                |                           |            |                    |          |
| Wet W | leicht:  | 186.3                  | g Dry Weig              | ht: 1608                  | 2 2        |                    |          |
|       |          |                        |                         |                           | /          |                    |          |
| % Moi | sture D  | ried Basi<br>y Wt ; We | $t = \frac{3677}{1200}$ | <del>_</del> 2            |            |                    |          |
|       |          | Dat                    | 718/92 Ti               | me<br>W AGO               | Temp<br>23 | ۰۵ ۵۳              | •        |
| Ω     | nto Dry  | TUOT Z                 | THY KULL                | 1 CLUK                    | 770        | OF OF              |          |
| (     | Minimum  | Time in                | Dryer: 24 h             | rs.) Min                  | imum Dry   | er Temp 1          | 00°C (21 |
| Densi | ty = 📈   | <u>00180-</u> g        | : <u>342.70</u>         | <u>O</u> _cm <sup>3</sup> | = 1464     | <u>3/g/cm</u>      | 3        |
|       | ( d      | ry wt)                 | (volum                  | e /                       |            |                    |          |
|       |          |                        | D.A                     |                           |            |                    |          |
| Pelle | t Fuel   | Moisture               | Content Det             | erminati(                 | on         |                    | ٠        |
| Tare  | Beaker   | Wt.                    |                         | _g                        |            |                    | ·<br>    |
| Wet W | /t:      |                        |                         | g =                       |            |                    | <b>.</b> |
|       | Gros     |                        | Tare Bea                | ker Wt.                   | Net Wet    | Wt.                |          |
| Dry W | /t:      |                        |                         | g =                       |            |                    | ,g       |
|       |          |                        | Tare Bea                |                           | Net Dry    | Wt.                |          |
|       |          |                        |                         |                           |            |                    | 97       |
|       |          | ried Basi              | t Wet Wt.)]             |                           |            |                    | .7.      |

|   |                |                   |          |                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               | -     |          |                       |            |                         | Ű           |         |                                                  | ,,,,,,   | <br>        | ~    |                  |          |
|---|----------------|-------------------|----------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------|----------|-----------------------|------------|-------------------------|-------------|---------|--------------------------------------------------|----------|-------------|------|------------------|----------|
|   |                | HOODSTOVE         |          | HNV FLIE GAS D<br>DATA SHEET #12<br>14 RBY 1/88 | TEET .                                  | GHS UNIN<br>ET #12<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |               |       |          | Unit:<br>Run:<br>Page |            | SHAWAHS                 | e, l        | S27X    |                                                  | Jechni   | S main      | 10(  | ノス               | اع       |
| · | - 1            | 30k.b             | ٥_       |                                                 |                                         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •4           | , Al          |       |          | M                     | 760        | 117/6                   | . (2        | j       |                                                  | <b>F</b> | •           | •    |                  |          |
|   | Time           | Scate<br>At<br>At | las      | Rate Bate                                       | ^                                       | CO2<br>XCO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V.           | <b>1</b>      | Tel   | <b>3</b> | 32                    | Bal        | Het Dry<br>Bal Bulb Bul | Ory         | ¥ 5     | 15 E/A                                           | Stack    | S,          |      | Static<br>Press. | C THE    |
|   | S/<br> SS/     | 317.1             | 10.5     | Ø                                               | 197                                     | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .593         | 15,0          | 15.0  | .115     | 1.17                  | _          | 107                     | 136         |         | <del>                                     </del> | 25%      | 25          | 625  | 10-              | Flaw     |
|   | (S)            | 316.9             | 8<br>3   | 7.                                              | .135                                    | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1677         | 17.2          | 17.2  | 150.     | .52                   | 6.5        | 113                     | 139         | 8<br>6  | 126                                              | 287      | <u>61</u> . | 475  | :053             | <b>B</b> |
|   | 5<br>हि        | 316.6             | -        | ń                                               | 990.                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,709         | 18.0          | 18.0  | ₽50.     | .55                   | ۲ <u>۰</u> | 110                     | 128         | 8.0     | 120                                              | 226      | .24         | 207  | pho:             | 252      |
|   | 50/<br>Sp      | 316.4             | 9.8      | 7                                               | =                                       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 283          | 17.6          | 17.6  | . 062    | ,63                   | 4.6        | 107                     | hريا<br>الم | 7.6     | 117                                              | 714      | hZ"         | 00°) | :043             | 75       |
|   | <b>\ 1</b>     |                   |          | 7                                               | .123                                    | 3.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -686         | 17.4          | 17.4  | . Ola3   | pg.                   |            | 106                     | 123         | 7.3     | 117                                              | 210      | . 24        | 000  | -042             | <b>E</b> |
|   | $\mathcal{H}$  |                   |          | =                                               | .226                                    | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>\$</u> 2. | 15.0          | 15.0  | 180.     | ,52                   | 10.8       | 109                     | 126         | 7.9     | 121                                              | 254      | 23          | 575  | 640:             |          |
|   | 8/s            |                   | -        | و                                               | 17.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .58          | 13.9          | 13.9  | .052     | .53                   | 12.9       | Ξ                       | 128         | 8.4     | 124                                              | 276      | .22         | 955  | :052             |          |
|   | 8/2<br> 2      | _                 | _        | 7.                                              | .295                                    | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .572         | 13.2          | 13.2  | 159.     | .52                   | 14.1       | 112                     | 130         | શ.િ     | 126                                              | 289      | .22         | 550  | 05y              |          |
|   | 3/i<br>\⊼\     |                   | 7.5      |                                                 | 143                                     | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - F          | 10.1          | 10,1  | 800.     | .08                   | 135.4      | 118                     | 137         | 10.2    | 133                                              | 351      | .20         | 905  | 190:             |          |
|   | 2/2            |                   | 8<br>9   | <u></u>                                         | 44.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .392         | 9.6           | 9.9   | 800.     | .08                   | 137.6      | 611                     | 137         | Sal     | 135                                              | 367      | .20         | 500  | 1064             |          |
|   | 3/1/2/         | 312.8             | 6.2      | اد                                              | 177                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13°C.        | 9.2           | 9.2   | 10       | =                     | 1013       | 117                     | 135         | 10.0    | 135                                              | 379      | .20         | 330  | 990-             |          |
|   | (%)<br>(%)     | 312.1             | 5,5      | -                                               | .483                                    | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32           | 8.8           | 8.8   | 10.      | =                     | 8.801      | 113                     | 131         | 9.0     | 133                                              | 385      | .20         | 500  | L90-             |          |
|   | XΙ             |                   | _        |                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |       |          |                       |            |                         |             |         |                                                  | ઉપવન     | $\sim$      |      | -,639            | F101     |
|   | 3/2            |                   | _        | s.                                              | .482                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .348         | 8.8           | 8.8   | 110.     | =,                    | 18.6       | 110                     | 127         | 8.1     | 132                                              | 381      | .20         | 500  | कीय:             | 500      |
|   | 3/8            |                   | 4.7      | 5.                                              | 406                                     | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 파            | 14.5          | 14.5  | 100.     | 70.                   | 143.8      | 108                     | 124         | 1.8     | 130                                              | 365      | .20         | 500  | h90:             | , Edz    |
|   | <b>之</b><br>态/ |                   | با<br>م  | 7.                                              | .43a                                    | اة.<br>ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 907          | 10.1          | 101   | .006     | ·06                   | 174.4      | 108                     | 123         | 7.8     | 130                                              | 3હા      | .20         | 200  | :063             | 707      |
|   | G (2)          |                   | 3.3      | λi.                                             | =                                       | 10,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1407         | 10.2          | 10.2  | .006     | 00                    | 172.3      | 167                     | 122         | 7.6     | 129                                              | 351      | .21         | 525  | 062              | 8        |
|   | 2/2<br>2/2     |                   |          | 7.                                              | 395                                     | % (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 410          | 10.4<br>T     | P. 0. | .018     | . 18                  | 54.4       | 104                     | 811         | 8,9     | 126                                              | 335      | .21         | 515  | 090-             |          |
|   | ۱ ا۲           | 7 : S             |          | ر,                                              | 7                                       | ρ.<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45           | 7·0           | 70.4  | S. 16.   | .15                   | 45.10      | [0]                     | 골           | 6.2     | ትሮ፤                                              | 327      | 17.         | 525  | :058             | _        |
|   | 3/3/           | _                 |          | 7-                                              | 218                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .438<br>857  |               |       | .613     | .13                   | 72.1       | 98                      | <u>6</u>    | 5.9     | <u>@</u>                                         | 318      | 12          | 525  | :056             |          |
|   | 2/2            | 308.6             | 2.0      | ري                                              | 13.7                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>a</u>     |               | 12.4  | .031     | .31                   | 25.4       | 95                      | 106         | 5,1     | 119                                              | 303      | .22         | 550  | <u> 150:</u>     |          |
|   |                | _                 |          | ~                                               | .273                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .530         | 5             | 13.4  | ትት0.     | 717                   | 15.4       | 47                      | 66          | \$<br>7 | 118                                              | 287      | .22         | 550  | :053             |          |
|   | ۱ /            |                   | -        |                                                 | , 232                                   | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .562         | 14.2          | 14.2  | .078     | .79                   | 1.3        | 88                      | 100         | 4.1     | 113                                              | 110      | .23         | 575  | .050             |          |
|   | //             |                   | ٥        | -                                               | ट्र                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 569          | 71.11         | 7.1   | . 087    | .86                   | 6.3        | 8k                      | 163         | 3.6     | 110                                              | 704      | .23         | 575  | 340:             |          |
|   |                | 308.1             | <u>.</u> |                                                 | 330                                     | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .573         | <u>デ</u><br>の | こらい   | 090.     | 16.                   | 6.0        | 28                      | 106         | 3.3     | 109                                              | 256      | .23         | 575  | 2046             | Ì        |
|   | $\sqrt{}$      |                   |          |                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |       |          |                       |            |                         |             |         |                                                  | (3814)   |             |      | 087:             |          |
|   |                |                   |          |                                                 | *************************************** | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |              |               |       |          |                       |            |                         |             |         |                                                  | 7212     | 7           |      | -1 219           | +        |

FIG 훤 वै Flow 克 B B 101 [-2.042] Static PPM Press. -527-1502 -.03b 219: BN 712 940- 009 -038 -.03b .03k -037 -037 -043 7697 -043 :043 :043 040-040: :039 hho: 009 7040-140: 625 পু 625 88 009 009 SS. 529 S S 8 575 125 00% S 000 Vate: 5//8// Technician(s): S S 25. .25 155 <u>ي</u> 1 J.C. 26 त् 23 .25 عالا. 26 J.C. ٦٢ तृ > त्र 26837 Conzil 3956 2750 206 Stack 202 210 96 9hC 233 233 25 200 237 229 207 10C 197 249 <u>で</u>る Lee ನಿವ 218 106 8/8 SZZX Calc 28 8 10 108 <u>8</u> 801 107 00 709 601 107 109 109 90 Š 109 60 Dry & C 30 4.7 4.0 <u>۲</u> و 3.0 77 47 و۔ -ゴゴ a 2 33 77 113 5 2 ت ا 113 =3 <u>ਵ</u>  $\mathbb{R}$ HHV645 2 <u>ر</u> 3 Ξ T/C(1)T/C(2) જ **Bulb** 4 47 7 <u>۵</u> द 9 ॐ G 92 93 93 7 7 76 9 3 9 Bal % % છ. 8 3,7 2.4 33 3 77 3 ر اب .× ∞ 7, 5 Uniti  $\sim$ .20 ₹: 1.38 . 8 34 1.39 .년3 49  $\overline{C}$ 員 = 33 1.27 8 ?: <del>了</del>一 **~**因 - 147 <u>.</u> & 199 . FS 88 136 23 .123 . 118 1110 .125 12 137 (A) 138 137 죠. <u>-</u> 3. 3. <u>|</u> 6.5 ₹. رة ا 18.2 ام. م ا ا 五 8 3 <u>(</u> 46 <u>√</u> . | | | | 15.8 <u>~</u> 101 ピュ <u>√</u> S.b \_ =±.€ 16.S <u>ر</u>ة ج ₹ .8 15.5 ٥.٥ ر ار ا ا I 5. 0. 15.2 5,2 C.71 019. Ş 15.8 586 र् 632 Lh a 51% 519 .le2S 593 599 <u>ج</u> <u>.</u> 3 09 9 153 249 149 さ 3.5 4.3 بى ھ ω (γ 2.5 HOCOSTOVE DATA SHEET 112 HST2-Form 14 Ray 1/88 1 <u>က</u> 3.3 0 V) φ <del>7</del> ا ال <del>ع</del> (ان ا ج 39 <u>\_\_\_</u> 图 200 173 <u>چ</u> .133 200 283 .182 134 88 <u>ئ</u> .137 <u>ج</u> . 139 142 9 Ξ 7 134 left Rate ~ Ø Ø Ø  $\boldsymbol{\varepsilon}$ w) a 9 **丁**. Scale 155 ک ∞ δ, w a Ø 306.b 56 306.1 367.9 307.6 301.3 307.2 307.8 <u>...(%)</u> 307.0 306.8 307.5 306.9 30 307.0 200 rates 306.6 307.7 3074 40 306.9 1300 307.4 불 1235 8 12 Ş S 9 8 9 3

|                                         |             |              |                           |                                              | Name of the last |      |               |         |                             |          |             |        |                                       |
|-----------------------------------------|-------------|--------------|---------------------------|----------------------------------------------|------------------|------|---------------|---------|-----------------------------|----------|-------------|--------|---------------------------------------|
| •                                       | 0.          |              | PRE BU<br>RECORD<br>WST2- | PRE BURN DATA<br>RECORD SHEET<br>WST2-FORM16 | *13              |      |               |         | Unit: ##<br>Run:<br>Page: / | HWBHS S  | X752        | Date:  | Date: $5/8/92$ Technician(s): $80.7k$ |
| 307.0                                   | ""          | T/           | T/C#-3                    | 4                                            | ស                | 9    | 7             | ထ       | 6                           | ]<br>    |             |        |                                       |
| 5 k                                     |             | Burn<br>Rate | Stack                     | Stove<br>Top                                 | Left<br>Side     | Back | Right<br>Side | Bottom  | Firebox                     | 2nd Burn |             | Statto | Commonte                              |
| 15 CENT                                 |             | 0            | 437                       | 109                                          | 527              |      | -38c          | 144     | 128                         | 12/6     | <del></del> | -,068  | Primary Air Set at 200                |
| B 1                                     |             | 2            | 346                       | 385                                          | 517              | hbh  | 186           | 445     | 88/1                        | 1162     | 82          | -,060  |                                       |
| ラ/<br>点/                                | _           | 5            | छ                         | ħbh                                          | 497              | 21   | 374           | 844     | T5//                        | 1089     | 78          | -058   | Fan: $OF\mathcal{F}$                  |
| $\setminus$                             |             | G            | 33%                       | 462                                          | 479              | 808  | 355           | 448     | 1016                        | E00/     | 77          | -,055  | 8                                     |
| 3/                                      | 308,4       | 23           | 335                       | 453                                          | 468              | 930  | 347           | 944     | 1,654                       | 027/     | 7           | -060   | 23                                    |
|                                         | 1000 3V7, 9 | 2            | 333                       | 514                                          | 8                | 900  | 334           | hhh     | 1059                        | 1331     | 76          | -058   |                                       |
| 8/2<br>8/                               | 3           | 23           | 318                       | 496                                          | 443              | 503  | 331           | 438     | 6501                        | 1/80     | 2/2         | -056   | Pumps turned on at: 1000              |
| \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 307.2       | .4.          | 304                       | 468                                          | 425              | 684  | 330           | 431     | 1028                        | 082/     | 7/6         | -,055  |                                       |
| M                                       | 367.0       | لار          | 302                       | 455                                          | 414              | 087  | 3/6           | 456     | 1101                        | 1236     | 77          | -,055  |                                       |
| 3/2                                     | 30e.8       | .2           | 791                       | 450                                          | 404              | 476  | 310           | 421     | 816                         | 8611     | 76          | 1-924  | Check WB/DB: N7/WA                    |
| 12/2                                    | 30k.7       | -            |                           | 413                                          | 395              | 41   | 306           | 418     | 9Eb                         | 916      | 76          | - 152  | J                                     |
| 8V<br> S                                | 366.6       | _            | 256                       | 375                                          | 387              | 197  | 302           | 416     | 916                         | 888      | 76          | 840:-  |                                       |
| XL                                      | - 1         | ];           | ì                         |                                              |                  |      |               | <u></u> |                             |          |             |        |                                       |
| M                                       | 306.6       | 8            | 25%                       | 358                                          | 383              | 453  | 394           | 414     | 918                         | hel      | 76          | 370.   | 380.8                                 |
| 3/2<br>3/2                              |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| $\prod$                                 |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| 3/8                                     |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| 9/33<br>3/3                             |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| 17                                      |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
|                                         |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| $\sqrt{}$                               |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
|                                         |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| 1                                       |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| $\sqrt{}$                               |             |              |                           |                                              |                  |      |               |         |                             |          |             |        |                                       |
| $\sqrt{}$                               |             |              |                           |                                              |                  | 1    |               |         |                             |          |             |        | •                                     |
|                                         |             |              |                           |                                              |                  | 1    |               |         |                             |          |             |        |                                       |
|                                         |             |              |                           |                                              |                  |      |               |         |                             | ·        |             |        |                                       |

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EEMC                                                                                  | - West,         | Kent,        | WA 98032 | Date:             | 5/18/9       | Analy    | yte: <u>02 (1</u> | 5-2)           |  |  |  |
|---------------------------------------------------------------------------------------------|-----------------|--------------|----------|-------------------|--------------|----------|-------------------|----------------|--|--|--|
| source: HA                                                                                  | UGHS S          | 270          | Series   | Run #:            |              | 5        |                   |                |  |  |  |
| Zero Cyl #:                                                                                 | T 13:           | 2257         | Co       | nc. <u>00.0</u> % | 02           | Cyl Pre  | ess: <u>800</u>   | psi            |  |  |  |
| Certifie                                                                                    | d by:           | LIQU         | 10 A1    | <u>e</u>          |              | ····     | Date: 10/7/       | 191            |  |  |  |
|                                                                                             |                 |              |          |                   |              |          | ess: <u>900</u>   |                |  |  |  |
| Certifie                                                                                    | d by:           | MATH         | NOZSH    |                   |              |          | Date: 10/3        | 1/91           |  |  |  |
| Analyzer:                                                                                   | Make: T         | eledyn       | e        | Model: 3          | 20 Ax        |          | SN: 37465         | 5              |  |  |  |
|                                                                                             |                 |              |          |                   |              |          | 0                 |                |  |  |  |
|                                                                                             |                 |              |          |                   |              |          | Flowmeter         |                |  |  |  |
| EPA Span Va<br>EPA Control                                                                  |                 |              |          |                   |              |          |                   |                |  |  |  |
|                                                                                             |                 |              |          |                   |              |          | Temp:             | O <sub>F</sub> |  |  |  |
| Pre Run Aud                                                                                 | <u>it</u> : By: |              |          |                   |              | <u> </u> | 16mb              |                |  |  |  |
|                                                                                             | <u>,</u>        |              |          | udit Resu         | lts          |          | + Conc.           |                |  |  |  |
| Point                                                                                       | Expect          | ed Res       | ponse    | Meter             | DVM          | & Sponse | Difference        | <b>∆</b> 8     |  |  |  |
| # Meter DVM &                                                                               |                 |              |          |                   |              |          |                   |                |  |  |  |
| Zero 00.0 .000 00.0 .3 .005 .023 .023 .1090 Span 12.4 .496 12.4 12.5 .501 12.675 .275 2.221 |                 |              |          |                   |              |          |                   |                |  |  |  |
| Span                                                                                        | 12.4            | .496         | 12.4     | 12,5              | .801         | 12.675   | 1275              | 2,22)          |  |  |  |
| Comments:                                                                                   | Teledyne        | #2 <u>Cy</u> | 1 % E    | xp % A            | ct %         | Adjt     | <u>ο + Δ</u> &    |                |  |  |  |
|                                                                                             |                 |              |          |                   |              |          |                   |                |  |  |  |
|                                                                                             |                 |              |          |                   |              |          | <u> </u>          |                |  |  |  |
| Post Run Au                                                                                 | dit: By         | 7:           | OK       | Time              | e: <u>14</u> | 25       | Temp.: 77         | o <sub>F</sub> |  |  |  |
| ļ                                                                                           |                 |              | A        | udit Resu         | lts          |          |                   |                |  |  |  |
| Point                                                                                       | Expect          | ed Res       | ponse    |                   | ual Res      |          | + Conc.           | <b>₽ ∆</b>     |  |  |  |
| #                                                                                           | Meter           | DVM          | *        | Meter             | DVM          | - 8      | Difference        |                |  |  |  |
| Zero                                                                                        | 00.0            | .000         | 00.0     | 00.0              | .004         | 7,003    | 003               | -0.12          |  |  |  |
| Span                                                                                        | 12.4            | 1496         | 12.4     | 12.4              | .494         | 12.497   | .097              | .781           |  |  |  |
| Comments:                                                                                   | Teledyne        | #2 Cy        | 1 % E    | xp & A            | ct %         | Adj t    | <u>ο + Δ %</u>    |                |  |  |  |
| K                                                                                           |                 | -            |          |                   |              |          |                   |                |  |  |  |
|                                                                                             |                 |              |          |                   |              |          |                   | <del></del>    |  |  |  |
| . Com - D3 5                                                                                | <del></del>     |              | 9 - Eyn  | (043)             |              |          |                   |                |  |  |  |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EE                                 | MC - West,                           | Kent,     | WA 98032 | Date:             | 5/18/92        | Anal         | yte: <u>CO (</u>             | 15-3)           |  |  |  |  |  |
|------------------------------------------|--------------------------------------|-----------|----------|-------------------|----------------|--------------|------------------------------|-----------------|--|--|--|--|--|
| Source:                                  | HAUGHS                               | S270      | SERIE    | S Run #           | •              | 5            |                              |                 |  |  |  |  |  |
| Zero Cyl                                 | #: <u>T13</u>                        | 2257      | Co       | nc. <u>00.0</u> % | co             | Cyl Pr       | ess: <u>800</u>              | psi             |  |  |  |  |  |
| Certi                                    | fied by: _                           | Liqu      | 110 A16  | 2                 |                |              | Date: 10/7                   | 191             |  |  |  |  |  |
| Span Cyl                                 | #: _2900                             | 24        | Co       | nc. 4.96 %        | co             | Cyl Pr       | ess: 900                     | psi             |  |  |  |  |  |
| Certi                                    | fied by: _                           | MATH      | IESON    |                   |                |              | Date: 10/3                   | 31/91           |  |  |  |  |  |
| Analyzer                                 | : Make:_                             | Horiba    |          | Model: P          | IR-2000        |              | SN: 408                      | 005             |  |  |  |  |  |
| Range:                                   | 0 - 10.0%                            | со        | An       | alyzer Ou         | tput:          | 0 - 1.       | 0                            | v.              |  |  |  |  |  |
| Flow:                                    | 1.5 SCFH                             |           | Measu    | red by:           | Rotamet        | er: <u>X</u> | Flowmet                      | er:             |  |  |  |  |  |
|                                          | Value = 1<br>rol Limits              |           |          | 0% CO = ±         | 0.25%          | со           |                              | ·               |  |  |  |  |  |
| Pre Run                                  | Audit: By                            | <b>7:</b> | BN       | Tim               | e: <u>105</u>  | 20           | Temp: <u>76</u>              | o <sub>F</sub>  |  |  |  |  |  |
|                                          | _                                    |           |          | udit Resu         | lts            | <u>-</u>     |                              |                 |  |  |  |  |  |
| Point<br>#                               |                                      | ted Res   |          | Act<br>Meter      |                |              | <u>+</u> Conc.<br>Difference | <b>A</b> &      |  |  |  |  |  |
| Zero 00.0 .000 00.0 00.0 1000 -004004044 |                                      |           |          |                   |                |              |                              |                 |  |  |  |  |  |
| Span                                     | 110 1 1101 1102 1103 (110 150 1.171) |           |          |                   |                |              |                              |                 |  |  |  |  |  |
| Comments                                 | <u></u>                              |           |          |                   |                |              |                              |                 |  |  |  |  |  |
| COMMETTES                                | •                                    |           |          |                   |                |              |                              |                 |  |  |  |  |  |
|                                          |                                      |           |          |                   |                |              | ·                            |                 |  |  |  |  |  |
| Post Run                                 | Audit: B                             | y:        | O K      | Tim               | e:             | 430          | Temp.: 7                     | 7o <sub>F</sub> |  |  |  |  |  |
|                                          |                                      |           |          | udit Resu         |                |              |                              |                 |  |  |  |  |  |
| Point<br>#                               | Expec<br>Meter                       | ted Res   | sponse   | Act<br>Meter      | ual Res        | ponse<br>%   | + Conc.<br>Difference        | Δ &             |  |  |  |  |  |
|                                          |                                      | .000      | 00.0     | 00.0              | .000           | -,004        | :004                         | 044             |  |  |  |  |  |
| Zero<br>Span                             | 00.0<br>49.6                         | . 496     | 4.96     | 49.2              | .492           | 5008         | .048                         | 969             |  |  |  |  |  |
|                                          | <u> </u>                             |           |          |                   | , ·            |              |                              |                 |  |  |  |  |  |
| Comments                                 | :                                    |           |          |                   |                |              |                              |                 |  |  |  |  |  |
| + Conc.                                  | Difference                           | = Act     | % - Exp  | (Std) %           |                |              | <u> </u>                     |                 |  |  |  |  |  |
|                                          | ifferece =                           |           |          |                   | <u>m)</u> X 10 | 0            |                              |                 |  |  |  |  |  |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EEMC                                     | - West,        | Kent,     | WA 98032    | Date:        | 5/16/        | 21 Anal       | Lyte: <u>SO</u> 2     | (15-4)           |  |  |  |  |
|------------------------------------------------|----------------|-----------|-------------|--------------|--------------|---------------|-----------------------|------------------|--|--|--|--|
| Source: H                                      |                |           |             |              |              |               |                       |                  |  |  |  |  |
|                                                | •              |           |             |              |              |               | ress: <u>800</u>      | psi              |  |  |  |  |
| Certifie                                       | ed by: _       | Liau      | O AIR       |              |              |               | Date: 10              | 7/91             |  |  |  |  |
|                                                |                |           |             | _            |              |               | ess: <u>45</u>        |                  |  |  |  |  |
|                                                |                |           | •           |              |              |               | Date: 9/2             |                  |  |  |  |  |
|                                                |                |           |             |              |              |               | SN: 403               | •                |  |  |  |  |
|                                                |                |           |             |              |              |               | . 0                   |                  |  |  |  |  |
| Flow: 1.5                                      | SCFH           |           | Meası       | red by:      | Rotame       | ter: X        | <pre>flowmet</pre>    | er:              |  |  |  |  |
| EPA Span Va                                    | alue = 2       | 2500 ppr  | n SO2       |              |              |               |                       |                  |  |  |  |  |
| Pre Run Aud                                    | lit: By        | <b>7:</b> | 3N          | Tim          | e: _ /       | 000           | Temp: <u></u>         | Ø o <sub>F</sub> |  |  |  |  |
|                                                |                |           | •           | Audit Resu   |              |               |                       |                  |  |  |  |  |
| Point                                          |                | ted Res   |             | Act          |              |               | + Conc.<br>Difference | Λ a              |  |  |  |  |
| #                                              | Meter          | DVM       | ррш         | Meter        |              | ppm           |                       |                  |  |  |  |  |
| zero 00.0 .000 00.0 00.0 1000 3.440 3.440 .138 |                |           |             |              |              |               |                       |                  |  |  |  |  |
| Span                                           | 49.3           | .493      | 1232        | 49.5         | .495         | 1/238.        | 6.992                 | ,568             |  |  |  |  |
| Comments:                                      | •              |           |             |              | 4            |               |                       |                  |  |  |  |  |
|                                                |                |           |             |              |              |               |                       |                  |  |  |  |  |
| Post Run Au                                    | dit: E         | y:        | DK          | Tim          | e: <u> </u>  | 110           | Temp: 78              | o <sub>F</sub>   |  |  |  |  |
|                                                |                |           |             | Audit Resu   |              |               |                       |                  |  |  |  |  |
| Point<br>#                                     | Expec<br>Meter | ted Res   |             | Act<br>Meter | ual Re       |               | + Conc.<br>Difference | ₽ &              |  |  |  |  |
| Zero                                           | 00.0           | .000      | ppm<br>00.0 | 00.3         | .003         | ppm<br>10.928 | 10.928                | .437             |  |  |  |  |
| Span                                           | 49.3           | .493      | 1232        | 49.3         | .493         | 1234.         | 2.000                 | .162             |  |  |  |  |
|                                                | I              |           |             | <u> </u>     | <del> </del> |               |                       |                  |  |  |  |  |
| Comments:                                      |                |           |             |              |              |               |                       |                  |  |  |  |  |
| + Conc. Dif                                    | ference        | = Act     | ppm - Ex    | p (Std) p    | om.          |               |                       |                  |  |  |  |  |

Run:

Date: 5/8/92

Technicians: BN 72 DK J5

WST6-Form3-Rev11/89

## QUALITY CHECKS WOODSTOVE DATA SHEET #16

| Ambient = Tr:                                                                               | 10,0                 | _of T/C          | #30: <u>/3,</u> | <u>7</u> °F                                    |
|---------------------------------------------------------------------------------------------|----------------------|------------------|-----------------|------------------------------------------------|
| Thermocouple Check (at                                                                      | ambient): T/C#1:     | 72.4             | _°F;T/C#2:      | <i>72,4</i> °F;                                |
| T/C #3: 73,2 °F;                                                                            | T/C #4: 73,0         | o <sub>F</sub> ; | T/C #5:         | <i>72.8</i> °F;                                |
| T/C #6: 72,8 °F;                                                                            | T/C #7:              | °F;              | T/C #8:         | <i>72.7</i> _°F;                               |
| T/C #9: 72.9 °F;                                                                            | T/c #10: 12.         | o <sub>F</sub> ; | T/C #11:        | 12,2 °F;                                       |
| T/C #12: 73,2 of;                                                                           | T/C #13: 72.6        | °;               | T/C #14:        | 72,7 of;                                       |
| T/C #15: 73.3 °F;                                                                           | T/C #16: 71.7        | oF;              | T/C #17:        | 72.1 °F;                                       |
| T/C #18: 73,0 °F;                                                                           | T/C #19:             | °;               | T/C #20:        | o <sub>F</sub> ;                               |
| T/C #21:OF;                                                                                 | T/C #22:             | oF;              | T/C #23:        | oF;                                            |
| T/C #24:OF;                                                                                 | T/C #25:             | °;               | T/C #26:        | o <sub>F</sub> ;                               |
| Comments:                                                                                   |                      |                  |                 |                                                |
|                                                                                             |                      |                  |                 |                                                |
|                                                                                             |                      |                  |                 |                                                |
|                                                                                             | •                    |                  |                 |                                                |
| Thermocouple Readout:                                                                       |                      |                  |                 |                                                |
| Pretest Zero/Span Check<br>Zero Adj                                                         | 10                   | Table 01.        | eck % D:        | ifference                                      |
| (0°F) : // °F to:                                                                           | O of Zero            | (0°F):_          | . ம °F          | <u>,030                                   </u> |
| Span (2000°F): 200/,4 °F to:                                                                | 2000.0 °F (2         | 000°F):2         | 003.6°F         | 180                                            |
| (Allowable % Difference                                                                     |                      |                  | •               |                                                |
| #15 to calculate % Diffe                                                                    | rence)               |                  |                 |                                                |
|                                                                                             |                      |                  |                 |                                                |
| Thermocouple Readout Pre                                                                    | test Linearity C     | heck             |                 |                                                |
| 0°F = oF; 2                                                                                 | 00°F = <u>201.8</u>  | _°F; 40          | )°F = 3991      | /o <sub>F</sub> ;                              |
| 600°F = 60/6 °F; 8                                                                          | 00°F = 801.8         | _oF; 1000        | )°F = /00/.     | <u>2</u> ∘ <sub>F</sub> ;                      |
| 1200°F= //98.8 °F; 14                                                                       |                      |                  | )°F = /600.     | Cor                                            |
| 1800°F= /80/,0 °F; 20                                                                       | 00°F = <u>2000.0</u> | o <sub>F</sub>   |                 |                                                |
|                                                                                             |                      |                  | •               |                                                |
| Tracer Gas (SO <sub>2</sub> ) Injecti                                                       | on Train Leak Ch     | eck: Pro         | Post_           | _                                              |
| Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ,C<br>Tracer Gas (SO <sub>2</sub> ) Analyze | O) Train Leak Ch     | eck: Pro         | Post            | _                                              |
| Tracer Gas (SO <sub>2</sub> ) Analyze                                                       | r Train Leak Che     | ck: Pre          | Post            | <u> </u>                                       |
| Draft (Static) Guage Zer                                                                    |                      |                  | Post_           |                                                |
|                                                                                             |                      |                  |                 | •                                              |
| Scale Check Pre (Wt, #18                                                                    | <b></b>              | _                |                 |                                                |
| Post (Wt. #'                                                                                | ): 316.2 - 300       | 6,2 = 10         | )               |                                                |
| <del></del>                                                                                 | s): 316.4-301        | o.4 = 10         | . 0             |                                                |
| Stack cleaned prior to t                                                                    | s): 316.4-301        | o.4 = 10         | . 0             |                                                |

CLIENT: HAUGHS PRODUCTS

TEST No. :

DATE: 5/18/92 MODEL: S-27X \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* **METER** PERCENT PERCENT S02 **DELTA** TIME METER CO CO2 COCENTR. READING Н TEMP. ( % ) PPM ( % ) (C F) (IN. H20)(DEG. F) (MIN.) \_\_\_\_\_ ======= \_\_\_\_\_ 0 750.000 0.150 87 0.84 4.90 625 87 0.45 2.80 475 5 0.260 751.500 88 0.50 2.40 600 10 753.537 0.160 89 0.49 3.20 600 755.156 0.160 15 20 756.780 0.160 90 0.53 3.20 600 0.180 90 0.51 3.90 575 25 758.411 91 5.10 550 30 760.113 0.190 0.57 91 35 761.898 0.190 0.69 6.00 550 91 0.58 40 763.683 0.210 8.90 525 92 45 765.553 0.240 0.27 10.20 500 50 767.524 0.260 92 0.23 10.60 475 0.260 55 769.598 92 0.22 10.90 475 0.260 93 0.18 10.60 475 60 771.672 65 773.754 0.260 93 0.39 11.70 475 93 500 70 775.836 0.240 0.31 11.90 93 475 75 777.815 0.260 0.21 10.00 0.260 94 9.70 475 80 779.897 0.13 94 85 781.986 0.260 0.149.00 475 94 90 784.076 0.260 0.15 8.50 475 95 786.166 0.260 94 0.37 7.70 475 100 788.256 0.240 94 0.59 7.10 500 105 790.241 0.240 94 0.77 6.10 500 792.226 94 0.96 5.90 500 110 0.240 794.212 94 115 0.2401.03 5.60 500 120 796.197 0.240 94 500 1.09 5.60 93 1.13 125 798.185 0.240 5.30 500 1.16 5.00 130 800.165 0.230 94 500 94 135 802.153 0.230 1.37 4.80 500 140 804.140 0.230 95 1.39 4.60 500 145 806.135 0.230 95 4.30 500 1.39 150 95 808.129 0.230 1.44 4.00 500 155 810.124 0.210 95 1.47 3.80 525 160 812.024 0.210 95 1.54 3.40 525 165 813.924 95 0.210 1.49 3.30 525 170 815.824 95 0.190 1.48 3.20 550 3.30 175 817.638 0.190 95 1.50 550 180 819.451 0.190 95 1.45 3.10 550 185 95

### TABLE 2 ---- FIELD DATA

| second . | CLIENT : HAUGHS PR       | ODUCTS      | TEST No. :             | 6                |
|----------|--------------------------|-------------|------------------------|------------------|
| (m)      | MODEL: S-27X ********    | *****       | DATE:<br>********      | 5/18/92<br>***** |
|          | METER CAL.<br>FACTOR (Y) | 1.066       | Wt. WOOD<br>BURNED(LB) | 9.7 Lbs          |
|          | BAROMETRIC<br>PRESS.(Pb) | 30.01 in Hg | WET, FUEL MOISTURE %   | 17.167 %         |
|          | LEAK RATE POST (Lp)      | 0.004 cfm   | Wt. PART.<br>COLLECTED | 0.6855 g         |
| J        | WATER VOL. (V1c)         | 106.8 Ml    | METER<br>VOLUME Vm     | 69.451 mcf       |
|          | TEST<br>TIME (MIN)       | 180 min     | HC MOLE<br>FRACTION    | 0.0132           |

#### TABLE 3 ----FIELD DATA AVERAGES

| $V \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |                 |             |                  | •        |                   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------------|------------------|----------|-------------------|------|
| `\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLIENT :              | HAUGHS PRO      | DUCTS       |                  | TEST No. | : 6               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODEL:                | S-27X<br>****** | *****       | ****             | DATE:    | 5/18/92<br>:***** | **** |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | AVG DELTA<br>H        |                 | 0.22 in H2O | AVG PRCNT<br>CO  | ·        | . 0.78            | 8    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG METER<br>TEMP. Tm |                 | 93 deg F    | AVG PRCNT<br>CO2 |          | 6.21              | ક    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG PPM<br>SO2        |                 | 516 PPM     |                  |          |                   | e.   |

#### - CALCULATIONS

Name of the last

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | TABLE 4               | CALCULATIONS                   |                   |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------------------|-------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLIENT : HAUGHS PRO      | DUCTS                 | TEST No. :                     | 6                 | :               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MODEL: S-27X ********    | ****                  | DATE:                          | 5/18/92<br>****** | *****           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STD SAMPLE VOL. Vm(std)  | 70.97 dscf            | STACK GAS<br>FLOW Qsd          | 526.627           | dscf/Hr         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |                                | 8.78              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOL. WATER VAPOR Vw(std) | 5.027 scf             | PARTICULATE CONCTRT. C s       | 0.0097            | g/dscf          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRCNT<br>MSTR Bws        | 6.62 %                | PARTC.EMISS.<br>RATE E         | 5.09              | g/Hr            |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | BURN<br>RATE BR          | 1.22 Kg/Hr            | MOLES OF GAS<br>PER Lb WOOD Nt | 0.51              | Lb-mole/Lb      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO EMISSION RATE         | 138.27 g/Hr<br>&      | PART.EMISS.<br>RATE            | 4.18              | g/Kgdry<br>fuel |
| 7 to 2 to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | 113.71 g/Kgdr<br>fuel |                                |                   |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |                                |                   |                 |

TABLE 5 ---- PROPORTIONAL RATE VARIATION

### HAUGHS PRODUCTS

TEST No. :

6

| TIM<br>INTEV<br>Ti | AL             | PPM<br>*<br>Vm  | PROPRTN. RATE VAR. PR |                                          | PROPE<br>RATE<br>AVERA | VAR. |       |      |      |     |
|--------------------|----------------|-----------------|-----------------------|------------------------------------------|------------------------|------|-------|------|------|-----|
| =====              |                |                 |                       |                                          |                        | 100  | ===== | ===  | ==== |     |
|                    | 5              | 968.1           | 96<br>99              |                                          |                        | 100  |       |      |      | -   |
|                    | 10<br>15       | 998.5<br>1000.4 | 99                    |                                          |                        |      |       |      |      |     |
|                    | 20             | 1000.4          | 99.                   |                                          |                        |      |       |      |      | :   |
|                    | 25             | 1001.0          | 100                   | •                                        |                        | •    |       |      |      |     |
|                    | 30             | 1003.0          | . 99                  |                                          | 4                      |      |       |      | •    |     |
|                    | 35             | 1004.2          | 100                   |                                          | 4                      |      |       |      |      |     |
|                    | 40             | 1006.5          | 100                   |                                          |                        |      |       |      |      | :   |
|                    | 45             | 1005.6          | 100                   |                                          |                        |      | • •   |      |      |     |
| •                  | <del>5</del> 0 | 1008.7          | 100                   |                                          |                        |      | **    |      |      |     |
|                    | 55             | 1008.3          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 60             | 1007.4          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 65             | 1010.4          | 100                   | •                                        |                        |      |       |      |      |     |
|                    | 70             | 1010.4          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 75<br>75       | 1010.9          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 80             | 1009.5          | 100                   |                                          |                        | 1.0  |       |      |      |     |
|                    | 85             | 1012.0          | 100                   |                                          |                        |      | ,     |      |      | :   |
|                    | 90             | 1012.5          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 95             | 1012.5          | 100                   |                                          |                        |      | • * • |      |      | :   |
|                    | 100            | 1012.5          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 105            | 1012.1          | 100                   |                                          |                        |      |       |      |      | •   |
|                    | 110            | 1012.1          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 115            | 1012.7          | 100                   | •                                        |                        | *    | 4.5   |      |      |     |
|                    | 120            | 1012.1          | 100                   |                                          |                        | 7    | •     |      |      |     |
|                    | 125            | 1014.6          | 101                   |                                          |                        |      |       | 4,11 |      | :   |
|                    | 130            | 1010.5          | 100                   | 1.0                                      |                        | *    |       |      |      |     |
|                    | 135            | 1013.7          | 100                   |                                          |                        |      |       |      |      |     |
|                    | 140            | 1012.2          | 100                   |                                          |                        |      |       |      |      | :   |
|                    | 145            | 1015.4          | 101                   |                                          |                        | -    |       |      |      |     |
|                    | 150            | 1014.9          | 101                   |                                          |                        |      |       | . *  |      |     |
|                    | 155            | 1015.4          | 101                   | e en en en en en en en en en en en en en |                        |      |       |      | * •  |     |
|                    | 160            | 1015.3          | 101                   |                                          |                        |      |       |      |      |     |
|                    | 165            | 1015.3          | 101                   | 4.5                                      |                        |      |       |      |      |     |
|                    | 170            | 1015.3          | 101                   | •                                        |                        |      |       |      |      |     |
|                    | 175            | 1015.5          | 101                   |                                          |                        |      | +     |      |      |     |
|                    | 180            | 1014.9          | 101                   |                                          |                        |      |       |      |      |     |
|                    | 185            |                 |                       |                                          |                        |      | •     |      |      | -   |
| 100                | 190            |                 |                       |                                          |                        |      |       |      |      | . : |

| Client Haughs Produ                                       |                                                            | · · · · · · · · · · · · · · · · · · · |
|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------|
| Client Address 10 Otlas Cou<br>Bramp Ton, On              | tario. Canada 16T                                          | 561                                   |
| Client Phone 4/6-192-800                                  | 6                                                          |                                       |
| Project No Model No                                       | S 210X                                                     |                                       |
| Run No. 6 Date of Test 5                                  | 8/92 Est Grams/Hr                                          |                                       |
| Stove Type: Cat Non Cat                                   |                                                            | •                                     |
| Data To Be Submitted To: Oregon                           | X Colorado EPA X                                           | •                                     |
| Burn Category: Low (<0.8 Kg/Hr)<br>Med Low (0.8 - 1.25    | Med Hi (1.26 - 1.90 Kg<br>Kg/Hr) <u>  06 Max</u> (>1.9 Kg/ | /Hr)<br>Hr)                           |
| Fuel % Moisture (dry) 00.705<br>(00.00) (Data Sheet #10)  |                                                            | <u> </u>                              |
| Stack Static Pressure<br>(0.000) (Data Sheet #12)         | -048                                                       | "H <sub>2</sub> 0                     |
| Barometric Pressure(00.00) (Data Sheet #2)                | 30.01                                                      | "Hg                                   |
| Temperature (Average Room) Combusti (00) (Data Sheet #14) | , - /                                                      | o <sub>F</sub>                        |
| lue Gas Moisture<br>(00.000) (Data Sheet #7)              | 6.6165                                                     | %                                     |
| Ambient Moisture<br>(0.00) (Data Sheet #8)                | 1.3 /                                                      | <u>"</u> ".                           |
| Stove Weight(000) (Data Sheet #8)                         | 231                                                        | lbs                                   |
| Stove Temperature Change<br>(000) (Data Sheet #14)        | -47                                                        | o <sub>F</sub>                        |
| Particulate Emission(0.0000) (Data Sheet #7)              | 1491                                                       | gr/dscf                               |
| Fuel Higher Heating Value (dry)<br>(0000) (CT&E Sheet)    | ·                                                          | вти/1ь                                |
| Fuel Type: Wood: X Pellets                                | i                                                          |                                       |
| otal Fuel Consumed During Burn(00.0) (Data Sheet #8)      | 9,7                                                        | lbs                                   |
| otal Particulate Catch(0.0000) (Bata Sheet #6)            | 16855/                                                     | 9                                     |
| 1 <sub>2</sub> 0 Captured(00.0) (Data Sheet #3)           | 106.2                                                      | 9                                     |
| ry Gas Meter Volume(00.000) (Data Sheet #2)               | 69.451                                                     | CF /                                  |
| Pry Gas Meter: Y Factor: 45-1066                          | _ Post Test Leak Rate /O                                   | OU CFM                                |
| DOOD CONF #                                               |                                                            |                                       |

Page 1 of Unit: 1406145 507X

Run: 6 Date: 5/18/92

Operator(s): 55

Nozzle: Probe @ 3/8 " od

Initial Volume: 1,500

Inject SO2 @ 100 cc/min

| ROTO       | PRESS:  | 180              | Sampling | Ratio :        | 18         | : 1           | BAROM      | ETER:3       | 003  |
|------------|---------|------------------|----------|----------------|------------|---------------|------------|--------------|------|
| MN         | TIME    | METER<br>READING |          | STACK<br>DSCFM | DELTA<br>H | METER<br>TEMP | S02<br>PPM | ROTO<br>TEMP | PUMP |
| 00         | 1605    | 750,000          |          | 5,518          | 15         | 87            | 625        | 83           | 0    |
| 05         | 10      | 151,500          | •        | 7.061          | 126        | 87            | 475        | 23           | 0.5  |
| 10         | 15      | 753,537          |          | 5.748          | 16         | 88            | 600        | 83           | 10   |
| 15         | D       | 155.156          |          | 5,748          | 16         | 29            | 600        | 83           | 15   |
| 20         | 26      | 156,180          | •        | 5,748          | -16        | 90            | 600        | <i>8</i> 3   | -5   |
| 25         | 30      | 758,411          |          | 5,998          | , 18       | 90            | 575        | <u>83</u>    | 15   |
| 30         | 35      | 760.113          |          | 6271           | , 19       | 91            | 550        | <i>2</i> 3   | 10   |
| 35         | 40      | 761.898          | •        | 6071           | -19        | 91            | 550        | 23           | 1.0  |
| 40         | 45      | 763.683          |          | 6.569          | 01         | 91            | 525        | 83           | 1.0  |
| 45         | 50      | 165,553          |          | 6898           | .24        | 90            | 500        | <u>8</u> 3   | 1,0  |
| 50         | 55      | 167.504          |          | 2261           | 126        | 90            | 475        | <i>2</i> 3   | 1.0  |
| 55         | 1700    | 161598           |          | 1261           | 26         | 99            | 475        | 83           | 115  |
| ROTO       | PRESS:  | _20              | TOTALS : | 16.552)        | (D4B)      | (1080)        | BAROM      | ETER:        | 3008 |
| 60         | 5       | 771.672          |          | 7.872          | 106        | 93            | X25        | <u>ea</u>    | 1-5  |
| <b>6</b> 5 | 10      | 113.154          |          | 7270           | -26        | 93            | 425        | 80           | 15   |
| 70         | . 15    | 775.836          |          | 6999           | 124        | 93            | 520        | <u> 20</u>   | 15   |
| 75         | Đ       | 111.815          |          | 1295           | 186        | 93            | 4,15       | 81           | 1-5  |
| 80         | 25      | 179.897          |          | 7085           | -26        | 94            | 415        | 81           | 15   |
| 85         | 30      | 781.986          |          | 7-085          | 106        | 94            | 475        | 18           | 15   |
| 90         | 35      | 184.096          |          | 2085           | 196        | 94            | 415        | 81           | 15   |
| 95         | 40      | 786.166          |          | 7-285          | 106        | 94            | 475        | 21           | 1.5  |
| 100        | 45      | 128.256          |          | 6901           | 124        | 94            | 500        | 21           | 1-5  |
| 105        | 50      | 190,041          |          | 6.901          | 04         | 94            | 500        | 81           | 15   |
| 110        | - 55    | 198.886          |          | 6.901          | 184        | 94            | 800        | 181          | 1-5  |
| 115        | 1800    | 794212           | -        | 4.901          | 124        | 94            | 500        | 8            | 15   |
|            |         |                  | TOTALS:  |                | (3.00)     |               | MAX VI     |              |      |
| TOTAL      | . CU FT |                  | TOTALS:  | 1621131        | 5,44/      | 220cl         | AV BP      | 205          |      |

60.05

Meter Box Data Sheet Page # 2

Meter Box 45 Y Factor 1.066

Leak Checks: 150 " Hg @ .0001 cfm cfm cfm cfm cfm cfm cfm cfm cfm

Unit:  $\frac{HAUGHS}{SON}$ Run: 6 Date:  $\frac{518190}{SON}$ Operator(s):  $\frac{5}{SON}$ 

Nozzle: Probe @ 3/8 " od

Initial Volume: 1500

Inject SD2 @ 100 cc/min

| ROTO        | PRESS:                                | .80              | Sampling     | Ratio:         | _18        | : 1           | BAROME     | ETER 2                       | 9-99         |
|-------------|---------------------------------------|------------------|--------------|----------------|------------|---------------|------------|------------------------------|--------------|
| MN          | TIME                                  | METER<br>READING |              | STACK<br>DSCFM | DELTA<br>H | METER<br>TEMP | 202<br>Mqq | ROTO<br>TEMP                 | PUMP         |
| 120         | 5                                     | 196-197          |              | 6.914          | A4.        | 94            | 80         | .81                          | 1-5          |
| 125         | 10                                    | 798.185          |              | 6-914          | 124        | 93            | 200        | 81                           | 15           |
| 130         | 15                                    | 800,165          |              | 6.901          | , D3       | 94            | SX)        | 80                           | 15           |
| 135         | 20                                    | 202153           |              | 6901           | 43         | 94            | 800        | 20                           | 15           |
| 140         | <i>D</i> 5                            | 804-140          |              | 6.888          | 23         | 95            | <u> </u>   | <u>83</u>                    | 15           |
| 145         | 30                                    | 800.135          |              | 6.888          | -03        | 95            | 500        | 23                           | 15           |
| 150         | <u>35</u>                             | 808-109          |              | 6-888          | 103        | 95            | 500        |                              | 1-5          |
| 155         | 40                                    | 210104           |              | 6560           | 121        | 195           | 565        | 83<br>Ø1                     | 15           |
| 160         | ŲŞ                                    | 810,004          | <del>[</del> | 6.548          | 2          | 95            | 565        | 24<br>24                     |              |
| 165         | <u> </u>                              | 813.904          |              | 6.542          | .01        | 95            | 200        | 84                           | 15           |
| 170         | <u> 55</u>                            | 85.844           | <del>}</del> | 020            | -19        | 95            | (30)       | 84                           | 10           |
| 175         | 1900                                  | 1217-638         |              | 6005           | 0 1 18     | 75            | BODOM      | <u>ГОЧ</u><br>ETER: <u>¢</u> | <del></del>  |
| ROTO        | PRESS:                                | <u> </u>         | TOTALS:      | 180,450        | (4)-64°)   | (1135)        | 550        | 184                          | 1.0          |
| 180         | 3                                     | 819.451          | 1            | 6051           | 19-        | (95)          | <u> </u>   | 001                          |              |
| 185         | 10                                    |                  | <br>         | 6.8513         | 191        |               | <u> </u>   |                              |              |
| 190         | 15                                    |                  | -            | 048,816        | 8.073      | 3434          | 1375       |                              |              |
| 195         | 10                                    |                  | -            | 240,010        | 01012      | 301           | 017        | 1                            |              |
| 200         | 25                                    | <u> </u>         | -            | 6705           | (1204)     | 1934          |            |                              |              |
| 210         | 30                                    |                  | 1            | (0,10)         | 7009       |               |            |                              | <del> </del> |
| 215         | 25                                    |                  | †            |                | //         | 553           | 15         |                              |              |
| 550         | - GO<br>Tic                           | <u> </u>         | †            |                |            |               |            |                              |              |
| 225         | 50                                    |                  | †            |                |            |               |            |                              |              |
| 230         | 55                                    |                  | †            |                |            |               |            |                              |              |
| 235         | · · · · · · · · · · · · · · · · · · · |                  | 1            |                |            |               |            |                              |              |
|             | ()(A.1.)                              |                  | TOTALS:      |                |            |               | . L        | ACC =                        |              |
| TOTAL       | _ CU FT                               | 69.451           | TOTALS:      |                |            |               | AV BP      | : 30.0                       | <u> </u>     |
| <del></del> |                                       |                  |              |                |            |               |            | .,/                          |              |

## MOISTURE SHEET Woodstove Data Sheet #3

|                                                        | lance<br>roed                         |                         | Unit: H     | rughi S2                 | 10x              |
|--------------------------------------------------------|---------------------------------------|-------------------------|-------------|--------------------------|------------------|
| Final:                                                 |                                       | <u></u>                 | Run:        | 6                        |                  |
| IMPINGER #1                                            | •                                     |                         | Date:       | 5/18/9                   | 2                |
| Final Weight 6658                                      | _ grams                               | Technici                | an(s): Ir   | itial:                   | 7k               |
| Initial Weight 5808                                    | _ grams                               |                         | ·Fi         | .nal:                    | 5                |
| Net                                                    | grams                                 | Approved                | Ву:         | TK                       | <del>" " "</del> |
| IMPINGER #2                                            | •                                     |                         |             |                          |                  |
| Final Weight 5981                                      | grams                                 |                         |             |                          |                  |
| Initial Weight 5915                                    | grams                                 |                         |             |                          |                  |
| Net                                                    | _ grams                               |                         |             |                          | :.<br>:          |
| IMPINGER #3                                            |                                       |                         |             |                          | ,                |
| Final Weight 4999                                      | grams                                 |                         |             |                          |                  |
| Initial Weight 499.                                    | grams                                 |                         |             |                          |                  |
| Net                                                    | grams                                 |                         |             |                          |                  |
| IMPINGER #4 (SILICA GEL)                               |                                       |                         |             |                          |                  |
| Final Weight 8172                                      | grams                                 |                         |             |                          |                  |
| Initial Weight 8023                                    | grams                                 |                         |             |                          |                  |
| Net14.9                                                | grams                                 |                         | e e         |                          |                  |
| T                                                      | OTAL MAS                              | 5 OF H <sub>2</sub> O C | CAPTURED    | 106-8                    | grams            |
| Scale Check: 295.0g = 29<br>590.0g = 59<br>885.0g = 88 | 50 g<br>00 g<br>5-0 g                 |                         | Half Fil    | ter #2(<br>#2(<br>er #2( | 5 B              |
| Notes:                                                 |                                       |                         | <del></del> |                          |                  |
|                                                        |                                       | ·····                   |             |                          | <u> </u>         |
|                                                        | · · · · · · · · · · · · · · · · · · · | -                       | ·           |                          |                  |
|                                                        |                                       |                         |             |                          |                  |

MDID toimply Brischally

| nto Dessicat        | -        |          |    |              |      | -      |              |                                       |        |       |             |
|---------------------|----------|----------|----|--------------|------|--------|--------------|---------------------------------------|--------|-------|-------------|
| anufacturer:        | <u>_</u> | <u> </u> |    |              |      | Lot.No | · : <u>*</u> |                                       | Grade: | -256  | LHS         |
| ilter First<br># Wt | Date     | Time     | Ву | Second<br>Wt | Date | Time   | Ву           | Third<br>Wt                           | Date   | Time  | Ву          |
| 261 F 0.6987        |          | 1608     | DK |              | 2/93 | 1300   | A S          |                                       |        |       | -27         |
| 262H0.7014          |          | 1610     |    | .7017        | 1    | 1301   | 1            | ·                                     |        |       |             |
| 263#0.6988          | 7        | 1612     | 1  | 16985        |      | 1300   |              |                                       |        | ·     |             |
| 26470.6893          |          | 1614     |    | .6894        |      | 1303   |              |                                       |        |       |             |
| 265 FO.6912         | 1        | 1616     |    | 6917         |      | 1304   |              | Housels                               | RNL    |       |             |
| 266 + 0.6934        |          | 1618     | 7  | 16936        |      | 1305   |              |                                       |        |       |             |
| 267170.6936         |          | 1620     | 1  | 16937        |      | Boc    |              |                                       |        |       |             |
| 268 F0.7015         |          | 1622     | \  | 1010         |      | 1307   |              |                                       |        |       |             |
| 269 -0.6933         | 7        | 1624     |    | 16436        |      | 1328   |              |                                       |        |       |             |
| 270 FO.6965         |          | 1626     | 1  | 16965        |      | 1300   |              |                                       |        |       |             |
|                     |          |          |    |              |      |        |              | · · · · · · · · · · · · · · · · · · · |        |       |             |
| 271F0.6953          |          | 1628     | DK | 6951         |      | 1330   |              |                                       |        |       |             |
| 272F0,7002          |          | 1630     |    | . 7005       |      | 133 1  |              |                                       |        |       |             |
| 273F0.6978          |          | 1632     |    | 16980        |      | /33.0  | Ì            |                                       |        |       | ,-          |
| 274F0.6900          |          | 1634     |    | 6903         |      | 1333   | 1            |                                       |        |       |             |
| 2751F0.6975         |          | 1636     | `\ | 16975        |      | 1334   | 1            |                                       |        |       |             |
| 276 A 0.6978        |          | 1638     | /  | 1699         |      | 1335   | 1            |                                       |        |       |             |
| 277\$0.6975         | /        | 1640     | /  | 16974        |      | 1336   |              | ·                                     |        |       |             |
| 278 FO. 6992        |          | 1642     |    | 16991        |      | 1337   |              |                                       |        |       |             |
| 279 AO. 6901        |          | 1644     |    | 6900         |      | 1332   | 1            |                                       |        |       |             |
| 2801F0.6994         | 1-/      | 1646     |    | 6997         | 4    | 1339   | 4            |                                       |        |       |             |
|                     | <b> </b> |          |    |              |      |        |              |                                       |        |       |             |
|                     | <b></b>  |          |    |              |      |        |              |                                       |        |       | <del></del> |
|                     |          |          |    |              |      |        |              |                                       |        |       | <del></del> |
| necked by           |          |          |    | 1            |      |        |              | 3/24/91                               |        | 21 84 | `           |

|          | QA RE | WEIGH |      |    |
|----------|-------|-------|------|----|
| Filter # | WT    | Date  | Time | Ву |
|          |       |       |      |    |
|          |       |       |      |    |
| <u> </u> | ·     |       |      |    |

| BALA | NCE R | OOM ENVI | RONMENTA | L CONDI | TIONS |
|------|-------|----------|----------|---------|-------|
| WB   | DB    | 7RH      | Date     | Time    | Ву    |
| 60   | 74    | 44       | 3/20     | 1606    | DK    |
| 59   | 13    | 43       | 3.63     | 130     | JES!  |
|      |       |          |          |         |       |

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS) Into Dessicator: Date 3/17/92 Time 0900 By DK Front Half Back Half Manufacturer: SES Size: 8.2 cm Lot. No.: 78 901 Grade: 25 GLASS Third Second First Date Time Ву Date Time Time Ву Wt Date 303 .3849 3/20 1526 1341 DK 90 261810.3846 -38A7 1342 26280.3822 1528 26330.3805 .3210 1343 1530 3218 1532 264Blo.3811 HAUGHS RUG 3824 1534 1345 26580.3821 <u>26680.3822</u> 1536 138 an 3800 1538 26790.3817 1348 26840.3772 1540 1340 1542 3818 269HO.3875 1544 270HO.3813 2718 0.3884 3/20 01/3882 351 1546 272**B**0.3818 1548 3821 27380.3825 <u>274B0.3856</u> 275B0.3832 276B0.3862 293A <u>277B0.383b</u> 1353 278B0.3801 1600 13802 1359 27960.3827 1602 1400 280B0.3821 1604 Date: 3/24/96 Time 1900 Checked by

|          | QA RE        | WEIGH |      |    |
|----------|--------------|-------|------|----|
| Filter # | WT           | Date  | Time | Ву |
|          | - <u>-</u> - |       |      |    |
|          | ····         |       |      |    |
|          | <del> </del> |       |      |    |

| WB  | DB  | %RH | Date | Time | Ву |
|-----|-----|-----|------|------|----|
| 60  | 74  | 44  | 3/20 | 1524 | 01 |
| 559 | 178 | 43  | 3/23 | 1340 | 5  |

INITIAL BEAKER WEIGHTS (TARE WEIGHTS) Into Dessicator: Date: 4/17/92 Time: 1000 By: DK Third Beaker First Second Date Time Date Time By Date Time By Wt Wt By Wt 96-8870 4/20 1004 DK 96.8874 401 1332 Ru 501 1334 7 98.5630 502 98.5625 1006 91.2044 1336 91.2041 1008 503 95.0584 1338 504 95.0582 1010 106.4504 1340 505 106,4506 1012 1340 506 94.1600 420 1014 DK 94.1604 1344 82,9870 507 | 88.9867 | 1016 1346 103.1017 508 103,1077 11018 509 A5.7024 1000 95,7026 1348 104-8757 1350 510 104.8758 1023 511 107.7742 4/20 1024 DX 107,7745 1352 106.3855 1352 512 1026 106.3852 513 99.2412 99.0417 1356 1028 514 108 6344 1358 108.6340 1030 106,2064 106.2259 1032 1400 516 105.6750 4/20 1034 DK 105.6745 1402 517 94.7160 194 2160 1404 1036 518 103.8296 1400 103 2300 1038 1408 519 100,0063 100.0063 1040 98.6967 520 1410 198.6266 1042 1412 197.7535 4/20/1044 DX 97.7537 522 103.9227 1416 1 103 9209 1046 HAULIE ENC 523 194.9397 1418 94.9400 1048 1490 524 106.8567 1050 106 ,2571 95.1173 0 1420 S25 95.1170 1052 Date: 4/21/92 Time: /4/5 Checked By:\_\_\_ BALANCE ROOM ENVIRONMENTAL CONDITION QA REWEIGH Date Time By %RH Time Beaker # DB. Вy Date WB WT 59 72 4120 01 46 1003 4/01 74 1330  $(\alpha)$ 44

|        |            |       | 3             |          |                      |                | Min                |                |                                                             | -                      |        | ~~~) | )               | WOOD,                    |            |            |                                                                           |
|--------|------------|-------|---------------|----------|----------------------|----------------|--------------------|----------------|-------------------------------------------------------------|------------------------|--------|------|-----------------|--------------------------|------------|------------|---------------------------------------------------------------------------|
|        |            |       |               | WOOI     | WOODSTOVE DATA SHEET | IA SHEE        | <b>*</b> *         | 6              | TANT F                                                      | CONSTANT FINAL WEIGHTS | SICHTS |      |                 | WST5<br>Unit<br>Run      |            | Pg1, Rev   | 2,5<br>1,2<br>1,2<br>1,2<br>1,2<br>1,2<br>1,2<br>1,2<br>1,2<br>1,2<br>1,2 |
| ker    | Into       |       |               | <u> </u> |                      | L TUUT         | ٦L_                | DEALER WELGHIS | GHIS                                                        |                        | _      |      | $\vdash$        | Date:                    | <u>}</u> _ | 27/40      | -                                                                         |
| * <    | Dessic     | Date  | Time          |          | First                | <u> </u>       |                    | A P            | Second                                                      | P 000                  | Date   | Time | À A             | Third                    | Date       | Time       | À                                                                         |
| ,<br>X |            | 517   | (0)10         |          | 4.1. 2024            |                | 9001               | 4_             |                                                             | 120011                 | 100    | 5    | 3               |                          |            |            | -                                                                         |
| 511    |            | 5/19  | MIKE          | Ş        | १८५ । प्रेडन         | 188            | 250                | S              | 104.1419                                                    | 419                    | 3/22   | 1018 | 13              | 1924                     | 989        | 88         | 2                                                                         |
| 7      |            |       |               |          | .00                  |                |                    | 2              | 10                                                          |                        | 1      | -    | 4               |                          |            |            | 7                                                                         |
| 202    |            | 61/0  | 0000          | 7        | 44.4862              | 3 %20          | 80010              | <u> </u>       | 7.65                                                        | 525                    | 1200   | 1018 |                 |                          | \\         |            |                                                                           |
| NIS    |            | 5/19  | NIK.          | 3        | 0966, 201            | - CA           | <u> </u>           | \$ S           | 106.                                                        | 9816                   | 5/22   | 0001 | , <u>Z</u>      | 106.9189                 | 1) K200    | 500        | ď                                                                         |
|        |            | i i   |               |          |                      |                |                    | 2              |                                                             |                        |        | 1    |                 |                          |            |            | 2                                                                         |
| SS SS  |            | 2/16  | 3             | 1        | 8.12                 | <b>1</b>       | 1033               | S              | 9,5                                                         | 1611                   | 5      | 1033 | V<br>Q          | 02/50                    | 2000       | 2 163%     | 7                                                                         |
|        |            |       |               | 2        |                      |                |                    | 2              |                                                             |                        |        |      |                 |                          |            | -          | 0                                                                         |
|        |            |       |               | <u> </u> |                      |                |                    |                |                                                             |                        |        | _    |                 |                          |            |            | _                                                                         |
|        |            |       |               |          |                      | _              |                    |                |                                                             |                        |        |      | 4               |                          |            |            | 4                                                                         |
| 54145  | Table      |       |               |          |                      | -              | FI                 | NAL F          | LTER W                                                      | FINAL FILTER WEIGHTS   |        |      |                 |                          | •          |            |                                                                           |
| ##     | Dessic     | Date  | Time          | By       | First                | Date           |                    | By             | Second                                                      |                        | Date   | Time | <sub>A</sub> By | Third                    | Date       | e Time     | By                                                                        |
| 26SF   |            | 200   | <b>夏</b>      | <b>S</b> | 0.8163               | 5/16           | 1 956              | ă              | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100 | 55                     | 8      | 1286 |                 |                          |            |            |                                                                           |
|        |            |       |               |          |                      |                | -                  |                |                                                             |                        |        | -    |                 | ,                        |            |            |                                                                           |
| <br>25 |            | 2/0   | ŽŽ.           |          | 20017                | 2/0            | 252                |                | 01687                                                       | 0                      |        | 133  |                 | 0.5145                   | 00/0       | 0/0/ 0     |                                                                           |
|        | -          |       |               | 1        | 1 1                  |                |                    |                |                                                             |                        |        |      |                 |                          |            |            |                                                                           |
| ¥6     | REWE ICH : | Ì     | FINAL WEIGHTS | HTS      |                      | SCALE          | ROOM ENVIRONMENTAL | VIRONE         |                                                             | CONDITIONS             | LONS   | ς J  | CALE            | SCALE ROOM ENVIRONMENTAL | MENTAL     | CONDITIONS | ONS                                                                       |
|        |            |       |               |          | Eg                   | Weighing       |                    | <del></del>    |                                                             |                        |        |      | 9               | 5,00 ISIS                | 000        | 20         | M                                                                         |
| Date   | Beaker #   | Final | 五             | By       | Sei                  | Session        | Date Ti            |                |                                                             | -                      | ZRH    |      | 7               |                          | 0          |            | -                                                                         |
|        |            |       |               |          | <u> </u>             | -1             | 5 ,                | _ /            |                                                             | $\dashv$               | 77     |      | 8               |                          | -          |            |                                                                           |
|        |            |       |               |          | <u> </u>             |                | <del>-</del>       | 200            | ~ -                                                         | 8                      | 41     |      | 6               |                          | _          |            |                                                                           |
| Date   | Filter #   | Final | T.M.I.        | By       | <u> </u>             |                | 2 2                | $\geq U$       | 75                                                          | 0/6                    | 1/7    | CO   | Comments        |                          |            |            |                                                                           |
|        |            |       |               |          | <u> </u>             | <del>9</del> " |                    | <b>S</b> 2 €   | 8 -<br>8 -                                                  | 3.7                    |        |      |                 |                          |            |            |                                                                           |

SN 37010004 Scale Sartori 7 N. D 7 RH 松 ्रीर Model 34 WST7-FOF. Wet Bulb पूर्व विश्व 300 अविद्व S S 9 O 50 Bu 1 b 66 1000 0060 COGI WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET Date 5/18 Tech 18/3 SSES 紫 黎 Besker Blank Filter Blank 0.0999 0.0999 0.0000 1.0809 0.1000 0.0998 0.097 0.097 0.0999 0.0999 66601 , 1000 00010 Weight 0,100 100 0.0999 1001 100mg 0.1003 0000 0, 9996 9999 2220 Weight 0.9997 100000 .0003 .0003 0.0008 9699.0 1.0000 1000' 1000 1000 000 1.08 1000 1000 Dates: From 4 33 /32 9,9999 9.9997 000000 10,000 00000 26666 0.0005 Weight 0,000,0 0000 0/ 10.0002 000001 0000 10.000 0.000 10000.01 10 x 20 C 10.0001 1000/01 10,0000 5556 10.0000 6000'01 0000 10.0000 100001 108 8666.6 वर कुर्वाट वर चुरवाट वर चुरवाट 8000,000 99,998 6 000-00 99,9998 Through 60,000 00000.00 100 cm3 100,000 99,999 99.9998 95.5898 1999. 9999 S Weight

るがに

Şă

0.0999

8 0.1001

0,9999

6000 0000 ROOOL I

000000

1000.0001 **35**55 66 10.000

0000.00

10,0003

99.995

, 100

WST7-Form Rev5/90 A1205 SN 37010004 Sartorius 3838 Scale Sa Model Wet Bulb 3256 युर्विद्यक्ष 70 36 3 Bu 1 b 243 7 525 1600 0820 1035 500 340 Date SHRET SHEET Tech SA SA No. SCALE QA WOODSTOYE DATA Beaker Blank Filter Blank 0.0999 1000 0001.0 0.1000 0.0999 8 1000 0,1000 00/100 0.0999 00011 0.0998 Weight 000/ Ó. 1000 0.1000 1000 0.1000 0.1000 0001 38/ 80 100mg 0./000 0.0999 0.0999 8 1000 0.0999 1000 1000 10001 9 1.0000 800 0000 0000 9490 000 Weight 800 0000 8666 800 8 9000 0900' 9999 0000 2000 0000 4000 1000 1000 1000 0000 0000 1000 0000 QUQ 1.08 10.000 0,000 0000'0 0000 0000 99999 16.0000 0000 9.9999 00000 1000.0 10,000 Weight 0.000 000 00000 10.0000 9.9999 9.9999 0.000 00000 D.000 G bobbb 10000 2000 0000 8666 00000 0,0000 0,0000 108 Dates: From 99.990 L555' 99,9999 Through 11998 000000 45.99.20 99 999 100.0003 49.998 000000 00.000 66666 8666 26,996 100.00° 1000.00 000.00 eight 00000

00g

#### WOODSTOVE PARTICULATE CATCH PROCESSING WOODSTOVE DATA SHEET # 5

Unit: Run: Technician(s): 9 9 9 ₽ П 9 9

|                                                                     |          | FRONT HALF                                                                                                      |        |                                              |
|---------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------|
| FILTER #: #5F<br>FINAL WT: 18165<br>TARE WT: 1948                   |          | BEAKER #: 50/<br>m1: 15-<br>desc: ACETONE                                                                       | TARE   | WT: 97,8087-                                 |
| FILTER #:<br>FINAL WT:<br>TARE WT:<br>NET WT:                       |          | BEAKER #:<br>ml:<br>desc: ACETONE                                                                               | TARE   | WT:<br>WT:<br>WT:                            |
|                                                                     |          | TOTAL VOLUME OF ACETO<br>USED IN WASH                                                                           | NE     |                                              |
|                                                                     |          | BACK HALF                                                                                                       |        |                                              |
| FILTER #: DOB<br>FINAL WT: 15198<br>TARE WT: 13824<br>NET WT: 11374 |          | ml: 546<br>desc: ACETONE                                                                                        | TARE   | WT: 109,1404<br>WT: 103,9809<br>WT: 0195     |
| FILTER #:<br>FINAL WT:<br>TARE WT:<br>NET WT:                       | <u>0</u> | BEAKER #: 503<br>ml: 75<br>desc: METHCHLOR                                                                      | TARE   | WT: 94.9859<br>WT: 94.9408<br>WT: 20457      |
|                                                                     |          | m1: 500<br>desc: H20                                                                                            | TARE   | WT: 106.9189-<br>WT: 106.8571-<br>WT: 10618- |
|                                                                     |          | BEAKER #: 105<br>ml: 105<br>desc: H20                                                                           | TARE   | WT: 95.1610<br>WT: 95.1173<br>WT: 0437       |
|                                                                     |          | BEAKER #:<br>ml:<br>desc:                                                                                       | TARE   | WT:                                          |
|                                                                     | ٠        | BEAKER #:<br>ml:<br>desc:                                                                                       | TARE   | WT:                                          |
|                                                                     |          | TOTAL VOLUME OF ACETON USED IN WASH TOTAL VOLUME OF DICHLOUSED IN EXTRACTION TOTAL VOLUME OF DISTIL WATER DRIED | ROMETH | 040 / m = 75 m = 305 / m = 75                |

|         |                                                | ผถกรรร                      | IVE BLANK!                       | s proces       | SING        | Uı                | nit:                       | HAUGH                | <u>s 50</u>       | <u>1 X</u>     |          |
|---------|------------------------------------------------|-----------------------------|----------------------------------|----------------|-------------|-------------------|----------------------------|----------------------|-------------------|----------------|----------|
| lad.    |                                                | WOODST                      | OVE DATA                         | SHEET #        | : 5A        | R                 | ın:                        | 6                    | Date:             | 5 /k           | 3/94     |
|         | 1                                              | BLANKS DO                   | INE: 5/1                         | 1/92           |             | Τε                | echnic                     | ian(s)               | 727               | KT             | K        |
|         | 200                                            | O ml<br>FISHER O            | BEAKEI<br>ACET<br>PTIMA LOT      | R #:           | <u>966</u>  | FINA<br>TAF<br>NE | AL WT:<br>RE WT:<br>ET WT: | 106.86<br>106.80     | 39.               | ā<br>ā         |          |
|         | 7                                              | <b>5</b> ml DIC<br>FISHER O | BEAKER<br>HLOROMETH<br>PTIMA LOT | #:_E           | 306         | FINA<br>TAR<br>NE | L WT:<br>E WT:<br>T WT:    | 96.86<br>96.89<br>00 | 100<br>1001<br>04 | 9              |          |
|         | 200<br><u>Ro</u> uz                            | ml DIST<br>INEAL (          | BEAKER<br>ILLED WAT<br>GRIFIE    |                |             | FINA<br>TAR<br>NE | L WT:<br>E WT:<br>T WT:    | 96.5                 | 114               | 8<br>8         |          |
| , entry | - <u>',                                   </u> | BEAKE                       | R TARES                          | INTO           | DESSC:      | TIME: (           | 900                        | DATE                 | : 3/17            | 92             |          |
|         | BKR #                                          | 1ST W                       | T TIME                           | SND M.         | TIM         | E 3RD             | WT                         | TIME                 | 4TH V             | JT             | TIME     |
|         | D                                              | 106.0038                    | 1396                             | 106.223        | 5) 103(     | 0                 |                            |                      |                   |                |          |
| (may)   | E                                              | 96-8400                     | 1308                             | 96.842         | 4) 1038     | }                 |                            |                      |                   |                |          |
|         | F                                              | 96.510                      | 9 1330                           | 96.5100        | 0 1040      | )                 |                            |                      |                   |                |          |
|         | 5                                              | CALE ROOM                   | 1 QC : TA                        | RES            | <del></del> | SC                | ALE RO                     | OM QC                | : FINA            | LS<br>——       | ·        |
|         | DATE<br>3/03                                   | TIME                        | BY WB                            | DB 7           | j i         | DATE<br>5//3      | TIME                       |                      | WB 59             | DB<br>74       | <b>*</b> |
|         | 3/24                                           |                             | 9K 58                            | 73 4           |             | 5/H<br>5/15       | 1636                       | 900                  | 60                | 70             | 44       |
| :)      |                                                |                             |                                  |                |             |                   | 7200                       |                      |                   |                |          |
|         |                                                |                             |                                  |                |             |                   |                            |                      | ,                 |                |          |
|         |                                                |                             | BEAKERS                          | 3: FINAL       | WEIGHT      | S                 |                            |                      |                   |                |          |
|         | BKR #                                          | IN DSC                      |                                  | 1ST WT         |             |                   | ωт                         | TIME                 | 3RD ₩             | <del>-  </del> | TIME     |
|         | D                                              | 5/12                        | 0900                             | 106.2245       | 5-13        | 106.00            |                            | 154                  |                   |                |          |
| <u></u> | 8                                              | 5/12                        | 0900                             | 96 8431        | 1050        |                   |                            | 781                  |                   | +              |          |
|         | F                                              | 5/12                        |                                  | 96,5118        |             |                   |                            | 230                  |                   |                |          |
|         | BKR #                                          | 4TH WT                      | TIME                             | <b>5</b> ТН WT | TIME        | 6ТН               | WT                         | TIME                 | 7TH W             | т .            | TIME     |
|         |                                                |                             |                                  | <u> </u>       |             |                   |                            |                      | <u> </u>          |                | <u> </u> |
|         |                                                |                             |                                  |                |             |                   |                            |                      |                   |                |          |
| bos     |                                                | -                           |                                  |                |             | <u> </u>          |                            |                      | <del> </del>      | <u> </u>       |          |

NET PARTICULATE CATCH CALCULATION WOODSTOVE TEST DATA SHEET #6

Unit: HAUGHS 507
Run:
Date: 5/8/90
Technician(s): 1x 7k
WSTAPPI-AppDoc19-page2
Rev 6/90

|                                | . 4.                                           | / / / / / / / / / / / / / / / / / / /                                     |
|--------------------------------|------------------------------------------------|---------------------------------------------------------------------------|
| Blank Audit: By:               | Im Kelly                                       | Date: 5/18/92                                                             |
| Blank Calculations:            |                                                | ę t                                                                       |
| Acetone:                       | <u>о</u> Ч g ÷ 200 m                           | 1 = <u>~00000A</u> g/m1                                                   |
| Dichloromethane: , a           | 004 g ÷ 75 m                                   | 1 = <u>~~~~~~~</u> g/m1                                                   |
| Distillted Water:              | ∞ <u>8</u> g <u>† 200</u> m:                   | 1 = <u>~~~~~~4 g/m</u> 1                                                  |
| Front Half Catch:              |                                                |                                                                           |
| Filters: 1048 g - Total Catch  | No. of filters Blank V                         | g) = 1948 g Net Catch                                                     |
| Beakers: 70550 g - Total Catch | M1 of Acetone Blank Vand of Acetone Blank Va   | $\frac{\partial Q}{\partial Q}g$ = $\frac{\sqrt{547}}{\text{Net Catch}}g$ |
|                                | Total Front Half                               | Catch                                                                     |
| Back Half Catch:               |                                                |                                                                           |
| Filters: 1374 g - Total Catch  | No. of filters Blank V filter                  |                                                                           |
| Beakers                        |                                                |                                                                           |
| 1. Acetone/Impingers:          | D40 (-000                                      | OD g) = 10190/g                                                           |
| Total Catch                    | ml of acetone Blank Va<br>ml of Ac             | •                                                                         |
| 2. Extract/Impingers:          | 75 (2000)                                      | 4 (5320) = 10453                                                          |
| Total Catch D                  | ml. of Blank V ichloromethane ml of D          | alue/ Net Catch ichloro-                                                  |
| 3. Water/Impingers:            | 305 (2000C                                     | 04g) = 1043/g                                                             |
| Total Catch                    | ml. of water Blank V<br>ml of w                |                                                                           |
|                                |                                                |                                                                           |
|                                | Total Back Half<br>Total Catch<br>% Front Half | Catch                                                                     |
|                                |                                                |                                                                           |

| LATIONS                |
|------------------------|
| CALCU                  |
| TICULATE<br>ST DATA    |
| SH PAR<br>TOVE TE      |
| NETHOD SH<br>HOODSTOVE |
| EPA                    |

6 Dote: 5/18/12 Technician(1): 357K Unit: HAUGHS SOOK

NST3-Form | 8/28/94 1987 - HSD 1) Vacet d): (69.45/ Va)( 17.65 )( )066 not)( 300/ " Hg: 13.6

(553 Tan )

10,95121 0000,0000

> 6,00 2) VM(etd): ( .04707 )( /06,8 " 1 H20 ):

000,000

262 Bus x 100 : 6-6165 0000

5087/cen

3) Яви:

00, 0000

0.0000

4) Ce: (70,9518 dect) ( 15,43 ):

- decfa)( 60 ): 6.73

000.000

deofy

5) Estynated g/hr:

g/hr 00, 0000 Y factor) of the meter box used for the test the test in degrees Absolute

computer prin

dec Fa

Run # 6
Date 5/16/92
Technician BN TR DE TS
WST6-Forml, Rev11/89

# MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Useable Firebox Dimensions: See QC Section Useable Volume: /473 ft3                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Dilution Tunnel Draft (If applicable): Start O Stop O                                                                                          |
| Test Chamber Air Velocity: Start: O Stop: O Avg: O                                                                                             |
| Wet Bulb/ Start: WB: 63 °F DB: 79 °F 1, 4% Amb Moisture 42 % RH                                                                                |
| Dry Bulb Stop: WB: 60 °F DB: 75 °F /. 2 % Amb Moisture 42 %RH                                                                                  |
| $\overline{x} = 1.3$ Moisture $\overline{x} = 42$ Relative                                                                                     |
| Stove Wt: 237/3 lbs.                                                                                                                           |
| Empty                                                                                                                                          |
| Stove Wt with Stack (Inc. Oil Seal) Wet: lbs.Dry: 3/1/8 lbs.                                                                                   |
| Stove Wt with Stack and Ash Ash: O lbs. Total: 3/1.8 lbs.                                                                                      |
| Kindling Wt. HOT START Paper: O lbs. Wood: O lbs.                                                                                              |
| Pre Burn Fuel Wt. 10,0 + 1,3 Total: 1/.3 1bs.                                                                                                  |
| Total Kindling and Pre Burn Fuel Wt //. 3 lbs.                                                                                                 |
| Coal Bed Wt-1bs: Range (2.4 -2.0 )3/4.2-3/3.8 1bs. Actual: 2.3 1bs.                                                                            |
| Allowable Amount of Charcoal that can be removed:                                                                                              |
| Coal Bed Wt. Range $\left(\frac{2.4}{\text{Upper Wt.}} + \frac{2.0}{\text{Lower Wt.}}\right)$ .25 =                                            |
| Test Fuel Wt-1bs: Ideal 10.3 lbs. Range: 9.3 lbs. Actual: 9.7 lbs.                                                                             |
| Test Fuel Size (pcs.) (.75 x 1.5 x 5" Flanges) / Pcs.                                                                                          |
| 2 x 4's x /8 3/4 " 4 Pcs 9,7 lbs. 100,0 %                                                                                                      |
| 4 x 4's x N/A " N/A Pcs N/A 1bs. N/A 7                                                                                                         |
| Est. Dry Burn 9.7 - (9.7 x17167) x 60 = 1,216  Rate (Kg/Hr.) 2.2025   80 Est. Dry Burn Rate (Kg/Hr)                                            |
| Est EPA Heat Output (HO <sub>E</sub> ) (19,140) x <u>63</u> x <u>11216 = 14663</u> (Avg BTU's/Hr)  Est Heat Output (HO <sub>E</sub> ) BTU's/Hr |
| Comments: 80 = 1,216                                                                                                                           |

| Unit: HAUGHS SOTX Run: 6 Date: 5/18/92 Page 9                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOODSTOVE OPERATING DATA                                                                                                                                                                                                                                                            |
| FIRE STARTED: HOT START PST/PDST                                                                                                                                                                                                                                                    |
| WARM UP AND PREBURN: PRIMARY AIR: set wide open for all warm-<br>up/preburn fuel charges, then set to at start of<br>preburn.                                                                                                                                                       |
| SECONDARY AIR: NA CAT BYPASS: NA                                                                                                                                                                                                                                                    |
| CHARCOAL BED PREPARATION: raked and leveled prior to each warm-up/preburn charge. At 1 1/2 min. prior to loading last fuel, raked and leveled. In stove                                                                                                                             |
| TEST: Door Wide Open during loading 4 min 30 sec                                                                                                                                                                                                                                    |
| PRIMARY AIR: opened full for first min. , then set to run setting of                                                                                                                                                                                                                |
| SECONDARY AIR: NA CAT BYPASS: NA                                                                                                                                                                                                                                                    |
| FAN: ON/OFF during warm-up ON OFF during preburn ON/OFF first 30 minutes of test ON/OFF balance of test run Fan speed set at 17764                                                                                                                                                  |
| WOOD DATA: KINDLING: a mix of the grades listed below                                                                                                                                                                                                                               |
| SIZE MILL GRADE SPECIES                                                                                                                                                                                                                                                             |
| PREBURN: 2X4 Manke/Tacoma Std or btr s. orn D fir                                                                                                                                                                                                                                   |
| TEST: 2X4 Packwood #2 or btr s. grn D fir                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                     |
| PELLET FUEL APFI#:                                                                                                                                                                                                                                                                  |
| PELLET FUEL APFI#:All grades WCLB rules                                                                                                                                                                                                                                             |
| All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either // or /8 inches.                                                                                                                                                                           |
| All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.  Ist warm up/preburn fuel charge ( 10.0 lbs ) added at 1420.                                                                                                              |
| All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.  1st warm up/preburn fuel charge ( 10.0 lbs ) added at 1420.  2nd warm up/preburn fuel charge ( 13 lbs ) added at 1527.                                                   |
| All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.  Ist warm up/preburn fuel charge ( 100 lbs ) added at 1420.  2nd warm up/preburn fuel charge ( 1/3 lbs ) added at 1527.  3rd warm up/preburn fuel charge ( 1bs ) added at |
| All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.  1st warm up/preburn fuel charge ( 10.0 lbs ) added at 1420.  2nd warm up/preburn fuel charge ( 13 lbs ) added at 1527.                                                   |

## FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Run:

Date: 5//8/92

Technician: 8N.JS.TK.DK

WST1-Form7-Rev11/89

| Rọc       | m Temper                                      | ature | 70       | of           |                                | Cor                                             | rection                                        | Factor | : Ø             |
|-----------|-----------------------------------------------|-------|----------|--------------|--------------------------------|-------------------------------------------------|------------------------------------------------|--------|-----------------|
|           | TE: Reco<br>or Value<br>ne Test F<br>ibration |       | • •      |              | nearest<br>tempera<br>gs takes | 0.5% me<br>ature: '<br>a at:<br>.0 <u>/2</u> ,3 | oisture<br>Yes<br><u>U20</u><br>22.0 <u>22</u> | . No_  | <u>/</u> ·      |
| Pc        |                                               |       | Top      | )            | Bot                            | ttom                                            | Sid                                            | e      | Piece Avg       |
| #         | Dimen                                         | Use   | Uncor    | Cor          | Uncor                          |                                                 | Uncor                                          | Cor    | Corrected       |
| 1         | 2x4x8                                         | K     |          | 146          | p 7                            | STA                                             | 7                                              |        |                 |
| _2        |                                               |       | <u> </u> |              |                                |                                                 |                                                |        |                 |
| 3         |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 4         | 2x4x8                                         | 0     | 18.5     | <u>ڪ0. ا</u> | 18.5                           | 20.1                                            | 19,0                                           | 20.7   | 20,300          |
| 5         | <del>2x4x8</del>                              | 4     |          |              |                                |                                                 |                                                |        | (a0.300)        |
| 6         |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 7         |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 8         |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 9         | 2×4×183/4                                     | T     | 18.5     | 20.1         | 19.0                           | 20.7                                            | 19.0                                           | ع٥.7   | 20.500          |
| 10        | 2×4×1834                                      |       | 18.5     | 20,1         | 19,0                           | 20.7                                            | 19.0                                           | 20.7   | 20,500          |
| 11        | 2x4x183/4                                     |       | 18.5     | 20.1         | 18.5                           | 20.1                                            | 18.5                                           | 20.1   | 20.100          |
| 12        | 2x4 x18314                                    | Τ     | 20,0     | 21.8         | 20,0                           | 21.8                                            | Z0.0                                           | 21.8   | <u>ब्रा.४००</u> |
| 13        |                                               |       |          |              |                                |                                                 |                                                |        | (82,900)        |
| 14        |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 15        |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 16        |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| 17        |                                               |       |          | <u> </u>     |                                |                                                 |                                                |        |                 |
| 18        |                                               |       |          |              |                                |                                                 | ٠                                              |        | ,               |
| 19        | FEET                                          | T     | 19.5     | 21.3         | 21.5                           | 23.5                                            | 19.5                                           | 21.3   | (22,033)        |
| 20        |                                               |       |          |              |                                |                                                 |                                                |        |                 |
| \ <u></u> | <u></u>                                       |       |          | Kindl        | ing Pr                         | etest I                                         | uel T                                          | est Lo | ad              |
|           |                                               |       |          | NIA          |                                | 20.300                                          | /- 1                                           | 0.725  | <b>-</b>        |

% Moisture - Dry Basis:

% Moisture - Wet Basis:

| Kindling | Pretest Fuel | Test Load |
|----------|--------------|-----------|
| N/A 2    | 20.300/2     | 20.725 7  |
| N/A Z    | 16.874 /2    | 17.167    |

To obtain Wet from Dry:  $\frac{100 \times 7 \text{ Dry Rdg.}}{100 + 7 \text{ Dry Rdg.}} = 7 \text{ Moisture, Wet Basis}$ 

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

| Unit: MININGS COM/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOOD DENSITY DETERMINATION  Run#: 6    Void   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control |
| WOOD BERSIII BETERATARITOR  WOODSTOVE TEST DATA SHEET #11 Technician: BU TK, DK, JS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WST2-form11-Rev 6/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wood Pieces Nominal Dimensions: 2 x 4 x 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HOUR TIELE: NUMINAL PLACES - CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Depth (D):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Width (W): $\frac{7iO}{Cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Length (L): Some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{8.50}{8.50}$ cm Length $\overline{X}$ = $8.50$ cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9 50 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Volume: $306,000$ cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MOISTURE: Room Temperature:OF Correction Factor:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Uncorrected Meter Readings Corrected for temperature: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTE: Record moisture meter readings to the nearest 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Uncor   Cor   Avg % Moisture (Dry) 19.933 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Top: 18.5 20.1 % Aug % Moisture (Wet) 16.620 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bottom: /8.5   20.1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Side: 18.0 19.6 % Scale: Leveled In Out Zeroed: In Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| x. 19.933 Z Zeroed: In Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *· <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Wet Weight: 17414 g Dry Weight: 15098 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| % Moisture Dried Basis: 13,409 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [1 - (Dry Wt   Wet Wt)] X 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date . Time Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Into Dryer 5/18/92 1430 329 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Out of Dryer 500 100 100 1000 (2120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Density = $\frac{150.98}{(\text{dry wt})}$ g = $\frac{306.000}{(\text{volume})}$ cm <sup>3</sup> = $\frac{4934}{\text{g/cm}^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (dry wt) (volume)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pellet Fuel Moisture Content Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tare Beaker Wtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Wet Wt:g =g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gross Wet Wt. Tare Beaker Wt. Net Wet Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dry Wt:g =g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gross Dry Wt. Tare Beaker Wt. Net Dry Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| % Moisture Dried Basis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [1 - (Net Dry Wt - Net Wet Wt.)] X 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Fig 18 夏 FIOW , g 克 Ä 8 Ŋ . 580 Static .089 -12.6 -.050 م م م -.0b5 Press. .055 240: 1-064 :057 -052 **747** -045 -054 -.042 :063 -063 -062 -047 -054 :039 110--,041 -001 -90, 1/10: BC 475 909 625 475 475 550 200 475 475 500 475 500 525 475 475 475 8 500 550 500 475 900 575 009 Uate: 5//8/92 Technician(s): 4 5 70 20 19 5 7 <u>5</u> .20 20 75 23 5 22 ā 5 20 20 <u>6</u> 9 <u>5</u> 7 त् 31967 59227 2726 Stack 303 258 250 233 295 hee 22 332 186 312 269 242 242 700 295 286 300 7 195 302 183 284 چ  $\frac{\infty}{2}$ T/C(3) 9 0 1 122 122 120 155  $\frac{8}{2}$ 90 | | 124 901 105 9 19 112 9 2 801 <u>8</u> 122 127 121 601 169 129 1/C(1)1/C(2)
| Het | Dry | % | Car 527X 5.b 5.5 (S) 7.6 6.5 .એ છ 5.0 <u>구</u> 5.0 4.9 S, 0 <u>8</u> 5.1 <u>۔</u> ف 5.7 3 8 93 128 125 103 <u>8</u> 133 20 <u>م</u> 109 200 112 123 125 134 102 99 3 ď 109 137 9 = Unit: 1/1016 HS 102 98 9 93 200  $\frac{2}{2}$ 107 98 12 15 104 5 86 2 <u>ه</u> 109 မွ 47 7 42 9 σ 0.49 74.6 49.4 47.8 12.0 6.3 . 'S 37.7 58,7 29.9 38.4 20.7 ار 1 459 Ø.0 و. و 9.0 5,4 8 Run: . <u>2</u> ñ 58 .23 39 .37 èS, 9 良 53 3 34. S 72 .22 <u>...</u> 5. N 57 <u>م</u> 8 .2 三 8 , 622 850 599. 652 150 039 083 950 270 88 056 890 023 031 .021 613 137 P#0. % 장 FZ9. 8/0 0.15 2 12.5 73 V) اة ا <u>-</u>9 <u>و</u> \_\_ . :-:8 3.8 14.0 0.8 17.3 10.2 8.0 13.6 14.2 7.7 اه. اه. æ. ₩. ₽.0 0.01 18 <u>0</u> 8.7 V) \_\_ 8.0 <u>ه</u> ج <u>ج</u> 7 0 12.5 Ŕ 7.3 ري د 13.0 V) ふ 0.0 8.4 15.9 ₹ S 3.8 <u>1</u> 10.2 200 <u>ن</u> 7.7 8.7 N 515 58 807 453 426 .495 .682 9 7 014 466 189 .395 335 769 546 .560 . = 152 403 341 344 553 513 471 台 10.b 10.2 10.0 و. و. ₽, 0 <u>=</u> Ŋ HOUDSTOVE DATA SHEET 112 5.8 3.5 3.2 S S 7.4 ж 6. <u>ہ</u> و \$ \$ 9 وـ ز**۷** 5.9 o: a, 26-> , 438 126 197 750 . 156 205 240 426 405 127 359 **0**!} 3 480 344 <u>---</u> 361 KSTZ-Form 14 Rev 1/88 308 285 246 235 .225 39 Rate Ŗ w 7 و Ø ف ٩ Ø ۹ ┰. OO ب N 7. -3 laft 9,5 314.1 Scale lbs 4.5 6 9.0 80 80 و۔ و۔ رة 9. 7. 5,3 0. <u>⊸</u> 7.9 <u>ه</u> -J 323.8 323.8 321,5 323.3 322,5 323.6 319.4 316.6 322.9 326.7 321.9 318,7 317.5 316.3 323.1 320.0 318.1 317.0 315.9 315.7 315.4 315.2 315.5 1800 315.1 ကို 32 윽 08 35 প্ত 1605 <u>\5</u> \2 2 9

|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              | Ü    |      |                  |              |
|----|------------------|-------------|---------|--------------------------------------|-------|----------------|--------|----------|------|-----------|--------------------------------------------------|-------|----------------|---------|------------------|--------------|--------------|------|------|------------------|--------------|
| •  |                  | HOODSTOVE   | _       | HIND FLIE GHS UNIA<br>DATA SPEET #12 | E 133 | E 23           |        |          |      |           | Units<br>Rens                                    | t     | 344            |         | XZZ              | $\downarrow$ | Uate: 5/18/9 | 5//8 |      | 7                | ¥            |
| u* |                  | KSTZ-Form   | •       | 14 Rev 1/88                          | 1/88  |                |        |          |      |           | e d                                              |       | 37             | ا<br>قر | Ц                | ŀ            |              |      | 11   |                  | Z            |
|    |                  | 314.1       |         |                                      |       |                | 2      |          |      |           | 3                                                | 1/6(1 | T/C(1)T/C(2)   | 2)      |                  | 1/0(3)       | 3            | 4    |      | •                |              |
|    |                  | SCALE<br>HE | left    | E Rate                               | ٧.    | 13.7<br>1 XCD2 | S .    | 202      | 181  |           |                                                  | Bal E | Het<br>Bulb    | Į,      | <b>2</b> 2 ± 2 € | 2 E          | Stark        | 司,   | 7104 | Static<br>Press. | Com          |
| •  | 25/<br>18/8/     | 314.9       | 8.      | 77                                   | 1224  | 5.6            | .56b   | 7 7      | 14.2 | <u> </u>  | <del>                                     </del> | 1     | <del> </del>   |         | 4                | 1            | 213          | 2    | ┪    | 245              | 1 4          |
|    | ₹]<br> S         | 314.8       | ٦       |                                      | 212   | 5.3            | .570   | コニュ      | コヨ   | Ξ         | _                                                | 5     | 87             | +-      | +                | 105          | 210          | .20  | 1    | 동이               | 20,          |
|    | 8<br>12          | 314.8       | <u></u> | Ø                                    | 797   | 5.0            | .580   | 14.7     | 다    | Ξ         | 10                                               | 4.3   | 9<br>9         | -       | <del>}</del>     | ᇗ            | 207          | 20   | 500  | -043             | B            |
|    | <u>8</u>         | 314.7       | و       |                                      | 191   | 4.8            | .586   | 14.8     | 14.8 | <u>35</u> | 1.37                                             | 3.5   | 98             | 105     | 3.6              | 구<br>0<br>1  | 204          | 720  | 300  | -042             | 2            |
|    | <b>1</b> 1       | 314.6       | λί      |                                      | , 183 | 4.6            | .593   | 15.0     | 0.SI | .137      | 1.39                                             | 3.3   |                | 106     | <u> </u>         | 103          | 202          | 30   | 500  | 040-             | 28           |
|    | М                | 314.6       | יא      | Ø                                    | 17.   | 4.3            | J606.  | 15.4     | 15,4 | 137       | 1.39                                             | 3.1   | 85             | 107     | 3.3              | 102          | 198          | .20  | 500  | 040-             |              |
|    | <u>函</u><br>以    | 314.5       | 7       | -                                    | اها(. | 4,0            | . le12 | 15.5     | 15.5 | 142       | 1.44                                             | 8.2   | 8 <sub>4</sub> | 107     | 3.1              | 101          | 196          | 30   | 500  | -039             |              |
|    | ₹<br> }          |             | .3      | ;                                    | 151   | 3.8            | -622   | 15.8     | 15.8 | 145       | 1.47                                             | 2.6   | કૈત            | 101     | 3.1              | 001          | 192          | 17.  | T.,  | -038             |              |
|    | 夏(天)             | 3<br>교      | હ       | Ø                                    | .134  | 3.4            | .637   | ١٠,      | 16.1 | .152      | 1.54                                             | 2.2   | 83             | T01     | 3.0              | 001          | 188          | 17.  | ·    | -036             |              |
|    | 3                |             | 7       |                                      | . 130 | 3.3            | .lo4Z  | 5.3      | 16.3 | 147       | 1.49                                             | 2.2   | 83             | 101     | 3.0              | 991          | 184          | 12.  | 525  | -,036            |              |
|    | 5/<br>8/<br>8/   |             |         |                                      | 129   | 3.2            | 643    | 14.3     | 16.3 | 46        | 1.48                                             | 2.2   | 83             | 107     | 3.0              | 109          | 181          | .12  | 550  | :035             |              |
|    | 50<br>8<br>8     | 314.2       | -       | Ø                                    | 133   | 3.3            | 0h1.   | 16.2     | 16.2 | 841.      | 1.50                                             | 2.2   | 83             | 107     | 3.0              | 109          | 178          | 77   | 550  | 634              |              |
|    |                  |             | -       |                                      |       | İ              |        |          |      |           |                                                  |       |                |         |                  |              | 2353)        |      |      | 5rh:             | Fio          |
| ,- | \$<br> \$<br> \$ | 34.1        | æ       |                                      | .122  | 3.1            | .kSI   | ار<br>ال | Je.S | .143      | 1.45                                             | 7.1   | 83             | 106     | 2.9              | 169          | 175          | .22  | 550  | -,033            | \$0,         |
|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              | 175          | , ,  |      | (033)            | <u> </u>     |
|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              | 2528         |      |      | -505             | 1            |
|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              | 8450         |      |      | -1.76S           |              |
|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              | (228)        |      |      | 048              |              |
|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      | 7                |              |
|    |                  |             |         |                                      |       |                | ,      |          |      |           |                                                  |       |                |         |                  |              |              |      |      |                  |              |
| •  |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      | 37               |              |
|    | 9                |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      |                  |              |
|    |                  |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      |                  |              |
|    | 8                |             |         |                                      |       | -              |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      |                  |              |
|    | 235              |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      |                  | _            |
|    | $\bigvee$        |             |         |                                      |       |                |        |          |      | ,         |                                                  |       |                |         |                  |              |              |      |      |                  | _            |
|    | X                |             |         |                                      |       |                |        |          |      |           |                                                  |       |                |         |                  |              |              |      |      |                  | <del> </del> |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                         | Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression and Compression an |                 |                            |      |      | 17,144        |        |         |                       |                |        |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|------|------|---------------|--------|---------|-----------------------|----------------|--------|--------------------------------------------|
| BURGOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    | $\overline{\leftarrow}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRE BURD RECORD | PRE BURN DATA RECORD SHEET | #13  |      |               |        |         | <u>م</u> ا .          | XTES           | Date:  | Date: $5//8/92$ Technician(s): $6\sqrt{7}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 342-                                                               | 2-3138                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -21cm           | WS12-FORMUD                | ı    | ,    |               |        | Page: / | - of                  |                |        | PK 75                                      |
| CONTRACTOR AND ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRESS OF THE ADDRES | Ministe                                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7.5           | 4                          | 5    | 9    | 7             | 8      | 5       | 10                    | 11             |        |                                            |
| CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF  | Time                                                               | 32                      | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stack           | Top                        | Side | Back | Kight<br>Side | Bottom | Firebox | 2nd Burn<br>Catalytic | Roall<br>Tello | Static | Comments                                   |
| D-4-03-1-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2 | 35.2                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 374             | 599                        | 505  | 626  | 380           | 380    | 1238    | 1138                  | 25             | -blo3  | Primary Air Sot at 386                     |
| 200020000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br> 2<br> 2                                                      | 315.0                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 389             | 538                        | 805  | 375  | 386           | 389    | 7611    | 1068                  | 87             | 000-   | 1 7                                        |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/                                                                 | 314.8                   | رهٔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 259             | 469                        | 495  | 324  | 381           | 00h    | 1139    | 8001                  | 87             | -056   | Fan: 04 446 4                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XI.                                                                | _                       | ų                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 243             | →C+                        | 477  | 298  | 369           | 80 h   | 1092    | 796                   | 87             | -053   |                                            |
| OCHICATURES IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18<br>18/                                                          |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 231             | 341                        | 454  | 979  | 355           | Пh     | 1051    | 908                   | 36             | :050   | + 1.3 1527                                 |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/3<br>3/3                                                         | <del></del>             | <del>د</del> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 737             | 381                        | 433  | 263  | 343           | 413    | 482     | 1132                  | 86             | -052   |                                            |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37/<br>33/                                                         | <del>-</del>            | رة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 235             | 385                        | 4)8  | 253  | 333           | 413    | 962     | 9401                  | 98             | 190:   | Pumps turned on at: 1535                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/2<br>5/2                                                         | - 1                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 230             | 380                        | 406  | 249  | 325           | 4)0    | 954     | 816                   | 98             | .050   |                                            |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/<br>法/                                                           | <u> </u>                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | नल्ल            | 366                        | 396  | ካስሮ  | 314           | 104    | 936     | 976                   | 38             | 8/10-  |                                            |
| أستنا والمستعودة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18/28/28/28/28/28/28/28/28/28/28/28/28/28                          | <u>교</u>                | رة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 331             | 358                        | 384  | 242  | 308           | 403    | 923     | 938                   | 85             | 7.047  | Check WB/DB: 92/107                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/3                                                                |                         | رة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 716             | 348                        | 384  | 3세   | 302           | 00h    | 920     | 893                   | 88             | 2046   | †                                          |
| Sanakaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Salaya (Sala | 》<br>图                                                             | 34.2                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60C             | 333                        | 379  | 236  | 98C           | 368    | 368     | 810                   | 83             | :043   |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \\\{\cdot\}                                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| spark displaying a publik disp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31/<br> S <br> S                                                   | 314.1                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | नाल             | 319                        | 374  | 331  | STA           | 968    | 832     | 703                   | 82             | .04I   | 318.4                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/8                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| AUDINIO POR AGRICO GARAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| ZCUKINOWAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/6                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| <b>W</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/3                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| aryan manisirka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| ×29×04444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/\\\\                                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2/2                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                            |      |      |               |        |         |                       |                |        |                                            |

|               |                                            |              |              |                      | And a second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control o |                                                   |         |                       |                        |                 |               |                      |                              |                    |                             |
|---------------|--------------------------------------------|--------------|--------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|-----------------------|------------------------|-----------------|---------------|----------------------|------------------------------|--------------------|-----------------------------|
| <del></del> . |                                            |              |              | TEM<br>RECO<br>WST2- | TEMPERATURES<br>RECORD SHEET<br>WST2-Form14 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TEMPERATURES RECORD SHEET #14 WST2-Form14 Rev1/88 |         | The same              | Unit:<br>Run:<br>Page: | HAVEHS          | XTGZ S        | $\mathbf{J}_{\cdot}$ | Date: 5/18/<br>Technician(s) | 1. 820<br>200      | K.                          |
|               | T/C                                        | 4            | 5            | 9                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                 | 6       | 10                    | 11                     | 12              | 13            | 14                   | 15                           | 16                 | 17                          |
|               | Minute<br>Time                             | Stove<br>Top | Left<br>Side | Back                 | Right<br>Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bottom                                            | Firebox | 2nd Burn<br>Catalytic | Room<br>Temp           | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out      | C. Gas<br>Box                | C. Gas<br>Impinger | SO <sub>2</sub><br>Impinger |
|               | 8/                                         | 319          | 374          | 231                  | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 396                                               | 832     | 703                   | 82                     | 8441            | 8hC           | 34                   | Lh0                          |                    | 36                          |
|               | <b>A</b>                                   | 300          | 364          | 329                  | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 344                                               | 547     | 285                   | 8                      | 1448            | 8hC           | 34                   | 247                          | 35                 | 36                          |
|               | <u>Θ</u><br>/⊼                             | 160          | 344          | 334                  | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 392                                               | 542     | 635                   | 81                     | 1448            | 348           | 34                   | 8hC                          | 35                 | 36                          |
|               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\     | 276          | 322          | 325                  | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 388                                               | 530     | 859                   | 90                     | 1 पेप 8         | 248           | 34                   | 8hC                          | 35                 | 36                          |
|               | 8)<br>%                                    | 30g          | 306          | 320                  | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 379                                               | 547     | નેવન                  | 80                     | 1448            | 248           | 34                   | 8hc                          | 38                 | 36                          |
|               | 12<br>12<br>13<br>13                       | 757          | 391          | 314                  | 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 371                                               | 558     | १५५                   | 18                     | 1448            | 248           | 34                   | 8hC                          | 35                 | 3િ                          |
|               | 8J<br> %                                   | 369          | 279          | 315                  | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3kı                                               | 555     | 843                   | 18                     | 1442            | 348           | 34                   | 348                          | 35                 | 3lo                         |
|               | 88<br>€                                    | ઝવન          | 275          | 199                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 348                                               | 0 ما ما | 750                   | 81                     | 1441            | 348           | 34                   | 8hC                          | 35                 | 36                          |
|               | 라<br>(국                                    | 334          | 275          | 191                  | 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 341                                               | 760     | 1263                  | 18                     | Ihhi            | 8hC           | 34                   | 248                          | 35                 | 36                          |
|               | (S)                                        | 434          | 219          | 130                  | OHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 332                                               | 961     | 1331                  | 98                     | ।नेत्रा         | 8hc           | 34                   | 8hC                          | 35                 | ે બદ                        |
|               | 8)<br>(3)                                  | 468          | 291          | 3]                   | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325                                               | 816     | 1389                  | 98                     | 1442            | 348           | 34                   | 8hC                          | 38                 | 36                          |
|               | 12/2                                       | 499          | 303          | בכצ                  | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 320                                               | 956     | 1398                  | 18                     | ነተሳተ            | 8hC           | 34                   | 348                          | 35                 | 36                          |
|               | X                                          | 4009         | 3703         | 3190                 | 2933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4347)                                             | 820ch   | (1881d)               | 696                    |                 |               |                      |                              |                    |                             |
|               | 0]<br> }<br> }                             |              | 324          | 339                  | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 317                                               | 1054    | 1336                  | 18                     | 1447            | 8hC           | 34                   | 348                          | 35                 | 36                          |
| ,             | B<br> ≥                                    | 532          | 338          | 250                  | 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 317                                               | 1128    | 1440                  | 8                      | 1448            | 8hC           | 34                   | 248                          | 38                 | 36                          |
|               | 5/<br>/s                                   | 549          | 359          | 265                  | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 318                                               | 1179    | 1324                  | 28                     | 1448            | 248           | 34                   | 348                          | 35                 | 36                          |
|               | 6/3<br>/g                                  |              | 374          | 278                  | 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 320                                               | 1174    | 1247                  | 82                     | 1448            | 248           | 34                   | 348                          | 35                 | 36                          |
|               | 3//<br> }<br> }                            | 516          | 386          | 283                  | 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 324                                               | 1163    | 1224                  | 82                     | 1448            | 248           | 34                   | 348                          | 35                 | 3%                          |
|               |                                            |              | 101          | 287                  | 327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 329                                               | 1143    | 1154                  | 82                     | 1448            | 348           | 35                   | 348                          | 35                 | 36                          |
|               |                                            | 3 467        | =            | 786                  | 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 333                                               | 1139    | 1121                  | 82                     | 1448            | 248           | 35                   | 248                          | 35                 | 36                          |
|               | M                                          |              | 417          | 280                  | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 339                                               | 1093    | 414                   | 18                     | १५५8            | 348           | 32                   | 8hC                          | 35                 | 36                          |
|               | 3/<br>元                                    | 5 478        | 473          | ברב                  | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 346                                               | 1044    | 912                   | 81                     | 1448            | 248           | 35                   | 8hC                          | 35                 | 36                          |
|               | \$\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 404          | 428          | 264                  | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 351                                               | 1016    | 872                   | 82                     | 1448            | 348           | 35                   | 248                          | 35                 | 36                          |
|               | 15<br>15                                   | 3            | 428          | 258                  | 30b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 357                                               | 986     | 847                   | 83                     | १५५८            | 248           | 38                   | 8hC                          | 35                 | 36                          |
|               | ₹/<br> \$<br> \$                           | 357          | A23          | 250                  | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360                                               | 9 le le | 817                   | 83                     | 1448            | 348           | 35                   | 8hC                          | 35                 | 36                          |
|               | $X_{\lambda}$                              | 5625         | 77117        | 3210                 | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ヽヽ                                                | (13085) | (13268)               | 187<br>187             |                 |               |                      |                              |                    |                             |
| •             |                                            | 46347        | 184151       | 164001               | 18499)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83581                                             | 213517  | 24082                 | 19.5<br>7.58<br>7.     |                 |               |                      |                              |                    |                             |

| Stove 339 3314 3314 3314 306 306 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m, e ( a c e c e c e c |                 | S3 =    |         |                       | Unite         | Unit: 14000445  | XCC 8         |                 | Date: 5/18/92                           | ેલ્                | **                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|---------|---------|-----------------------|---------------|-----------------|---------------|-----------------|-----------------------------------------|--------------------|------------------------------|
| 17/Cf 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m, , , ( ) ( ) ( ) ( ) | 7<br>Right Side |         |         |                       |               |                 |               | •               | ローロベビンド                                 | ŀ                  | 米                            |
| Time   Stove   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time |                        |                 | Rev1/88 |         |                       | Run:<br>Page: | 8 of            | u             | bar.            | - · · · · · · · · · · · · · · · · · · · | 200                |                              |
| Time   Stove   Time   The   Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                 | 8       | 6       | 10                    | ==            | 12              | 13            | 14              | 15                                      | 16 318.4           | 17                           |
| 12 33 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                 | Bottom  | Firebox | 2nd Burn<br>Catalytic | Room<br>Temp  | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | C. Gas<br>Box                           | C. Gas<br>Impinger | SO <sub>2</sub><br>Implinger |
| 33 33 33 33 35 35 35 35 35 35 35 35 35 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                 | 365     | 953     | 30c                   | 83            | 1448            | 348           | 35              | 248                                     | _                  | 36                           |
| 18 23 33 314 35 36 36 36 36 36 36 36 36 36 36 36 36 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>            | 240             | 366     | 943     | ۳43                   | 83            | १५५८            | ShC           | 38              | 348                                     | 35                 | 36                           |
| 306 306 306 300 300 300 300 300 300 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>            | 283             | 367     | 414     | ከተተ                   | 83            | 1448            | 247           | 35              | 8hC                                     | 35                 | 36                           |
| 30 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 1 278           | 369     | 885     | 758                   | 83            | 1447            | 247           | 35              | 247                                     |                    | 36                           |
| 30 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                      | ברכונ           | 368     | 843     | 743                   | 83            | ማከተ፣            | 247           | 35              | 247                                     |                    | 36                           |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54   725               | 5 272           | 366     | 822     | 718                   | 82            | 1447            | 241           | 35              | 247                                     |                    | 36                           |
| 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 377 Daa                | 1 362           | 366     | 800     | 703                   | 82            | 8441            | 348           | 35              | 747                                     | 35                 | 36                           |
| 0 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 715 8º                 | 258             | 365     | 181     | 789                   | 28            | 8441            | 8hC           | 36              | ጋባገ                                     | 35                 | 36                           |
| \ J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 213                 | 196             | 362     | 761     | اماما                 | 82            | የተተነ            | 8hC           | 36              | Lhc                                     | 35                 | 36                           |
| 165 50 268 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52 209                 | 1351            | 359     | 748     | 849                   | 82            | 8448            | 248           | 3%              | 248                                     | 35                 | 36°                          |
| 100 55 De 1 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1d 206                 | 243             | 357     | 737     | 639                   | 82            | 1448            | 248           | 36              | 248                                     | 35                 | 3િ                           |
| 175 1900 255 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 263                 | , 238           | 354     | 131     | ا 19<br>اما           | 82            | 1448            | 248           | 36              | 842                                     | 35                 | 36                           |
| 3548 4532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32 22,719              | 3200            | (43b4)  | 64183   | (8532)                | 686           |                 |               |                 |                                         |                    |                              |
| TCS 848 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 198                 | 334             | 350     | 705     | 109                   | 82            | 1448            | 248           | 36              | 348                                     | 35                 | <b>3</b> lo                  |
| 248~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 861 -17                | 7               | (350)   | 7053    | (109)                 | 82            |                 |               |                 |                                         |                    |                              |
| 90 3796 4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59 2817                | 3434            | 17114   | 104,23  | 9133                  | 71101         | Δπ.             | STARET        | 318.47          |                                         |                    |                              |
| 13436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13274 9277             |                 | 13072   | 319743  | 332157                | 3022          |                 | STOP          | 271.4           | V                                       |                    |                              |
| 3635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 359/251                | 3(272)          | (353)   | (364X   | 7                     | (82)          |                 |               | -0'Lh-          |                                         |                    |                              |
| A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                 |         |         |                       |               | _               |               |                 |                                         |                    |                              |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |
| 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                 |         |         |                       |               | ٠               |               |                 |                                         | 37                 |                              |
| É                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                      |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                      |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                      |                 |         |         |                       |               |                 |               |                 |                                         |                    |                              |

### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EE                                                                                                                           | MC - West                                | , Kent,                   | WA 9803        | 2 Date:                | 5/18/9         | 2 Analy                               | /te: <u>CO<sub>2</sub> (</u> | 15-1)            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|----------------|------------------------|----------------|---------------------------------------|------------------------------|------------------|--|--|
| Source:                                                                                                                            | Haughis                                  | S270                      | SEEIE          | S Run #                | : <u>lo</u>    |                                       |                              |                  |  |  |
| Zero Cyl                                                                                                                           | #: <u>T13</u>                            | 2257                      | C              | onc. <u>00.0</u> %     | CO2            | Cyl Pre                               | ess: <u>800</u>              | psi              |  |  |
| Certi                                                                                                                              | fied by: _                               | LIQUI                     | O ALE          | <u> </u>               |                |                                       | Date: 10/-                   | 1/91             |  |  |
| Span Cyl                                                                                                                           | #: 290                                   | 104                       | C              | onc. 12.6 %            | CO2            | Cyl Pre                               | ess: <u>900</u>              | ) psi            |  |  |
| Certi                                                                                                                              | fied by: _                               | MATH                      | ESON           |                        |                |                                       | Date: 10/3                   | 191              |  |  |
| Analyzer                                                                                                                           | : Make:                                  | Horiba                    |                | Model: P               | PIR-200        | 0                                     | SN: 4070                     | 69               |  |  |
| Range:                                                                                                                             | 0 - 25.0%                                | CO <sub>2</sub>           | Aı             | nalyzer Ou             | tput:_         | 0 - 1.0                               | )                            | v.               |  |  |
| Flow:                                                                                                                              | 1.5 SCFH                                 |                           | Meas           | ured by:               | Rotame         | ter: X                                | Flowmete                     | r:               |  |  |
| EPA Span<br>EPA Cont:                                                                                                              | Value = 2<br>rol Limits                  | 25.0% CC<br>= <u>+</u> 2. | )2<br>5% of 2! | 5.0% CO <sub>2</sub> = | <u>+ 0.6</u> 2 | 25% CO <sub>2</sub>                   |                              |                  |  |  |
| Pre Run                                                                                                                            | Audit: By                                | 7:                        | DK             | Tim                    | ie: _ /        | 53 <u>5</u> _                         | Temp: 84                     | o of             |  |  |
|                                                                                                                                    |                                          |                           |                | Audit Resu             | lts            |                                       |                              |                  |  |  |
| Point #                                                                                                                            | # Meter DVM % Meter DVM % Difference 4 % |                           |                |                        |                |                                       |                              |                  |  |  |
| # Expected Response Actual Response + Conc. # Meter DVM % Meter DVM % Difference 4 %  Zero 00.0 .000 00.0 00.0 .000 ,054 .054 .217 |                                          |                           |                |                        |                |                                       |                              |                  |  |  |
|                                                                                                                                    |                                          |                           | 12.6           |                        |                |                                       | -, 237                       | -1.879           |  |  |
| Span                                                                                                                               | 50.4                                     | -001                      | 12.0           | 71,1                   | 1 . 7 . ,      | , 2.303                               |                              | 1.0.1            |  |  |
| Comments                                                                                                                           | <u>:</u>                                 |                           |                |                        |                |                                       |                              |                  |  |  |
|                                                                                                                                    |                                          |                           |                |                        |                |                                       |                              |                  |  |  |
| Post Run                                                                                                                           | Audit: B                                 | SV:                       | OK             | Tim                    | e: l           | 920                                   | Temp: 8                      | 2 o <sub>F</sub> |  |  |
|                                                                                                                                    |                                          |                           |                | Audit Resu             |                |                                       |                              |                  |  |  |
| Point                                                                                                                              | Expec                                    | ted Res                   | ponse          | Act                    | ual Res        | ponse                                 | + Conc                       |                  |  |  |
| #                                                                                                                                  | Meter                                    | DVM                       | 8              | Meter                  | DVM            | 8                                     | Difference                   | <b>Q</b> &       |  |  |
| Zero                                                                                                                               | 00.0                                     | .000                      | 00.0           | 00.0                   | , 000          | .054                                  | .054                         | .217             |  |  |
| Span                                                                                                                               | 50.4                                     | .504                      | 12.6           | 49.9                   | .499           | 12.363                                | 237                          | -1.879           |  |  |
| Comments:                                                                                                                          |                                          |                           | •              | ·                      |                |                                       |                              | ļ                |  |  |
|                                                                                                                                    |                                          |                           |                |                        |                |                                       |                              |                  |  |  |
|                                                                                                                                    | Difference                               |                           |                | (Std) %                | m) v 10        | · · · · · · · · · · · · · · · · · · · |                              |                  |  |  |

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

<sup>+</sup> Conc. Difference = Act % - Exp (Std) %
Zero % Differece = Act % (ppm) - Exp % (ppm) X 100
Full Scale Value

## PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET \$15

| Site: EEMC                                | - West,                               | Kent,                                 | WA 98032 | Date:                  | <u> 5/18/93</u> | Analy        | yte: <u>02 (</u> ] | 5-2)                                  |
|-------------------------------------------|---------------------------------------|---------------------------------------|----------|------------------------|-----------------|--------------|--------------------|---------------------------------------|
| source: HA                                | ughs S                                | 270                                   | Series   | Run #:                 | 10              |              |                    |                                       |
| Zero Cyl #:                               | T 13:                                 | 2257                                  | Co       | nc. <u>00.0</u> %      | 02              | Cyl Pre      | ess: <u>800</u>    | psi                                   |
| Certifie                                  | d hv.                                 | 1100                                  | no Au    | و                      |                 |              | Date: 10/7         | 191                                   |
| 00101110                                  | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~!!                                   | Co       | nc 174s                | 00              | Cvl Pre      | ess: 900           | psi                                   |
| Span Cy1 #:                               | _2400                                 | <u> </u>                              |          |                        | <u> </u>        | 0,1          | Pates 10/3         | Jai                                   |
| Certifie                                  | d by:                                 | MATH                                  | NOC31    |                        |                 | <del></del>  | Date: 10/3         | · · · · · · · · · · · · · · · · · · · |
| Analyzer:                                 | Make:                                 | eledyn                                | e 1      | Model:32               | 20 Ax           |              | SN: 3746           | 2                                     |
| Range: 0 -                                | 25.0%                                 | 2                                     | An       | alyzer Out             | put:            | 0 - 1.       | 0                  | v.                                    |
| Flow: 1.5                                 | SCFH                                  |                                       | Measu    | red by: I              | Rotamet         | er: <u>X</u> | Flowmeter          | :                                     |
| EDA Coon Vo                               | 1vo - 25                              | . 0.2 0.0                             |          |                        |                 | •            |                    |                                       |
| EPA Control                               | Limits                                | = + 2.                                | 5% of 25 | .0% O <sub>2</sub> = - | H 0.625         | 8 O2         |                    | ectro-re-                             |
| Pre Run Aud                               | it: By:                               |                                       | DK       | Time                   | ∍: <u>15</u>    | 545_         | Temp: 86           | °F                                    |
|                                           |                                       |                                       |          | udit Resu              | lts             |              |                    |                                       |
| Point                                     |                                       |                                       |          | Acti                   | al Res          | ponse        | + Conc.            | <b>△</b> ¾                            |
| # Meter DVM % Meter DVM % Difference 23 % |                                       |                                       |          |                        |                 |              |                    |                                       |
| Zero                                      | 00.0                                  | .000                                  | 00.0     | 00.0                   | -004            | :005         |                    |                                       |
|                                           |                                       |                                       |          |                        | .494            | 12.441       | .097               | . 181                                 |
| Comments:                                 | Teledyne                              | #2 <u>Cy</u>                          | 1 % E    | xp & A                 | ct *            | Adj t        | <u> + 4</u>        |                                       |
| ·                                         |                                       |                                       |          |                        |                 |              |                    |                                       |
|                                           | ·<br>                                 |                                       |          |                        |                 |              |                    |                                       |
| Post Run Au                               | dit: By                               | -<br>7 <b>:</b>                       | ٥ĸ       | Time                   | e: 19.          | 30 _         | Temp.: 82          | o <sub>F</sub>                        |
|                                           |                                       | · · · · · · · · · · · · · · · · · · · |          | udit Resu              |                 |              |                    |                                       |
| Point                                     | Expect                                | ed Res                                |          |                        | ual Res         | sponse       | + Conc.            | <b>V</b> 8                            |
| #                                         | Meter                                 | DVM                                   | 8        | Meter                  | DVM             | - 8 -        | Difference         |                                       |
| Zero                                      | 00.0                                  | .000                                  | 00.0     | 00.1                   | .005            | .023         | . 023              | .090                                  |
| Span                                      | 12.4                                  | ,496                                  | 12.4     | 12.4                   | .491            | 12.420       | . 020              | .164                                  |
| Comments:                                 | Teledyn                               | =#2 <u>Cy</u>                         | 1 % E    | xp & A                 | ct &            | Adjt         | <u>ο + Δ %</u>     |                                       |
|                                           |                                       | <del></del>                           |          |                        |                 | <u></u>      |                    |                                       |
|                                           |                                       |                                       |          |                        |                 |              |                    | <del></del>                           |
| + Conc. Dif                               | ference                               | = Act                                 | & - Exp  | (Std) %                |                 |              |                    |                                       |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

## PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: <u>E</u> E | MC - West,    | Kent,   | WA 98032 | Date:             | 5/18/9:        | <u>)</u> Anal | yte: <u>CO (</u> | 15-3)                                        |
|------------------|---------------|---------|----------|-------------------|----------------|---------------|------------------|----------------------------------------------|
| Source:          | HAUGHS        | S270    | SERIE    | <u>S</u> Run #    | : 6            |               |                  |                                              |
| Zero Cyl         | #: <u>T13</u> | 2257    | Co       | nc. <u>00.0</u> % | CO             | Cyl Pr        | ess: <u>800</u>  | ps:                                          |
| Certi            | fied by: _    | Liqu    | 110 AIR  | ર                 |                |               | Date: 10/7       | 191                                          |
| Span Cyl         | #: 2900       | 74      | Co       | nc. <u>4.96</u> % | CO             | Cyl Pr        | ess: 900         | ps:                                          |
| Certi            | fied by: _    | MATH    | ESON     |                   |                |               | Date: 10/3       | 1/91                                         |
| Analyzer         | : Make:       | Horiba  |          | Model: P          | IR-2000        | ) .           | SN: 408          | 005                                          |
| Range:           | 0 - 10.0%     | СО      | An       | alyzer Ou         | tput:          | 0 - 1.        | 0                | v                                            |
|                  |               |         |          |                   |                |               | Flowmet          |                                              |
| EPA Span         | Value = 1     | 0.0% CC | )        |                   |                |               |                  |                                              |
|                  | rol Limits    |         |          |                   |                |               |                  |                                              |
| Pre Run          | Audit: By     | ·       | •        |                   |                | 55 <i>0</i>   | Temp: <u>8</u> 5 | <u>)                                    </u> |
| Point            | 1 Eypec       | ted Res |          | udit Resu<br>Act  | lts<br>ual Res | ponse         | + Conc.          | l                                            |
| #                |               | DVM     | ક        | Meter             |                |               | Difference       | △ శ                                          |
| Zero             | 00.0          | .000    | 00.0     | 00.0              | .000           | 004           | :004             | 044                                          |
| Span             | 49.6          | .496    | 4.96     | 49.2              | .492           | 5.008         | .048             | .969                                         |
| Comments         |               |         | •        |                   |                | ·             |                  |                                              |
|                  |               |         |          |                   |                |               |                  | • •                                          |
| <del></del>      | <del></del>   |         |          |                   | 10             | مر د          | _ 0              | 2 01                                         |
| Post Run         | Audit: E      | У:      |          |                   |                | 35            | Temp.: 8         | <u> </u>                                     |
| Point            | Evnec         | ted Res |          | udit Resu         | lts<br>ual Res | ponse         | + Conc.          | <u> </u>                                     |
| #                | Meter         | DVM     | 8        | Meter             | DVM            | 8             | Difference       | △ 8                                          |
| Zero             | 00.0          | .000    | 00.0     | 00.1              | .001           | ما٥٥.         | ۵۵۵.             | . 058                                        |
| Span             | 49.6          | . 496   | 4.96     | 48.9              | .489           | 4.978         | ,018             | . 353                                        |
| Comments         | :             |         |          |                   |                |               |                  |                                              |
|                  |               | ,       |          |                   |                |               |                  |                                              |
| + Conc.          | Difference    | = Act   | % - Exp  | (Std) %           | m) v 10        | 10            |                  |                                              |
|                  | ifferece =    | I       | ull Scal | e Value           |                |               |                  |                                              |
| Span % D         | ifference     | = Act 9 | Exp % (  | Exp % (p          | pm) X 1        | -00           |                  |                                              |
|                  |               |         | nut o (  | E. Farri          |                |               |                  | 4.7                                          |

### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

| Site: EEMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - West,         | Kent,                                 | WA 98032          | Date:          | 5/18/9:            | ⊋ Anal                                | yte: <u>SO</u> 2 | (15-4)           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|-------------------|----------------|--------------------|---------------------------------------|------------------|------------------|--|
| Source: H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AUGHS           | S270                                  | SERIE             | <u>S</u> Run # | : 6                | · · · · · · · · · · · · · · · · · · · |                  |                  |  |
| Zero Cyl #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : <u>TI3</u>    | 2257                                  | Co                | onc.00.0 p     | om SO <sub>2</sub> | Cyl Pr                                | ess: <u>800</u>  | psi              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                       | _                 |                |                    |                                       | Date: 10         | ١                |  |
| Span Cyl #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _               |                                       |                   |                |                    |                                       | ess: 45          | . •              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                       |                   |                |                    |                                       | Date: 9/2        | _                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -               |                                       |                   |                |                    |                                       |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                       |                   |                |                    |                                       | SN: 403          |                  |  |
| Range: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2500 p        | pm SO <sub>2</sub>                    | An                | alyzer Ou      | tput:_             | 0 - 1.                                | 0                | v.               |  |
| Flow:1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 SCFH          |                                       | Measu             | red by:        | Rotame             | ter:_X                                | Flowmet          | er:              |  |
| EPA Span Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alue = 2        | 500 ppr                               | n 50 <sub>2</sub> |                |                    |                                       |                  |                  |  |
| EPA Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                       |                   |                |                    |                                       |                  |                  |  |
| Pre Run Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>lit</u> : By | ' <b>:</b>                            | DK                | Time           | e:                 | 1530                                  | Temp:            | % of             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                       |                   | udit Resu      |                    |                                       |                  |                  |  |
| Point Expected Response Actual Response + Conc.  # Meter DVM ppm Meter DVM ppm Difference \$\Delta\xi\$  \[ \lambda \lambda \rightarrow \rightarrow \lambda \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightar |                 |                                       |                   |                |                    |                                       |                  |                  |  |
| 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                       |                   |                |                    |                                       |                  |                  |  |
| Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.3            |                                       | 1232              | 49.3           | .493               |                                       | 2.000            | .162             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>        |                                       |                   | ,              |                    |                                       |                  |                  |  |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                       |                   |                |                    |                                       |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                       |                   |                |                    |                                       |                  |                  |  |
| Post Run A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | adit. F         | w.                                    | DK                | Time           | a : 1              | 915                                   | Temp: 8          | 2 o <sub>f</sub> |  |
| lobe Run III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aure. z         | · · · · · · · · · · · · · · · · · · · |                   | udit Resu      |                    | <i>.</i>                              |                  |                  |  |
| Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Expec           | ted Res                               |                   |                | ual Re             | sponse                                | + Conc.          |                  |  |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Meter           | DVM                                   | ppm               | Meter          | DVM                | ppm                                   | Difference       | Δ &              |  |
| Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.0            | .000                                  | 00.0              | 00.3           | . 603              | 10.928                                | 10.928           | .437             |  |
| Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.3            | .493                                  | 1232              | 49.2           | .492               | 1231.<br>504                          | -:496            | 040              |  |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | -                                     |                   |                |                    |                                       |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                       |                   |                |                    |                                       |                  |                  |  |
| + Cong Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fforonge        | = 7.5+                                | nnm - Ev          | p (Std) p      | nm                 |                                       |                  |                  |  |

<sup>+</sup> Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

| Run:         | 6                |
|--------------|------------------|
| Date:        | 5/18/92          |
| Technicians: | BN, TK, DK, JS   |
| WST          | 6-Form3-Rev11/89 |

# QUALITY CHECKS WOODSTOVE DATA SHEET #16

| Ambient = Tr:                                                                                                                        | 79                                                                   | or T/C                                                 | :#30: 80.                       | 9                         | o <sub>F</sub>          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|---------------------------|-------------------------|
| Thermocouple Check (a                                                                                                                | <u> </u>                                                             |                                                        |                                 | ~                         | — ·                     |
| T/c #3: 232.6 °F;                                                                                                                    |                                                                      |                                                        | T/C #5                          |                           | · ·                     |
| T/c #6: 357.7°F;                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                | ··· <del>·</del>                                       | T/C #8                          |                           | o <sub>F</sub>          |
| T/C #9: 700.6 °F;                                                                                                                    | ·                                                                    |                                                        | T/C #11                         |                           | o <sub>F</sub>          |
| T/C #12: 175.4 °F;                                                                                                                   |                                                                      |                                                        | T/C #14                         |                           | —<br>о <sub>г</sub> ,   |
| T/C #15: 162.6 °F;                                                                                                                   | T/C #16: 5                                                           |                                                        | T/C #17                         |                           | 一。'<br>o <sub>F</sub> ; |
| T/c #18: 89.3 of;                                                                                                                    | <del></del> -                                                        |                                                        | T/C #20                         |                           | o <sub>F</sub> ;        |
| T/C #21: oF;                                                                                                                         | T/C #22:                                                             |                                                        | T/C #23                         |                           | o <sub>F</sub> ;        |
| T/C #24: oF;                                                                                                                         | T/C #25:                                                             | ·                                                      | T/C #26                         |                           | o <sub>F</sub> ,        |
| Comments: HOT START                                                                                                                  |                                                                      |                                                        |                                 |                           | <del></del> · :         |
|                                                                                                                                      |                                                                      |                                                        |                                 |                           |                         |
|                                                                                                                                      |                                                                      |                                                        |                                 |                           |                         |
|                                                                                                                                      |                                                                      |                                                        |                                 |                           |                         |
| Thermocouple Readout: Pretest Zero/Span Che Zero (0°F): 0°F                                                                          |                                                                      | ost Test Ch                                            |                                 | % Differe<br>. <i>030</i> | nce                     |
| Span                                                                                                                                 | Adi S                                                                | -<br>Dan                                               |                                 |                           |                         |
| (2000°F): 2003.5 °F                                                                                                                  | to: <u>2006.0</u> °F                                                 | (2000°F):_                                             | <u>2004.4</u> °f _              | , 220                     | ·                       |
| (Allowable % Difference                                                                                                              | ce = 1.5%. Use                                                       | formulas on                                            | Woodstove                       | e Data Sh                 | eet                     |
| #15 to calculate % Di                                                                                                                | fference)                                                            |                                                        |                                 |                           |                         |
|                                                                                                                                      |                                                                      | -                                                      |                                 |                           |                         |
| Thermocouple Readout                                                                                                                 |                                                                      |                                                        | 4.4                             |                           | :                       |
|                                                                                                                                      | $200^{\circ}F = 202.$                                                |                                                        |                                 |                           |                         |
| $600^{\circ}F = \underline{602.6}^{\circ}F;$                                                                                         |                                                                      | <del></del>                                            |                                 |                           | . ·                     |
| 1200°F= 1200.3 °F;                                                                                                                   |                                                                      |                                                        | 00F = 160                       | 02.5 °F                   | ,                       |
| 1800°F= 1803.2 °F;                                                                                                                   | $2000^{\circ}F = 2000.$                                              | O of                                                   |                                 |                           |                         |
|                                                                                                                                      |                                                                      |                                                        |                                 |                           |                         |
| <b>m</b>                                                                                                                             |                                                                      |                                                        |                                 |                           |                         |
| Tracer Gas (SO <sub>2</sub> ) Injec                                                                                                  |                                                                      |                                                        |                                 |                           |                         |
| Combustion Gas (CO2,0                                                                                                                | 2,00) Train Leak                                                     | Check: Pr                                              | e Pos                           | st_/                      |                         |
| Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ) Tracer Gas (SO <sub>2</sub> ) Analy                                                | <sub>2</sub> ,CO) Train Leak<br>yzer Train Leak                      | Check: Pr<br>Check: Pr                                 | e Pos                           | st /                      |                         |
| Combustion Gas (CO2,0                                                                                                                | <sub>2</sub> ,CO) Train Leak<br>yzer Train Leak                      | Check: Pr<br>Check: Pr                                 | e Pos                           | st /                      |                         |
| Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ) Tracer Gas (SO <sub>2</sub> ) Analy Draft (Static) Guage 2                         | 2,CO) Train Leak<br>yzer Train Leak<br>Zero Check:                   | Check: Pr<br>Check: Pr<br>Pr                           | e Pos<br>e Pos<br>e Pos         | st /                      |                         |
| Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ) Tracer Gas (SO <sub>2</sub> ) Analy Draft (Static) Guage 2 Scale Check Pre (Wt, 4) | 2,00) Train Leak<br>yzer Train Leak<br>Zero Check:                   | Check: Pr<br>Check: Pr<br>Pr<br>- 323.1 =              | e Pos<br>e Pos<br>e Pos         | st V                      |                         |
| Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ) Tracer Gas (SO <sub>2</sub> ) Analy Draft (Static) Guage 2 Scale Check Pre (Wt, 4) | 2,00) Train Leak yzer Train Leak Zero Check: #'s): 333.1 #'s): 324.0 | Check: Pr<br>Check: Pr<br>Pr<br>- 323.1 =<br>- 314.0 = | e Pos<br>e Pos<br>e Pos<br>10.0 | st V                      |                         |

TEST No. :

CLIENT : DATE: 5/19/92 S-27X MODEL: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* PERCENT S02 METER PERCENT **DELTA** TIME METER CO CO2 COCENTR. H TEMP. READING ( % ) ( % ) (IN. H2O) PPM (DEG. F) (C F) (MIN.)====== 5.20 500 78 0.47 0 819.700 0.150 400 78 3.00 5 821,200 0.240 0.46 2.60 79 525 0.140 0.46 10 823.102 0.130 79 0.46 2.60 550 15 824.557 825.946 0.130 80 0.49 2.70 550 20 81 0.54 2.80 550 0.130 25 827.340 575 81 0.66 2.80 30 828.740 0.120 425 81 0.33 7.40 0.220 35 830.078 7.20 475 82 0.55 0.180 40 831.888 8.60 425 0.220 83 0.20 45 833.514 0.220 425 9.50 50 835.338 84 0.11 425 55 837.168 0.220 84 0.17 10.70 0.220 11.20 838.998 85 0.25 425 60 400 0.250 85 0.18 10.40 65 840.836 0.17 70 842.788 0.220 85 9.70 425 85 0.18 9.60 425 0.220 75 844.626 10.20 425 0.220 86 0.18 80 846.463 0.29 450 848.308 0.200 86 9.10 85 425 86 0.25 8.60 0.220 90 850.050 425 0.220 86 0.18 8.60 95 851.894 87 0.26 7.90 450 100 853.739 0.190 450 855.487 0.190 87 0.30 7.00 105 0.160 87 0.79 6.10 500 110 857.236 525 115 858.810 0.140 88 1.01 5.20 120 860.314 0.140 88 1.10 4.70 525 88 1.07 4.40 500 0.160 125 861.819 88 1.09 4.10 500 130 863.400 0.160 89 3.90 500 0.160 1.16 135 864.980 89 140 866.566 0.160 1.13 3.70 500 89 145 868.152 0.160 1.14 3.50 500 89 3.40 500 869.738 0.160 1.08 150 871.324 0.160 89 0.96 3.50 500 155 0.150 872.910 90 3.50 500 160 1.01 89 165 874.504 0.150 1.01 3.70 500 0.150 3.70 170 876.088 89 1.01 500 175 877.674 0.150 89 0.99 3.70 500 89 180 879.260 0.160 0.99 3.60 500 88 0.93 185 880.847 0.160 3.70 500 88 0.93 190 882.429 0.160 3.60 500 195 884.011 0.160 88 1.01 3.40 500 200 885.593 88 0.160 1.07 3.10 500 205 887.175 0.160 88 1.06 3.20 500 210 888.756 0.160 87 500 1.14 3.10 0.160 87 215 890.332 1.07 3.00 500 220 891.909 0.160 87 1.09 3.10 500 225 893.485 0.160 87 1.12 500 3.10

HAUGHS PRODUCTS

#### TABLE 2 ---- FIELD DATA

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLIENT : HAUGHS PR       | ODUCTS      | TEST No. :              | 7                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|-------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODEL: S-27X ********    | *****       | DATE:<br>********       | 5/19/92<br>****** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METER CAL.<br>FACTOR (Y) | 1.066       | Wt. WOOD<br>BURNED(LB)  | 10.7 Lbs          |
| - Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont | BAROMETRIC<br>PRESS.(Pb) | 30.03 in Hg | WET, FUEL<br>MOISTURE % | 17.207 %          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEAK RATE<br>POST (Lp)   | 0.003 cfm   | Wt. PART.<br>COLLECTED  | 0.9627 g          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER<br>VOL. (V1c)      | 108.5 ML    | METER<br>VOLUME Vm      | 73.785 mcf        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST<br>TIME (MIN)       | 225 min     | HC MOLE<br>FRACTION     | 0.0132            |

#### TABLE 3 ----FIELD DATA AVERAGES

| Samuel Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the | CLIENT :              | HAUGHS PRO     | DUCTS       |                  | TEST No.        | : 7              |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------|------------------|-----------------|------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODEL: :              | S-27X<br>***** | *****       | *****            | DATE:<br>****** | 5/19/92<br>***** | ****       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG DELTA<br>H        |                | 0.17 in H2O | AVG PRCNT<br>CO  |                 | - 0.70           | ) <b>%</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG METER<br>TEMP. Tm |                | 86 deg F    | AVG PRCNT<br>CO2 |                 | - 5.38           | ક સ્ટ      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG PPM<br>SO2        | <b>-</b>       | 482 PPM     |                  |                 |                  |            |

#### TABLE 4 ---- CALCULATIONS

.

| CLIENT: HAUGHS PRO       | DUCTS            | TEST No. :                     | 7                 |                 |
|--------------------------|------------------|--------------------------------|-------------------|-----------------|
| MODEL: S-27X ********    | *****            | DATE: 5                        | 5/19/92<br>****** | *****           |
| STD SAMPLE VOL. Vm(std)  | 76.41 dscf       | STACK GAS<br>FLOW Qsd          | 522.083           | dscf/Hr<br>&    |
|                          |                  |                                | 8.70              | dscf/min        |
| VOL. WATER VAPOR Vw(std) | 5.107 scf        | PARTICULATE CONCTRT. C s       | 0.0126            | g/dscf          |
| PRCNT<br>MSTR Bws        | 6.26 %           | PARTC.EMISS. RATE E            | 6.58              | g/Hr            |
| BURN<br>RATE BR          | 1.07 Kg/Hr       | MOLES OF GAS<br>PER Lb WOOD Nt | 0.57              | Lb-mole/Lb      |
| CO EMISSION<br>RATE      | 122.01 g/Hr<br>& | PART.EMISS.<br>RATE            | 6.13              | g/Kgdry<br>fuel |
|                          | 113.71 g/Kgdr    | <b>Y</b>                       |                   |                 |

TABLE 5 ---- PROPORTIONAL RATE VARIATION

|                     |            |                |            |         |        |      |         | _    |      |
|---------------------|------------|----------------|------------|---------|--------|------|---------|------|------|
| -1-                 | HAUGHS PRO | DUCTS          | -          |         | TEST   | No.  | :       | 7    |      |
|                     | S-27X      |                |            |         | DATE:  | :    | 5/19/92 | 2    |      |
| Sand.               | *****      | ****           | ******     | *****   | ****   | **** | *****   | **** | **** |
|                     | TIME       | PPM            | PROPRTN.   |         | PROP   |      |         |      |      |
| }                   | INTEVAL    | *              | RATE VAR.  |         | RATE   |      |         |      |      |
| A.m.)               | Ti         | Vm             | PR         |         | AVERA  | AGE  |         |      |      |
|                     | =======    |                | =======    | ======= | _===== | ==== | ======  | ===  |      |
| $\bigcap$           | 5          | 787.9          | 97         |         |        | 100  |         |      |      |
|                     | 10         | 798.7          | 98         |         |        |      |         |      |      |
|                     | 15         | 801.0          | 99         |         |        |      |         |      |      |
| $\Box$              | 20         | 800.3          | 99         |         | •      | •    |         | •    | 4    |
|                     | 25         | 801.7          | 99         | •       |        |      |         |      |      |
| in accord           | 30         | 804.4          | 99         |         |        |      | -       |      |      |
|                     | 35         | 803.7          | 99<br>99   |         |        |      |         |      |      |
| ļ. ļ                | 40<br>45   | 803.1<br>804.8 | 99         |         |        |      |         |      |      |
| ()                  | 50         | 806.3          | 99         |         |        |      | •       |      | •    |
|                     | 55         | 808.2          | 100        |         |        |      |         |      |      |
|                     | 60         | 807.5          | 100        |         |        |      | •       |      |      |
|                     | 65         | 810.3          | 100        | •       |        |      |         |      |      |
|                     | 70         | 810.0          | 100        |         |        |      |         |      |      |
|                     | 75         | 810.3          | 100        |         |        |      |         |      |      |
|                     | 80         | 809.1          | 100        |         |        |      | •       |      |      |
| bound               | 85         | 811.9          | 100        |         |        |      |         |      |      |
| $\neg$              | 90         | 811.6          | 100        | *       |        | •    | •       |      | . "  |
| · Landing           | 95         | 811.4          | 100        |         | •      |      |         |      |      |
| land.               | 100        | 811.1          | 100        |         |        |      |         |      | *    |
|                     | 105        | 812.9          | 100        |         |        |      |         |      |      |
|                     | 110        | 813.3          | 100        |         |        |      |         |      |      |
|                     | 115        | 812.5          | 100        |         |        |      |         |      |      |
|                     | 120        | 814.4          | 100        | •       |        | •    |         |      | . •  |
| $\Box$              | 125<br>130 | 814.9<br>815.4 | 100<br>101 |         |        | -    |         |      |      |
|                     | 135        | 814.1          | 100        |         |        |      |         |      |      |
| Second .            | 140        | 816.4          | 101        |         |        |      |         |      |      |
|                     | 145        | 816.4          | 101        |         |        |      |         |      |      |
|                     | 150        | 816.4          | 101        |         |        |      | •       |      |      |
| L.J                 | 155        | 816.4          | 101        |         |        |      |         |      |      |
|                     | 160        | 815.7          | 101        |         |        | -    |         | -    |      |
|                     | 165        | 819.8          | 101        |         |        | •    |         |      |      |
|                     | 170        | 815.4          | 101        |         |        |      |         |      |      |
|                     | 175        | 816.4          | 101        | •       |        |      |         |      |      |
| $\Box$              | 180        | 816.4          | 101        |         |        |      |         |      |      |
|                     | 185        | 817.7          | 101        |         |        |      | •       |      |      |
| "comed              | 190        | 815.9          | 101        |         |        |      |         |      |      |
|                     | 195        | 815.9          | 101        |         |        |      |         |      |      |
|                     | 200        | 815.9          | 101        |         |        |      |         |      |      |
| (_)                 | 205        | 815.9          | 101        |         |        |      |         |      |      |
|                     | 210<br>215 | 816.1          | 101<br>100 |         |        |      |         |      |      |
|                     | 215<br>220 | 814.3<br>814.8 | 100        |         |        |      |         |      |      |
| (J)                 | 225        | 814.3          | 100        |         |        |      |         |      |      |
| Same of the same of | 230        | 27-1-0         | ±00        |         |        |      |         |      |      |
| <u> </u>            | 200        |                |            |         |        |      |         |      |      |

|                                        | Bramp Ton                                | Ontario, Canada LGT | 501                                   |
|----------------------------------------|------------------------------------------|---------------------|---------------------------------------|
| Client Phone                           | 416-1792-8                               | 8000                |                                       |
|                                        | Model                                    |                     |                                       |
| _                                      |                                          | <u> </u>            |                                       |
|                                        | Cat Non Cat_                             | *_ *_ * *           |                                       |
| Data To Be Su                          | bmitted To: Oregon                       | X Colorado EPA      | <u>k</u>                              |
| Burn Category                          | : Low (<0.8 Kg/Hr)_<br>Med Low (0.8 - 1. |                     | g/Hr)<br>/Hr);                        |
| Fuel % Moistu (00.00)                  | · \ ~ ~ \                                | 33 / (Wet) 17,207 / |                                       |
| Stack Static                           | Pressure_<br>(Data Sheet #12)            | -044                |                                       |
|                                        | essure<br>(Data Sheet #2)                | 30.03               | <del></del>                           |
|                                        | Average Room) Combus<br>ta Sheet #14)    | stion Air 75        |                                       |
| Flue Gas Mois<br>(00.000)              | ture<br>(Data Sheet #7)                  | 6,365 6.2669        |                                       |
| Ambient Moist                          | ure<br>Data Sheet #8)                    | 1.05                | · · · · · · · · · · · · · · · · · · · |
| Stove Weight_<br>(000) (Da             | sta Sheet #8)                            | 231                 |                                       |
| Stove Tempera<br>(000) (Da             | ture Change<br>ata Sheet #14)            | -90/                | <del> </del>                          |
| Particulate En (0.0000)                | nission_<br>(Data Sheet #7)              | 1945                | gr/ds                                 |
| Fuel Higher He<br>(0000) (0            | eating Value (dry)<br>CT&E Sheet)        |                     | . ВТО                                 |
| Fuel Type: Wo                          | ood: <u> </u>                            | ets:                |                                       |
|                                        | nsumed During Burn <u> </u>              | 1017                | 1                                     |
| Total Particu]<br>(0.0000)             | ate Catch<br>(Data Sheet #6)             | .4607               |                                       |
| H <sub>2</sub> O Captured<br>(00.0) (E | ata Sheet #3)                            | 1085                |                                       |
| Dry Gas Meter                          | Volume                                   | 13.785/             |                                       |

Meter Box Data Sheet Page # 2

Meter Box 45 Y Factor 1,066

Leak Checks: 150 " Hg @ 1001 cfm

Run: 7 Date: 5/19/92
Operator(s): 38

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: 1500

| ROTO  | PRESS:  | , 19             | Sampling | Ratio :        | AD 5                   | <u>: 1</u>    | BAROM          | ETER: 3       | 0.05     |
|-------|---------|------------------|----------|----------------|------------------------|---------------|----------------|---------------|----------|
| MN    | TIME    | METER<br>READING |          | STACK<br>DSCFM | DELTA<br>H             | METER<br>TEMP | 802<br>M44     | ROTO<br>TEMP  | PUMP     |
| 00    | 1030    | 819.700          | ·        | 6.889          | 15                     | 18            | 500            | 23            | 0        |
| 05    | 35      | 891,200          |          | 8,612          | Del                    | 18            | 400            | 73            | 15       |
| 10    | 40      | 203.101          |          | 6.501          | 114                    | 19            | 505            | 13            | 1.0      |
| 15    | 45      | 204.551          |          | 6263           | /13                    | 79            | 550            | 13            | 15       |
| 20    | 50      | 805,946          |          | 6.416          | 113                    | 80            | <u>030</u>     | 71            | .2       |
| 25    | 55      | 807-340          |          | 6-416          | - 13                   | 81            | <u>550</u>     | 71            | 15       |
| 30    | 1100    | 888,740          |          | 6.137          | 112                    | 81            | 575            | 71            | 2        |
| 35    | 5       | 230,078          |          | 8.304          | 100-                   | 81            | 405            | 71            | -5       |
| 40    | 10      | <i>831-8</i> 88  |          | 7.409          | .18                    | 89            | 475            | 71            | 10       |
| 45    | 15      | 833514           |          | 8.304          | 199                    | <i>2</i> 3    | 405            | 1/            | 1.0      |
| 50    | ĐO.     | 835.338          |          | 8,304          | 180                    | 24            | 405            | 71            | 1-0      |
| 55    | 95      | 837-168          |          | 8,304          | 100                    | 84            | 405            | 71.           | 10       |
| ROTO  | PRESS:  |                  | TOTALS : | (8)4347        | (2-10-5                | (970)         | BAROM          | ETER:         | 7        |
| 60    | 30      | 238.49 <b>8</b>  |          | 8,070          | 199                    | 85            | 75             | 13            | 10       |
| 65    | 35      | 940.836          |          | 8,186          | 185                    | 85            | 400            | 73            | 1-0      |
| 70    | 40      | 840,788          |          | 8,010          | <i>A</i>               | 25            | 905            | 13            | 15       |
| 75    | 45      | 844.696          |          | 8090           | 100                    | 25            | 405            | 73            | 1-0      |
| 80    | 50      | 246.463          |          | 8.20           | <i>•</i> <del>20</del> | 25            | 105            | 13            | 10       |
| 85    | 55      | 848,308          |          | 7,810          | .80                    | 26            | 450            | 73            | 10       |
| 90    | 1200    | 850,050          | <u> </u> | 8,000          | 199                    | 86            | 965            | 73            | 10       |
| 95    | 5       | 851.894          |          | 8,270          | 192                    | 86            | 105            | 1/3           | 1.5      |
| 100   | (0      | S3739            |          | 7.781          | 119                    | 181           | 450            | 1/5           | 10       |
| 105   | 15      | 855,487          | 4        | 1.781          | 119                    | 181           | 450            | 10            | 10       |
| 110   | // /    | 857,230          | 1        | 7,003          | 10                     | 187           | 000            | 1/0           | 10       |
| 115   | 85      | 83810            |          | 6.669          | 14                     | 188           | 395            | 1 75<br>255 = | 15       |
|       |         |                  | TOTALS:  |                | (D)45)                 | 1633)         | <del>, -</del> | ACC =         | <u> </u> |
| TOTAL | L CU FT |                  | TOTALS:  | 183,389        | 4.55                   | 10003         | AV BP          |               |          |

60,09

Nozzle: Probe @ 3/8 " od

Initial Volume: 1500

| ROTO        | PRESS:  | <u>, 19</u>      | Sampling   | Ratio:         | <u> </u>   | _ : 1         | BAROME     | =1EK: <u>C</u> | 2005     |
|-------------|---------|------------------|------------|----------------|------------|---------------|------------|----------------|----------|
| MN          | TIME    | METER<br>READING |            | STACK<br>DSCFM | DELTA<br>H | METER<br>TEMP | SO2<br>PPM | ROTO<br>TEMP   | PUME     |
| 120         | 30      | 860,314          | ·          | 6667           | -14        | 88            | 505        | 15             | 15       |
| 125         | 35      | 241.219          |            | 7001           | 16         | <i>28</i>     | 500        | 75             | -5       |
| 130         | 40      | 063,000          |            | 6.988          | 16         | 82            | 200        | 76             | 15       |
| 135         | 45      | 864-980          |            | 6998           | .16        | 291           | 300        | 76             | 15       |
| 140         | 50      | Ellastolo        | . <b>.</b> | 6.988          | -16        | 89            | 200        | 16             | 5        |
| 145         | 55      | 868,152          |            | 6975           | 16         | 89            | 500        | 77             | 15       |
| 150         | 1300    | 869.738          | _          | 6.975          | 16         | 89            | <u>000</u> | 77             | 25       |
| 155         | 5       | 271-304          |            | 6.975          | 16         | 29            | 30         | 77             | 15       |
| 160         | 10      | 278910.          | _          | 6-960          | 15         | 40            | 30         | 18             | 5        |
| 165         | 15      | 214504           |            | 6-960          | 15         | 89            | 500        | 20             | 3        |
| 170         | 20      | 276.00           |            | 6-960          | 15         | 89            | 800        | 10             | 15       |
| 175         | 05      | 877-674          |            | 6960           | 15         | 89            | 500        | 18             | 15       |
| ROTO        | PRESS:  |                  | TOTALS :   | (83,405)       | (1.86)     | 1066)         |            | ETER: _        | 3000     |
| 180         | 30      | 279.860          |            | 6981           | 16         | 89            | 500        | 16             | 1/2      |
| 185         | 35      | 880,847          |            | 6.981          | 16         | 88            | 500        | 16             | 15       |
| 190         | 40      | 880-409          |            | 6981           | 16         | 150           | 800        | 76             | 15       |
| 195         | 45      | 884.011          |            | 6.981          | 16         | 80            | 500        | 16             | 15       |
| 200         | 50      | 885.593          | <u>Į</u>   | 6.981          | .16        | 88            | 500        | 16             | 5        |
| 205         | 55      | 887.175          | ]          | 6.981          | .16        | 88            | 30         | 16             | 1.5      |
| 210         | 1400    | 888.756          |            | 6,481          | . 16       | 87            | 500        | 76             | 15       |
| 215         | 5       | 890,334          | 1          | 6.491          | u 16       | 87            | 500        | 76             | 15       |
| 550         | 10      | 891.909          | 1          | 6.981          | 116        | 37            | 500        | 16             | 10       |
| 225         |         | 893,485          | ‡          | 6.98           | 16         | 000           | 1200       | 16             | 15       |
| 230         | 40      | ,                | 1          | (6510)         | (1.60)     | (21)          | 11/2       |                | -        |
| 235         | 95      |                  |            | 336.6047       | (801)      | 3946          |            | <u> </u>       | 1,2      |
| <del></del> |         |                  | TOTALS:    | 000            | (01)       | 26            | MAX V      | : <u>30.0</u>  | 11/2     |
| TOTA        | L CU FT | 13.785           | TOTALS:    | (7.317)        | (-1743     | (546)         | HO BP      | <u>ي.رين</u>   | <u> </u> |

## MOISTURE SHEET Woodstove Data Sheet #3

|                          | lance<br>roed                               | Unit: Haughe .                        | S270     |
|--------------------------|---------------------------------------------|---------------------------------------|----------|
| Final:                   |                                             | Run: 7                                |          |
| IMPINGER #1              |                                             | Date: 5/19/92                         | 2        |
| Final Weight <u>6635</u> | _ grams                                     | Technician(s): Initial:_              | Th       |
| Initial Weight 576.4     | _ grams                                     | Final:                                | 55       |
| Net_ 87.1~               | _ grams                                     | Approved By: T                        |          |
| IMPINGER #2              |                                             |                                       |          |
| Final Weight 5906        | grams                                       |                                       |          |
| Initial Weight S848      | _ grams                                     |                                       |          |
| Net                      | grams                                       |                                       |          |
| IMPINGER #3              |                                             |                                       |          |
| Final Weight 4999        | _ grams                                     |                                       |          |
| Initial Weight 498.5     | _ grams                                     |                                       |          |
| Net 14                   | _ grams                                     |                                       | · .      |
| IMPINGER #4 (SILICA GEL) |                                             |                                       |          |
| Final Weight 8310        | _ grams                                     |                                       |          |
| Initial Weight_ 816.8    | _ grams                                     | •                                     |          |
| Net14,8                  | grams                                       |                                       |          |
| 1                        | TOTAL MAS                                   | ss of H <sub>2</sub> O CAPTURED 10075 | _ grams  |
| 590.0g = 590             | <u>Γ0</u> g<br><u>0.0</u> g<br><u>0.0</u> g | Front Half Filter #                   | CG&F     |
| Notes:                   |                                             |                                       | :        |
|                          |                                             |                                       |          |
|                          | ·                                           |                                       | <u> </u> |
|                          |                                             |                                       |          |
|                          |                                             |                                       |          |

|   |            |         |         |         |               |              |             |         |          | M913-10     | ŕm2'ιF | 32, Kevi | 770         |
|---|------------|---------|---------|---------|---------------|--------------|-------------|---------|----------|-------------|--------|----------|-------------|
|   |            | WOODS   | TOVE D  | ATA SH  | EET           | #4-1: I      | NITIA       | L FILTE | R WE     | IGHTS (     | TARE V | VEIGHTS  | •           |
| I | nto D      | essicat | or: Da  | te3/17/ | <u> 12</u> Ti | me 0900      | _ ву_[      | K Fr    | ont      | Half.       | Bac    | k Half   |             |
| M | anufa      | cturer: | <u></u> | 5       |               | Size:        | <u>0 mm</u> | Lot.No  | <u>Z</u> | B882        | Grade: | ±250     | <u>uass</u> |
| F | ilter<br># | First   | Date    | Time    | Βv            | Second<br>Wt | Date        | Time    | Bv       | Third<br>Wt | Date   | Time     | Bv          |

|       | First   | l i                      |      | <u> </u> | Second |      |                                                  |                                       | Third  |          |      |    |
|-------|---------|--------------------------|------|----------|--------|------|--------------------------------------------------|---------------------------------------|--------|----------|------|----|
| #     | Wt      | Date                     | Time | Ву       | Wt     | Date | <del>†                                    </del> | Ву                                    | Wt     | Date     | Time | Ву |
| 261 F | 0.6987  | 3/20                     | 1608 | DK       |        | 303  | 1380                                             | 80                                    |        | <u> </u> |      |    |
| 2621  | 0.7014  | 1                        | 1610 | $\gamma$ | .7017  | 1    | 1301                                             | j                                     |        |          |      |    |
| 263   | 0.6988  |                          | 1612 | /        | 16985  |      | 1300                                             |                                       |        |          |      |    |
| 2641  | 0.6893  |                          | 1614 |          | .6894  |      | 1303                                             |                                       |        |          |      |    |
| 265   | F0.6912 |                          | 1616 |          | 6917   |      | 1304                                             |                                       |        |          |      |    |
| 266   | F0.6934 |                          | 1618 |          | 16936  |      | 1395                                             |                                       | HAUGHS | RNI      | 7    |    |
| 2671  | F0.6936 |                          | 1620 | - J      | 16437  |      | Box                                              |                                       |        |          |      |    |
| 2681  | F0.7015 |                          | 1622 | \        | ,7010  |      | 1307                                             | 1                                     |        |          |      |    |
| 269   | -0.6933 | ĺ                        | 1624 | 1        | 16436  |      | 13/19                                            |                                       |        |          |      |    |
| 270F  | 0.6965  |                          | 1626 | 1        | 16965  |      | 1300                                             |                                       |        |          |      |    |
|       |         |                          |      |          |        |      |                                                  |                                       |        |          |      |    |
| 271F  | 0.6953  | <i>3</i> / <sub>20</sub> | 1628 | D        | 695    |      | 1330                                             |                                       |        |          |      |    |
| 272F  | 0.7002  | 1                        | 1630 |          | . 7005 |      | 1331                                             |                                       |        |          |      |    |
|       | 0.6978  |                          | 1632 |          | 16980  |      | /330                                             | ļ                                     |        |          |      |    |
| 274F  | 0.6900  | (                        | 1634 | ,        | 6903   |      | 1333                                             |                                       |        |          |      |    |
| 2751  | 0.6975  |                          | 1636 | \        | 16975  |      | 1334                                             | 1                                     |        |          |      |    |
| 276 F | 0.6978  |                          | 1638 |          | 1699   |      | 1335                                             | a a a a a a a a a a a a a a a a a a a |        |          |      |    |
| 277F  | 0.6975  | /                        | 1640 |          | 14141  |      | 1336                                             | 1                                     |        |          |      |    |
| 2788  | 0.6992  |                          | 1642 |          | 6991   |      | 1337                                             |                                       |        |          |      |    |
|       | 0.6901  |                          | 1644 |          | 6900   |      | 1332                                             | -                                     |        |          |      |    |
|       | 0.6994  | )                        | 1646 |          | 6997   | V    | 1339                                             | V                                     |        |          |      |    |
|       |         |                          |      |          |        |      |                                                  |                                       |        |          |      |    |
|       |         |                          |      |          |        |      |                                                  |                                       |        |          |      |    |
|       |         |                          |      |          |        |      |                                                  |                                       |        |          |      |    |
|       |         |                          |      |          |        |      |                                                  |                                       | 1      |          |      |    |

Checked by

Date: 3/24/91 Time 0900

| QA RE | WEIGH |                    |    |
|-------|-------|--------------------|----|
| WT    | Date  | Time_              | Ву |
|       | 1     |                    |    |
|       |       |                    |    |
|       |       |                    |    |
|       |       | QA REWEIGH WT Date |    |

| BALA | NCE R | OOM ENVI | RONMENTA | L COND | TIONS |
|------|-------|----------|----------|--------|-------|
| WB   | DB    | %RH      | Date     | Time   | Ву    |
| 60   | .74   | 44       | 3/20     | 1606   | DK    |
| 59   | 13    | 43       | 303      | 130    | JE3   |
|      |       |          |          |        | •     |

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

| QA REWEIGH  BALANCE ROOM ENVIRONMENTAL CONDITION  Filter # WT Date Time By WB DB %RH Date Time  \[ \lambda 0 \] 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1anu fa | cturer:  | <u> </u>    | <u>\$5</u> _ |     | _ Size: | 8.2          | <u>cw</u> | Lot.No  | ).: <u>7</u> | B 401 | _ G        | rade  | *25 GL        | <u>ASS</u>    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------------|--------------|-----|---------|--------------|-----------|---------|--------------|-------|------------|-------|---------------|---------------|
| 2016 0.3846 350 1526 0K 3849 383 1341 96 26280.3822 1528 3827 1344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          | Date        | Time         | By  |         |              | ate       | Time    | Ву           | 1     |            | Date  | Time          | Ву            |
| 26280.3822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 1 3846   | 3/20        | 15712        | nx  | 3849    |              |           |         |              |       |            |       |               |               |
| 26 3 6 0 3 8 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |             | 4            | 1   |         |              | 7         |         | 177          |       |            |       |               |               |
| 264B 0. 3811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          |             |              | 1   |         |              |           |         |              |       |            |       |               |               |
| 265 © 0.3821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          | 1           |              |     |         |              |           |         |              |       |            |       |               |               |
| 210   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | T        | 1/_         | -            |     |         |              |           |         |              |       |            |       |               |               |
| 216 P d d d d d d d d d d d d d d d d d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          | 1           |              | 1   | 138 ax  | 1            |           | 1346    |              | HAU   | 443        | PRUT  | F             |               |
| 210 8 10 . 3772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | I        | í           |              |     | -3808   | $\perp$      |           |         |              |       |            |       | <u> </u>      |               |
| 210   10   13   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 7        |             |              | 1   |         |              |           |         | $\prod '$    |       |            |       | <u> </u>      | <u> </u>      |
| 270F0.3813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |             |              |     |         |              |           |         |              |       |            |       | <u> </u>      |               |
| 2718 0.3884 3/20 1546 0K 3280 1351 2728 0.3818 1548 3213 1354 2738 0.3825 1550 324 1 1353 2748 0.3856 1552 3253 1354 2758 0.3856 1552 3253 1354 2758 0.3832 1554 3280 1355 27168 0.3832 1554 3280 1355 27168 0.3835 1558 3230 1355 27168 0.3835 1558 3230 1355 27168 0.3821 1600 3800 1360 1359 279 0.3827 1602 32892 1359 2808 0.3821 1604 3218 1400 1600 1600 1600 1600 1600 1600 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          | <del></del> |              | _   |         |              |           | 1350    |              |       |            |       |               |               |
| 27360.3818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |             |              |     |         |              |           |         |              |       |            |       | <u> </u>      |               |
| 27360.3818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |             |              |     | · .     |              |           |         |              |       |            |       | <u> </u>      | <u> </u>      |
| 27360.3818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2718    | 0.3884   | 3/20        | 1546         | OK  | 13882   |              |           |         |              |       |            |       |               | <u> </u>      |
| 27360.3825   1550   384   1353   27460.3856   1552   3853   1354   27560.3832   1554   3850   1355   271680.3832   1556   3864   1355   27760.3836   1558   3834   1357   27860.3801   1600   3804   1357   27960.3827   1602   3892   1359   28080.3821   1604   3218   1400   1400   28080.3821   1604   3218   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400   1400 |         | 4 - 1    |             |              |     | -3813   |              |           |         |              |       |            |       |               | <u> </u>      |
| 274 50.3856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l l     |          |             |              | )   |         |              |           |         |              |       |            |       |               |               |
| 275B0.3832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |             | 1552         | 1   | /3853   |              |           | 1354    |              |       |            |       |               | <u> </u>      |
| 277 60.3836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 275     | 50.3832  |             | 1554         |     | 3830    | 1            |           |         |              |       |            |       | ļ!            | <u> </u>      |
| 278 6 0 3801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2760    | 30.3862  |             | 1556         |     |         | 11           |           |         |              |       |            |       | <u> </u>      | <u> </u>      |
| 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2774    | 60.383b  | , /         | 1558         |     |         |              |           |         |              |       |            |       | <u> </u>      |               |
| 28080.3821   1604   3818   1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |             | 1600         | []' | 13800   | 11           |           |         |              |       |            |       | ·             |               |
| 28080.3821   1604   3218   1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2791    | 50.3827  |             | 1602         |     |         |              |           |         |              |       |            |       | ļ             | <u> </u>      |
| QA REWEIGH  BALANCE ROOM ENVIRONMENTAL CONDITION  Filter # WT Date Time By  WB DB %RH Date Time  60 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280     | 30.3821  |             |              |     | 13218   | V            |           | 1400    | 1            |       |            |       | <u> </u>      | <u> </u>      |
| QA REWEIGH  BALANCE ROOM ENVIRONMENTAL CONDITION  Filter # WT Date Time By  WB DB %RH Date Time  60 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |             |              | !   |         |              |           |         |              |       |            |       | <u> </u>      | <u> </u>      |
| QA REWEIGH  BALANCE ROOM ENVIRONMENTAL CONDITION  Filter # WT Date Time By  WB DB %RH Date Time  60 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | <u> </u> |             |              |     |         |              |           | ļ       |              |       |            |       | <br>          | <u> </u>      |
| QA REWEIGH  BALANCE ROOM ENVIRONMENTAL CONDITION  Filter # WT Date Time By WB DB %RH Date Time  \[ \lambda 0 \] 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |             | 12           |     | <u></u> |              |           |         |              |       |            |       | <u></u> !     | _             |
| Filter # WT Date Time By WB DB %RH Date Time 60 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jhecke  | d by     |             | <u> 22 </u>  |     |         |              |           | Dat     | :e:          | 3/24  | <u> 91</u> | Time  | : <u> 190</u> | 10            |
| Filter # WT Date Time By WB DB %RH Date Time 60 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          | la          |              |     |         |              |           |         |              | •     | ,          |       |               |               |
| 60 74 44 3/20 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | AQ       | REWE        | IGH          |     |         | <del>_</del> | BAJ       | LANCE F | KOOM         | ENVIR | ONM        | ENTAL | CONDI         | TI            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lilter  | # W'     | T           | Date         | Tir | me B    | У            |           |         |              |       |            |       | Time          | B             |
| 59 73 43 3/03 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |             |              |     |         | _            | 6         |         | +            |       | 3/         | ಎ೦    |               | $\mathcal{Q}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1        | į.          | I            |     | Ì       | - 1          | 1         | i       | 1            | 1     |            |       | 1             | . /           |

INITIAL BEAKER WEIGHTS (TARE WEIGHTS) Into Dessicator: Date: 4/22/92 Time: 0945 By: OK Second Third Beaker First Date Time Time Ву Wt Вy Wt Date Date Time Ву Wt DK 106.0506 4/DE 1417 9M 106.0504 4/27 1130 526 104-1497 1419 527 104,1494 1132 > HAULIES @ 7 1401 106-6818 106.6814 1134 1483 100 19088 100.9086 529 1136 105,0431 1405 <u>530</u> 105.0427 1138 1407 DK 95,5979 531 95.5983 4/27 1140 1409 103,7920 532 103.7918 1142 98,4397 533 98.4393 1431 1144 1433 106.7309 106.7326 / 534 11146 535 99.9873 99,9818 1435 1148 1437 536 96.3688 427 1150 DK 96.3690 1439 105:5587 105.5585 1152 1441 1 105-4854 538 105.4849 1154 107.4794 1443 539 107.4790 1156 107.3581 14UK 107.3581 1158 1447 97.6250 7/27 1200 DX 97.6249 542 100.2292 1444 100.0091 1202 96.6808 1451 543 96.6807 1204 99,9735 1453 544 99.9736 1206 545 1107.5087 80GI 107,5091 1455 96.7157 4/27 1210 DX 96.7159 1457 547 97.4338 97.4343 1459 1212 107.5898 548 1001 107.5893 1214 549 107.3100 107-3105 1503 1216 1505/4 106.1514 1218 106-1517 Date: 4/29/92 Time: 1350 Checked By:\_\_\_\_ BALANCE ROOM ENVIRONMENTAL CONDITION QA REWEIGH

QA REWEIGH
Beaker # WT Date Time By

BALANCE ROOM ENVIRONMENTAL CONDITION

WB DB 7RH Date Time By

60 73 47 4/27 1128 0K

59 79 46 4/22 1415 84

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                | WOO         | WOODSTOVE DATA SHEET |       | #4-31            | CONS  | CONSTANT FINAL WEIGHTS | IGHTS    |          |        | WST5-1         | WST5-Form9, Pg1, Rev4/90<br>Unit_AMUANS SOX | 1. Rev4/ | 82 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|-------------|----------------------|-------|------------------|-------|------------------------|----------|----------|--------|----------------|---------------------------------------------|----------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      | FINAL | L BEAKER WEIGHTS | R WEI | CHTS                   |          |          |        | Run #<br>Date: | 10/10/10                                    | 60       | 1  |
| реакет                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r into<br>Dessic | Date           | Time           | By          | First                | Date  | Time             | By    | Second                 | Date     | 7.5 110  | Page 1 | AR ( To        | -                                           | , E      |    |
| <del>S</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 3/20           | 0000           | 짐           | 106.1072             | Ste   | _                | Ē     | 106.1064               | 5/ss     |          | K      |                | Sign                                        | (Z)      | ð  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      |       |                  | ,     |                        |          |          |        |                | 2                                           |          |    |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 2/20           | 0300           | У<br>О<br>К | DK WYOGG             | 3     | 1837             | S     | 900 104. 4071          | 200      | 8001     | 为      | 104 HOLD       | 600                                         | 533      | 3  |
| j (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                |                |             |                      |       |                  | 0     | /                      |          |          | ,      |                |                                             | 333      |    |
| 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 5/a            | 09.00          | A           | 0900 DK 106. 7704    | 15/22 | 0891             | DK    | 10.269                 |          | 535      | 3      |                |                                             |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      |       |                  | , i   |                        |          |          | _      |                |                                             |          |    |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 18/ <u>3</u> 1 | 0900           | X           | 0900 DK 101.0232     | 5/23  | 1032             | OK    | 1010030                | the same | 33       | X      |                |                                             |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                | _              |             |                      |       |                  |       |                        |          |          | -      |                |                                             |          |    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 5/20           | 0900           | 台           | 1080917              | 199   | 1039             | S     | 105.0904               | 920      | 92011034 | Z,     | (1050906       | 1000                                        | 535      | S  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      |       |                  | 1     | •                      |          |          |        |                |                                             |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      |       |                  |       |                        |          |          |        |                |                                             |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      |       |                  |       |                        |          |          |        |                |                                             |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>,</u>         |                |                |             |                      |       | FINT             | IL FI | FINAL FILTER WRIGHTS   |          |          |        |                |                                             |          |    |
| riite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # Dessic         | Date           | Time           | Ву          | First                | Date  | Time             | Ву    | Second                 | Date     | Time     | By     | Third          | Date                                        | T t m    | 38 |
| CLEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 5//6           | 7465           | S           | D. 8612              | 5/20  | 1014             | DK    | (8998)                 | 1995     | 1801     | ક્ર    |                |                                             |          |    |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | •              |                |             |                      | ,     |                  |       |                        |          |          | 0      |                |                                             |          |    |
| 18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00 |                  | 2/4            | 7.<br>7.<br>7. | 4           | 0.6172               | 06/5  | 1016             | X     | (14/14)                | 5/01     | Sdol     | A.     |                |                                             |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                |                |             |                      |       |                  |       |                        |          |          | 5      |                |                                             |          |    |

| V<br>V | OA REWEIGH: | WEIGH: FINAL WEIGHTS | HTS | SCALE                | SCALE ROOM ENVIRONMENTAL CONDITIONS | ENVIR | ONMEN          | TAL C | ONDIT | IONS |                                              | S    |
|--------|-------------|----------------------|-----|----------------------|-------------------------------------|-------|----------------|-------|-------|------|----------------------------------------------|------|
|        |             |                      |     | Weighing             |                                     |       |                |       |       |      | <u>.                                    </u> | ء ا  |
| Date   | Beaker #    | iker # Final Wt By   | By  | Session Date Time By | Date                                | Time  |                | KB    | DB    | %RH  | <u>!</u> .                                   | -    |
|        |             |                      |     | 1                    | 920 1012 DK 56 70                   | 6101  | OK             | 52    | 2     | -/   | <u>.l</u>                                    | ~    |
|        |             |                      |     | 2                    | S/BI                                | B     | \$             | 2     | 24    | du.  | !                                            | 9    |
| Date   | Filter #    | lter # Final WT      | By  | 3                    | <u>5</u> 7                          | 1024  | X              | (%)   | 73    | 5    | <u>  0</u>                                   | Somm |
|        |             |                      |     | 4                    | ags                                 | SIS   | SIS # 57 12 44 | 3     | હ     | da   | <u> </u>                                     |      |
|        |             |                      |     | 5                    |                                     |       | -              |       |       |      |                                              |      |

| SCALE ROOM ENVIRONMENTAL CONDITIONS | ROOM | ENVIR |   | FF. C | CONS |
|-------------------------------------|------|-------|---|-------|------|
| 9                                   | ,    |       |   |       |      |
| 7                                   |      |       |   |       |      |
| æ                                   |      |       | • |       |      |
| 6                                   |      |       |   |       |      |
| Comments                            |      |       |   |       |      |
|                                     |      |       |   |       |      |

Scale Sartori, Model A1265 SN 37010004 raity WST7-FOE. WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Dates: From 4 23 12

Through

| 1008                                      | 108        | 1.08       | 100ms     | Rlank | 1 2 2 2 |                                         | -            | +           |            |             |            |
|-------------------------------------------|------------|------------|-----------|-------|---------|-----------------------------------------|--------------|-------------|------------|-------------|------------|
| We I ght                                  | _  ~       | Weight     | Weight    |       | 4 44    | Tech                                    | Date         | Time        | Dry Bulh   | 4 4 4 4 1 1 | 1          |
| 00.000                                    | 00000      | 0.527      | 001.0     |       |         | À                                       |              | 00%         | K          | 10          | // NH      |
| 2000                                      | 1          | 1000       | 3         |       |         | 0                                       | 12675        | 130         | 24         | 65          | 77         |
| 99.9997                                   | 0000       | 7.50       | 2000      |       |         |                                         | 2            | (B3C)       | 20         | 2.5         | 17/7       |
| 100,00                                    | 0,000      | 0000       | 000/00    |       |         | X                                       | $\dashv$     | 1045        | 73         | 09          | 7.7        |
| 99999                                     | 10.0001    | 1,000.7    | 1 000 V   |       |         | 30.                                     | 7            | 530         | 11         | 55          | 49         |
| 49 9999                                   | <b> </b> _ | 10001      | 2000      |       |         | Ď                                       | 7            | 070         | <i>hL</i>  | [0]         | 47         |
| 866.66                                    | $\Gamma$   | 0000 V     | V V V V   |       |         | 1                                       | 120          | <b>ラス</b> の | - 22       | (6)         | 66         |
| 94.9997                                   | 94999      | 500/       | 4.        |       |         |                                         |              | 255         | 7.1        | (0)         | 34         |
| 99 9995                                   | 100001     | 0.9999     | 9 6 6 6 6 |       |         |                                         | $\perp$      | S.          | 17         | 52          | //         |
| 600000                                    |            | 10001      | 000/      |       |         |                                         | , (          | 2           | 27         | 63          | 40,        |
| 8000                                      | 10.0001    | <b>SSQ</b> | 1001      |       |         |                                         |              |             | 7          | (90)        | 1/2        |
| 666666                                    | (0.0000    | 1.0061     | 0.0999    |       |         |                                         | T<br>K       |             | 777        | ) 9         | 47         |
| 99,417                                    | 10,50cc    | 10001      | 000/      |       |         |                                         |              |             | 77         | 09          | 7/7        |
| 99.998                                    | 10.0001    | 1000       | 0.1002    |       |         | +                                       | 3/5          |             | 1          |             | 4          |
| 86666                                     | 1000001    | 1.0001     | 0.1001    |       |         | 大水                                      | ディネ          |             | 3          | 59          | 43         |
| 99.596                                    | 100001     | 1000-1     | /8//      |       |         | Т                                       | 17/4         | 大科          | #          | 12          | 65         |
| 855-66                                    |            | 1999       | 0000/     |       |         | 1                                       |              | 35          | 5          | 25          | 42         |
| 999.996                                   | 10.0001    | 0.9998     | 8060      |       |         | +                                       | u:           |             | <b>Q</b> 9 | 56          | 47         |
| 833/ 60                                   | 20006      | 1-0000     | 00010     |       |         | *                                       | 工艺           |             | 12/2       | 150         | 42         |
| 08860                                     | 100001     | ,0000      | 380       |       |         | 1                                       |              | 100,00      | 56         | 09          | 77         |
| 3666 55                                   | 10.0001    | 1.0000     | 0000      |       |         |                                         | イマイ          | 大组          | 7.7        | Ω<br>V      | 27         |
| 80°00                                     | ]          | 1,000      | /00//     |       |         |                                         |              | 282         | 77         | 59          | 070        |
| 94,498                                    | 9,9999     | 6666       | 6660.     |       |         | 15                                      | $\mathbf{h}$ | 900         | 775        | 30          | 7,         |
| 100:000                                   | 10.0002    | 1.0001     | 0.0999    |       |         | ╁                                       | 1            |             | 7/         | 000         | <b>t</b> t |
| 100/003                                   | 10,0000    | 000/       | 1001      |       |         | Ţ                                       | 20           | 2700        | 7          | 58          | 45         |
| 99.9998                                   | 9.9997     | 0.9996     | 0.0997    |       |         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  | 4            |             | 7          | 50          | £          |
| 96.5898                                   | 16,000C    | 52657      | 3350      |       |         |                                         | 7            |             | 22         | 57          | ħħ         |
| 1,00.001                                  | Ϋ́         | 1.0002     | 0.1003    |       |         |                                         | 1            | 1           | Q          | 35          | 7/         |
| 94496                                     |            | this.      | 1080      |       |         | 4 X X X X X X X X X X X X X X X X X X X | 0,000        |             | 70         | 56          | 41         |
| 99,9998                                   | 9          | 7. dddg    | 1 0997 V  |       |         |                                         |              |             | 74         | (20)        | 7)/2       |
| $\frac{\partial \omega}{\partial \omega}$ |            | 1,0001     | 100,      |       |         |                                         |              | 000         | 73         | 00          | 47         |
|                                           |            |            |           |       |         | スペント                                    | · 多          | - 5         | Ç          | C<br>V      | 411        |

WST7-Form Rev5/90

Dates: From 3

Through.

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorius Model A1205 SN 37010004

|                | XH.         | 42      | +       | 1           | ,        | 1        |        |        | 617    | 7,4   | ************************************** | de      |            |        |         |        |         |            |        |         |          | 4                                                                                           | 3        | 77        | 7,5     | <b>本</b> | 8        | ZZ       | 1/2     | 1        |             | ,       |       | n       |           |
|----------------|-------------|---------|---------|-------------|----------|----------|--------|--------|--------|-------|----------------------------------------|---------|------------|--------|---------|--------|---------|------------|--------|---------|----------|---------------------------------------------------------------------------------------------|----------|-----------|---------|----------|----------|----------|---------|----------|-------------|---------|-------|---------|-----------|
|                | *           |         | 1       |             | 77       | <b>术</b> | 7/17/  |        | 3      | 1     |                                        | 8       | 7.77       | 17     | 2       | 38     | 43      | 94         | 78     | 38      | 7        | 7                                                                                           | 5        | 7         | 1       |          |          |          |         | 77       | 3           | 7/7     | 77    | 7       | 1         |
| 1              | Wet Bulb    | 3       | 200     | 1.V         | ***      | £        |        |        | 207    | 797   | 65                                     | Cot .   | 5<br>V.    | 27     | F       | رق.    | 56      | 59         | 58     | 7.5     | 33       | 23                                                                                          | ક        | 22        | 9 G     | 120      | 200      | 725      | ğ       | 57       | 53          | 59      | B     | 59      |           |
| ţ              | Dry Bulb    | 272     | 70      | 70,         |          | 710      | 757    | 27     | 173    | 20    | 73                                     | 77      | 8 <b>7</b> | 12     | 73      | 76     | 73      | <i>چ</i> ر | 0      | 200     | <i>%</i> | 1                                                                                           |          | 2/2       | 7,      | 13       | 7        | 89       | E C     | 70       | 5           | 73      | الم   | 73      |           |
|                | TIBE        | 12.5    | 13.6.51 | 0060        | 1202     | ルジ       | 1500   | ASE    | 1997   | 13.0  | 1045                                   | 1140    | CE 50      | HQC    | 9/01    | 2760   | 2830    | 0030       | 05.00  | 9530    | 009/     | 1300                                                                                        |          | 1000      | (10)    | 945      | 030      | 2/0/     | 2001    | 9/5      | 1846        | 00 60   | 016   | 900     | 7         |
|                | Dare<br>2/2 | 7 7     | 2//8    | 迋           | 3/17     | 2/10     | 3/36   | 2/2/2  | 300    | A.K.  | 3/26                                   | 3/27    | 3/30       | 3/80   | 3/3/1   |        | 48      | ~          | 27     | 9/      | 9/2      |                                                                                             | To the   |           |         | 2/17     | 4/2      | 4/3      | 21/1/2  | 4/17     | <i>U</i> /5 | 150     |       | 600     | 60        |
| 1              | Tecu<br>F   |         | 3       | 0<br>0<br>0 | 5        | S        |        | 1      | Ž      | 1     |                                        | 3       | )<br>AC    | Q<br>Q | S       | 当      | 7       | ž č        | 100    |         | Z P      | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 1        |           | 末<br>人  | 12       | 3        | ğ        | PW.     | ØK       | S           |         | No.   | X       | 7         |
| Blenk          | DCGKCT      |         |         |             |          |          |        |        |        |       |                                        |         |            |        |         |        |         |            | +      |         |          |                                                                                             |          |           |         |          |          |          |         |          |             |         |       |         |           |
| Blank          | :           |         |         |             |          |          |        |        |        |       |                                        |         |            |        |         |        |         |            |        |         |          |                                                                                             |          |           |         |          |          |          |         |          |             |         |       |         |           |
| 100mg          | 80600       | 0.0998  | (80p)   | 0.1000      | 0.181    | 00017    | 0.0998 | 8770.0 | 0.1003 | 1002  | 0.1002                                 | 007     | 0-1000     | 28/    | 1,000   | 0001-0 | 2007    | 0007.0     | 0000   | 1000    | 2000     | 1000 C                                                                                      | 6050     | 887       | 2000    | 0.1003'  | 8560°    | 0.0998   | 1,0000  | 0.1001   | 8           | 0.1001  | 1000  | 0.0 444 | 1         |
| I.US<br>Weight | 1 0000      | 1.0000  | 1000)   | 1.0002      | 6000/    | 689/     | 0.9999 | 5555'  | 1.0003 | 10001 | 1.0001                                 | 1.000   | 1.0001     | 1000/  | 10001   | 5000   | V 000 V | 0.9999     |        | X 000 X | 1 9999   | 4444                                                                                        | 6666     | 73000     | ,9994   | 1.0002   | 10001    | 1000     | 2555/   | 7.0000   | 0000        | 6,444   | 1,000 | 1.0000  | 00001     |
| 108<br>Weight  | 10,0000     | 66666   | 10,0003 | 10.0001     | 10000/01 | 100001   | ´ [    |        | 0.0000 | ٦.    | 9.9999                                 | 22276   | 7. 444     | 00000  | 4000'0' | 00000  | 4.600.6 | 1000       | 100001 | 9,9999  | 80006    | 966 deg                                                                                     | 86666    | 10.0001   | 49999   | 0 0003   | $\sim$ 1 | /000 0/  |         | 6666     | 24442       |         | 2000  | 000000  |           |
| roog<br>Weight | 866666      | 90,0905 | 3656.65 | 700.000     | 3        | このグン     |        | 00,000 | 00000  | てからった | 1000001                                | 100:000 | ~          | 1500 E | 700 000 | 2,98,4 | 8000 00 | H-         | 99999  | 000000  | 600000   | 49,999                                                                                      | 100 0000 | 100 -000C | 100 000 |          | 200,000  | × 22. 7. | 7,77,71 | 000.000V |             | 40 CC40 | 2000  | 2000    | - 2 TT TT |

WST7-Form Rev5/90

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Dates: From

Through

Scale Sartorius Model A1205 SN 37010004

|                                              | 2              | 48/     | 0//      | 10                                    | 4%      | - Jon    |           | 777     | 12      | 47      | (_)           | ,8/-    |         | ğ        | 10/5<br>10/5 |          | 1 A      | 4       | <b>8</b> 7 | 7/2     | 45       | 24      | ħħ      | 76       | 46      | 9),                                   | 47      | 95     | 277     | 2/    | 700     | 46       |                                       |
|----------------------------------------------|----------------|---------|----------|---------------------------------------|---------|----------|-----------|---------|---------|---------|---------------|---------|---------|----------|--------------|----------|----------|---------|------------|---------|----------|---------|---------|----------|---------|---------------------------------------|---------|--------|---------|-------|---------|----------|---------------------------------------|
| ĺ                                            | Wet Bulb       | 24      | 9 0      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |         |          | 200       | 17      | 14      | 61      | (0.1          | 58      | Ka      | 100      | 63           | NΙ       | 200      | V       | 2,         | 88      | V        | 60      | , QO    | 6.1      | 63      | 107                                   | 202     | 765    |         | 7 X X | 0       | 8        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Þ                                            | 2              | 200     | 200      | 707                                   | 89      | 75       | 72        | 12/2    | 87      | 7/      | 74            | 70      | 1       | <u> </u> | 76           | j,       |          | 9       | 65         | 67      | 71       | 11      | ħL      | 12       | 77      | 70                                    | 0,0     | 1      | 27      | 20    | 1,4     | 19       | 77                                    |
|                                              | <del>ul-</del> | ╁       | 10/02/11 | 1115                                  | -       | λ        | 12 0 12 C | 1 225 I | 2 09.20 | 1,500   | $\frac{1}{2}$ | 3 0600  | 2 18.20 | 1        | +            | 0091     |          | 7 1038  | 1380 B     | 0067    | <u>ō</u> |         | 25 1015 | 7        | 7       | 1                                     | 士       | 160%   | 1/82    | +     |         | $\dashv$ |                                       |
| 1. c. d. d. d. d. d. d. d. d. d. d. d. d. d. | 3              | -Γ∿-    | 100      | DX 21-1                               | Γ,      | 1        | 100       | ARC CAN | 17 2/1  | OK 2915 | $\supset$     | 0       |         | 1        | 19           | 015 3/15 |          | 19 mg   | NC 2/1/    | 1/6 1/1 |          | 76 2/27 | 6       | 74 2/2 b | 記が大     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10 47   | 100    | 1.      | 7 70  | 18 3/9  | W.       |                                       |
| Blank                                        | 2              |         |          |                                       |         |          |           |         |         |         |               |         |         |          |              |          |          |         |            |         |          |         |         |          | 1       |                                       |         |        |         |       |         |          |                                       |
| Blank<br>Filter                              |                |         |          |                                       |         |          |           |         |         |         |               |         |         |          |              |          |          |         |            |         |          |         |         |          |         |                                       |         |        |         |       |         |          |                                       |
| TOURS<br>Weight                              | 0.0999         | . is    | 200/     | . 1600                                | 1000    | 0.1000   | 2007,     | 1001    | 9001    | 0.700   | 30017         | 0000    | 000/100 | 0.700    | 0001.0       | 0.0999   | 6000     | 900//   | 0001       | 200/    | 0.0444   | B 1000  | 0./000  | 2000     | 0.044   | 0001                                  |         | 0001 1 | 0.0999  | 8550  | 000/    | 0000     | 0. C. C.                              |
| 1.08<br>Weight                               | 1.0000         | 1,0001  | 1,0000   | 1.000.1                               | 1.000   | 86660    | 1880      | 10000   | 10001   | 0.4444  | 600           | 10001   | 10001   | 0000     | 1.0000       | 1.0001   | 1 0000   | 10001   | 9999       | 1,0000  | 0000.7   | 0000    | 1.000   | 10000    | 1.000   | 1.0000                                | 1.0000  | 1,0000 | 9999    | 69999 | 4999    | 7,300    | 2000                                  |
| veight                                       | 9.9999         | 10,0003 | 0000,0   | 6 9999                                | 10.0000 | 4 999 P  | 2000      | 10000   | 0000 0  | 00000   | 250           | 10.0001 | 000000  | 9.9999   | 10.0000      | 10.0000  | 100001   | 00000   | 10000      | 1000,00 | 7.4949   | 10000   | 3       | 70       | 10,000  | 6 6666                                | 10.0000 | 0,0000 | 10.0000 | 10000 | 10,0000 | 9 9909   |                                       |
| Weight                                       | 133.0000       | 1865 J  | 46.664   | 1000001                               | 44449   | 1000.001 | 100000    | 141.75  |         | CO.0003 | 94 693×       | (00.000 | 49.9998 | 0000 001 | 0000001      | 49 9999  | 104 0000 | 7.12.15 |            |         | 0000000  | ~       | 0000000 | 00,000   | 99 9999 | 999, 9998                             | 29 8999 | 30000  | 766665  | 24.85 | 20000   | 200 001  |                                       |

| WOODSTOVE PARTICULATE (                                                   | CATCH REACTESTING                                                                        | Unit:   | HAU                 | its                                     | SONX                         |          |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|---------------------|-----------------------------------------|------------------------------|----------|
| WOODSTOVE PARTICULATE C                                                   |                                                                                          | Run:    | 7                   | Date:                                   | 5/19/                        | <u> </u> |
|                                                                           |                                                                                          | Technic | cian(s              | ;): "                                   | 22                           |          |
|                                                                           | FRONT HALF                                                                               |         |                     |                                         | <b>-</b>                     |          |
| FILTER #: DOGF<br>FINAL WT: 8615 g<br>TARE WT: 16936 g<br>NET WT: (1679 g | m1: ACETON                                                                               | _       | TARE                | WT: LO                                  | 6.050G<br>0.050G<br>0.0553   |          |
| FILTER #: 9 FINAL WT: 9 TARE WT: 9                                        | BEAKER #:<br>ml:<br>desc: ACETONI                                                        | _       | TARE                | WT:                                     |                              | _ g      |
| ,<br>                                                                     | TOTAL VOLUME OF USED IN WASH                                                             | ACETONE | <b>.</b>            | _9                                      | <u> </u>                     | m l      |
|                                                                           | BACK HALF                                                                                |         |                     |                                         |                              |          |
| FILTER #: 068 FINAL WT: 76104 g TARE WT: 78804 g NET WT: 7850 g           | ml: desc: ACETONS                                                                        | <u></u> | TARE                | WT:_ <u>LQ</u>                          | 4.4669-<br>1.1997-<br>19529- |          |
| FILTER #: 9 FINAL WT: 9 TARE WT: 9                                        | BEAKER #: 500<br>ml: 75<br>desc: METHCHL                                                 | _ F     | INAL<br>TARE<br>NET | WT: <u> 00</u><br>WT: <u> 06</u><br>WT: | 7699-<br>-6018-<br>-0001-    | 9 9      |
|                                                                           | BEAKER #: 500<br>ml: 700<br>desc: H20                                                    | _ F     | TARE                | WT: JCC                                 | 19030<br>19088<br>1900       |          |
|                                                                           | BEAKER #: 530<br>ml: 100<br>desc: H20                                                    | _ F     | TARE                | WT : 105                                | .0906-<br>.0431-<br>.0475-   | 9 9 9    |
|                                                                           | BEAKER #:<br>ml:<br>desc:                                                                | _       | TARE                | WT :                                    | 1617-                        | . 9      |
|                                                                           | BEAKER #:<br>ml:<br>desc:                                                                | _       | TARE                | WT:                                     |                              | . 🖫      |
|                                                                           | TOTAL VOLUME OF USED IN WASH TOTAL VOLUME OF USED IN EXTRACTITOTAL VOLUME OF WATER DRIED | DICHLOR | OMETH               | ANE 3                                   | 80 -<br>80 -                 | ml<br>ml |

|                           | WOOD:<br>BLANKS 1<br>O m1<br>FISHER | BTOVE:                    | BEAKER                                         | SHEET                        |           |              |     | Ru                                            | n:                                   | 7          |                              | <u>5 56</u><br>Date: | 5 /      | 19/9     | 4            |
|---------------------------|-------------------------------------|---------------------------|------------------------------------------------|------------------------------|-----------|--------------|-----|-----------------------------------------------|--------------------------------------|------------|------------------------------|----------------------|----------|----------|--------------|
|                           | 00 ml<br>FISHER                     | OPTI                      | BEAKER                                         |                              |           | -            |     | Te                                            | chni                                 | ria        |                              | _                    |          |          | _            |
|                           |                                     | OPTI                      |                                                | : #:                         | _         |              |     |                                               |                                      |            | n(S)                         | <u> </u>             | DK (     | <u> </u> |              |
| 200<br><u>Ro</u> f        | FISHER  ml Dis                      | CHLO<br>ITQO<br>B<br>JJIT | BEAKER<br>IROMETH<br>MA LOT<br>EAKER<br>ED WAT | #: 9<br>#: 9<br>#: 9<br>#: 9 | 1389<br>E | 6            |     | TAR<br>NE<br>FINA<br>TAR<br>NE<br>FINA<br>TAR | E WTT L WTT L WT                     | - <u>9</u> | 06.20<br>100<br>6.21<br>6.21 | 114                  |          |          |              |
|                           |                                     | <del></del>               | TARES                                          |                              |           | <del></del>  | _   |                                               |                                      |            |                              |                      |          |          |              |
| BKR #                     | 1ST                                 | WT                        | TIME                                           | SND                          | WT        | TIME         | Ξ_  | 3RD                                           | WT                                   | T          | ME                           | 4TH                  | WT       | TIM      | Ξ<br>—       |
| _ <u>D</u> _              | 106.00                              |                           | 1306 (                                         |                              | _         |              | 0   |                                               |                                      |            |                              |                      |          |          |              |
| <u>E</u>                  | 96-848                              | 24                        | 1398                                           |                              |           |              |     |                                               |                                      |            |                              |                      |          |          |              |
| <u> </u>                  | 96.51                               | 091                       | <u>1330 (</u>                                  | 96.5                         | 106)      | 1040         |     |                                               | ·*·································· |            |                              |                      |          |          |              |
| ,                         | SCALE RO                            | OM Q                      | C : TAI                                        | RES                          |           | , ,          |     | SCA                                           | LE F                                 | 400F       | 1 QC                         | : FIN                | ALS<br>, |          | <del>-</del> |
| DATE                      |                                     | BY                        | WB                                             | DB                           | %         |              |     | ATE                                           | TI)                                  |            | BY                           | WB                   | DB       |          |              |
| 3/ <del>0</del> 3<br>3/24 | 1300                                | BK                        | 59<br>58                                       | 73                           | 472       |              | 5   | /13<br>/14                                    | 163                                  | 6          | OK                           | 59<br>56             | 74       | ) 41     |              |
|                           |                                     |                           |                                                |                              |           | -            | 5   | 115                                           | 120                                  | 0          | カル                           | 60                   | 74       | 44       | 4            |
|                           |                                     |                           |                                                |                              |           |              |     |                                               |                                      |            |                              |                      |          |          | 1            |
|                           |                                     |                           |                                                |                              |           | L            |     |                                               |                                      |            |                              |                      |          | 1        | 1            |
|                           |                                     | E                         | BEAKERS                                        | : FIN                        | NAL W     | EIGHT        | S   |                                               |                                      |            |                              |                      |          |          |              |
| BKR #                     | IN D                                | SC                        | TIME                                           | 1ST                          | WT        | TIME         |     | SND                                           | WT                                   | TI         | ME                           | 3RD V                | JT       | TIME     | <u>-</u>     |
| D                         | 5/12                                | 10                        | 1900                                           | 106.2                        | 243       | 1048         |     | <del>30</del> , 201                           | 139                                  | 165        | 4                            |                      |          |          |              |
| 3                         | 5/12                                | 1                         | 0900                                           | 96 84                        | 31        | 1650         | , ( | 96.24                                         | 128                                  | 170        | 31                           |                      |          |          |              |
| F                         | 5/12                                |                           | 1330                                           | 96.5                         | 112       | 1700         | Í   | 96.51                                         | 14                                   | ร์วร์      | 0                            |                      |          |          |              |
| BKR #                     | 4TH U                               | JT                        | TIME                                           | STH                          | WT        | TIME         |     | 6ТН                                           | WT                                   | TI         | ME                           | 7TH &                | JT       | TIME     |              |
| <u> </u>                  |                                     |                           |                                                |                              |           |              | -   | <del></del>                                   |                                      |            |                              |                      |          |          |              |
|                           |                                     |                           |                                                |                              |           |              | +   | -                                             |                                      | ·,         |                              |                      |          |          |              |
|                           |                                     |                           |                                                |                              |           | <del> </del> | !   |                                               |                                      |            |                              |                      |          |          |              |

WOODSTOVE TEST DATA SHEET #6 WSTAPP1-AppDoc19-page2 Rev 6/90 Tim Kelly Blank Audit: By: Blank Calculations: 10004 Acetone:  $g \div 75 m1 = 20000533 g/m1$ Dichloromethane: Distillted Water: \_\_\_\_\_\_\_ g = \_\_\_\_\_\_\_\_ 200 \_\_\_\_ m1 = \_\_\_\_\_\_\_\_ g/m1 Front Half Catch: Filters: /1674 g - (.0000 g) = /1679 g

Total Catch No. of filters Blank Value/ Net Catch filter Beakers: 0553 g - 000 ( 0000 g) = 0549 g

Total Catch M1 of Acetone Blank Value/ Net Catch ml of Acetone Total Front Half Catch g Back Half Catch: Filters: 0350 g - (0000 g) = 0350 g

Total Catch No. of filters Blank Value/ Net Catch filter Beakers 1. Acetone/Impingers:  $\frac{(\ \ \ \ \ \ )}{\text{Blank Value}}g) = \frac{1}{N}$ Total Catch ml of acetone ml of Acetone . ,0004 Extract/Impingers:  $\frac{(\ \infty 000533g)}{\text{Blank Value}/} = \frac{0877 \text{ g}}{\text{Net Catch}}$ 10881-8 ml. of Dichloromethane ml of Dichloromethane Water/Impingers: Total Catch ml. of water  $\frac{(\sqrt{00000} \text{ g})}{\text{Blank Value}} = \frac{\sqrt{605 \text{ g}}}{\text{Net Catch}}$ ml of water Total Back Half Catch Total Catch % Front Half

NET PARTICULATE CATCH CALCULATION

Unit:

Run: Date:

Technician(s):

HAUGHS SAIX

| Run: 7 Date: 5/19/92                       | \ \ =                              | 69669 x H20                                               |                               | 000                                  |
|--------------------------------------------|------------------------------------|-----------------------------------------------------------|-------------------------------|--------------------------------------|
| PARTICULATE CALCULAT<br>TEST DATA SHEET #7 | 174<br>1066 11010 30,03 " Hg: 13.6 | 0): 5.1071 - 66f<br>00,0000<br>. 0000 - 66f<br>6f) . 0000 | 0,0000                        | 7.317<br>00.000 deefn)( 60 ):00.0000 |
| EPA WETHOD SH<br>NOODSTOVE                 | (13.785 VINC 17.65 )C              | 5.107/ Feet 1 20.3867 dee                                 | (19620) 9.3<br>(16.3867 deet) | Estimated g/hr: ( g.) (-             |
|                                            | 1) Yacetd):                        | 2) Yucetd): (                                             | ÷5 ÷                          | 5) Estjuat                           |

| (p. 2) ( 000,000 Vm)  (p. 2) ( 0,000 mef )  (p. 2) ( 00,00 " Hg )  (p. 2) ( 000 mef )  (p. 2) ( 000 mef )  (p. 2) ( 000 mef )                                                                                                 | (p. 6) ( 00,000 g. )<br>ntout ) ( 00,000 decfs)                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| tal cubic feet pulled on meter box during test ter correction factor ( Y factor) of the meter box u erage barometric presente during the test arage delta H for the test arage meter temperature for the test in degrees Abso | g. : total particulate catch for the test decfa : average stack flow during the test |

Run # 7
Date 5/19/92
Technician BN 7K PK JS
WST6-Forml, Rev11/89

### MISCELLANEOUS TEST DATA WOODSTOVE DATA SHEET #8

| Useable Fin                                              | rebox Dimensions: See QC Section                                                 | Useable Volume: 1.473 f               |
|----------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|
| Dilution To                                              | unnel Draft (If applicable): St.                                                 | art O Stop O                          |
| Test Chambe                                              | er Air Velocity: Start:                                                          | Stop: O Avg: O                        |
| Wet Bulb/                                                | Start: WB: 58 °F DB: 65 °F                                                       | 1.4 % Amb Moisture 66 %               |
| Dry Bulb                                                 | Stop: WB: 59 °F DB: 74 °F                                                        | 1.1 % Amb Moisture 42 % 7.1 t         |
|                                                          | $\bar{x} = 1.25$ Moisture                                                        |                                       |
| Empty                                                    |                                                                                  |                                       |
| Stove Wt:                                                |                                                                                  | 37,3 1bs.                             |
| Empty                                                    |                                                                                  | 2001 2010                             |
|                                                          | ith Stack (Inc. Oil Seal) Wet: 3                                                 | 305,4 lbs.Dry: 304,9 lbs              |
| Empty Stone Wt mi                                        | th Stack and Ash Ash:                                                            | ) lbs. Total: lbs                     |
| Scove we wi                                              | th Stack and Ash Ash: (                                                          | ) lbs. Total: lbs                     |
| Kindling Wt                                              | Paper: 3                                                                         | 1bs. Wood: 6.4 1bs                    |
| Pre Burn Fu                                              | 1el Wt. 8.4 + 8.9 + 1.5                                                          | Total: 18.8 1bs                       |
|                                                          | ing and Pre Burn Fuel Wt                                                         | . 25.2 lbs                            |
| Coal Bed Wt                                              | :-1bs: Range(2.6 - 2.2 )307.5 -                                                  | 307.   1bs. Actual: 2.2 1bs           |
|                                                          | mount of Charcoal that can be r                                                  |                                       |
| Coal Bed Wt                                              | Range $\left(\frac{2.6}{\text{Upper Wt.}} + \frac{2.2}{\text{Lower Wt.}}\right)$ | $\frac{1}{2}$ .25 = $\frac{1}{2}$ lbs |
| Test Fuel W                                              | //,<br>/t-lbs: Ideal/0,3 lbs. Range:                                             | 39,3 1bs. Actual: 10.7 1bs            |
| Test Fuel S                                              | ize (pcs.) (.75 x 1.5 x 5" Flang                                                 | ges) /4/ Pcs                          |
| 2 x 4's                                                  | x /834 " 4 Pcs                                                                   | 10,7 lbs. 100,0 7.                    |
| 4 x 4's                                                  | * N/A " N/A Pcs                                                                  | N/A 1bs. N/A 7.                       |
| Est. Dry Bu<br>Rate (Kg/Hr<br>Est EPA Hea<br>(Avg BTU's/ | t Output (HOE) (19,140) x 63                                                     | × 1006 = 19933<br>Est Heat Outpu      |
| Comments                                                 | 195 = 1,238                                                                      | (HOE) BIU's/Hr                        |

| 10/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit: HNOHS S27X Run: 7 Date: 5/19/92 Page 9                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WOODSTOVE OPERATING DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FIRE STARTED: 0745 PST/PDST                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WARM UP AND PREBURN: PRIMARY AIR: set wide open for all warm-<br>up/preburn fuel charges, then set to at start of<br>preburn.                                                                                                                                                                                                                                                                                                                                             |
| SECONDARY AIR: U/A CAT BYPASS: U/A                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CHARCOAL BED PREPARATION: raked and leveled prior to each warm- up/preburn charge. At 1 1/2 min. prior to loading last fuel, raked and leveled. In stove sec.                                                                                                                                                                                                                                                                                                             |
| TEST: Door Wide Open during loading 4 min 30 sec                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PRIMARY AIR: opened full for first 5 min., then set to run setting of                                                                                                                                                                                                                                                                                                                                                                                                     |
| SECONDARY AIR: NA CAT BYPASS: NA                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FAN: ON OFF during warm-up ON OFF during preburn ON OFF first 30 minutes of test ON OFF balance of test rur Fan speed set at 464                                                                                                                                                                                                                                                                                                                                          |
| Fan speed set at                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WOOD DATA: KINDLING: a mix of the grades listed below                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WOOD DATA: KINDLING: a mix of the grades listed below                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WOOD DATA: KINDLING: a mix of the grades listed below  SIZE MILL GRADE SPECIES                                                                                                                                                                                                                                                                                                                                                                                            |
| WOOD DATA: KINDLING: a mix of the grades listed below  SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. grn D fir  TEST: 2X4 Packwood #8 or btr s. grn D fir                                                                                                                                                                                                                                                                                              |
| WOOD DATA: KINDLING: a mix of the grades listed below  SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. qrn D fir  TEST: 2X4 Packwood #8 or btr s. qrn D fir 4x4 Packwood #8 or btr s. qrn D fir                                                                                                                                                                                                                                                          |
| WOOD DATA: KINDLING: a mix of the grades listed below  SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. grn D fir  TEST: 2X4 Packwood #2 or btr s. grn D fir  Ax4 Packwood #2 or btr s. grn D fir  PELLET FUEL APFI#:  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.                                                                                                                          |
| SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. grn D fir  TEST: 2X4 Packwood #2 or btr s. grn D fir  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.  1st warm up/preburn fuel charge ( 8.4 lbs ) added at 08/5                                                                                                                                                                               |
| WOOD DATA: KINDLING: a mix of the grades listed below  SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. grn D fir  TEST: 2X4 Packwood #2 or btr s. grn D fir  4x4 Packwood #2 or btr s. grn D fir  PELLET FUEL APFI#:  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either /// or //// inches.  1st warm up/preburn fuel charge ( 8.4 lbs ) added at 08/5  2nd warm up/preburn fuel charge ( 8.9 lbs ) added at 0905 |
| SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. grn D fir  TEST: 2X4 Packwood #2 or btr s. grn D fir  PELLET FUEL APFI#:  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 10 or 18 inches.  1st warm up/preburn fuel charge ( 8.4 lbs ) added at 08/5  2nd warm up/preburn fuel charge ( 8.9 lbs ) added at 0946  3rd warm up/preburn fuel charge ( 15 lbs ) added at 0946                                      |
| WOOD DATA: KINDLING: a mix of the grades listed below  SIZE MILL GRADE SPECIES  PREBURN: 2X4 Manke/Tacoma Std or btr s. grn D fir  TEST: 2X4 Packwood #2 or btr s. grn D fir  4x4 Packwood #2 or btr s. grn D fir  PELLET FUEL APFI#:  All grades WCLB rules  WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either /// or //// inches.  1st warm up/preburn fuel charge ( 8.4 lbs ) added at 08/5  2nd warm up/preburn fuel charge ( 8.9 lbs ) added at 0905 |

Suame).

Total Carlo

#### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Run: Date:\_ Technician: RN. JS, TK, DK WST1-Form7-Rev11/89

N

| Рc  |             |     | Top   | •       | Bot   | tom  | Sid   | e    | Piece Av      |
|-----|-------------|-----|-------|---------|-------|------|-------|------|---------------|
| #   | Dimen       | Vse | Uncor | Cor     | Uncor |      | Uncor | Cor  | Correcte      |
| 1   | 2x4x8       | K   | 4,5   | 4.5     | 3,5   | 3,5  | 40    | 4.0  | 4.000         |
| 2   |             |     |       |         |       |      |       |      |               |
| 3   |             |     |       |         |       |      |       |      | 0.00          |
| 4   | 2x4x8       | P   | 18.0  | 19.6    | 18.5  | 20.1 | 18.5  | 20.1 | 19.933        |
| 5   | 2×4×8       | ρ   | 19.0  | 20,7    | 18.5  | 20.1 | 18,0  | 19.6 | 20.133        |
| 6   |             |     |       |         |       |      |       |      | 40,067        |
| 7   |             |     |       |         |       |      |       |      |               |
| 8   |             |     |       | <u></u> |       |      |       |      |               |
| 9   | 2x4x183/4   | T   | 19.0  | 20.7    | 19.5  | 21.3 | 19,0  | 20.7 | 20.900        |
| LO  | 2×4×1834    | T   | 18.5  | 20.1    | 19.0  | 20.7 | 19.5  | 201  | 20.300        |
| 11  | 2x4x183/4   | T   | 18,5  | 20.1    | 21.0  | 22.9 | 18.5  | 301  | 21.033        |
| l 2 | 2x4 x 18314 | T   | 19.0  | 26.7    | 19,5  | 21.3 | 19.0  | 20.7 | 20,900        |
| 13  |             |     |       |         |       |      |       |      | 83,133        |
| .4  |             |     |       |         |       |      |       |      |               |
| L 5 |             |     |       |         |       |      |       |      | <u> </u>      |
| 16  |             |     |       |         |       |      |       |      |               |
| 17  |             |     |       |         |       |      |       |      |               |
| 18  |             |     |       |         |       |      |       |      | <b>D. 1.5</b> |
| 19  | FEET        | T   | 19.5  | 21,3    | 19.5  | 21,3 | 19.0  | 20.7 | 21.100        |

% Moisture - Dry Basis:

19 FEET

20

7 Moisture - Wet Basis:

| Kindling | Pretest Fuel | Test Load |
|----------|--------------|-----------|
| 4,000 %  | 20.033/2     | 20.783    |
| 3,846 7. | 16,690-2     | 17.207    |

To obtain Wet from Dry: 100 X % Dry Rdg. = % Moisture, Wet Basis 100 + % Dry Rdg.

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

|               | Unit: HHUDHS Carr                                                     |
|---------------|-----------------------------------------------------------------------|
|               | Rung:                                                                 |
|               | SIII DEIDAMIAMILON                                                    |
| WOODSTOV      | E TEST DATA SHEET #11 Technician: BN TE DE JS<br>WST2-form11-Rev 6/90 |
|               | 5 V                                                                   |
| Wood Piece:   | Nominal Dimensions: 2 x 4 x 3/2                                       |
| Depth (D):    | <u> 3,92</u> cm                                                       |
| Width (W):    | 8,85 cm                                                               |
| -             | 9 (4                                                                  |
| Length (L):   | <u> </u>                                                              |
| -             | $\frac{8}{19}$ cm Length $\overline{X} = \frac{8}{19}$ cm             |
|               | 8.85 cm 20/10/12 3                                                    |
|               | Volume: 304,943 cm <sup>3</sup>                                       |
|               | (DA H A Z)                                                            |
| MOISTURE:     | Room Temperature:OF Correction Factor:O                               |
|               | Was Compated for the Was Was                                          |
| uncorrected : | Meter Readings Corrected for temperature:YesNo                        |
| NOTE: Recor   | d moisture meter readings to the nearest 0.5%                         |
| ,             |                                                                       |
|               | Uncor Cor Avg % Moisture (Dry) 19.933 %                               |
| Top:          | 18.5 20.1 Z Aug Z Moisture (Wet) 16.620 Z                             |
| - ,           |                                                                       |
| Bottom:       | 18.5 20.1 2                                                           |
| Side:         | 18.0 19.6 7 Scale: Leveled In Out                                     |
| _             | 19933 Zeroed: InOut                                                   |
| <u>X</u> :    | 1/1/1997                                                              |
| et Weight:    | 234,4 g Dry Weight: 001,03 g                                          |
|               |                                                                       |
| Moisture D    | ried Basis: 14.15/ 7 V                                                |
| [1 - (Dr      | y Wt ; Wet Wt)] X 100                                                 |
|               | Date / Time Temp                                                      |
| Into Dry      | er 5/19/92 0830 725 °F                                                |
| Out of D      | 5/40/90 )445 of                                                       |
| (Minimum      | Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F               |
| Density =     | 9013 8 = 304.943 cm3 = 16599 g/cm3                                    |
| (d:           | ry wt) (volume)                                                       |
|               |                                                                       |
| Pellet Fuel : | Moisture Content Determination                                        |
|               |                                                                       |
| Tare Beaker   |                                                                       |
| Wet Wt:       | g ÷8 =8                                                               |
| Gros          | s Wet Wt. Tare Beaker Wt. Net Wet Wt.                                 |
|               |                                                                       |
| Danes III     | g :g =g                                                               |
|               |                                                                       |
|               | s Dry Wt. Tare Beaker Wt. Net Dry Wt.                                 |

....

HOODSTOVE DATA SPEET 112 HSTZ-FORM 14 RBY 1/88

C Unit: 1/12/6/45 Run: Pages / of

Uate: 5//9 Technician(s)!

| `                                      | -         |                |          | !              |                |        |       |             |             |      |              | <br>                                           | 6        | Į.                                               |         |                                                  | 7           |                |      |
|----------------------------------------|-----------|----------------|----------|----------------|----------------|--------|-------|-------------|-------------|------|--------------|------------------------------------------------|----------|--------------------------------------------------|---------|--------------------------------------------------|-------------|----------------|------|
| Miraika 14                             | 507.7     | He IB          | Bitma    | -12            |                | 2      | Ĭ     | ľ           | 2           | 1991 | 2            | 2                                              |          | T/C(3)                                           | 3)      | 4                                                |             |                |      |
| imi                                    |           | - 19           | Rate v.  | . XDD2         | ×.             | 2      | lei   | ב<br>ג'י    |             | 8a1  | Het<br>Beist | Ory<br>Bulber                                  | 2 × 4    | Selc<br>K/A                                      | S. Port | S)                                               | neg         | Static         |      |
| \ <u>8</u>                             | 317.8 1   |                | ) .20q   | 9 5.2          | .598           | 15.2   | 15.2  | .047        | 17          | 1    | +            | <u>.                                      </u> | +        | <del>                                     </del> | 216     | . 8                                              | _           |                | Flow |
|                                        | 317.6 11  | 16.5           | 2 .118   | 3.0            | .693           | 17.6   | 176   | 940.        | )<br>2<br>1 | 6.4  | 107          | 154 16                                         | 64       | त्टा                                             | 225     | <del>                                     </del> | 400         | 840            | 500  |
| (i)                                    | _         | 10.2           | 3 .103   | -              | .708           | $\sim$ | 18.0  | .046        | .46         | 5.6  | 110          | 44 7                                           | 1.5      | <u>,</u> v                                       | 261     | 17                                               | 525         | :043           | 25.  |
| (A)                                    | 317.2     |                | 1 .102   | 2<br>2.6       | 707.           | 17.9   | 17.9  | . 046       | 46          | 5.6  | 1 601        | 39 17                                          |          | 14                                               | 182     | ~                                                | 550         |                | 8    |
| _                                      | 317.0 9   |                | 2 109    | -              | .702           | 17.8   | 17.8  | .048        | 49          | 5.6  | 110          | 36 7                                           | .3       | 13                                               | 177     | ~                                                | 550         | 040            | B    |
|                                        | 316.7     | 9.6            | 3 .11    |                | જુગ            | 17.7   | 17.71 | .053        | 54          | 5.2  | 891          | 32 7                                           | 7        | 12                                               | 172     | ~                                                | 555         | .038           |      |
| - X                                    | 3165 9    |                |          | 2.8            | 969.           | 17.7   | 17.71 | Søl6.       | opo).       | 4.2  | 108          | 30 1                                           | <u> </u> | 12                                               | 169     | 一                                                | 575         | :036           |      |
| 88<br> S                               |           | 8.9            | 5 .799   | 9 7.4          | 515            | 13.0   | 13.0  | .033        | ,33         | 22.5 | 1 511        | 9 Sh                                           | 9.0      | 22                                               | 230     |                                                  | _           | :650           |      |
| 9/2                                    | 315.5 8   | 9.4<br>8.4     | 5 .289   | 9 7.2          | .525           | 13.3   | 13.3  | <u>، 84</u> | 55          | 13.1 | 119          | ( a)h(                                         | 10.2     | 26                                               | 225     | <u>61</u> .                                      | 475         | 150:           |      |
| \ <u>\</u>                             | _         |                | 1,345    | -              | 84.            | 12.1   | 12.1  | .020        | .20         | 42.8 | الحدا        | S2 1                                           | 11.8     | $\vdash$                                         | 264     | <u> </u>                                         | 425         | ,057           |      |
| 8                                      | 314.3 7   | 7              | 5 ,382   | 2 9.5          | 130            | 10.9   | 10,9  | 110.        | 11          | 86.2 | 123 1        | 156                                            | 2.1      | 33                                               | 284     | 11                                               | 425         | .059           |      |
| 84<br>84                               | 313.6 6.  | 7)             | 7 .430   | 7 10.7         | .34            | 9.9    | 9.9   | 110.        | . 17        | 12.7 | 125 1        | 189                                            | 12.4     | 34                                               | 295     | 11.                                              | 42S         | 290:           |      |
| $\sqrt{}$                              |           | _              |          |                |                |        |       |             |             |      |              |                                                |          |                                                  | 2631    |                                                  |             | -567           | Flo  |
| 8                                      | 312.8 5   | _              | 8 .451   | 1 11.2         | 13let          | 9.2    | 9.2   | .625        | .25         | ተዛ-ገ | 1 LCI        | 63                                             | 130 1    | 36                                               | 307     | Ξ.                                               | 425         | -064           | SEL  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | - /       |                | 귀        | $\dashv$       | <u> </u>       | 10.5   | 10.5  | 810.        | 8           | 57.7 | ٦d           | 160                                            | 12.7     | 35                                               | 160     | 51.                                              | 00 <i>h</i> | P00.           | 200  |
|                                        |           | 4. b           | 5 .393   | <del>- i</del> | 814.8          | 10.6   | 10.6  | F10.        | . 17        | 57.3 | 121          | 57                                             | 11.4     | 32                                               | 283     | 1.17                                             | 425         | 062            | 25   |
| <del>)</del>                           | _         |                | $\dashv$ | 0              | 143            | 10.9   | 10.9  | .018        | 81,         | 53.3 | 120          | 58                                             | 16.8     | 30                                               | 280     | -11                                              | 425         | اما <u>ن</u> : | ß    |
| 8                                      |           | . ^            | $\dashv$ | -              | 9 <del>7</del> | 10.4   | 10.4  | .618        | 8           | 56.8 | 119          | 157                                            | 10.2     | 30                                               | 284     | 11                                               | 425         | -1061          |      |
| <sup>₹</sup> 3\                        |           | ╬              |          | <del>-</del> + | 찬.             | 9:1    | ا. اه | .629        | :29         | 31.2 | 프            | N.                                             | 8.5      | 77                                               | 273     | 81                                               | 450         | :058           |      |
|                                        |           | _              | Ť        | 4              | 479            | 12.1   | 12.1  | ,025        | .25         | 34.3 | 109          | 140                                            | 7.3      | 10                                               | 265     | Ξ.                                               | 425         | :057           |      |
| (8)                                    | _         | -              | +        | 8              | 476            | 11.9   | 11.9  | 810-        | <u>8</u>    | 48.0 | 105          | 131                                            | 0.0      | 119                                              | 258     | 11                                               | 425         | .05G           |      |
| 2/2                                    | 309.2 2.1 | 4              | <u>~</u> | <del></del>    | .506           | 12.8   | 12.8  | .626        | , 26        | 30.4 | 101          | 121                                            | 5.8      | ا<br>ا                                           | 251     | .18                                              | 450         | hS0:           |      |
| <u> </u>                               |           | +              | ╬        | 0.1            | ,532           | 13.5   | 13.5  | .030        | .30         | 23.2 | 41           | 124                                            | 4.9      | 113                                              | 242     | .18                                              | 450         | 053            |      |
| 20/                                    |           | 7 7            | $\dashv$ | ف              | 568            | 77.77  | 14.4  | .078        | .79         | 7.7  | 43           | 173                                            | 3.9      | 60                                               | 231     | .20                                              | 500         | -050           |      |
| 义                                      | 308.7     | <u>-</u><br>ا- | -210     | 5.3            | .584           | 14.8   | 14.8  | .100        | 1.61        | 5.2  | 86           | 125                                            | 3.3      | 105                                              | 220     | 1,21                                             | 525         | Lh0-           |      |
|                                        | +         | +              |          |                |                |        |       |             |             |      |              |                                                |          |                                                  | 3190    |                                                  |             | -1897          | ١.,  |
| X                                      | _         | _              | _        |                |                |        |       | -           | -           |      |              |                                                |          | _                                                | E6014   | 7                                                |             | 1 2511         |      |

F 505 EB Z 46 CD | 8 2 呂 1.464 2.038 2.038 - 320 7847 Static Press. -030 -036 7.034 .033 -035 P.039 -033 -.03A -032 -104° -042 -034 :03) -.038 -034 **1034** -.038 :039 -031 -037 140-BE 5/19/12 8 500 580 8 800 S 200 525 300 200 58 8 500 8 臣 80 80 SS 28 500 500 8 8 Technician(s): 92. 名 .20 20 .20 2 20 2 2 2 30 3 2 .20 8 20 20 7 20 2 20 9685 3864 16327 1232 **Uate:** Stack 73 205 7 159 159 168 S <u></u> 210 193 رم ا 169 168 ات 200 82 199 89 187 118 <u>=</u> 1/0(3) 93 93 E/H 96 9 9 21 BS 102 8 8  $\frac{2}{\infty}$ <u>9</u> <del>9</del> 95 93 93 93 E 101 001 101 701 9 2 XTCS Dry % C م اح 29 3.2 3.2 Q. 87 28 2.8 33 3.0 7.9 2.9 29 3  $\alpha$ 3.7 2.9 3 3. 50 125 <u>اه</u> = 126 125 2 118 7( C <u>2</u> 200 127 133 <u>2</u> <u>约</u> = 7 127  $\equiv$ H.N. 145 T/C(1)T/C(2) **%** Bulb 8 8 N ₹ 84 86 ₹ 8 800 8 6 84 ₹ 8 \$ 18 8 2 88 5 5 2 8 5 Page: Hal 35 30 2.8 \$ \$ ري وب ر اف 77 43 3,7 3, 37 3 3.9 2.7 33 ι. 40 30 29 3,7 Unit: ď Pin. 1.07 1.07 1.0° 7 1.67 جي ا 93 <u>-</u> 9 .09 63 .09 <u>,</u> 三 80.1 70. 9 1.01 <u>~</u> <u>6</u> 3 m 因 20 185 .092 35 00/ .098 104 2 . 108 185 289 860 100 107 00) 942 (2) <u>9</u> 107 77 = Ξ 16.3 15.5 <u>ة</u> 5 -N 5.3 5 ا ق-5 5.3 16.9 ا دی <del>ر</del> ق <u>ئے</u> 9 و 16.8 76.8 16.8 فيح <u>6</u>. ⊗ σ <u>ح</u> و \_ <u>ئ</u> 回  $\overline{n}$ 15.5 16.8 = 5.00 76.5 <u>-9</u> 9 <u>.</u>8 SE SE <u>7</u> (n) خ 650 16.5 S) <u>₹</u> 5 <u>آ</u> و <u>د</u> وح <u>|</u> ۇ. ئە 605 15.3 જુ. 2 Lo13 روم পু 2000 کوما 642 STS STS S 53 543 ٧. 127 র্থু £, 3 رهاما 953 er er 634 FT# IJITING CHIPYON 200 3.5 ω N ω N アゴ 7 33 3. 6 HIND FLIE GAS LIAIN ш <u>а</u>. 3,7 3.4 3 جـ ش 3.2 3.7 3.4 3.1 9 0 3 <u>ج</u> m) ઌઁ 一台 DATA SHEET #12 14 Rev 1/88 .178 188 ٧. 146 ₹ -: <u>₹</u> 35 55 137 240 74 왕. 35 142 136 123 126 123 .123 王. F 121 त्र Rate Ø  $\varnothing$ Ø  $\mathscr{E}$ Ø Ø left HOCOSTOVE C Scale 1153 0 N ٩ ٥. HSTZ-Form o 7 R 3 ര Ø 308.5 308.6 308,3 307.5 308.4 308.0 307.9 3078 307.7 367.6 307.6 307.2 307.2 308.2 307.8 307.5 307.4 307.3 307.3 368.1 888 367.1 87 જી 8 S C 2 置 2 B 同

| 1                 |          | PRE BU | PHE HURN UNTA<br>JECKED SHEET<br>WST2-FORM 6 | )13 C |      |               |            |         | F. S. S. S. S. J. | 7.   | Techn: | Technician(s): 2 7/2     |
|-------------------|----------|--------|----------------------------------------------|-------|------|---------------|------------|---------|-------------------|------|--------|--------------------------|
| - 2075            | _        |        |                                              |       |      |               | )          | /aye;   | - H               |      |        | D/ 13                    |
|                   |          | T/C#-3 | 4                                            | 5     | 9    | 7             | 8          | 6       | 10                | דו   |        |                          |
| or A              |          | Stack  | Top                                          | Side  | Back | Right<br>Side | Bottom     | Firebox | 2nd Burn          | Room | Statio | Commonte                 |
| 8                 | <u> </u> | 372    | 484                                          | 528   | 371  | 497           | 427        | OLE     | 1399              | 1/2  | 100 S  | Primary Air Sot at 200   |
| 308               | .3       | 88     | 0/9                                          | 975   | 333  | 500           | 439        | 1243    | 1294              | 22   | -,065  | ,                        |
| -201.8<br>-201.8  | 5        | 296    | 949                                          | 518   | 336  | 493           | 433        | 1206    | 1193              | 72   | -070   | Fan: On 14161            |
| 307,              | 13       | 272    | 496                                          | 335   | 397  | 180           | 435        | 28//    | 11/3              | 76   | -058   | ١,                       |
| 308               | .5       | 273    | 501                                          | 483   | 290  | 464           | 437        | 116     | 1311              | 26   | -658   | 2                        |
| 308               | w)       | 261    | 181                                          | 469   | 282  | 482           | 435        | 1077    | 1163              | 76   | -056   |                          |
|                   | 3        | 256    | 450                                          | 456   | 275  | 439           | 431        | 1057    | 080/              | 75   | 1054   | Punos turned on at: 1000 |
| - 4               | G        | 242    | 423                                          | 442   | 368  | 428           | 426        | 1039    | 1059              | 76   | -053   | 3                        |
| 307               | -        | 233    | 406                                          | 432   | 261  | 418           | 421        | 1637    | hbb               | 76   | -051   |                          |
| 25 15 307.4       | -        | 919    | 373                                          | 418   | 252  | 404           | <b>LIP</b> | 1001    | L88               | 76   | -,048  | Check WB/DB: 93/14/b     |
| 20307.3           |          | 212    | 347                                          | 700   | 341  | 398           | 413        | 981     | 853               | 76   | 940-   | 7                        |
| 25 25 307.2       | -        | 206    | 330                                          | 396   | 233  | 384           | 111        | 956     | 838               | 75   | 540:   |                          |
|                   | -        |        |                                              |       |      |               |            |         |                   |      |        |                          |
| 301.              | -        | 716    | 318                                          | 386   | 900  | 378           | 408        | 404     | 699               | トし   | -242   | 342.6                    |
| 2/2               |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
| 1/2<br>1/2<br>1/2 |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
| \S                |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
| 8                 |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
| 8                 |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        | •                        |
|                   |          |        |                                              |       |      |               |            |         |                   |      |        |                          |
|                   |          |        |                                              |       |      |               |            |         |                   | _    | _      |                          |

|                   |       |      | RECORD | TEMPERATURES RECORD SHEET | TEMPERATURES RECORD SHEET #14 LETT2-Forth 1 Port 100 |         |                       | Unit:<br>Run: | 444             | 15 S          | 27X Dat         | Date: 5/19<br>Technician(s): | 19/92  | R                |
|-------------------|-------|------|--------|---------------------------|------------------------------------------------------|---------|-----------------------|---------------|-----------------|---------------|-----------------|------------------------------|--------|------------------|
|                   |       |      |        |                           |                                                      |         |                       | rage:         | 4               | A             |                 |                              | K      | 7                |
| T/C               | 4     | 5    | 9      | 7                         |                                                      | 6       | 2                     | 11            | 12              | 13            | 14              | 15                           | 91     | 17               |
| Time              | Top   | Side | Back   | Kight<br>Side             | Bottom                                               | Firebox | 2nd Burn<br>Catalytic | Room<br>Temp  | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | C. Gas<br>Box                | C. Gas | SO2<br>Implinaer |
| -\=\              | 315   | 386  | gee    | 378                       | 408                                                  | 404     | 699                   | 나             | 1441            | 241           | 34              | 142                          | _      | 310              |
| %<br>%<br>/%      | 160   | 374  | 331    | 368                       | 404                                                  | 159     | 643                   | 거네            | 1441            | ١٣٥           | 34              | 1hC                          | 35     | 360              |
| <u>의</u>          | 275   | 353  | 333    | 350                       | 700                                                  | 578     | 563                   | 73            | 1441            | 146           | 34              | IhC                          | 35     | 35               |
| で<br>え            | 704   | 336  | 324    | 334                       | 347                                                  | 550     | 543                   | 73            | 1442            | ान्ट          | 34              | JHC                          | 35     | 36               |
| 150               | 250   | 317  | 314    | 316                       | 392                                                  | 529     | 548                   | 73            | 1441            | 243           | 34              | 146                          | 35     | 36               |
| 18 P              | 243   | 299  | 305    | 398                       | 382                                                  | 508     | 527                   | 72            | lhhl            | 243           | 34              | (hC                          |        | 36               |
| 8/<br>18/         | 233   | 385  | 398    | 283                       | 373                                                  | 490     | 523                   | 72            | 1441            | ካኮሮ           | 34              | 243                          |        | 36               |
| 18 S              | Joh   | 275  | 187    | 910                       | 36 y                                                 | 510     | 925                   | 11            | lhhi            | 245           | 34              | Sho                          | 35     | 3b               |
| 3<br> <br> °      | 295   | 27/C | 175    | अ64                       | 355                                                  | 040     | 1109                  | 7.1           | Ihhl            | 246           | 34              | 9 hC                         | 35     | 36               |
| 5/و<br>أح         | 400   | 278  | 179    | 275                       | ગુમુદ                                                | 720     | ા3ગ્રપ                | 72            | Shhl            | 247           | 34              | 8hC                          | 35     | 36               |
| 3/<br>3/          | 中一    | 283  | 183    | 287                       | 340                                                  | 780     | 1353                  | 73            | 8441            | 8hC           | 34              | 8hC                          | 38     | 36               |
| ₩<br>\%           | 780   | 295  | 195    |                           |                                                      | 864     | 1378                  | 73            | 8448            | 8hC           | 34              | 848                          | 35     | 36               |
| X                 | 37693 | 3757 | 3050   | 3728                      | COPUL                                                | (7736)  | 10102                 | 870           |                 |               |                 |                              |        |                  |
| <b>3</b> /<br>(%) | 536   | 311  | भाट    | 326                       | 330                                                  | 988     | ०८५।                  | 73            | 1448            | 8hC           | 34              | 8h8                          | 35     | 36               |
| 6)<br>(2)         | 508   | 328  | 2000   | 339                       | 325                                                  | 935     | 1193                  | 14            | 1448            | 8hC           | 35              | 8hC                          | 38     | 36               |
| 2/<br>2/          | 08 h  | 343  | 234    | 353                       | 324                                                  | 1013    | 1185                  | 74            | 8441            | 868           | 35              | 348                          | 35     | 36               |
| N٢                |       | 357  | ठमठ    | 367                       | 323                                                  | 1046    | 1165                  | 72            | 8441            | 348           | 35              | 848                          | 35     | 36               |
| M                 | 1_    | 368  | गुमुल  | 381                       | 323                                                  | 1090    | 1175                  | 76            | 1448            | 248           | 35              | 8h8                          | 35     | 36               |
| 28/5<br>28/5      |       | 374  | 255    | 395                       | 325                                                  | 1119    | 1178                  | 79            | 1448            | 8hC           | 35              | 348                          | 35     | 36               |
| g/<br>g/          | 489   | 578  | 263    | 402                       | 320                                                  | 1178    | 1156                  | 76            | 1448            | 348           | 35              | 348                          | 35     | 36               |
| 3/2/              | امرار | 385  | 265    | 410                       | 327                                                  | 0181    | 1176                  | 76            | 8441            | 348           | 35              | 870                          | 35     | 36               |
| 2/2<br>2/2        | 450   | 393  | 263    | 413                       | 324                                                  |         | 1058                  | -             | 1448            | 248           | 35              | 8hC                          | 35     | 36               |
| $\Lambda$         | _     | 395  | 256    | 비녀                        | 333                                                  | 1103    | 166                   | 77            | 1448            | 348           | 35              | 348                          | 35     | 36               |
| 100 N             |       | 397  | 348    | 4108                      | 336                                                  | L891    | 936                   | 78            | 1447            | 8hC           | 35              | 348                          | 35     | 36               |
| 利思                |       | 392  | 334    | 197                       |                                                      | 1055    | 890                   | 78.           | 1445            | 247           | 35              | 8hC                          | 35     | 36               |
|                   | 5548  | 是    | 2025   | LЛ                        | 39403                                                | (12839) | (13SIT)               | 910           | , Y             |               |                 |                              |        |                  |
| X                 | 9307  |      | 0000   | 8337                      | 8436                                                 | 205697  | 13619                 | 1780-L        |                 |               |                 |                              |        |                  |

|                                        |          |              |                     |                                               |                                                        |             |                       |                        |                 |               |                 | Vanish Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the |                    |            |
|----------------------------------------|----------|--------------|---------------------|-----------------------------------------------|--------------------------------------------------------|-------------|-----------------------|------------------------|-----------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
|                                        |          |              | TEM<br>RECO<br>WST2 | TEMPERATURES<br>RECORD SHEET<br>WST2-Form14 R | TEMPERATURES<br>RECORD SHEET #14<br>WST2-FOUNT Rev1/88 |             |                       | Unit:<br>Run:<br>Page: | 14206118<br>7   | 78            | S 27X Date      | Date: 5/19<br>Technician(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19/92<br>11: 30    | 1/2<br>275 |
| T/C                                    | 4        | 2            | 9                   | 7                                             | æ                                                      | 6           | 10                    | 11                     | 12              | 13            | 14              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 342,6 17        | 0 17       |
| Time                                   | Top      | lert<br>Side | Back                | Right<br>Side                                 | Bottom                                                 | Firebox     | 2nd Burn<br>Catalytic | Room<br>Temp           | Tube<br>Furnace | Sample<br>Box | Impinger<br>Out | c. Gas<br>Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C. Gas<br>Impinger | SO2        |
| <u>3</u><br> ₹                         | 335      | 379          | 328                 | 389                                           | 343                                                    | <b>C8</b> b | 825                   | 77                     | 1442            | 7h2           | 35              | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  | 36         |
| 3/3/3/                                 | 320      | 373          | 233                 | 384                                           | 344                                                    | <b>689</b>  | 800                   | 11                     | Chhl            | 74C           | 35              | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| 8 <u>/</u><br> 3                       | 309      | 366          | ZIT                 | 317                                           | 346                                                    | 616         | 111                   | 7.1                    | 1445            | 547           | 38              | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| 38<br>公                                | 394      | 357          | 209                 | 362                                           | 346                                                    | 819         | 735                   | 77                     | 9441            | 247           | 35              | 8hC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| VI                                     | 283      | 349          | ५०%                 | 350                                           | 346                                                    | 843         | 709                   | 77                     | Shhl            | 247           | 35              | 8 hC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                 | 36         |
| है।<br>१८                              | गुर      | 344          | 200                 | 342                                           | 344                                                    | 813         | 693                   | 77                     | Shhi            | LhC           | 35              | 8hC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| 67<br>0051                             | 7164     | 335          | 195                 | 334                                           | 340                                                    | <i>LPT</i>  | 673                   | 77                     | 1444            | 247           | 35              | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| 87 ;<br>(S)                            | 257      | 329          | 192                 | 324                                           | 337                                                    | 773         | bS1                   | 77                     | ባր ከ            | 747           | 35              | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| 2<br>2<br>3                            | 251      | 394          | 192                 | 316                                           | 335                                                    | 757         | ۳5 <i>9</i> ا         | 77                     | Lhhl            | LhC           | 36              | 7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                 | 36         |
| <u>S</u>                               | 1. TO    | 316          | <u></u>             | 311                                           | 332                                                    | 744         | 147                   | 76                     | 1448            | LhC           | 36              | 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 35         |
| 2)<br>20<br>20                         | 338      | 310          | 195                 | 302                                           | 328                                                    | 733         | ગ દ ગ                 | 76                     | 1448            | 247           | 36              | 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| 写<br>以<br>以                            |          | 308          | 195                 | 56C                                           | 327                                                    | 727         | ৮৯৭                   | 76                     | 8441            | Lhe           | 36              | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| X                                      | 33047    | 4030         | 記る                  | 4090                                          | (40108)                                                | (9914)      | (क्षित्रक्रे          | (176)                  |                 |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| 88/<br>18/                             |          | 305          | 195                 | 293                                           | 324                                                    | 713         | とての                   | 75                     | 1447            | Lhe           | 36              | LhC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| \$ (%)                                 | 232      | 305          | 196                 | 580                                           | 323                                                    | 697         | 519                   | 75                     | 8441            | Lhe           | 36              | 7<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38                 | 36         |
|                                        | _        | 304          | 195                 | <b>784</b>                                    | 321                                                    | L89         | 800                   | 75                     | 1448            | Lhe           | 36              | 2H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| VL                                     |          | 304          | 961                 | C8C                                           | 320                                                    | 919         | 595                   | 75                     | 1448            | Lኮሮ           | 36              | ShC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| 18/<br>18/                             |          | 301          | 193                 | TLC                                           | 319                                                    | 671         | 588                   | 75                     | 1448            | 8hC           | 36              | 8ስሮ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| 3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/ |          | 299          | 191                 | 274                                           | 318                                                    | lo74        | 583                   | 75                     | 1447            | 8 hC          | 3 le            | 8hC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| \$/<br>\$/                             |          | 29 le        | 189                 | ELC                                           | 317                                                    | (062        | 577                   | 75                     | 1448            | 248           | 36              | 8ኮሮ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
| 3/                                     | و<br>ج   | 293          | 186                 | 267                                           | 315                                                    | 673         | 512                   | 75                     | 1448            | 248           | 45              | 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
|                                        |          | ই            | 185                 | Stole                                         | 314                                                    | ٦           | 570                   | 75                     | 1448            | 8/17          | 36              | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                 | 36         |
| 5                                      | <u>्</u> |              | 185                 | 263                                           | 314                                                    | 653         | 559                   | 75                     | 1448            | 842           | 36              | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                 | 36         |
|                                        | 2227     | 1            | 1911                | 2767                                          | 3185                                                   | GL17        | (5889Y)               | 7507                   |                 |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
|                                        |          | 1011         | 4354                | 16857                                         | 7253                                                   | 16991       | 143187                | المار                  | AT S            | THRT          | 342.6           | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 410        |
|                                        | TH8381   |              | 15E01.              | 151947                                        | 156897                                                 | 37260       | (37937)               | 3451                   | S               | 407           | 252.8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
| X                                      | 323      | 332          | 225                 | 330                                           | 3417                                                   | -(810)      | (825)                 | 75)                    |                 |               | -86.8-          | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |            |

| Site: EE                                      | MC - West      | , Kent,       | WA 9803    | 2 Date                 | : 5 <u>/19/9</u> .                               | 2 Analy      | yte: <u>CO2</u>                       | (15-1)         |  |  |  |
|-----------------------------------------------|----------------|---------------|------------|------------------------|--------------------------------------------------|--------------|---------------------------------------|----------------|--|--|--|
| Source:                                       | HAUGHS         | S270          | SEE18      | S Run                  | <b>:</b>                                         | 7            |                                       |                |  |  |  |
| Zero Cyl                                      | #: <u>T13</u>  | 2257          | с          | onc. <u>00.0</u> 9     | 5_CO2_                                           | Cyl Pre      | ess: <u>800</u>                       | psi            |  |  |  |
|                                               |                |               | -          |                        |                                                  |              | Date: 10)                             |                |  |  |  |
|                                               | _              |               |            |                        |                                                  |              | ess: 900                              |                |  |  |  |
|                                               |                |               |            |                        |                                                  |              | Date: 10/3                            | 1              |  |  |  |
|                                               |                |               |            |                        |                                                  |              | SN: 4070                              | ,              |  |  |  |
|                                               |                |               |            |                        |                                                  |              | )                                     |                |  |  |  |
|                                               |                |               |            |                        |                                                  |              | Flowmete                              |                |  |  |  |
|                                               | Value = 2      |               |            | <b>4</b> -             |                                                  | <u> </u>     |                                       |                |  |  |  |
| EPA Cont                                      | rol Limits     | = <u>+</u> 2. | 5% of 2!   | 5.0% CO <sub>2</sub> = | <u> + 0.6</u> 2                                  | 25% CO2      |                                       |                |  |  |  |
| Pre Run                                       | Audit: By      | 7:            | BN         | Tin                    | e: <u>10</u>                                     | 05           | Temp: 74                              | o <sub>F</sub> |  |  |  |
|                                               | •              |               |            | Audit Resu             | lts                                              |              | <u> </u>                              |                |  |  |  |
| Point<br>#                                    |                | ted Res       |            | Act<br>Meter           | ual Res                                          | sponse<br>%  | + Conc.<br>Difference                 | Δ              |  |  |  |
| Zero                                          |                |               | 00.0       |                        |                                                  | 1            | ,054                                  | 712,           |  |  |  |
| Span .                                        | 50.4           |               |            |                        | <del>                                     </del> | <del> </del> | · · · · · · · · · · · · · · · · · · · | -2,075         |  |  |  |
| Comments                                      | •              |               |            |                        | <del></del>                                      | •            |                                       |                |  |  |  |
|                                               | <b>-</b>       |               | ·          |                        |                                                  |              |                                       |                |  |  |  |
|                                               |                |               |            | ·-··                   | ·                                                |              |                                       |                |  |  |  |
| Post Run Audit: By: DK Time: 1430 Temp: 75 OF |                |               |            |                        |                                                  |              |                                       |                |  |  |  |
|                                               |                |               | Į          | Audit Resu             | lts                                              |              |                                       |                |  |  |  |
| Point<br>#                                    | Expec<br>Meter | ted Res       | ponse<br>% | Act<br>Meter           | ual Res                                          |              | + Conc                                | <b>4</b>       |  |  |  |
|                                               |                |               |            | 00.0                   | MVD.                                             | .054         | Difference                            | .217           |  |  |  |
| Zero                                          | 00.0<br>50.4   | .504          | 12.b       | 49.7                   | .497                                             | 12.314       | 286                                   | -2.271         |  |  |  |
| Span                                          |                | - 00          |            | 1 1 1 1                |                                                  | 1,2,2,1      |                                       | 7              |  |  |  |
| Comments:                                     |                |               |            |                        |                                                  |              |                                       |                |  |  |  |
| + Conc. T                                     | Difference     | = Act         | % - Exp    | (Std) %                |                                                  | <del></del>  | ·                                     |                |  |  |  |
|                                               |                |               |            | Fyn & (nn              |                                                  |              |                                       |                |  |  |  |

+ Conc. Difference = Act % - Exp (Std) %
Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

| Site: EEMC - | - West,         | Kent, V        | WA 98032    | Date:             | 5/19/92                               | Anal          | yte: <u>02 (</u> ]    | 15-2)            |
|--------------|-----------------|----------------|-------------|-------------------|---------------------------------------|---------------|-----------------------|------------------|
| Source: HAL  | IGHS S          | 270            | Series      | Run #:            |                                       | 7             |                       |                  |
| Zero Cyl #:  | T 13:           | 2257           | Co          | nc. <u>00.0</u> % | 02                                    | Cyl Pro       | ess: <u>800</u>       | psi              |
| Certified    | d by:           | LIQU           | 10 AI       | <u>e</u>          |                                       |               | Date: <u>10/7</u>     | 191              |
| Span Cv1 #:  | 2900            | 14             | Co          | nc. 12.4 %        | 02                                    | Cyl Pr        | ess: <u>900</u>       | psi              |
| Certified    | i bv:           | MATH           | HESON       |                   |                                       |               | Date: 10/3            | 1/91             |
| Analyzer: N  |                 | eledyn         | e           | Model: 3          | 20 Ax                                 |               | SN:_3746              | 5                |
| Range: 0 -   | 25.0% 0         | 12             | <br>An      | alyzer Out        | put:                                  | 0 - 1.        | 0                     | v.               |
|              |                 |                |             |                   |                                       |               | Flowmete:             |                  |
| EDA Coon Mai | lua = 25        | 08 00          |             |                   |                                       |               |                       |                  |
| EPA Control  | Limits          | = + 2.         | 5% of 25    |                   |                                       |               |                       |                  |
| Pre Run Audi | <u>Lt</u> : By: |                | BN .        | Time              | <u>∍: _10</u>                         | 15            | Temp: 76              | o <sub>F</sub>   |
|              |                 |                |             | udit Resu         | lts                                   |               | i Cong                |                  |
| Point        | Expect          |                |             | Meter             | lal kes                               | ponse         | + Conc.<br>Difference | Δ ક              |
| #            | Meter           |                |             | × O               | 201                                   |               |                       |                  |
| Zero         | 00.0            | .000           | 00.0        | 0.3               | 1004                                  | 7.003         |                       | 012              |
| Span         | 12.4            | .496           | 12.4        | 12,5              | ,497                                  | 12.513        |                       | 1.398            |
| Comments: '  | <b>reledyne</b> | #2 <u>Cy</u>   | 1 % E       | XD 8 A            | <u>CT 8</u>                           | Adj t         | <u>ο + Δ</u> §        |                  |
|              |                 | <del> </del>   |             |                   |                                       |               |                       |                  |
|              | -               |                | <del></del> |                   | · · · · · · · · · · · · · · · · · · · |               | <u> </u>              |                  |
|              | 7.1. D-         |                | DK          | Time              | ٠ ا ١                                 | 140           | Temp.: 75             | $\mathbf{o_{F}}$ |
| Post kun Aud | are: P          |                |             | udit Resu         |                                       |               |                       |                  |
|              | 73              | ed Res         |             |                   | ual Res                               |               | + Conc.               | ^                |
| Point #      | Meter           | DVM            | 8           | Meter             | DVM                                   | *             | Difference            | ₹ Д              |
| Zero         | 00.0            | .000           | 00.0        | 00.0              | ,001                                  | :079          | -, 079                | -,318            |
| Span         | 12.4            | 1496           | 12.4        | 12.4              | .494                                  | 12.497        | .097                  | .781             |
|              | Teledyne        | #2 Cy          | 1 % E       | A gar             | Ct %                                  | Adj t         | <u>ο + Δ %</u>        | į                |
|              |                 | -              | <del></del> | <del></del>       | <del></del>                           | . <del></del> |                       |                  |
|              |                 | · <del>-</del> |             | 7043) 9           |                                       |               |                       |                  |

+ Conc. Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

| Site: EEM                                                    | iC - West,    | Kent,   | WA 98032    | Date:                               | 5/19/9         | 2 Anal        | lyte: <u>CO</u> | (15-3)     |  |  |  |  |
|--------------------------------------------------------------|---------------|---------|-------------|-------------------------------------|----------------|---------------|-----------------|------------|--|--|--|--|
| Source:                                                      | HAUGHS        | S270    | Seeie       | S Run #                             | :              | 7             |                 |            |  |  |  |  |
| Zero Cyl                                                     | #: <u>T13</u> | 2257    | Co          | onc. <u>00.0</u> %                  | CO             | Cyl Pr        | ess: <u>800</u> | psi        |  |  |  |  |
| Certif                                                       | ied by: _     | Liau    | no An       | R                                   |                |               | Date: 10/       | 7/91       |  |  |  |  |
| Span Cyl                                                     | #: 2900       | 04      | Co          | nc. 4.96                            | CO             | Cyl Pr        | ess: <u>90</u>  | <u>psi</u> |  |  |  |  |
| Certif                                                       | ied by: _     | MATH    | ESON        |                                     |                |               | Date: 10)       | 31/91      |  |  |  |  |
| Analyzer:                                                    | Make:         | Horiba  | <del></del> | Model: P                            | IR-200         | ) .           | SN: 40          | 8005       |  |  |  |  |
| Range: 0                                                     | - 10.0%       | со      | An          | alyzer Ou                           | tput:_         | 0 - 1.        | . 0             | v.         |  |  |  |  |
| Flow: 1                                                      | .5 SCFH       |         | Measu       | red by:                             | Rotamet        | ter: <u>X</u> | <u> Flowme</u>  | ter:       |  |  |  |  |
|                                                              | Value = 1     |         |             | 09 60 - 1                           | 0 250          | <b>70</b>     |                 |            |  |  |  |  |
|                                                              | ol Limits     |         | _           |                                     |                |               | ·               | No on      |  |  |  |  |
| Pre Run A                                                    | udit: By      | *       |             |                                     |                | 720           | Temp:           | - CF       |  |  |  |  |
| Point                                                        | Expec         | ted Res | nonse       | udit Resu                           | ual Res        | nonse         | + Conc.         |            |  |  |  |  |
| # -                                                          | Meter         |         | 8           |                                     | DVM            |               | Difference      | e 🛆 %      |  |  |  |  |
| Zero                                                         | 00.0          | .000    | 00.0        | 00.0                                | 1000           | -,004         | 004             | ]          |  |  |  |  |
| Span                                                         | 49.6          | .496    | 4.96        | 49.6                                | 1496           | 5.049         | .089            | 1.791      |  |  |  |  |
| Comments:                                                    |               | ,       |             |                                     | -              |               |                 |            |  |  |  |  |
|                                                              |               |         |             |                                     |                |               |                 |            |  |  |  |  |
|                                                              |               |         |             |                                     |                |               | •               |            |  |  |  |  |
| Post Run Audit: By: DK Time: 1445 Temp.: 75 of               |               |         |             |                                     |                |               |                 |            |  |  |  |  |
| Audit Results Point Expected Response Actual Response + Conc |               |         |             |                                     |                |               |                 |            |  |  |  |  |
| Point Expected Response Actual Response + Conc.              |               |         |             |                                     |                |               |                 |            |  |  |  |  |
| #                                                            | Meter         | DVM     | 8           | Meter                               | DVM            | ક્ર           | Difference      |            |  |  |  |  |
| Zero                                                         | 00.0          | .000    | 00.0        | 00.0                                | .000           | - 004         | 004             | -044       |  |  |  |  |
| Span                                                         | 49.6          | . 496   | 4.96        | 49.2                                | .492           | 5.008         | .048            | 1.969      |  |  |  |  |
| Comments:                                                    | ·             |         |             |                                     |                |               |                 |            |  |  |  |  |
|                                                              | ·             |         |             | <i>(</i> - <i>- - - - - - - - -</i> |                |               |                 |            |  |  |  |  |
| + Conc. D<br>Zero % Di                                       |               | Act %   | (ppm) -     | Exp % (pp                           | <u>m)</u> X 10 | 0             |                 |            |  |  |  |  |
| Coon a pi                                                    | ffaur         |         | ull Scal    |                                     | _<br>\         | 00            |                 |            |  |  |  |  |
| Span % Di                                                    | rrerence      | = ACT % | Exp % (     |                                     | m x r          | .00           |                 |            |  |  |  |  |

| Site: EEMC -  | West,          | Kent,   | WA 98032    | Date:                  | 5/19/9:            | Anal          | lyte: <u>SO</u> 2     | (15-4)                   |
|---------------|----------------|---------|-------------|------------------------|--------------------|---------------|-----------------------|--------------------------|
| Source: HAU   | GHS            | S270    | SER18       | <u>S</u> Run #         | :                  | 7             |                       |                          |
| Zero Cyl #:   | <u>T13:</u>    | 2257    | Co          | onc. <u>00.0</u> p     | pm SO <sub>2</sub> | Cyl Pr        | ess: <u>800</u>       | psi                      |
| Certified     | by: _          | Liaui   | O AIR       | ···                    | ·                  |               | Date: 10              | 7/91                     |
| Span Cyl #:   | AL2            | 892     | Cc          | nc.1232p               | pm SO <sub>2</sub> | Cyl Pr        | ess: <u>45</u>        | <u>O</u> psi             |
| Certified     | by: _          | LIQU    | D AIR       |                        |                    |               | Date: 9/2             | 4/91                     |
| Analyzer: Ma  | ake:           | Horiba  |             | Model: P               | IR-200             | 0             | SN: 403               | 019                      |
| Range: 0 - 2  | 2500 p         | pm SO2  | Ar          | nalyzer Ou             | tput:_             | 0 - 1.        | . 0                   | v.                       |
| Flow: 1.5 S   | SCFH           |         | Measu       | red by:                | Rotame             | ter: <u> </u> | Flowmet               | er:                      |
| EPA Span Valu |                |         |             | 00 ppm SO <sub>2</sub> | = +62              | .5 ppm        | SO <sub>2</sub>       |                          |
| Pre Run Audit | <u>:</u> By    | :       | BN          | Time                   | e: <u>10</u>       | 00            | Temp:                 | <u>5</u> _o <sub>F</sub> |
|               |                |         |             | udit Resu              |                    |               |                       |                          |
| Point         |                | ted Res | ponse       | Act                    | ual Re             | sponse        | + Conc.               | Λ.                       |
| 4 #           | Meter          | DVM     | ppm         | Meter                  |                    |               | Difference            |                          |
| Zero (        | 0.0            | .000    | 00.0        | 00.0                   | 1000               | 3,440         | 3.440                 | ,138                     |
| Span          | 19.3           | .493    | 1232        | 49,5                   | 1495               | 1288.<br>992  | 6.992                 | 1568                     |
| Comments:     |                |         |             | •                      |                    |               |                       |                          |
|               |                |         |             |                        | •                  |               |                       |                          |
| Post Run Audi | lt: B          | y:      | DK          | Time                   | e: <u>/</u>        | 125           |                       | 5o <sub>F</sub>          |
|               |                |         |             | udit Resu              |                    |               |                       |                          |
| Point M       | Expec<br>Meter | ted Res |             | Act:                   | DVM                |               | + Conc.<br>Difference | <b>₽</b> ₹               |
|               | 0.0            | .000    | ppm<br>00.0 | 00.0                   | .000               | 3.440         | 3.440                 | .138                     |
|               | 19.3           | .493    | 1232        | 49.3                   | .493               | 1234.         | 2.000                 | .162                     |
| Comments:     |                |         |             |                        |                    |               |                       |                          |

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

<sup>+</sup> Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Difference = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Run:

Date: 5/19/92

Technicians: BU TK PK TS

WST6-Form3-Rev11/89

# QUALITY CHECKS WOODSTOVE DATA SHEET #16

| T/C #6: 71.6 °F; T/C #7: 70.5 °F; T/C #8: 71.3 °F  T/C #9: 71.9 °F; T/C #10: 69.6 °F; T/C #11: 69.4 °F  T/C #12: 72.3 °F; T/C #13: 70.5 °F; T/C #14: 70.8 °F  T/C #15: 71.9 °F; T/C #16: 69.0 °F; T/C #17: 67.0 °F  T/C #18: 73.3 °F; T/C #19: °F; T/C #20: °F  T/C #21: °F; T/C #22: °F; T/C #23: °F  T/C #24: °F; T/C #25: °F; T/C #26: °F  Comments:  Thermocouple Readout:  Pretest Zero/Span Check and Calibration:  Zero (0°F): 3 °F to: 0°F Zero (0°F): 6°F 70.0 °F  Span (2000°F): 199.9 °F to: 2000.0 °F (2000°F): 2003.0 °F 150  (Allowable 7 Difference = 1.5%. Use formulas on Woodstove Data Sheet #15 to calculate 7 Difference)  Thermocouple Readout Pretest Linearity Check °F; 400°F = 399.0 °F;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ambient = Tr:                                                                                                  | 69.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o <sub>F</sub>                                             | T/C#30:_                                        | 71.0                                          |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------|
| T/C #6: 716 oF; T/C #7: 70.5 oF; T/C #8: 71/3 oF T/C #9: 71/4 oF; T/C #10: 696 oF; T/C #11: 61.4 oF T/C #12: 72.3 oF; T/C #13: 70.5 oF; T/C #14: 70.8 oF T/C #15: 71.4 oF; T/C #16: 64.0 oF; T/C #17: 67.0 oF T/C #18: 73.3 oF; T/C #19: oF; T/C #20: oF T/C #18: 73.3 oF; T/C #19: oF; T/C #20: oF T/C #21: oF; T/C #22: oF; T/C #23: oF T/C #24: oF; T/C #25: oF; T/C #26: oF T/C #24: oF; T/C #25: oF; T/C #26: oF Comments:  Thermocouple Readout: Pretest Zero/Span Check and Calibration: Zero (0°F): 3 oF to: oF Zero (0°F): 1/0 #26: oF  Comments:  Thermocouple Readout: Pretest Zero/Span Check and Calibration: Zero (10°F): 1/10 oF; T/C #26: oF T/C #26: oF T/C #26: oF T/C #27: oF T/C #27: oF T/C #28: 0F T/C #27: oF T/C #28: 0F T/C #28: OF T/C #28: OF T/C #28: OF T/C #28: OF T/C #28: OF T/C #28: OF T/C #28: OF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF T/C #18: 70.8 oF  | Thermocouple Che                                                                                               | ck (at ambient):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T/C#1:                                                     | <u>/, / °F; T</u>                               | /c#2: <u>· 7/,3</u>                           | o              |
| T/C #9: 71.4 of; T/C #10: 67.6 of; T/C #11: 61.4 of  T/C #12: 72.3 of; T/C #13: 70.5 of; T/C #14: 70.8 of  T/C #15: 71.4 of; T/C #16: 64.0 of; T/C #17: 67.0 of  T/C #18: 73.3 of; T/C #19: of; T/C #20: of  T/C #21: of; T/C #22: of; T/C #23: of  T/C #24: of; T/C #25: of; T/C #26: of  T/C #24: of; T/C #25: of; T/C #26: of  T/C #24: of; T/C #25: of; T/C #26: of  T/C #24: of; T/C #25: of; T/C #26: of  T/C #24: of; T/C #25: of; T/C #26: of  Gomments:  Thermocouple Readout:  Pretest Zero/Span Check and Calibration:  Zero (0°F): 10 of to: 0 of Zero (0°F): 10 of  (2000°F): 13 of to: 2000.0 of (2000°F): 2003.0 of  (Allowable Z Difference = 1.5%. Use formulas on Woodstove Data Sheet  #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  0°F = 0 of; 200°F = 201.8 of; 400°F = 399.0 of;  600°F = 00.2 of; 800°F = 801.3 of; 1000°F = 1000.3 of;  1200°F = 1400°F = 1398.9 of; 1600°F = 1599.5 of  Tracer Gas (S02) Injection Train Leak Check: Pre Post  Tracer Gas (S02) Injection Train Leak Check: Pre Post  Tracer Gas (S02) Analyzer Train Leak Check: Pre Post  Draft (Static) Guage Zero Check: Pre Post  Post (Wt, #'s): 318.6 38.6 = 10  Post (Wt, #'s): 317.0 307.0 = 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T/C #3: 71.3                                                                                                   | _o <sub>F</sub> ; T/C #4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                          | '; T/                                           | c #5: 7/16                                    | oF             |
| T/C #12: 72.3 oF; T/C #13: 70.5 oF; T/C #14: 70.R oF  T/C #15: 7/.4 oF; T/C #16: 44.0 oF; T/C #17: 67.0 oF  T/C #18: 73.3 oF; T/C #19: oF; T/C #20: oF  T/C #21: oF; T/C #22: oF; T/C #23: oF  T/C #24: oF; T/C #25: oF; T/C #26: oF  T/C #24: oF; T/C #25: oF; T/C #26: oF  Gomments:  Thermocouple Readout:  Pretest Zero/Span Check and Calibration:  Zero oF to: oF Zero (0°F): oF  Zero oF Zero (0°F): oF  Zero (0°F): oF Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  Zero (0°F): oF  | T/C #6: 7/16                                                                                                   | o <sub>F</sub> ; T/C #7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : <u>70.5</u> °I                                           | '; T/                                           | c #8: <u>7//3</u>                             | o <sub>F</sub> |
| T/C #15: 71.4 of; T/C #16: 64.0 of; T/C #17: 67.0 of  T/C #18: 73.3 of; T/C #19: of; T/C #20: of  T/C #21: of; T/C #22: of; T/C #23: of  T/C #24: of; T/C #25: of; T/C #26: of  T/C #24: of; T/C #25: of; T/C #26: of  Comments:  Thermocouple Readout:  Pretest Zero/Span Check and Calibration:  Zero (0°F): 3 of to: of Zero (0°F): 0 of Zero (0°F): 0 of  Span (2000°F): 999.9 of to: 2000.0 of (2000°F): 2003.0 of 150  (Allowable % Difference = 1.5%. Use formulas on Woodstove Data Sheet  #15 to calculate % Difference)  Thermocouple Readout Pretest Linearity Check  0°F = of; 200°F = 201.8 of; 400°F = 399.0 of;  600°F = of; 200°F = 201.8 of; 400°F = 1000.3 of;  1200°F = of; 1400°F = 1398.9 of; 1600°F = 1000.3 of;  1200°F = 199.0 of; 1400°F = 1398.9 of; 1600°F = 1599.5 of  Fracer Gas (SO2) Injection Train Leak Check: Pre Post  Combustion Gas (CO2,02,CO) Train Leak Check: Pre Post  Tracer Gas (SO2) Analyzer Train Leak Check: Pre Post  Draft (Static) Guage Zero Check: Pre Post  Draft (Static) Guage Zero Check: Pre Post  Fracer Gas (SO2) Analyzer Train Leak Check: Pre Post  Draft (Static) Guage Zero Check: Pre Post  Post (Wt, #'s): 317.0 307.0 = 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/C #9: 71.4                                                                                                   | o <sub>F</sub> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0: <u>69.6</u>                                             | F; T/C                                          | #11: 69.4                                     | of             |
| T/C #18: 73.3 of; T/C #19: of; T/C #20: of  T/C #21: of; T/C #22: of; T/C #23: of  T/C #24: of; T/C #25: of; T/C #26: of  T/C #24: of; T/C #25: of; T/C #26: of  Comments:  Thermocouple Readout:  Pretest Zero/Span Check and Calibration:  Zero (0°F): 3 of to: of Post Test Check of Z Difference (0°F): of Zero (0°F): of Jero (0°F): of Jero (0°F): of Jero (2000°F):                                                                                                                                                                                                                                                                                                                             | T/c #12: 72.3                                                                                                  | o <sub>F</sub> ; T/C #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3: <u>70,5</u>                                             | F; T/C                                          | #14: <u>70.8</u>                              | o <sub>F</sub> |
| T/C #21:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T/C #15: 71.4                                                                                                  | or; T/C #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6: <u>840</u>                                              | F; T/C                                          | #17: <u>67.0</u>                              | o <sub>F</sub> |
| T/C #24:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T/c #18: 73.3                                                                                                  | o <sub>F</sub> ; T/C #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9:9                                                        | F; T/C                                          | #20:                                          | of             |
| Thermocouple Readout:  Pretest Zero/Span Check and Calibration:  Zero  (2007): 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T/C #21:                                                                                                       | o <sub>F</sub> ; T/C #2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2:                                                         | F; T/C                                          | #23:                                          | o <sub>F</sub> |
| Thermocouple Readout: Pretest Zero/Span Check and Calibration: Zero (O°F): 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T/C #24:                                                                                                       | oF; T/C #2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <b>:</b> 0                                               | F; T/C                                          | #26:                                          | o <sub>F</sub> |
| Pretest Zero/Span Check and Calibration:  Zero (10°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                 |                                               |                |
| Pretest Zero/Span Check and Calibration:  Zero (10°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                 |                                               |                |
| Pretest Zero/Span Check and Calibration:  Zero (0°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                 |                                               |                |
| Pretest Zero/Span Check and Calibration:  Zero (0°F): 3 °F to: 0 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 6 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero (0°F): 7 °F Zero ( |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                 |                                               |                |
| Combustion Gas (CO <sub>2</sub> ,O <sub>2</sub> ,CO) Train Leak Check: Pre Post  Tracer Gas (SO <sub>2</sub> ) Analyzer Train Leak Check: Pre Post  Draft (Static) Guage Zero Check: Pre Post  Scale Check Pre (Wt, #'s): 318.6-308.6=10  Post (Wt, #'s): 317.0 307.0=10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span (2000°F): 1999.9 (Allowable % Dif #15 to calculate Thermocouple Rea 0°F = 0 600°F = 601.2 1200°F = 1/98.0 | Adj<br>of to: 2000.00<br>ference = 1.5%.<br>% Difference)<br>dout Pretest Line<br>of; 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 200°F = 20 | Span (2000° Use formula earity Check (20/,8 °F; (30/,3 °F; | F): 2003.0<br>s on Wood:<br>400°F =<br>1000°F = | of <u>/150</u> stove Data \$  399.0 0  /000,3 | Sheet<br>OF;   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Combustion Gas (                                                                                               | co <sub>2</sub> ,o <sub>2</sub> ,co) Train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Leak Check:                                                | Pre /                                           | Post /                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Draft (Static) G                                                                                               | Analyzer Train I uage Zero Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eak Check:                                                 | Pre                                             | Post                                          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            | •                                               | <del>-</del>                                  |                |

| Next Ir        | Make inspec                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Inspection Due | Make Weight: Inspected By This certifies t when tested or                                                                                                                        | EEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| n Due          | hands                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                | spected By Rewark 1 Quelies   SIN   Old 409  This certifies that the above scale met all State Highway Weighing Requirement tested on the above date with 875. Ibs. of test wits |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                | ( scale                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             |
|                | met all State                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCALE COMPANY |
|                | SIN State HI                                                                                                                                                                     | E .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                | Dateghway Welgibs. c                                                                                                                                                             | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S | OMP           |
| Date b         | yp9                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANY,          |
| 6-20           | - 3.0-1<br>ng Requi                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC.           |
| 87             | 77<br>rements                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |

Hall Book Ochbeston

| Next Inspection Due | 150 Lbs 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Load heading | This certifies that        | Inspected By Ken Jackson | Make Weigh TROKIX | coEEMC   | (Je                       | Phil                        | となっていていています。 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|--------------------------|-------------------|----------|---------------------------|-----------------------------|--------------|
|                     | 3co Lbs 3co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 Lbs 200  | 크용                         | chion                    | NS SIN            | At:      | Certificate of Inspection | hillips SCALE COMPANY, INC. |              |
| 7-2                 | 25.7 Per 72.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73.7 Per 73. | -            | Veighing Requirements tte. | Date /- シータス             | 016409            | KENT WA. | aecting.                  | MPANY, INC.                 |              |

V-15-00

# Next Inspection Due Inspected By Ken he Make\_ 150 lbs 150 TED TPS TED Load 50 lbs 50 This certifies that the above listed device met all Weighing Requirements WeighTRONIX - LUI-110 Reading EEMC issicate of Inspection lips SCALE COMPANY, INC. Kaon - Philappiscale Co. Date \_ when tested on the above date. कुट कि उटि उट्ट की उटि 300 lbs 300 Load Reading SIN 604310 KenT WA. 350 lbs 350 25 rps 485 Load 700 1 ps 400 500 th 500 01-3-97 Reading

State of Washington
Department of Agriculture
Weights & Measures Section
406 Gen. Admin. Bldg., AX-41
Olympia. WA 98504-0641

# CERTIFICATE OF ACCURACY

| Olympia, WA 98504-0641 |         | (2nd copy)                  |          | Page of         |
|------------------------|---------|-----------------------------|----------|-----------------|
| BWILLED BA COUNTA OL   | 8/20/90 | CODE NO. <sup>0</sup> 42923 | SET<br>B | CERTIFICATE NO. |

TO:

Phillips Scale Co. Attn: Ken Jackson 934 Elliott Ave. W Seattle WA 98119

#### IMPORTANT

The items described below have been compared with the Standards of the State of Washington in accordance with National Institution of Standards and Technology recommendations and requirements. The comparisons will result in appropriate action to insure tolerance compliance.

|                                |                        |                     |       |    |      |      |     |       |     |                  | CRI   |      |       |            | ,      | •      |      | , <del> ,</del> | _,    |     |       |                                 |
|--------------------------------|------------------------|---------------------|-------|----|------|------|-----|-------|-----|------------------|-------|------|-------|------------|--------|--------|------|-----------------|-------|-----|-------|---------------------------------|
|                                | MASS                   |                     |       | ER |      |      |     | *     | 100 | KON<br>See State | RPASS | MON  |       | rux<br>rux | DUPOIS |        |      |                 |       |     | CLASS | NOMINAL<br>VALUE<br>OR<br>RANGE |
| I. D.<br>NUMBER                | NO. OF ITEMS<br>IN SET | NO. OF<br>LINETTEMS | BLOCK | 2  | CUBE | KNOB | GRE | HANGE |     |                  | RPACS | ALUM | CLASS | TANAT      | AVOIR  | METRIC | TROY | GRAIN           | CARAT | EGG |       |                                 |
| Foledo<br>s/n01505<br>s/n20505 | 7 20                   | 1                   |       |    |      |      |     | ,     | 1   | X_               |       |      |       |            | _      | _      |      |                 |       |     | F     | 50#                             |
| s/n2U5U5                       | /                      |                     | _     | _  |      |      |     | 4     | 1   | 4                | -     | 1    | _     |            |        |        | _    |                 | _     |     |       |                                 |
| s/n21505                       | 7 1                    | 1                   |       |    |      | _    |     | 1     |     | X                | _     | 1    | _     | L          |        |        | _    |                 |       |     | F     | 2.5#                            |
| •                              |                        |                     |       |    |      |      |     |       |     |                  |       |      |       |            |        |        |      |                 |       | ·   |       |                                 |
|                                |                        |                     |       |    |      |      |     |       |     |                  |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        |                     | 1.    |    |      |      |     |       |     | 1                |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        |                     |       |    |      |      |     | 1     | 1   |                  |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        |                     |       | 1  |      |      |     |       |     |                  |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        | ·                   |       |    |      |      |     |       |     |                  |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        |                     |       |    |      |      |     |       |     |                  |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        |                     |       |    | Γ    |      |     |       |     |                  |       |      |       |            |        |        |      |                 |       |     |       |                                 |
|                                |                        |                     | T     | Γ  |      |      |     |       |     | 7                |       |      | 1     |            |        |        | Γ    |                 |       |     |       |                                 |

| Principal State Metrologist (Signature) | Mannel Marc                                          | 11-19-90                                |
|-----------------------------------------|------------------------------------------------------|-----------------------------------------|
| rincipal state Metrologist (Signature)  | some and and a great training training to the action | *************************************** |
| ACID 2427 B. (Pay 480)                  |                                                      |                                         |

DENAMINATION VOLUME DAIRY AND FOOD DIVISION WEIGHTS AND MEASURES SECTION NBS Sets A & B CERTIFICATE NO. Certificate of Accuracy state of washington Test #42923 DATE 7/27/89 CODE NO. SUBMITTED BY COUNTY OF FOR GOVERNMENTAL AGENCY/FIRM Phillips Scale 934 Elliott Ave. W., Seattle, WA 98119 THE ITEMS. DESCRIBED BELOW HAVE BEEN COMPARED WITH THE STANDARDS OF THE STATE OF WASHINGTON IN ACCORDANCE WITH NATIONAL BUREAU OF STANDARDS RECOMMENDATIONS AND REQUIREMENTS. THE COMPARISONS RESULT IN APPROPRIATE ACTION TO INSURE TOLERANCE COMPLIANCE. DESCRIPTION MASS NOMINAL NO. OF LINE NO. OF ITEMS CLASS VALUE OR HANGE 1. D. NO. ITEMS IN SET SERVICE TRUCK | # | 5057-01 | THRU (20) Cast Iron Test 50 lbs. Cast IroniTest SERVICE TRUCK # 5057-21 25 lbs. (1) Ride Lake SERVICE TRUCK # 5057 10 mg - 5 kg - 22 pcs Nt Ride Lake SERVICE TRUCK # 5057 .001 lb - 5 li 32 pts REMARKS: INSPECTED BY lames H. Cammel, Metrologist AGR 020-24378 SEE ATTACHED DATA

#### QUALITY CONTROL SERVICES

SALES AND SERVICE OF ANALYTICAL & PRECISION BALANCES AND SCALE

# CERTIFICATE OF CALIBRATION THE FOLLOWING BALANCES HAVE BEEN SERVICED BY Q.C. SERVICES

SERVICE CONSISTS OF ACCURACY TESTS, CLEANING, LUBRICATION, COMPLETE CALIBRATION AND ADJUSTING TO ORIGINAL MANUFACTURERS' SPECIFICATIONS.

ALL TEST WEIGHTS ARE CLASS "S", OR BETTER, AND ARE TRACEABLE TO WEIGHTS CERTIFIED BY THE NATIONAL BUREAU OF STANDARDS CERTIFICATES #737/233864 AND #737/228509.

| DATE OF SERVICE | TYPE     | MAKE | SERIAL NO. | TECHNICIAN |
|-----------------|----------|------|------------|------------|
| 1-20-88         | \$ 170 S | SART | 39010004   | ((H)).     |

# QUALITY CONTROL SERVICES

SALES AND SERVICE OF ANALYTICAL & PRECISION BALANCES AND SCALES

| T., ,                      |                          | /ICE AND CALIBRATION                                                                       | 1-20-89                    |
|----------------------------|--------------------------|--------------------------------------------------------------------------------------------|----------------------------|
| CUSTOMER FEMC              |                          | DATE AMBIENT TEM                                                                           | 00                         |
| ADDRESS $\frac{1315}{}$    | 5. CEVIMAL UNI           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                    |                            |
| KENT ICH.                  | 48037                    | Make SHUT Model AL                                                                         | Astro- Spring              |
| Function Tested            | As Found                 | Manufacturer's Tolerance                                                                   | After Service              |
| Cornerioad                 | +/6 M6                   | t/- ,7m6                                                                                   | +/- Om/                    |
| Optical Range              | _                        |                                                                                            |                            |
| Optical Range with Ta      | ire                      |                                                                                            |                            |
| Linearity or 50-50         | +/- , Z hu6-             |                                                                                            | +/- Muf.                   |
| Hysterisis                 | +/ 2146                  | +1 Oice                                                                                    | +/· . Onch                 |
| Calibration                | 4111N6                   | +/= , z inc                                                                                | +/- , Alle                 |
| Individual Wt.<br>Readings | As Found                 | Manufacturer's Tolerance                                                                   | After Service              |
| 30 m 6                     | 79.9 m.6                 | 7-2m6                                                                                      | t/ i mb                    |
|                            | A) 1 m6 .                | 4214.                                                                                      | +/ 0 M/-                   |
| 500 mb                     | 5000 m6                  | +/Zm6                                                                                      | +/- 0 12/                  |
|                            | 1.000 Z EM               | +/zm.                                                                                      | +1 D mb                    |
| 1 6111                     |                          | +/ Z.m.G.                                                                                  | +10mE                      |
| 10 C iii                   | 10.0001 GW               | +/Zuh.6                                                                                    | 11 0 lu6                   |
| 100 BM                     | 100.00016111             | 7- 200                                                                                     | 1                          |
|                            |                          |                                                                                            |                            |
|                            |                          |                                                                                            |                            |
|                            |                          |                                                                                            |                            |
|                            |                          |                                                                                            |                            |
|                            |                          |                                                                                            |                            |
|                            |                          |                                                                                            |                            |
|                            |                          |                                                                                            |                            |
| brotion is tracpable to    | n the National Reference | used as references for this case Standards maintained by the re 737/233864 and 737/228509. | Mational Dates of          |
| Manufacturer               | Serial Number            | Date of Last Calibration                                                                   | Next Calibration<br>1/88 - |
| Rice Lake<br>Rice Lake     | 5735<br>5736             | 1/5/87<br>1/5/87                                                                           | 1/88                       |
| Rice Lake                  | 5737                     | 1/5/87                                                                                     | 1/88                       |
| Rice Lake                  | 6023 /                   | 3/3/87<br>3/3/87                                                                           | 1/88<br>3/88               |
| See attached sérvice/r     | naintenance procedure    | for complete description of ser                                                            | vice and calibration.      |
| Technician:                | (1/1/2)                  | Date: 1/ You All SEERING                                                                   |                            |
|                            |                          |                                                                                            |                            |

## **WEIGHT CALIBRATION CERTIFICATE**

Purchase Order Number

00247

mpany ~ddress

Q C SERVICES P.O. BOX 14831

City & State

97214 PORTLAND, OR

Report Number

0465

Density

7.95 g/cm<sup>3</sup>

Temperature

22.1°C

RH

55%

mmHg

734.8 Not Corrected

Date

1-5-87

**Description Of Weights** 

S/N 5735, Class "S", 1mg-100g

Tested With Weights Certified By NBS Certificate Number 737/233864

Calibrated By Deb Heldstab

Weighing Design double substitution

Weights Used: 82104

|   | NOMIN<br>MASS V |    | AS FOUND vs. 8.0 g/cm <sup>3</sup> | CORREC<br>AM vs. 8.0 g/cm <sup>2</sup> | TION IN MG<br>AM vs. 8.3909 g/cm³ | UNCERTAINTY<br>MILLIGRAMS | TOLERANCE | TRU<br>MA: |
|---|-----------------|----|------------------------------------|----------------------------------------|-----------------------------------|---------------------------|-----------|------------|
|   | 1               | mg |                                    | 0.0025                                 | 0.0025                            | 0.007                     | 0.014     | 0.00       |
|   | 2               | mg |                                    | 0.0050                                 | 0.0050                            | <b>0.0</b> 06             | 0.014     | 0.00       |
|   | 2               |    | w/dot                              | 0.0040                                 | 0.0040                            | 0.006                     | 0.014     | 0.1        |
|   | 5               | mg |                                    | 0.0055                                 | 0.0054                            | 0.006                     | 0.014     | 0.00       |
|   | 10              | mg |                                    | 0.0055                                 | 0.0054                            | 0.010                     | 0.014     | 0.00       |
|   | 20              | mg | •                                  | 0.0005                                 | 0.0004                            | 0.006                     | 0.014     | 0.00       |
| ( | 20              | мg | w/dot                              | 0.0045                                 | 0.0044                            | .0.006 °                  | 0.014     | 0.00       |
| ` | 50              | mg | ·                                  | 0.0020                                 | 0.0016                            | 0.006                     | 0.014     | 0.00       |
|   | 100             | mg |                                    | 0.0054                                 | 0.0047                            | 0.007                     | 0.025     | 0.0        |
|   | 200             | mg |                                    | 0.0128                                 | 0.0114                            | 0.007                     | 0.025     | 0.0        |
|   | 200             |    | w/dot                              | 0.0053                                 | 0.0039                            | 0.007                     | 0.025     | 0.0        |
|   | 500             | mg |                                    | -0.0049                                | -0.0084                           | 0.008                     | 0.025     | -O. t      |
|   | 1,              | g  |                                    | 0.0195                                 | 0.0125                            | 0.010                     | 0.054     | 0.0        |
|   | 2               | g  |                                    | 0.0036                                 | -0.0104                           | 0.011                     | 0.054     | 0.00       |
|   | 2               |    | /dot                               | 0.0201                                 | 0.0061                            | 0.011                     | 0.054     | 0.00       |
|   | 5               | g  |                                    | 0.0242                                 | 0.0107                            | 0.016                     | 0.054     | 0.0        |
|   | 10              | ġ  |                                    | 0.0200                                 | -0.0499                           | 0.023                     | 0.074     | 0.00       |
|   |                 | ġ  |                                    | 0.0249                                 | -0.1149                           | 0.023                     | 0.074     | 0.0        |
|   | 20              |    | ı/dot⊢                             | 0.0288                                 | -0.1110                           | 0.023                     | 0.074     | 0.0        |
|   |                 | g  | •                                  | 0.0645                                 | -0.2875                           | 0.105                     | 0.12      | 0.4        |
|   | 100             | g  |                                    | 0.1727                                 | -0.5262                           | 0.115                     | 0.25      | 0.2        |
|   |                 |    |                                    |                                        |                                   |                           |           |            |

Mettler M5 Balance: lmg - 20g

50g - 100g Mettler H51AR Balance:

Prepared By:

RICE LAKE WEIGHING SYSTEMS

DIVISION OF RICE LAKE BEARING INC.

Metrology Lab 230 West Coleman P.O. Box 272 Rice Lake, WI 54868 715-234-9171 Dated

THE WEIGHING S

Richard Calkins

Metrologist

Weight Division Supervisor

#### TRACEABLE CERTIFICATE

Sold To Q C SERVICES

P.O. BOX 14831

PORTLAND, OR 97214

Ship To Q C SERVICES

516 SE MORRISON SUITE 213

PORTLAND, OR 97214

Purchase Order Number

DESCRIPTION

Traceable Certificate Number 2076

Traceable To NBS Through NBS Report Number 737/233864

.

NOMINAL VS 8.0g/cm<sup>3</sup>
VALUE AS FOUND

TOLERANCE

Hational Bursey

THE WEIGHING S

| 1 only 1 kg Weig | ht | +2.4 mg |
|------------------|----|---------|
| 1 only 1 kg Weig |    | 6 mg    |
| 1 only 2 kg Weig |    | +18 mg  |
| 1 only 5 kg Weig |    | +34 mg  |
| 1 only 5 kg Weig |    | +32 mg  |
| Serial No.: 602  |    |         |

Temperature: 22.2°C

RH: 55%

mmHg: 743.6 Not Corrected

Date: 3-3-87

Balances Used: Mettler H315 - 1 kg

Voland J3000 - 2 kg

Voland HCE25 - 5 kg

Last Date STD were Calibrated: 11-84

Last Date Working STD were Calibrated: 9-16-86

Tolerance Tested By: Russ Schnacky

Comply to MIL STD 45662

Prepared By:

RICE LAKE WEIGHING SYSTEMS

DIVISION OF RICE LAKE BEARING INC.

Metrology Lab 230 West Coleman P.O. Box 272 Rice Lake, WI 54868 715-234-9171 Dated

3-3-8

Richard Calkins

Metrologist

Weight Division Supervisor

# CUSTOMER: EEMC 1315 S. Central-Unit C Kent, Wa. 98032 Attn: Ben Myron/Jerry Stoddard CERTIFICATION

# QUALITY CONTROL SERVICES

LABORATORY AND METROLOGY EQUIPMENT: SALES AND SERVICE

#### CERTIFICATE OF CALIBRATION

#### THE FOLLOWING BALANCES HAVE BEEN SERVICED & CALIBRATED

BY

#### QUALITY CONTROL SERVICES

SERVICE CONSISTS OF ACCURACY TESTS, CLEANING, LUBRICATION, COMPLETE CALIBRA-TION AND ADJUSTING TO ORIGINAL MANUFACTURERS' SPECIFICATIONS.

One or more of the following standards were used as references for this calibration. Their calibration is traceable to the National Reference Standards maintained by the National Institute of Standards and Technology. Our N.I.S.T. Certificate Reference Number is 523/240932.

| Manufacturer                          | Description                   | Serial No.           | Date of Last<br>Calibration   | Next Calibration  Due |
|---------------------------------------|-------------------------------|----------------------|-------------------------------|-----------------------|
| Rice Lake<br>Rice Lake<br>Rice Lake   | 1kg-5kg<br>1mg-100g<br>2kg-5g | C4488<br>A45<br>3275 | 6/13/91<br>7/16/91<br>7/22/91 | 6/92<br>7/92<br>7/92  |
| DATE OF<br>SERVICE                    | TYPE                          | MAKE                 | SERIAL NO.                    | TECHNICIAN            |
| 1-9-92                                | Al20S                         | Sartorius            | 37010004                      | L. Lawrence           |
| •                                     | G4000D                        | Ohaus                | 4163                          | 11                    |
|                                       |                               |                      | -                             |                       |
|                                       | <u></u>                       |                      |                               |                       |
|                                       | <u></u>                       |                      | ****                          |                       |
|                                       |                               |                      |                               |                       |
| · · · · · · · · · · · · · · · · · · · |                               | -                    |                               |                       |
| ·                                     |                               | <del> </del>         |                               |                       |
|                                       |                               |                      |                               |                       |

# **QUALITY CONTROL SERVICES**

LABORATORY AND METROLOGY EQUIPMENT: SALES AND SERVICE

| )     | •                 |              | <u>R</u> | EPORT (            | OF SERV    | ICE AND CALIBRAT                                                    | <u>ION</u>                                         |                       |
|-------|-------------------|--------------|----------|--------------------|------------|---------------------------------------------------------------------|----------------------------------------------------|-----------------------|
|       | CUSTOMER          | EEn          | nc.      |                    |            |                                                                     | Ma                                                 | ake Sartorius         |
|       | ADDRESS           | 1315         | 3        | Centr              | 0/         | Unit C                                                              |                                                    | ndel A/205            |
|       |                   | Kent         | 11)+     |                    | 032        |                                                                     | <br>                                               |                       |
|       | Date of This      | 7 1          | -/ 00    |                    |            | t Service <u>7-22-91</u>                                            | <del>.                                      </del> | Service Due 7/92      |
|       | Function Teste    | <u>ed</u>    | As       | Found              |            | Manufacturer's To                                                   | lerance                                            | After Service         |
|       | Cornerload        |              |          | ±0.                | 2mg        | ±0,2 mg                                                             |                                                    | ± 0.0mg               |
|       | Optical Range     |              |          | MA                 |            | - N/A                                                               |                                                    |                       |
|       | Optical Range     | with Tare    |          |                    |            |                                                                     |                                                    | NI                    |
|       | Linearity or 50   | D <b>50</b>  |          | ±0.0               | ) ma       | ± 0.2mg                                                             |                                                    | ±0.0mg                |
|       | Hysteresis        |              |          | ±0.1               | ma         | ±0.1mg                                                              |                                                    | ±0.1mg                |
|       | Calibration       |              |          | ±0,                | 4ma        | ±0.1mg                                                              |                                                    | ± Oilma               |
|       |                   |              |          |                    | <u> </u>   | <u> </u>                                                            |                                                    |                       |
|       | Individual Wt.    | Readings     |          | Found              |            | Manufacturer's Tol                                                  | erance                                             | After Service         |
|       |                   | g _          | -0       | 1.4mg              |            | =0.1mg                                                              |                                                    | = 0.1mg               |
|       | <u>50</u>         | ğ            | ~ (      | 0,2mg              |            | ±0.1mg                                                              | [                                                  | ±0.1mg                |
| (     | ්_ <i></i>        | Og .         | -0       | ).Ing              |            | + Oilma                                                             |                                                    | ±0.0mg                |
|       | 10.               | σ<br>3       | - (      | ).lmg              |            | + Oilma                                                             |                                                    | ±0,0mg                |
| Same. | 59                | ()           | <u>+</u> | 0.1mg              |            | + Dilma                                                             |                                                    | ±0,0 mg               |
|       |                   | ſ            |          | đ                  |            | 0                                                                   |                                                    | 0                     |
|       |                   |              |          |                    |            |                                                                     |                                                    |                       |
|       |                   |              |          |                    |            |                                                                     |                                                    |                       |
|       | OTHER INFOR       | MATION_A     | ND C     | OMMEN              | S PERT     | AINING TO THIS SEF                                                  | RVICE AI                                           | ND CALIBRATION:       |
|       | Ambient Temp      | Kel          | Am       | bient              |            | Other Comments:                                                     |                                                    |                       |
|       | Balance Locati    | on//         | Yok.     |                    |            |                                                                     |                                                    | •                     |
|       | Contact Person    | 7            | 1811     | Stod               | ine        |                                                                     |                                                    |                       |
|       |                   |              | 1        | 114.00             |            |                                                                     |                                                    |                       |
|       | INFORMATION       | ON STAN      | DARE     | S USED             | IN THIS    | SERVICE AND CAL                                                     | IBRATIO                                            | V:                    |
|       |                   | eable to th  | e Nat    | ional Ref          | ference S  | ed as references for<br>Standards maintained<br>ate Reference Numbe | by the N                                           | lational institute of |
|       | Manufacturer      | Descript     | ion      | Serial N           | lumber     | Date of Last Calib                                                  | ration                                             | Next Calibration Due  |
|       | Rice Lake         | 1mg - 5      | kg       | . 776              | 4          | 1/9/89                                                              | <del></del>                                        | 1/94                  |
|       |                   |              |          |                    |            |                                                                     |                                                    |                       |
| 1     |                   |              |          |                    |            |                                                                     |                                                    |                       |
| 1     |                   |              |          |                    | Λ          |                                                                     |                                                    |                       |
| )     | TEO 15 1107 5 5 1 | <i></i>      | J.       |                    | //         | DATE: /-                                                            | 9-92                                               | 2                     |
| •     | TECHNICIAN: _     | 100          | CENT     |                    |            | <i></i>                                                             |                                                    |                       |
|       | 516 S.Ę. M        | OPTRISON, SI | UITĘ 2   | 13/ <b>/</b> 6 P.C | D. BOX 148 | 331 • PORTLAND, OR                                                  | EGON 9721                                          | 14 • (503) 236-2712   |

# **QUALITY CONTROL SERVICES**

LABORATORY AND METROLOGY EQUIPMENT: SALES AND SERVICE

| ); |                 |                | REF         | ORT         | OF SERV           | ICE AND CALIBRAT                           | ION                |                      |
|----|-----------------|----------------|-------------|-------------|-------------------|--------------------------------------------|--------------------|----------------------|
|    | CUSTOMER        | EEC            | nC          |             |                   |                                            | Mai                | ke Ohaus             |
|    | ADDRESS         | 1315           | 5 ('e       | entre       | 2/ 6              | Unit C                                     | Mo                 | del <i>640</i> 00 D  |
|    |                 | Kent           | . USA       |             | 8032              |                                            | S/N                | 4/63                 |
|    | Date of This    | Service  -     | 9-92        | Dat         | e of Las          | t Service <u>7-22-9</u>                    | / Next             | Service Due 7/92     |
|    | Function Tests  | ed             | As Fo       | ound        |                   | Manufacturer's Tol                         | erance             | After Service        |
|    | Cornerioad      | _              |             | ±0.         | <u>2 a</u>        | ± 0.2                                      | <u> </u>           | ±0.1q                |
|    | Optical Range   |                |             | N/A         | 0                 | 11/4                                       |                    | - 11/A               |
|    | Optical Range   | with Tare      |             |             |                   | <u></u>                                    |                    |                      |
|    | Linearity or 5  | 0-50           | -           | -01         | 9                 | I O, lg                                    |                    | ±0.1g                |
|    | Hysteresis      |                |             | <u> ±0.</u> | <u> </u>          | ± 0.19                                     |                    | ±0.1g                |
|    | Calibration     | ,              | <u>+0</u>   | 105g        | 9+0,49            | ±0.01g fo.1                                | 9                  | ±0.01g/±0.1g         |
|    | Individual Wt.  | Readings       | As Fo       | und         | - <del> </del>    | Manufacturer's Tol                         | erance I           | After Service        |
|    | 니               | 1a             |             | 49          |                   | ± 0./a                                     | Title the court of | ± O, la              |
|    | 2               | A CO           |             | 20          |                   | ± 0.1g                                     |                    | ± 0.10               |
|    |                 | VS             | ,           | 10          |                   | ± 0.19                                     |                    | ± 0.14               |
| 1  | 30              | 04             |             | 099         | ÷ .               | ± 0.0/a                                    |                    | ± 0.0%               |
| 1  | 20              | 700            |             | 0%          |                   | ± 0.0/a                                    |                    | ± 0.0/a              |
|    | 10              | N              | + 0         | 0(4         |                   | ± 0.0%                                     |                    | ± 0.0%               |
|    |                 | ð              | L-/         | 9           | -                 | ſ                                          |                    | f                    |
|    |                 |                |             |             |                   |                                            |                    |                      |
|    | OTHER INFOR     | MATION A       | ND CO       | MMEN        | TS PERTA          | AINING TO THIS SEF                         | IVICE AN           | ID CALIBRATION:      |
|    | Ambient Temp    | Lab            | · Um        | bre         | <u>t</u>          | Other Comments:                            | Lab                | has Vibrations       |
|    | Balance Locati  | ion <u>Upp</u> | er. L       | ab_         | <del>-77-</del> 7 | 10                                         | 1000 100           | g, 10g, + /g place   |
|    | Contact Person  | Je             | ry          | Stode       | lard              | a                                          | lecima!            | starting to fade     |
|    | INFORMATION     | ON STAN        | DARDS       | USED        | IN THIS           | SERVICE AND CAL                            | BRATION            | <u>'</u>             |
|    | One or more of  | of the follo   | wing sta    | indards     | were us           | ed as references for                       | this calib         | oration. Their cali- |
|    | bration is trac | eable to th    | e Natio     | nal Re      | ference S         | standards maintained<br>ate Reference Numb | by the N           | ational institute of |
|    | Manufacturer    | Descript       |             |             | Number            | Date of Last Calib                         |                    | Next Calibration Due |
|    | Rice Lake       | 1mg - 5        | <del></del> | 776         |                   | 1/9/89                                     |                    | 1/94                 |
|    |                 | 9              | 9           |             |                   | ., .,                                      | ·                  |                      |
| ĺ  |                 |                |             |             | <del></del>       |                                            |                    |                      |
| •  |                 | 1              |             | /2          |                   |                                            |                    |                      |
| )  | TECHNICIAN:     | Tandon         | / La        | )<br>VKOMS  | 10                | DATE: /- 9                                 | 7-92               |                      |
|    | -               | /1000          |             |             |                   | 31 • PORTLAND, ORE                         |                    | 4 • (503) 236-2712   |

#### WOODSTOVE DATA SHEET #33

|           |                                       | Therm       | ocouple Cal  | <u>i bra</u> | tion Recor | <u>d</u>  |                              |
|-----------|---------------------------------------|-------------|--------------|--------------|------------|-----------|------------------------------|
| TO        |                                       | Ice Water   | Boiling      | TC           |            | Ice Water | Boiling                      |
| #_        | Location                              | Bath (OF)   | Water (OF)   | #            | Location   | Bath (OF) | <u>Water (<sup>O</sup>F)</u> |
| 1_        | Wet Bulb                              | 304         | 211.7        | 21           |            | ····      |                              |
| 2         | Dry Bulb                              | 3g.5        | 211.6        | 22           | ····       |           |                              |
| 3         | Stack                                 | 39.7        | B11.9        | <u>23</u>    |            |           |                              |
| 4         | Stove Top                             | 39.5        | 211.6        | 24           |            |           |                              |
| 5_        | <u>Left Side</u>                      | 3.9.7       | 2115         | <u>25</u>    |            | -         |                              |
| <u>6</u>  | Back                                  | 32.4        | B116         | 26           |            |           |                              |
| 7_        | Right Side                            | 32.3        | 2114         | <u>27</u>    |            |           |                              |
| <u>8</u>  | Bottom                                | 39,5        | 211.5        | 28           |            |           |                              |
| 9         | Firebox                               | 39.2        | 211.8        | 29           | Oven ·     | 39.4      | 211.7                        |
|           | 2nd Burn                              |             |              | <u>30</u>    | N/A-Calib  | rator     |                              |
| 10        | Catalytic                             | 3D,H        | Q11:7:       | 31           |            |           |                              |
| <u>11</u> | Room                                  | 39,3        | <u>a11.3</u> | 32           |            |           |                              |
| 12        | Tube Furnac                           | :e 326      | B11.5        | <u>33</u>    |            |           |                              |
| <u>13</u> | Sample Box                            | 325         | B11.8        | 34           |            |           |                              |
| 14        | Impinger Ou                           | it 395      | 2114         | <u>35</u>    | Rear Top   |           |                              |
| <u>15</u> | C Gas Box                             | 39.6        | 216          | <u>36</u>    | Reat L Sid | <u>ie</u> |                              |
| <u>16</u> | C Gas Out                             | <u> 399</u> | 2115         | <u>37</u>    | Rear R Sid | ie        |                              |
| <u>17</u> | SO <sub>2</sub> Gas Out               | 39.3        | 811.4        | <u>38</u>    | Rear Firet | oo x      |                              |
| 18        | Extra                                 |             |              | <u>39</u>    | Rear 2nd/c | at        |                              |
| 19        | Extra                                 |             |              | 40           |            |           |                              |
| 20        | Extra                                 |             |              |              |            |           |                              |
|           | • • • • • • • • • • • • • • • • • • • |             |              |              |            |           |                              |

| Thermocouples checked against             |                                                     |
|-------------------------------------------|-----------------------------------------------------|
| Reference Thermometer #: FISHER#          | <u> 1183454                                    </u> |
| Ice Water Bath $O^{\circ}C = 3A^{\circ}F$ |                                                     |
| Boiling Water 100°C = 213°F               | of                                                  |
| Room Temp <u>68</u>                       |                                                     |
| B.P. 30.12                                | "Hg                                                 |
| Data: 1/2/92 Toobarder \$                 | AN /BN                                              |

# KESSLER INSTRUMENTS, INC.

CALIBRATION

SERVICES



HYDROMETERS

MAILING ADDRESS. POST OFFICE BOX 640 WESTBURY, NEW YORK 11590 516-334-4083 FAX 516-334-2689

TESTING EQUIPMENT

PLANT ADDRESS ONE-SIXTY HICKS STREET WESTBURY, LONG ISLAND **NEW YORK 11590** 

#### CERTIFICATE OF CALIBRATION

This is to certify that the instrument listed below has been certified in our calibration laboratory using the most sensitive constant temperature equipment available. This calibration has been performed against National Institute for Standards and Technology (formerly NES) certified master instruments in accordance with the procedures outlined by ASTM E77-89 and NBS (NIST) Monograph 150.

TESTED FOR: FISHER

THERMOMETER CAT#15041B

15041B

RANGE: -1/101C

DIVISIONS: .1 IMMERSION: TOTAL

INSTRUMENT SERIAL NUMBER 9123454

DATE CERTIFIED: 04-04-1991

MARKED: FISHER

| POINT(S) TESTED | READING OF THIS INSTRUMENT | CORRECTION |
|-----------------|----------------------------|------------|
| 0.000           | 0.000                      | 0.000      |
| 10.00C          | 10.00C                     | 0.000      |
| 20.000          | 20.05C                     | -0.05C     |
| 30.00C          | 29.980                     | 0.020      |
| 40_00C          | 40.00C                     | 0.000      |
| 50.00C          | 50.00C                     | 0.000      |
| 60.000          | 60.00C                     | 0.000      |
| 70.00C          | 70.03C                     | -0.03C     |
| 80_00C          | 80.01C                     | -0.01C     |
| 90.00C          | 90.000                     | 0.000      |
| 100.08C         | 99.98C                     | 0.02C      |

ESTIMATED UNCERTAINTIES IN THE ABOVE CORRECTIONS DO NOT EXCEED 0.030 FOR A DISCUSSION OF ACCURACIES ATTAINABLE WITH SUCH THERMOMETERS SEE NBS (NIST) MONOGRAPH 150, LIQUID-IN-GLASS THERMOMETRY

All temperatures in this report are based on the International Practical Temperature Scale of 1968

SERIAL AND TEST NUMBERS OF NATIONAL INSTITUTE OF STANDARDS CERTIFIED INSTRUMENTS REFERENCED IN CERTIFICATION OF THE INSTRUMENT LISTED ABOVE:

769543,217368

P14452,176240

P14452,176240

M44165,176240

M44165,176240

791544,220391

Q.A.MANAGER: J. KELLY CALIBRATION TECHNICIAN: FRANK BURGHARDT

KESSLER INSTRUMENTS, INC.

J. Jeff Kélly

Quality/Assurance Manager

JK/ak

TEST NUMBER 91 843

DATE COMPLETED:04-04-1991

# KESSLER INSTRUMENTS, INC.

CALIBRATION

SERVICES





HYDROMETERS

MAILING ADDRESS. POST OFFICE BOX 640 WESTBURY, NEW YORK 11590 516-334-4063 FAX 516-334-2689

TESTING EQUIPMENT

PLANT ADDRESS ONE-SIXTY HICKS STREET. WESTBURY, LONG ISLAND **NEW YORK 11590** 

#### CERTIFICATE OF CALIBRATION

This is to certify that the instrument listed below has been certified in our calibration laboratory using the most sensitive constant temperature equipment available. This calibration has been performed against National Institute for Standards and Technology (formerly NBS) certified master instruments in accordance with the procedures outlined by ASTM E77-89 and NBS (NIST) Monograph 150.

TESTED FOR: ENERGY ENVRMNTL

THERMOMETER CAT#2064

**JENA** 

RANGE: -10/510C DIVISIONS: 2 DEG

IMMERSION: 76MM

INSTRUMENT SERIAL NUMBER 9164606

**DATE CERTIFIED: 08-08-1991** 

MARKED: KESSLER

READING OF THIS INSTRUMENT

CORRECTION

0.00

POINT(S) TESTED

-0.2C

0.20

100.0C 410.0C

100.0C 409.2C 0.00 0.80

THE ABOVE READINGS WERE MADE UNDER 10X MAGNIFICATION AND RESOLVED TO THE NEAREST

ESTIMATED UNCERTAINTIES IN THE ABOVE CORRECTIONS DO NOT EXCEED

0.20

FOR A DISCUSSION OF ACCURACIES ATTAINABLE WITH SUCH THERMOMETERS SEE NBS (NIST) MONOGRAPH 150, LIQUID-IN-GLASS THERMOMETRY

All temperatures in this report are based on the International Practical Temperature Scale of 1968

THIS THERMOMETER WAS TESTED IN A CLOSED TOP, ELECTRICALLY HEATED, LIQUID BATH AT AN IMMERSION OF 76MM THE TEMPERATURE OF THE ROOM WAS APPROXIMATELY 25 DEGREES C (77 DEG F). IF THE THERMOMETER IS USED UNDER CONDITIONS WHICH WOULD CAUSE THE AVERAGE TEMPERATURE OF THE EMERGENT LIQUID COLUMN TO DIFFER MARKEDLY FROM THAT PREVAILING IN THE TEST, APPRECIABLE DIFFERENCES IN THE INDICATIONS OF THE THERMOMETER WOULD RESULT.

SERIAL AND TEST NUMBERS OF NATIONAL INSTITUTE OF STANDARDS CERTIFIED INSTRUMENTS REFERENCED IN CERTIFICATION OF THE INSTRUMENT LISTED ABOVE:

769543,217368

788600,219606

769543,217368

CALIBRATION TECHNICIAN: FRANK BURGHARDT Q.A.MANAGER: J. KELLY

KESSLER INSTRUMENTS, INC.

J. Jeff Kelly

Quality Assumence Manager

JK/ak

TEST NUMBER 91 1947

DATE COMPLETED: 08-08-1991

#### COMMON TYPES OF THERMOMETERS AND FACTORS AFFECTING THEIR USE

TOTAL IMMERSION thermometers are designed with scales calibrated to indicate their true temperature when the bulb and the mercury column to just below the temperature being read is exposed to the temperature being measured.

PARTIAL IMMERSION thermometers are designed with scales calibrated to indicate the true temperature when the thermometers are immersed to specified depths. The portion that should be immersed is indicated on the back of each thermometer.

#### DETERMINATION OF EMERGENT STEM CORRECTIONS FOR TOTAL IMMERSION THERMOMETERS

When total immersion thermometers are used in a condition other than outlined above, a stem correction should be applied to the reading to obtain the true temperature. This difference between the reading for total versus partial immersion of the mercury column is known as the stem correction and may be computed for any given temperature and immersion as follows:

1. Note the number of degrees of the column above the liquid surface (N) 2. Note thermometer reading (T) 3. Suspend alongside the main thermometer an secondary thermometer. Place this thermometer adjacent to the main thermometer so that the bulb of the second thermometer is centered halfway betwen the surface of the liquid and the temperature indicated on the main thermometer. The temperature indicated on the second thermometer will be the average temperature of the emergent mercury column (ST) 4. Find the stem correction from the following formula:

Stem correction  $=(0.00016 \times N) \times (T-ST)$  for Centigrade temperatures

=(0.00009 x N) x (T-ST) for Fahrenheit temperatures Example: a thermometer graduated 80/100C, immersed to the 80 degree mark, temperature of emergent column 60C, reading on

thermometer 90C. then N=10, T=90. ST=60. Stem correction =  $(0.00016 \times 10) \times (90-60) = +0.048$  Rounding this to an observable correction of +0.05, the true temperature of the liquid being measured is 90 + 0.05, or 90.05C

#### GENERAL CONSIDERATIONS FOR MAKING AN ACCURATE READING

The error due to parallex may be eliminated by taking care that the reflection of the scale can be seen in the mercury thread, and by adjusting the line of sight so that the graduation of the scale nearest the meniscus exactly hides its own image; the line of sight will then be normal to the stem at that point. In reading thermometers, account must be taken of the fact that the lines are of appreciable width. The best practice is to consider the position of the lines as defined by their middle parts.

### PERFORMING A CALIBRATION AT THE ICE POINT (O DEGREES C or 32 DEGREES F)

Select clear pieces of ice, preferably made from relatively pure water. Discard any cloudy or unsound portions. Rinse the ice with distilled water and shave or crush into small pieces, avoiding direct contact with the hands or any chemically unclean objects. Fill a Dewar or other insulated vessel with the crushed ice and add sufficient distilled and preferably precooled water to form a slush, but not enough to float the ice. Insert the thermometer, packing the ice gently about the stem, to a depth sufficient to cover the OC (32F) graduation. As the ice melts, drain off some of the water and add more crushed ice.

Raise the thermometer a few millimeters after at least 3 minutes have elapsed, tap the stem gently and observe the reading. Successive readings taken at least one minute apart should agree within one tenth of one graduation.

#### APPLYING THE CORRECTION AT ICE POINT

Record the readings and compare with previous readings. If the readings are found to be higher or lower than the reading corresponding to a previous calibration, readings at all other temperatures will be correspondingly increased or decreased.

Reproduced in part from ASTM E77-84

3925 Placita de la Escarpa Tucson, AZ 85715

| Date: 1/2/92               | Thermocouple No.: TC READOUT                |
|----------------------------|---------------------------------------------|
| Ambient Temperature: 68 °F | Barometric Pressure: 30,18 "Hg              |
| Calibrator: Particular     | Reference: Mercury-in-glass: fisher #913452 |
| READOUT ZERCED S SPANNED   | Other: OMEGA CA 300                         |

| Pelor T                   | to check                         |                                                |                                            | , <del></del> |
|---------------------------|----------------------------------|------------------------------------------------|--------------------------------------------|---------------|
| Reference<br>point<br>No. | Source <sup>b</sup><br>(specify) | Reference<br>thermometer<br>temperature,<br>or | Thermocouple potentiometer temperature, OF | Difference, c |
| ICE WATER                 | Hao                              | 33                                             | 33.3                                       | -,06          |
| 33<br>RM TEMP HOO<br>68   | H00                              | 68                                             | 62.2                                       | 04            |
| BOILING WATER             | HOO                              | 811                                            | 211.4                                      | 7.06          |
| 250                       | OMEGA                            | <i>85</i> 0                                    | 250,1                                      | -,01          |
| 360                       |                                  | 300                                            | 300.3                                      | -,04          |
| 400                       |                                  | 400                                            | 399,9                                      | +101          |
| 500                       |                                  | 500                                            | 499.8                                      | 4.00          |
| 600                       |                                  | 600                                            | 600.1                                      | -,01          |
| 700                       |                                  | 700                                            | 700.0                                      | 0.00          |
| 800                       |                                  | 800                                            | 800.1                                      | -01           |
| 960                       |                                  | 900                                            | 900.0                                      | 01            |
| 1000                      |                                  | 1000                                           | 1000,3                                     | -02           |
| 1800                      |                                  | 1800                                           | 1800,12                                    | 01            |
| 1400                      |                                  | 1400                                           | 1400.1                                     | 01            |
| 1600                      |                                  | 1600                                           | 1600,2                                     | -,01          |
| 1800                      |                                  | 1800                                           | 18004                                      | 01            |
| 8000                      | 7/                               | 9000                                           | ACC0,3                                     | -,01          |

Every 30°C (50°F) for each reference point bType of Calibration system used c(Ref. temp: °C + 273) - (Test therm. temp. °C + 273 x 100<1.5% Ref. Temp. °C + 273

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRACEABILITY D                                         | DCUMENTATION                                  |                                               |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|
| FOR: SO2 INJECTION THERMOMETERS IN LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N ROTAMETER, DI<br>. CHECKED AGAIN:<br>LOCATION: KENT. | ST FISHER SN# 9                               | (NIST) 123454 (NIST)                          | PBYCHROMETE                             |
| FISHER SN# 9123454 (NIST TRACEABLE) ACTUAL C= ADJ C= 18.5 = 18.49 = 25.5 = 25.44 = 25.5 = 25.44 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F<br>13.4<br>13.4<br>11.4<br>- 11.4<br>- 11.3          | SO2 INJECTION TR F -45 -73 -78                | ROTAMETER (TR                                 | <b>)</b>                                |
| DATE: 1/8/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOCATION: KENT                                         | , WA TECH                                     | INICIANI <u>Sat</u>                           | stalelan)                               |
| 185 = 8.49 = 18.5 = 18.49 = 18.5 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18.49 = 18. | F<br>65.3<br>134<br>779<br>99.3                        | DRY GAS METER 4J IN OUT F F 45 72 73 79 78 90 | THERMOMETERS SH IN OU F F F 45 44 70 74 70 79 | KK<br>F<br>- 45<br>- 73<br>- 78<br>- 90 |
| DATE: 1/0/41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOCATION: KENT                                         | , WA TECH                                     | NICIAN:                                       | Cocklaid                                |
| ACTUAL C= ADJ C=  185 = 18.49 =  05.5 = 05.49 =  33.5 = 32.49 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.3<br>73.4<br>77.9<br>98.3                           | SLING PSYCHROM WB DB F F                      | IETER                                         |                                         |

C-DEGREES CENTIGRADE F-DEGREES FARENHEIT

CONVERSIONS: F=(Cx1.8)+32

C=(F-32)/1.8

ADJUSTED TEMPERATURES ARE DERIVED FROM AN ELEVEN POINT CALIBRATION OF FISHER SN# 9123454 BY KESSLER INC. SEE ENCLOSED LETTER DATED 4/4/91

# KESSLER INSTRUMENTS, INC.

CALIBRATION

SERVICES





HYDROMETERS

MAILING ADDRESS. POST OFFICE BOX 640 WESTBURY, NEW YORK 11590 516-334-4063 FAX 516-334-2689

, TESTING EQUIPMENT

PLANT ADDRES ONE-SIXTY HICKS STREE WESTBURY, LONG ISLAN **NEW YORK 1159** 

#### CERTIFICATE OF CALIBRATION

This is to certify that the instrument listed below has been certified in our calibration laboratory using the most sensitive constant temperature equipment available. This calibration has been performed against National Institute for Standards and Technology (formerly NES) certified master instruments in accordance with the procedures outlined by ASTM E77-89 and NBS (NIST) Monograph 150.

TESTED FOR: FISHER

THERMOMETER CAT#150418

15041B

RANGE: -1/101C

DIVISIONS: .1 IMMERSION: TOTAL

INSTRUMENT SERIAL NUMBER 9123454

DATE CERTIFIED: 04-04-1991

MARKED: FISHER

| POINT(S) TESTED | READING OF THIS INSTRUMENT | CORRECTION |
|-----------------|----------------------------|------------|
| 0.000           | 0.000                      | 0.000      |
| 10.00C          | 10.00C                     | 0.000      |
| 20.00C          | 20.050                     | -0.05C     |
| 30.00C          | 29.98C                     | 0.020      |
| 40.00C          | 40.00C                     | 0.000      |
| 50.00C          | 50.00C                     | 0.000      |
| 60-00C          | 60.00C                     | 0.000      |
| 70.00C          | 70.03C                     | -0.03C     |
| 80.000          | 80.01C                     | -0.01C     |
| 90.000          | 90.000                     | 0.000      |
| 100.00C         | 99.98¢                     | 0.02C      |

ESTIMATED UNCERTAINTIES IN THE ABOVE CORRECTIONS DO NOT EXCEED 0.03C FOR A DISCUSSION OF ACCURACIES ATTAINABLE WITH SUCH THERMOMETERS SEE NBS (NIST) MONOGRAPH 150, LIQUID-IN-GLASS THERMOMETRY

All temperatures in this report are based on the International Practical Temperature Scale of 1968

SERIAL AND TEST NUMBERS OF NATIONAL INSTITUTE OF STANDARDS CERTIFIED INSTRUMENTS REFERENCED IN CERTIFICATION OF THE INSTRUMENT LISTED ABOVE:

769543,217368

P14452,176240

P14452,176240

M44165,176240

M44165,176240

791544,220391

CALIBRATION TECHNICIAN: FRANK BURGHARDT Q.A.MANAGER: J. KELLY

KESSLER INSTRUMENTS, INC.

J. Jeff Kelly

Quality/Assurance Manager

JK/ak

TEST NUMBER 91 843 DATE COMPLETED:04-04-1991

#### VANEOMETER CALIBRATION

EEMC uses a Dwyer Model #480 Vaneometer to measure test chamber air velocity. The manufacturer's specifications for accuracy are  $\pm 5.0\%$  to 100 FPM and  $\pm 10\%$  from 100 FPM to top of scale. EEMC insures that the instrument is level and clean prior to taking each reading. According to EPA personnel (Westlin, RTP) no further calibration of the instrument is necessary.

#### DRAFT GAUGE CALIBRATION

EEMC uses a Dwyer Model 115-AV 0 - 0.25" inclined water manometer (readi- bility resolution  $\pm 0.001$ " of water) to measure the static pressure in the stack. Once leveled and zeroed as per the manufacturer's written operating instructions, the Dwyer 0 - 0.25" manometer is a primary standard and needs no additional calibration.

The manometer is leveled and zeroed at the start of each test run, checked as necessary during the run to verify that the settings have not changed and again at the end of each test run. The results of each check are recorded on Woodstove Data Sheet #16 in each individual test run.

#### BAROMETER CALIBRATION

EEMC uses a Princo Model 469 NOVA Mercury Barometer to measure Barometric Pressure at the Kent, WA Lab. When installed and maintained as per the manufacturer's written operating instructions, the Princo Model 469 NOVA Mercury Barometer is a primary standard and needs no additional calibration.

#### MOISTURE METER CALIBRATION

The Delmhorst Model RC-1C, SN 16152 Moisture Meter is calibrated each time the meter is turned on using the two (2) calibration settings (Zero and Span). The potentiometers for each calibration point ( $X=Zero,\ Y=Span$ ) are adjusted until the meter is correctly calibrated. Then the operation of the meter is checked in the normal operating range used during testing (11-25%) with a Delmhorst Model MCS-1 Moisture Content Standard at 12.0% and 22%.

EEMC also has a second Moisture Meter - Delmhorst Model G-30 SN 2477 - to use as a backup and as means of checking the readings on the Model RC-1C.

#### Post Test Meter Box Audits Woodstove Data Sheet #32

Date: 5/19/90 Technician: 5 WST9-Form2, Rev12/88

#### METER BOX CALIBRATION AUDIT

|                           | MEIEK DU                               | X CALIBRATION Test Data   | AUDIT        |                            |
|---------------------------|----------------------------------------|---------------------------|--------------|----------------------------|
| Run # 1                   | 2 3 4                                  | 5 6                       | 7 8          | 9 10                       |
|                           | <u> </u>                               |                           | 1 174        |                            |
|                           | <u>D.O. D.O. D.</u>                    | <del></del>               | 1.5          | ^ ~                        |
| Avg. Test Serie:          | s △ H: <u>///8</u>                     | in H <sub>2</sub> O. Test | Series Max   | Vac: <u>O.O</u> in Hg      |
| Audit Dry Gas Me          | eter: KK                               | Correct                   | ion (Y) Fac  | tor: 1.010                 |
| Test Dry Gas Me           | ter: 45                                | Correct                   | ion (Y) Fac  | tor: 1-066                 |
|                           |                                        | Audit Data                |              |                            |
|                           |                                        | Audit #1                  | Audit #2     | Audit #3                   |
| BP:                       |                                        | <u> </u>                  | <u> 9996</u> | <u> 4996</u>               |
| Vac:                      |                                        | <u> </u>                  | <u> </u>     | <u> </u>                   |
| Audit Meter:              | Final Vol                              | 050-238                   | 05548        | 9 060,747                  |
|                           | Initial Vol                            | 045,000                   | 050,038      | 160                        |
|                           | Vol (Vw,ft <sup>3</sup> )              | 5,038                     | 5A5          |                            |
| Audit Meter:              | Initial                                | 78                        | 28           | 79                         |
| Temp (°F)(Tw)             | Mid                                    | 76                        | 79           | <u> </u>                   |
|                           | Final                                  | 78                        | 79           | $\frac{-\omega}{\omega_I}$ |
|                           | Avg (°F/°A)                            | 75/535                    | 19/52        | 9 80 1540                  |
| △ H (in H <sub>2</sub> 0) | Initial                                | 1178                      | .178         | 178                        |
|                           | Mid                                    | _178                      | -178         | 178                        |
|                           | Final                                  | 1178                      | .178         | 178                        |
|                           | Avg                                    | 1178                      | 178          | 178                        |
| Dry Gas Meter:            | Final Vol                              | 899,000                   | 904.000      | 909.000                    |
| ,                         | Initial Vol                            | 294,000                   | 899.00c      |                            |
|                           | Vol (V <sub>d</sub> ,ft <sup>3</sup> ) | 5,000                     | 500          | )                          |
| Dry Gas Meter             | Initial                                |                           |              |                            |
| Temp (OF):Inlet           | Mid                                    |                           |              |                            |
| •                         | Final                                  |                           |              |                            |
|                           | Avg (°F/°A)                            |                           |              |                            |
| Dry Gas Meter             | Initial                                | 22                        | 87           | 90                         |
| Temp (OF):Outlet          |                                        | 85                        | 99           | <del>- 41</del>            |
|                           | Final                                  | 81                        | 90           | $\frac{1}{Q\Omega}$        |
|                           | Avg (°F/°A)                            | 85 /545                   | 89 /54       | 91/551                     |
| Avg Dry Gas               | <b>.</b>                               |                           |              |                            |
| Meter Temp (Tm-0)         | F/OA)                                  | PS 1545                   | 89, 1549     | 91/121                     |
| Time (minutes)            |                                        | 88:15                     | DA: 15       | 40:                        |
|                           |                                        |                           | 1-4          |                            |

Volume Metering System Leak Check: 0,000 inch H20 in one minute

 $\frac{-00108}{F} \times \frac{7.800}{G} + \frac{10780}{C} = \frac{10680}{Interpolated Y Factor}$ 

DRY GAS METER CALIBRATION

|                                      |                                                                                                                                       |                    | •              |          |           |             | DI y das never |         |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------|-----------|-------------|----------------|---------|
| BARO                                 | METRIC PRESSURE, Pb =                                                                                                                 | 30,48              | in.Hg.         |          |           |             |                |         |
| Ori<br>Set                           | ifice Manometer<br>tting , AH, in. H <sub>2</sub> O                                                                                   |                    | .1             | .2       | .3        | .5          | .75            | 1.0     |
| g <sub>ae</sub>                      | Volume Unt Toet Mateu                                                                                                                 | Final              | 956.742        | 962,002  | 967.217   | 972.452     | 917.625        | 982,94  |
| Gas Volume Wet Test Meter<br>Vw ft 3 |                                                                                                                                       | Initial            |                | 956.742  | 0         | 967.212     | 970-1152       | 977.68  |
|                                      |                                                                                                                                       | Vw, ft 3           | (5.341)        | (5860)   | (5015)    | (5.235      | 5-233          | 7       |
| Gas                                  | Volume Dry Test Meter                                                                                                                 | Final              | 72.100         | 17.200   | 20.500    | 87.700      | 93.000         | 98,500  |
|                                      | vd ft3                                                                                                                                | Initial            | 67.100         | 19200    | 72500     | <del></del> | 88,000         | 93,500  |
|                                      |                                                                                                                                       | Vd ft3             | (5,000)        | (5,000)  | (5,000)   | (5,000)     | (5,000)        | (5,000  |
|                                      | WET                                                                                                                                   | Initial            | 70             | 69       | 10        | 10          | 70             | 71      |
| Ţ                                    | TEST<br>METER                                                                                                                         | Middle             | 69             | 10       | 69        | 10          | 27             | 21      |
| E<br>H<br>p                          | tu                                                                                                                                    | End                | 69             | 20       | 20        | 20          | 71             | 71      |
| E R                                  |                                                                                                                                       | Average            | 69/529         | (10/53D) | (10/530)  | (70/530)    | (70/53D)       | 21/53   |
| A                                    | DRY                                                                                                                                   | Initial            | 71             | 76       | 17        | 19          | 81             | 17      |
| U R                                  | GAS<br>METER                                                                                                                          | Middle             | 14             | 17       | 18        | 82          | 80             | 78      |
| E                                    | tu                                                                                                                                    | End                | 26             | 77       | 29        | 83          | 79             | 19      |
|                                      |                                                                                                                                       | Average            | (14/534)       | 17/537   | (78 /538) | (21/54D)    | (BO1540)       | (Je/539 |
| -0-                                  | Time, Minutes                                                                                                                         |                    | 475 <b>7</b> 5 | 19.25    | 16,333    | 13/25       | 10-67          | 9,500   |
| y =                                  | (Vw) (Pb) (tm) Vd (Pb+ AH 13.5) (tw)                                                                                                  |                    | 1.0782         | 1.0654   | L0580     | 10674       | 1,0604         | 10641   |
| ¦H @=                                | 0317 (AH) (tw)+Pb (tm) (tw)+Pb (tm)                                                                                                   | 2                  | 1.4707         | 14573    | 1-5980    | 1.7997      | 1600           | 1-1753  |
| Ко =                                 | $\frac{Vw}{-8} = \frac{\frac{(p_b + \frac{\triangle H}{13.6})}{t_{10} + 460}}{\frac{(p_b + \frac{\triangle H}{13.6})}{t_{10} + 460}}$ | - ) (28. 97)<br>H) |                |          |           |             |                |         |
| _                                    | = 1.0659<br>= 1.6805                                                                                                                  |                    |                |          |           |             |                |         |

Ko = Factor for HP-65

$$p_b + \frac{\triangle H}{AB} = p_m$$

13.6

28.97 - molecular weight of air
y = ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

|                                                         |                                | •                   | • •        |            |             |                                                  |         |   |
|---------------------------------------------------------|--------------------------------|---------------------|------------|------------|-------------|--------------------------------------------------|---------|---|
| BAROMETRIC PRES                                         | SURE, Pb =                     | 30.83               | in.Hg.     |            |             | *: :                                             |         |   |
| Orifice Manon<br>Setting , AH                           | eter<br>, in H <sub>2</sub> O  |                     | 1          | 11         | 11          | 2                                                | 1       |   |
| Gas Volumo Hot                                          | Tost Motor                     | Final               | 170,059    | 175430     | 180.616     | 195,788                                          | 190.888 |   |
| Gas Volume Wet Test Meter<br>Vw ft 3                    |                                | Initial             | 165,000    | 170,059    | 175430      | 180.616                                          | 185.789 |   |
|                                                         |                                | Vw, ft <sup>3</sup> | 5.059      | 5,371      | 5-186       | 5.112                                            | 5100    | ļ |
| Gas Volume Dry                                          | Test Meter                     | Final               | 581.900    | 501,200    | 539,300     | <del>                                     </del> | 549,300 |   |
| vd ft3                                                  |                                | Initial             | 516,900    | 501,900    | 527,200     | 530300                                           |         |   |
|                                                         |                                | Vd ft3              | 5,000      | 5300       | 5-100       | 5:000                                            | 5,000   |   |
| WET                                                     |                                | Initial             | 86         | 89         | 89          | 90                                               | 91      |   |
| T TEST                                                  |                                | Middle              | 87         | 89         | 89          | 90                                               | 91      |   |
| E METER<br>M<br>P tw                                    |                                | End                 | 89         | 89         | 90          | 91                                               | 91      |   |
| E R                                                     |                                | Average             | 87/547     | 89 1549    | 89/549      | 90/550                                           | 91/551  |   |
| A DRY                                                   |                                | Initial             | 77         | 83         | <i>83</i> : | 83                                               | 85      |   |
| U GAS<br>R METER                                        |                                | Middle              | 81         | 83         | 84          | 85                                               | 25      |   |
| E tu                                                    |                                | End                 | <i>8</i> 3 | <i>8</i> 3 | 85          | 85                                               | 85      |   |
|                                                         |                                | Average             | 80/540     | 23/543     | 24/544      | 25/545                                           | 85/8/5  |   |
| -0-Time, Minu                                           | tes                            |                     | 28:10      | 30,00      | 19:000      | 22:15                                            | 08:00   |   |
| $y = \frac{(V_W) (Pb)}{Vd (Pb + \frac{\triangle}{13})}$ | H (tw)                         |                     | 19986      | 10001      | 1,0074      | 10189                                            | 10086   |   |
| H @=                                                    | i) (tw)()                      | 2                   |            | V          | :           |                                                  |         |   |
| Ko = \frac{Vw}{8} \sqrt{-1}                             | (Pb + AH<br>13.6<br>tm + 460 ( | - ) (28. 97)<br>H)  |            |            |             |                                                  |         |   |
| verages:<br>y = \ldots \cdot C<br>H = \ldots            | 059                            |                     |            | ·          |             |                                                  |         |   |

<sup>13.6

1.97 -</sup> molecular weight of air
y = ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O. Tolerance 0.15.

|                                                                                                                   | 24.00              |         | ·       |          |         |         | • |
|-------------------------------------------------------------------------------------------------------------------|--------------------|---------|---------|----------|---------|---------|---|
| BAROMETRIC PRESSURE, Pb =                                                                                         | 30.83              | in Hg.  |         | · ·      | i       | i       | · |
| Orifice Margueter<br>Setting , AH, in. H <sub>2</sub> O                                                           |                    | 12      | 1,5     | 12       | ,0      | 12      |   |
| Sas Volume Hot Tost Motor                                                                                         | Final              | 195,095 | 201.276 | 206.371  | 011.470 | 216.571 |   |
| Gas Volume Wet Test Meter<br>Vw ft3                                                                               | Initial            | 190,900 | 195,995 | 101.876  | 26.371  | 011.470 |   |
| ·                                                                                                                 | ₩, ft <sup>3</sup> | 5.095   | 5281    | 5095     | 5,101   | 5099    |   |
| Gas Volume Dry Test Meter                                                                                         | Final              | 547.400 | 559.600 | 557-600  | 568.600 | 567.600 |   |
| va ft3                                                                                                            | Initial            | 542,400 | 547.400 | 552.600  | 557.600 | 560.600 |   |
|                                                                                                                   | Vd ft3             |         | 5A00    | 5,000    | 5,000   | 5,000   |   |
|                                                                                                                   | Initial            | 90      | 90      | 90       | 90 -    | 90      |   |
| T TEST E METER                                                                                                    | Middle             | 91      | 91      | 90.      | 91      | 90      |   |
| <b>N!</b> . !                                                                                                     | End                | 90      | 90      | 90       | 90      | 90      |   |
| P tw                                                                                                              | Average            | 91/551  | 90/550  | 90/550   | 90/550  | 90/550  |   |
| a! I                                                                                                              | Initial            | 85      | 86      | 86       | 86      | 26      |   |
| T DRY<br>U GAS<br>R NETER                                                                                         | Middle             | 86      | 86      | 86       | 86      | 86      |   |
| Ε ! !                                                                                                             | End                | 86      | 86      | 26       | 26      | 25      |   |
| S tu                                                                                                              | Average            | 26/546  | 26/546  | 86/546   | 86/546  | 86/596  |   |
| -0-Time, Minutes                                                                                                  |                    | 20:10   | 01:00   | 00:15    | 80:80   | A0:00   |   |
| $y = \frac{\text{(Vw)} \text{ (Pb)} \text{ (tm)}}{\text{Vd} \text{ (Pb+} \frac{\triangle H}{13.6})} \text{ (tw)}$ |                    | 1,0093  | 10077   | 6111     | 1.0183  | 1.0119  |   |
| H @= .0317 (ΔH) (tw)0 Pb (tm) (Vw )                                                                               |                    |         | /       | <i>'</i> |         | V       |   |
| $Ko = \frac{Vw}{-G} - \frac{(pb + \frac{\triangle H}{13.6})}{tw + 460 \text{ (}}$                                 | - ) (28. 97)<br>H) |         |         |          | ٠       |         |   |
| verages:<br>y = <u>10105</u><br>H =<br>Ko =                                                                       |                    |         |         |          |         |         |   |

13.6

d.97 - molecular weight of air
y = ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

|                                      |                                                    |                     | - , <u> </u> | •          |         |             | -          |   |
|--------------------------------------|----------------------------------------------------|---------------------|--------------|------------|---------|-------------|------------|---|
| BAROMETRIC                           | PRESSURE, Pb =                                     | 30.03               | in.Hg.       | i in the   |         | **.*        | ~ .        |   |
| Orifice P<br>Setting ,               | lanometer<br>AH, in H <sub>2</sub> O               | * <b>v</b>          | ,3.          | /3         | /3      | /3_         | 13         |   |
| Sac Volume                           | Hot Tost Motor                                     | Final               | 920.050      | 897,139    | 930950  | 937-349     | 240.462    |   |
| Gas Volume Wet Test Meter<br>Vw ft 3 |                                                    | Initial             | 916.700      | 200.050    | 292139  | 139850      | 137,349    |   |
|                                      |                                                    | Vw, ft <sup>3</sup> | 5,35A        | 5-087      | 5:111   | 5,099       | 15/113     | 1 |
| Gas Volume                           | Dry Test Meter                                     | Final               | 578,900      | 57,900     | 580,900 | 587900      | 590,900    |   |
| Vd                                   | ft3                                                | Initial             | 567.700      | 570,900    | 577.900 | 520,900     | 527.900    |   |
|                                      |                                                    | W ft3               |              | 5,000      | 5.000   | 5,000       | 5.000      |   |
|                                      | MET                                                | Initial             | 90           | 88         | 88      | 88          | 89         |   |
| T i                                  | TEST<br>METER                                      | Middle              | 89           | <i>9</i> 8 | 88      | 88          | <i>9</i> 8 |   |
| H                                    | th                                                 | End                 | වර           | 99         | 28      | 89          | 89         |   |
| P<br>E<br>R                          |                                                    | Average             | 89/549       | EB /548    | 88/598  | 88 /548     | 89/549     |   |
| AI                                   | DRY                                                | Initial             | 96           | 85         | 83      | <b>පි</b> 3 | 24         |   |
| ul (                                 | as<br>Eter                                         | Middle              | 26           | 93         | 84      | 84          | 24         |   |
| E                                    | in .                                               | End                 | 85           | 23         | 23      | 24          | 23         |   |
|                                      |                                                    | Average             | 66 /546      | 24 /544    | e3 /543 | 841544      | 24/544     |   |
| -8-Time,                             | Minutes                                            |                     | 17:30        | 16:00      | 16:30   | 16:40       | 16:45      |   |
| (Vw) (                               | (Pb) (tm)                                          |                     |              |            | ·       |             |            |   |
| Vd (PL                               | $+\frac{\triangle H}{13.6}$ (tw)                   |                     | 1,0009       | 10092      | 10121   | 10116       | 1.0125     |   |
| н 0= <mark>-0317</mark><br>Рь (      | (AH) (tw)0                                         | 2                   | /            | V          |         |             | V          |   |
| Ko = <del>Vw</del> -                 | $\frac{(Pb + \frac{\triangle H}{13.6})}{tm + 460}$ | - ) (28. 97)<br>H)  |              |            |         |             |            |   |
| y =                                  | 0137                                               | ·                   |              |            |         |             |            |   |
| Ko =                                 |                                                    |                     |              |            | Ž.      |             |            |   |

$$p_b + \frac{\triangle H}{A} = p_x$$

13.6

d.97 - molecular weight of air
y = ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

|                                     |                                                                                                                       | ·                   | • • •   | •       |          |              |         | • |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------|----------|--------------|---------|---|
| BARON                               | ETRIC PRESSURE, Pb =                                                                                                  | <i>3088</i>         | in.Hg.  |         |          | · · ·        |         |   |
| Ori<br>Set                          | ifice Manameter<br>iting , AH, in. H <sub>2</sub> O                                                                   |                     | -4      | ,4      | ,4       | 14           | 14      |   |
| Rag                                 | Fac Volume Wet Test Meters                                                                                            | Final               | 147693  | 150,197 | 057.898  | A63011.      | 168,114 |   |
| Gas Volume Wet Test Meter<br>Vw ft호 |                                                                                                                       | Initial             | 342600  | 27-693  | 1950.797 | 1952998      | 163.011 |   |
|                                     |                                                                                                                       | Vw, ft <sup>3</sup> | 5.093   | 15-104  | 5.101    | 5,113        | 5.103   |   |
| 6as                                 | Volume Dry Test Meter                                                                                                 | Final               | 597.900 | 500,90c | 607.900  | 610,900      | 67.900  |   |
|                                     | M 45                                                                                                                  | Initial             | 590,900 | 597-900 | 609,900  | 607-900      | 612900  |   |
|                                     |                                                                                                                       | w #3                | 5,000   | 5,000   | 5-000    | 5,000        | 5,000   | ļ |
|                                     | NET                                                                                                                   | Initial             | 89      | 91      | 92       | 92-          | 91      | 1 |
| Ī                                   | TEST<br>METER                                                                                                         | Middle              | 90      | 91      | 92.      | 92           | 91      |   |
| EMO                                 | tu                                                                                                                    | End                 | 91      | 90      | 90       | 91           | 91      | · |
| PER                                 |                                                                                                                       | Average '           | 90/550  | 91/551  | 90 1550  | 90/550       | 91/661  |   |
| A                                   | DRY                                                                                                                   | Initial             | 83      | 84      | تان      | 124          | 84      |   |
| U R                                 | GAS<br>METER                                                                                                          | Middle              | 83      | 84      | 94       | 85           | 84      |   |
| E                                   | tu                                                                                                                    | End                 | 84      | 80:     | 34       | <i>શ્ર</i> ા | 95      |   |
|                                     |                                                                                                                       | Average             | 83 /543 | ed 1544 | 84/844   | 84 K44       | 24 /544 |   |
| 4                                   | Time, Minutes                                                                                                         |                     | 14:50   | 14:30   | 14:40    | 14:40        | 14540   |   |
| =                                   | $\frac{\text{(Vw)}  \text{(Pb)}  \text{(tm)}}{\text{Vd}  \text{(Pb+} \frac{\triangle H}{13.6})}  \text{(tw)}$         |                     | 12047   | 1,0069  | 1,0वंद   | 1.0068       | 10067   |   |
| H @=                                | .0317 (ΔH) (tw)0                                                                                                      | -                   |         |         | Ý        |              |         |   |
| Ko =                                | $\frac{\text{Ver}}{\text{G}} = \frac{\text{(Pb} + \frac{\triangle H}{13.6})}{\text{$t_{\text{min}} + 460 \text{ (}}}$ | - ) (28. 97)<br>H)  |         |         |          | · •          |         |   |
| ZH =                                | 10059                                                                                                                 |                     |         |         | ;        |              |         |   |

13.5

26.97 - molecular weight of air
y = ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

|                                      |                                    |                     | -       |         |             |                                        |           | :           |
|--------------------------------------|------------------------------------|---------------------|---------|---------|-------------|----------------------------------------|-----------|-------------|
| BAROMETRIC F                         | RESSURE, Pb =                      | 30,30               | in Hg.  |         |             | · ·                                    | • •       |             |
| Orifice Ma<br>Retting                | nometer<br>∆H, in H <sub>2</sub> 0 | ), **               | 15      | 15      | 15          | 15                                     | 15        |             |
| Ras Volume                           | Wet Test Meter                     | Final               | 273.307 | 978.610 | 983.715     | 288.801                                | 198,932   |             |
| Gas Volume Het Test Meter<br>Vm ft 3 |                                    | Initial             | 268,000 | 973.307 | 278.610     | 083.715                                | 08880-1   |             |
| <u> </u>                             |                                    | Vw, ft <sup>3</sup> | 5:107   | 5.303   | 5.105       | 5.106                                  | 5-111     |             |
|                                      | Dry Test Meter                     | Final               | 683.010 | 688212  | 633,810     | 638,212                                | 643,212   |             |
| Vd fi                                | ŧ3                                 | Initial             | 618,000 | 603012  | CAB-012     | 633.010                                | 638212    |             |
|                                      |                                    | Vd ft3              | 5,012   | 5,000   | 5,000       | 5,000                                  | 5,000     |             |
| i.E                                  | :i                                 | Initial             | 91      | 187     | 27          | 27                                     | 27        |             |
| T TE                                 | ST<br>TER                          | Middle              | 89      | 27      | 8.7         | 87                                     | 87        |             |
| P                                    | iw                                 | End                 | 87      | 87      | <i>8</i> 7. | 87                                     | 27        |             |
| E R                                  |                                    | Average             | 89 1549 | 87/547  | 87/547      | 87/547                                 | 87/547    |             |
| A DR                                 | Υ                                  | Initial             | 24      | 25      | 84          | 24                                     | 84        | ·           |
|                                      | S<br>TER                           | Middle              | 25      | 25      | 84          | 85                                     | <i>84</i> |             |
| E tu                                 |                                    | End                 | 85      | 84      | 24          | 94                                     | 84        |             |
|                                      |                                    | Average             | 05/515  | 85 1545 | 84 /s44     | 24 1644                                | 24/544    |             |
| -G-Time, M                           | Inutes                             |                     | 13:30   | 14:00   | 13:85       | 13:30                                  | 13:30     | <del></del> |
| - (Vw) (Pb+                          | b) (tm)<br>AH<br>13.6 (tw)         |                     | 10103   | 10148   | 10140       | 10144                                  | 101501    |             |
| Pb (ta                               |                                    | 2                   | /       |         | Ý           | /                                      |           |             |
| Ko = <del>Vw</del> -                 | (Pb + △H<br>13.6<br>‡m + 460 (     | - ) (28. 97)<br>H)  |         |         |             |                                        |           |             |
| verages:<br>y =<br>H =<br>Ko =       |                                    |                     |         |         |             | ······································ |           |             |

<sup>13.6

26.97 -</sup> molecular weight of air
y = ratio of accuracy of met test meter to dry test meter. Tolerance = 0.01

H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.

Tolerance 0.15.

|                                      |                                                                                                           | •                              |          | ·        | -        |          |         | ٠ |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|----------|----------|----------|----------|---------|---|
| BARD                                 | ETRIC PRESSURE, Pb =                                                                                      | 30,34                          | in.Hg.   |          |          |          | - ,•    |   |
| Ori<br>Ret                           | ifice Manometer<br>ting , AH, in. H, O                                                                    | e sanger og green er<br>er men | 175      | 175      | 175      | 175      | 175     |   |
| Bas Volume Het Test Meter<br>Vw ft 2 |                                                                                                           | Final                          | 099,208  | 304318   | 309.430  | 314-540  | 319.752 |   |
|                                      |                                                                                                           | Initial                        | 894100   | 999,008  | 304-318  | 309-430  | 314540  |   |
|                                      |                                                                                                           | ₩, ft <sup>3</sup>             | 5.108    | 5,110    | 5-110    | 5-110    | 5,012   |   |
| 6as                                  | Volume Dry Test Meter                                                                                     | Final                          | 648.400  | 1.53.400 | 658.400  | C63 400  | 668,500 |   |
|                                      | ware3                                                                                                     | Initial                        | 643.4000 | 648,400  | 653,400  |          | 663,400 |   |
|                                      |                                                                                                           | w ft3                          | 5,000    | 5,000    | 5,000    | 5,000    | 5.100   |   |
|                                      | WET                                                                                                       | Initial                        | 87       | 97       | 97       | 86       | 86      |   |
| Ī                                    | NET<br>Test<br>Neter                                                                                      | Middle                         | 127      | 27       | 86       | 86       | 86      |   |
| E M                                  | tu                                                                                                        | End                            | 127      | 87       | 86.      | 20       | 25      |   |
| E R                                  |                                                                                                           | Average .                      | 27/547   | 27/547   | 86/546   | E6 1546  | 26/546  |   |
| Ä                                    | DRY                                                                                                       | Initial                        | 184      | 80       | 82       | 22       | 2       |   |
| U                                    | GRS<br>METER                                                                                              | Middle                         | 23       | 32       | 88       | 81       | 21      |   |
| Ë                                    | tu                                                                                                        | End                            | 22       | 92       | 88       | 81       | 21      |   |
|                                      |                                                                                                           | Average                        | 83 /543  | 20/540   | 80 BHD   | 81 541   | 21/54/  |   |
| -0-                                  | Time, Minutes                                                                                             |                                | 11:00    | 11:00    | 11:00    | 11:00    | 11:00   |   |
| =                                    | (Vw) (Pb) (tm) Vd (Pb+ AH ) (tw)                                                                          |                                | 1.013    | 8010,    | 10131    | 10108    | L0108   |   |
| <b>∫</b> H <b>@=</b>                 | .0317 (AH) (tw)0                                                                                          | 2                              | V        |          |          |          |         |   |
| Ko =                                 | $\frac{\text{Ve}}{-B} = \frac{\sqrt{\text{Pb} + \frac{\triangle H}{13.6}}}{\frac{1}{12} + 460 \text{ (}}$ | H)                             |          |          |          | •        |         |   |
| Averag<br>y =<br>AH =<br>Ko          | 10116                                                                                                     |                                |          |          | <b>.</b> | <u> </u> | -       |   |

13.6
28.97 - molecular weight of air
y = ratio of accuracy of met test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

Ambient Temperature of Equilibyate Liquid in Wet Test Heter and Reservoir Range of Wet Test Meter Flow Reat Wet Test Meter Serial Number Volume of Test. Flask Vs. Satisfactory Leak Check?

|                |                                   |                            | •                       |                                    |                                   |                   |
|----------------|-----------------------------------|----------------------------|-------------------------|------------------------------------|-----------------------------------|-------------------|
| Test<br>Number | nanometer<br>Reading, a<br>mm H2O | Final<br>Volume (V£),<br>1 | Initial<br>Volume (Vi), | Total<br>Volume (Vm),b             | Flask Percent Volume (Vs); Error, | Percent<br>Error, |
| -              | Gio man                           | 0,5262                     | 0 (Rela +)              | 0,5262 O(Relat/ 0,5262 0,5284 0,42 | P875.0                            | 0,42              |
| 2              | 6.0 mm                            | 0,52500                    | , s                     | 0. \$250                           | 5250 0.5284 0.65                  | 0,65              |
| 3              | 6,0 MM MA                         | 05245                      | <br>0                   | 0.524K                             | 10, (284 O. 74                    | 0.74              |

a - Must be less than 10 mm H2O (0,4 "H2O)

**Calculations:** 

b - Vm - Vf - V1

% error = 100(Vm - Vs)/Vs--

XF3 =0.60

WET TEST METER CALIBRATION LOG

Range of Wet Test Meter Plow Rate O-0 4 44 /M.
Volume of Test Flask Vs - 200.5294 ft Wet Test Heter Serial Number AAJSS

Date\_\_

Satisfactory Leak Check?

Ambient Temperature of Equilibrate Liquid in Wet Test Meter and Reservoir

a - Must be less than 10 mm H2O (0.4 "H2O)

Calculations:

b - Vm - Vf - Vi

c - % error = 100(Vm - Vs)/Vs = 0.4

WET TEST METER CALIBEATION LOG



# UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

MAR - 4 1991

OFFICE OF AIR AND RADIATION

Mr. Alben T. Myren Jr. Woodstove Testing Coordinator Energy and Environmental Measurement Corporation 1315 S. Central Avenue, Unit C Kent, Washington 98032

Dear Mr. Myren:

This letter is in response to your concern expressed at the lab manager's seminar on January 8, 1991 that your rotameter calibration technique is acceptable although it differs from the regulatory requirement of Method 5H, Section 6.6.

The way in which your rotameter calibration differs from theregulation is that your calibratation runs are less than five minutes whereas the regulation requires calibration runs of at least ten minutes. This is acceptable because you use a soap film volumetric flow meter as the standard as opposed to a conventional volume standard such as a dry gas meter.

If you have any further questions concerning this matter, please contact Dwight Poffenberger at (703) 308-8696.

Sincerely,

Robert J. Lebens, Chief Federal Programs Section

Stationary Source Compliance Division

cc: Mamie Miller, SSCD Peter Westlin, EMB MANUFACTURER: COLE PARMER BUBBLE TUBE MAKE & ID: 5KC 125/250

BAROMETRIC PRESSURE:

20,04

TEMPERATURE: 8/ F

CALIBRATION AT: EEMC

" Hg KENT, WASHINGTON LAB

| SPAN # | VOLUME    | MIN or SEC                           | RTMTR     | VOLUME cc/min        |
|--------|-----------|--------------------------------------|-----------|----------------------|
|        | <i>05</i> | 34.81<br>3435<br>3494                | 100       | VOLUME X 60 =        |
|        |           | 3460                                 |           | AVERAGE              |
|        |           | 30,91<br>33,48                       |           | 105 x 60=            |
|        | TOTAL     | 275.8300                             |           | 217.505              |
| A      | VERAGE    | 34.478                               |           | cc/min               |
| g.     | 125       | 63.61<br>65.52<br>63.81              | 50        | VOLUME X 60 =        |
|        |           | 106,08                               |           | AVERAGE              |
|        |           | 64.23<br>(03.27<br>84.76<br>63.04    |           | 105 x 60=            |
|        | TOTAL     | 51492                                |           | 116.523              |
| A      | VERAGE    | 64-365                               |           | GC/Min               |
| 3      | 125       | 157.40<br>155.48<br>154.11<br>153.31 | <i>95</i> | VOLUME<br>X 60 =     |
|        |           | 153.47<br>155.72<br>155.48           |           | 195<br>155,356 × 60= |
|        | TOTAL     | 1248,850                             |           | 48.876               |
| А      | VERAGE    | 155.356                              |           | cc/min               |

| SETTING | CC/MIN   |
|---------|----------|
| 0       | 0        |
| 25      | 48.076   |
| 50      | 116.52 3 |
| 100     | 1915,505 |

2.184<del>4</del>800 -,4900000 ,9980704 1996 1445

ROTAMETER SETTING FOR 100 cc/min :

WST6-form16, Pg2, . .9/88

WOODSTOVE DATA SHEET #26 CEM GAS TRAIN RESPONSE TIME

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conc. (V)                   |             |        |       |           |      |          |          |             |      |          |     |     |     |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|--------|-------|-----------|------|----------|----------|-------------|------|----------|-----|-----|-----|----------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conc. (V)                   |             |        |       |           |      |          |          |             |      |          |     |     |     |                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02<br>Conc. (V)             | 166         | 88     | 82,   | ,837      | ,833 | ,83g     | ,<br>332 | BA          | 837  | <b>)</b> |     |     |     | 213                                                | oha              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - Carlot and Market Control and Carlot and the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of t | and described the constant and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 <sub>2</sub><br>Conc. (V) |             | ,538   | ,285  | 12013     | ,839 | ,833     | ,833     | ,833        | ,833 |          |     |     |     | 2 IS                                               | OFM              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02<br>Conc. (V)             |             | (SM)   | 12%   | æ8′       | 1881 |          | ,833     | ,93B        | ,839 |          |     |     |     | ~ 3                                                | 010              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO (V)                      | 1.16        | 10h,   | , ०४५ | 600'      | 100, | 000'     | 000'     | 000/        | 000' |          |     |     | •   | 110                                                | N35              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | e designation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 00<br>Conc. (V)             | 14671       |        | 1001  |           |      | 000      |          | cas,        | co'  |          |     |     | ·   | 11 م                                               | N35              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | conc. (V)                   | 7366        | o@h'   | 5401  | 0001      | 8001 | 000'     | 000'     | 0001        | 000' |          |     |     |     | 110                                                | N35              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\infty_2$                  | <b>SB</b> 2 | 7447   | 1028  | ,013      | ,003 | $\infty$ | 000      | ريش,        | OM,  |          |     |     |     | 5                                                  | 435              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ω <sub>2</sub><br>Conc. (V) | 12051       | , cl48 | ,030  | 110,      | 100' | œ,       | ,000     | ,000        | رين  |          |     |     |     | 15                                                 | 235              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ω <sub>2</sub><br>Conc. (V) | 300         | ,450   | 980'  | <u>\o</u> | 400  | 8        | s,       | ),<br>(200/ | 000' |          |     |     |     | oonse<br>is) $\sim$ //                             | s w35            | Jow Rate<br>S SCFH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elapsed<br>Time             | 0 Seconds   | 15     | 30    | 45        | 09   | 75       | 90       | 105         | 120  | 135      | 150 | 165 | 180 | Initial Response<br>Time (Seconds) $\lambda /    $ | 95% Response 735 | Analyzer Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Comments

WST6-forml( 3v9/88

WOODSTOVE DATA SHEET #27 TRACER GAS TRAIN RESPONSE TIME

|                     | SO <sub>2</sub>              |           |      |              |      |                  |                |       |        |      |     |     |     |     |                                    |                                              |                             |
|---------------------|------------------------------|-----------|------|--------------|------|------------------|----------------|-------|--------|------|-----|-----|-----|-----|------------------------------------|----------------------------------------------|-----------------------------|
|                     | SO <sub>2</sub>              |           |      |              |      |                  |                |       |        |      |     |     |     |     |                                    |                                              |                             |
|                     | SO <sub>2</sub><br>Conc. (V) |           |      | -            |      |                  |                |       |        |      |     |     |     |     |                                    |                                              |                             |
|                     | SO <sub>2</sub><br>Conc. (V) |           |      |              |      |                  |                |       |        |      |     |     |     |     |                                    |                                              |                             |
|                     | SO <sub>2</sub><br>Conc. (V) |           |      |              |      |                  |                |       |        |      |     |     |     |     |                                    |                                              |                             |
| AA                  | SO <sub>2</sub><br>Conc. (V) | 493       | .302 | 1037         | 1001 | 6001             | 600'           | ·6001 | 100    | 100' |     |     |     |     | ĮΙα                                | OhΩ                                          |                             |
|                     | SO <sub>2</sub><br>Conc. (V) |           | 499  | oho'         | 900) | gas'             | BOB            | 100'  | 100'   | 100' |     |     |     |     | II ∨                               | aha                                          |                             |
| 1/8/18.             | SO <sub>2</sub><br>Conc. (V) |           |      |              | 500' | 6001             | Boo'           | 100   | 100'   | 100' |     |     |     |     | )I (V                              | opa                                          |                             |
|                     | SO <sub>2</sub><br>Conc. (V) | 1         | 999  | ,038         | Loo' | 7001             | 1002           | , ash | 1001   | 100' |     |     |     |     | 110                                | OHO                                          | 4                           |
|                     | SO <sub>2</sub><br>Conc. (V) |           | .998 | 1601         | sas, | $\delta \infty'$ | 600'           | 1001  | 100'   | 1001 |     |     |     |     | νI                                 | opa                                          | 5 SCFH-                     |
| 1183191<br>BN/EW    | SO <sub>2</sub><br>Conc. (V) | 1510      | 105' | <i>b</i> E0′ | . ∞6 | ,003             | $ , \infty,  $ | 1001  | , 00 / | 1001 |     |     |     |     | ponse II                           | e<br>ds) λυψυ                                | ow Rate 1                   |
| Date<br>Technicians | Elapsed<br>Time              | 0 Seconds | 15   | 30           | 45   | 90               | 75             | 90    | 105    | 120  | 135 | 150 | 165 | 180 | Initial Response<br>Fime (Seconds) | 95% Response<br>Fime (Seconds) $\lambda U/U$ | Analyzer Flow Rate 15 SCFH. |

Comments



Lab No. KENT Date 1/2/92 Source @ \$18N

| TEST | 1               | 1    |      | 1      |               | 1          |            |
|------|-----------------|------|------|--------|---------------|------------|------------|
| NO.  | GAS             | 1    | 2    | 3      | 4             | 5          | AVERAGE    |
|      | TOTAL/CO        | Ø    | 0    | 0      | X= 0          | 100%       | T&19170    |
| 1    | CO <sub>2</sub> | 0    | 0    | 0      | X= 0          | No         | LIQUID ALL |
|      | 02              | 0    | 0    | 0      | $\bar{x} = 0$ |            | 8/8/91     |
|      | TOTAL/CO        | 0    | 0    | 0      | X = 0         | 1006       | T132257    |
| 2    | co <sub>2</sub> | 0    | 0    | 0      | X = O         | NQ         | LIQUID AR  |
|      | 02              | 0    | 0    | 0      | X= 0          |            | 11/20/90   |
|      | TOTAL/CO        | 5.0  | 4,9  | 5.0    | X = 4,979     | 4,96800    | £9004      |
| 3    | CO <sub>2</sub> | 10.6 | 18-6 | 12.5   | X= 18.51%     | 18.6% 000  |            |
|      | 02              | 10.4 | 10.5 | 10.4   | X= 18.43%     | 12.4% 00   | 9/4/91     |
|      | TOTAL/CO        | 0    | 0    | 0      | X = 0         | 212%       | R34098     |
| 4    | co <sub>2</sub> | 21.2 | 81.2 | 81.2   | X=21.2%       |            | LIQUID ALE |
|      | 02              | 0    | 0    | 0      | X = 0         |            | 4/27/88    |
|      | TOTAL/CO        | 0    | 0    | 0      | X=0           | 401%       | A155A9     |
| 5    | co <sub>2</sub> | 4.0  | 4-0  | 4,0    | X=40%         | COA        | SCOTT      |
|      | 02              | 0    | 0    | O      | X=0           |            | 10/00/04   |
|      | TOTAL/CO        | 0    | 0    | 0      | X=0           | 19.93%     | X ASS LO   |
| 6    | co <sub>2</sub> | 0    | 0    | 0      | X=0           | 09         | SCOTT      |
|      | 02              | 90   | 00   | 80     | T=80%         |            | 10/20/84   |
|      | TOTAL/CO        | 0    | 0    | 0      | X=0           | 5.03%      | R35693     |
| 7    | co <sub>2</sub> | 0    | 0    | 0      | X=Ω           | 02         | LIQUID AIR |
|      | 02              | 5    | 5    | 5<br>8 | X=5%          |            | 6/29/89    |
| _    | TOTAL/CO        | 8    | ව    |        | X=8%          | 8.05%      | A1682      |
| 8    | co <sub>2</sub> | 0    | 0    | 0      | X=0           | CO         | SCOTT      |
|      | 02.             | 0    | 0    | O      | X=0           |            | 12/5/84    |
|      | TOTAL/CO        | .2   | Д    | 2.1    | X=203%        | 200%       | A10199     |
| 9    | co <sub>2</sub> | 0    | 0    | 0      | X = 0         | 0          |            |
|      | 02              | 0    | J    | ಲ      | X =0          | 1.         |            |
|      | TOTAL/CO        | 85   | 8.5  | 8,4    | I=8.47%       | 8,4967. CO | CC6084100  |
| 10   | co <sub>2</sub> | 01-0 | D1.3 | 812    | K=0143%       | 21.2537000 | LIQUID AIR |
|      | 02              | 21.2 | 01.0 | A13    | X=01.03%      | 91.3447.0g | 11/19/90   |
|      | TOTAL/CO        | 2.5  | 2,5  | 2.4    | X=2.47%       | 2.49% 60   | T201070    |
| 11   | co <sub>2</sub> | 68   | 6.3  | 6.3    | X =627%       | 625/2Cg    | Heuid Ale  |
|      | 02              | 6,2  | 6.3  | 6.3    | X = 627%      | 6251800    | 11/19/90   |

NOTES:

EEMC

HANGH'S

# CO2 ANALYZER

| 1,                                                                                                       |                   |               | MU            | LTIPOI          | NT CAL         | IBRATI         | ON REP  | ORT FO           | RM     |           |            |  |
|----------------------------------------------------------------------------------------------------------|-------------------|---------------|---------------|-----------------|----------------|----------------|---------|------------------|--------|-----------|------------|--|
| Site:_                                                                                                   | EEM               | <u> </u>      | KENT          | , WA            | Da             | te: <u> ح</u>  | 12/92   | ,                |        | _         |            |  |
| Analyz                                                                                                   | er: Mak           | :e:_ <u>}</u> | ORIBA         |                 | Mod            | el: <u>P</u> I | R 2000  | <u> </u>         | _ sn:_ | 407069    |            |  |
| Calibr                                                                                                   | ation b           | y:            | D.            | Kingr           | man            |                | •       |                  |        |           |            |  |
| BP<br>Te                                                                                                 | mp:               | <i>3</i> 0    | 7a<br>7a      |                 | <u> </u>       | nstrum         | ent ID  | 一方               |        | Flowmeter |            |  |
| Analyz                                                                                                   | er last           | cal           | ibrate        | d:              | 5/8/9          | <u>a</u>       | _ By:_  | D.K.             | namo   | <u>^</u>  |            |  |
| Cylind                                                                                                   |                   | Con           | centra        | tion:           | Λ 00           | <b>%</b> C     | :02 Cvl | . Pres           | s.:    | 800       | _PS:       |  |
| 2. # <u></u>                                                                                             | 29004<br>ertified | Con<br>i by:  | centra<br>Ma  | tion_<br>rheson | 12.6           |                | O2 Cyl  | . Pres<br>ate:_/ | #<br>  | 900       | PS:        |  |
| 3. # <u>R34098</u> Concentration 21.2 * CO2 Cyl. Press.:  200 PS: Certified by: Liquid AiR Date: 4/27/88 |                   |               |               |                 |                |                |         |                  |        |           |            |  |
| 4. #A 5529 Concentration 4.01 % CO2 Cyl. Press.: 900 PS: Certified by: Liquid Aik Date 10 22 84          |                   |               |               |                 |                |                |         |                  |        |           |            |  |
| 1                                                                                                        |                   |               |               |                 |                |                |         |                  |        |           | • ,        |  |
| Ar<br>Fl                                                                                                 | alyzer:           | Ca<br>5 501   | ilibrat<br>FH | ed Rai          | ige:G<br>sured | by: Ro         | otamete | r: <u>X</u>      | Mass   | Flowmete  | r:_        |  |
|                                                                                                          |                   |               |               |                 |                |                | Result  |                  |        |           |            |  |
| Point                                                                                                    | Cyl.              | ક             | Exped         | ted             | Acti           | ıal            | Ac      | ij.              | \$     | Potenti   | one        |  |
| #                                                                                                        | #                 | CO2           | Meter         | DVM             | Meter          | DVM            | Meter   | DVM              | Dif.   | Unadj.    |            |  |
| 1                                                                                                        | 1                 | 0.00          | 00.0          | .000            | 00.0           | .000           |         |                  |        | 7.78      | <u> </u> _ |  |
| 2                                                                                                        | 2,                | 12.6          | 50.4          | .504            | 50.5           | .505           | 50.4    | .504             |        | 2.08      | 2-         |  |
| 3                                                                                                        | 3                 | 1             | 84.8          | .848            | 86.0           | .860           |         |                  |        |           | <u> </u>   |  |
| 4                                                                                                        | 4                 | 4.01          | 16.0          | .160            | 16.0           | .160           |         |                  |        |           | -          |  |
| 5                                                                                                        | 1                 | 0.00          | 00.0          | .000            | 00.0           | .000           | _       |                  |        |           | <u> </u>   |  |
| Comment                                                                                                  | ts:               |               | = 12.         | 388             |                |                |         |                  |        |           | -          |  |

Y = MX + B0.0405364 Slope (M) =Y Intercept (B) = -0.0021700 0.9999615 Correlation Coefficient (r) = r2 = 0.9999231 Analyzer Output (volts) 1.0 0.9 (9) 0.8 0.7 0.6 0.5

0.4

0.3

0.2

0.1

0

2.5

7.5

5

10

12.5

15

17.5

20

EPA Span Value =  $\pm -2.0\%$  of 25% CO2 =  $\pm -5\%$  Cal Volts = Cal Volt Conc - Std Conc =  $\pm -5\%$  Color =  $\pm -21.500 - 21.2\%$  . 300 = 1.415

LOCATION KENT, WA 98032 OPERATORS NA NOWAK/JASTODDARD CONTROL CHART

ITE EEMC - WEST

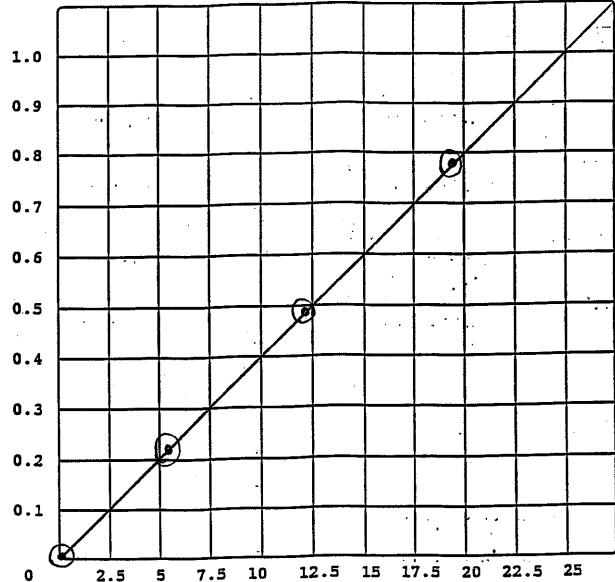
/407069 RANGE -0,0- 25.0% COR INSTRUMENT/SH HORIBA PIRBODO ARAMETER COA

EFERENCE MATERIAL OR METHOD ZERGES AND SPANS WITH CERTIFIED CYLINDER GASES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| O HILL PLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                     |
| O PLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                     |
| O THE PLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| [O] [[][[][[][][][][][[][][][][][][][][]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                     |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                     |
| S CHANAH: HAUGHS &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97×                                   |
| 2世 - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97×                                   |
| LI IN COLUMN THE HALLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$97¥                                 |
| 6181 - 111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>97</i> ¥                           |
| 19 8 0 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7×                                    |
| HAVAKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>597</u> ×                          |
| 18 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97¥                                   |
| ि १० व्यापापापापापादिश्व द्वापापापापापापापापापापापापापापापापापापाप                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7x                                    |
| BOSTITI III BEST III III PRE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>2</b> 7¥                           |
| THE REST OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH | •                                     |
| DE CONTROL DE LA CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTR | •                                     |
| 300 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                     |
| 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| PES DION A MINISTER PRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊃ <i>911:</i><br>——                   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| TERO O SERO SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERO O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERО O SERO | 1.                                    |
| Span Respons Span Actual Span Actual Span Actual Span Actual Span Actual Actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |

#### EEN

# O2 ANALYZER MULTIPOINT CALIBRATION REPORT FORM


|                                                                                                  |                                                                                                                             |                    | MO               | 77.72.02 |             |                            |                              |                               |         |                                               |               |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|----------|-------------|----------------------------|------------------------------|-------------------------------|---------|-----------------------------------------------|---------------|--|--|
| Site:_                                                                                           | EEMO                                                                                                                        |                    | KE.              | UT,W     | A Da        | te:                        | 5/12/9                       | <u>a</u>                      | -       |                                               | ••            |  |  |
| Analyz                                                                                           | er: Mak                                                                                                                     | e: <u>1</u>        | electy           | ue       | Mod         | el: <u>3</u>               | 20 A                         |                               | _ sn:_  | 37400                                         | <del></del> , |  |  |
| Calibr                                                                                           | ation b                                                                                                                     | y:                 |                  | C        | ). Kino     | man                        |                              |                               |         | <u>·                                     </u> |               |  |  |
| Cal Ga<br>BP<br>Te                                                                               | s Flow:<br>:                                                                                                                | <u>1,5</u><br>30.3 | SCFH<br>16<br>78 | Mea      | sured<br>I  | by: Ro<br>nstrum<br>nstrum | tamete<br>lent ID<br>lent ID | I: X<br>: <u>Pein</u><br>: Tr | _ Mass  | Flowmeter                                     |               |  |  |
|                                                                                                  | er last                                                                                                                     |                    |                  |          |             |                            |                              |                               |         | <u>~</u>                                      |               |  |  |
| Cylind  1. #] Ce                                                                                 | ers:<br>13225<br>rtified                                                                                                    | Con                | centra<br>L16    | tion:    | 0.00<br>AIR |                            | oz Cyl.                      | Press<br>ate:                 | 10/7/91 | 800 E                                         | PSI .         |  |  |
| 2. # <u>/</u><br>Ce                                                                              | 2. # 29004 Concentration 12.4 % 02 Cyl. Press.: 900 PSI Certified by: MATHESON Date: 10/31/91                               |                    |                  |          |             |                            |                              |                               |         |                                               |               |  |  |
| 3. #XA2212 Concentration 19.93 % 02 Cyl. Press.: 400 PSI Certified by: Liquid Air Date: 10/22/84 |                                                                                                                             |                    |                  |          |             |                            |                              |                               |         |                                               |               |  |  |
| 4. ‡ <u> </u><br>Ce                                                                              | 4. # <u>R35693</u> Concentration <u>5.03</u> % 02 Cyl. Press.: 1700 PSI Certified by: <u>L10010 AIR</u> Date <u>6/29/89</u> |                    |                  |          |             |                            |                              |                               |         |                                               |               |  |  |
| An<br>Fl                                                                                         | alyzer:<br>.ow:_//                                                                                                          | : Ca<br><u>ნ ქ</u> | librat<br>CFH    | ed Ran   | asured      | DA: W                      | 1 COME LE                    | ·- ·                          | Mass    | · I-O<br>Flowmeter                            | <b>F:</b>     |  |  |
|                                                                                                  |                                                                                                                             |                    |                  |          |             |                            | Result                       |                               |         | Potentio                                      |               |  |  |
| Point                                                                                            | Cyl.                                                                                                                        | 8                  | Exped            |          | Actu        |                            |                              |                               | 8       | Unadj.                                        | Ac            |  |  |
| #                                                                                                | #                                                                                                                           | 02                 | Meter            | DVM      | Meter       | DVM                        | Meter                        | DVM                           | Dif.    | unadj.                                        | -             |  |  |
| 1                                                                                                | 1                                                                                                                           | 0.00               | 00.0             | .000     | 00.0        |                            |                              |                               |         |                                               |               |  |  |
| 2                                                                                                | 2                                                                                                                           | 12.4               | 12.4             | .496     | 12.2        | . 491                      | 12.4                         | .496                          |         |                                               |               |  |  |
| 3                                                                                                | 3 .                                                                                                                         | 19.93              | 19.9             | .797     | 19.4        | .781                       |                              |                               |         |                                               |               |  |  |
| 4                                                                                                | 4                                                                                                                           | 5.03               | 5.0              | .201     | 5.0         | .204                       |                              |                               |         |                                               |               |  |  |
| 5                                                                                                | 1                                                                                                                           | 0.00               | 00.0             | .000     | 0.00        | -000                       |                              |                               |         | ,                                             |               |  |  |

Comments:

.5= 12.650

Y = MX + B Slope (M) = 0.0391922Y Intercept (B) = 0.0041946Correlation Coefficient (r) = 0.999397 $r^2 = 0.9997794$ 

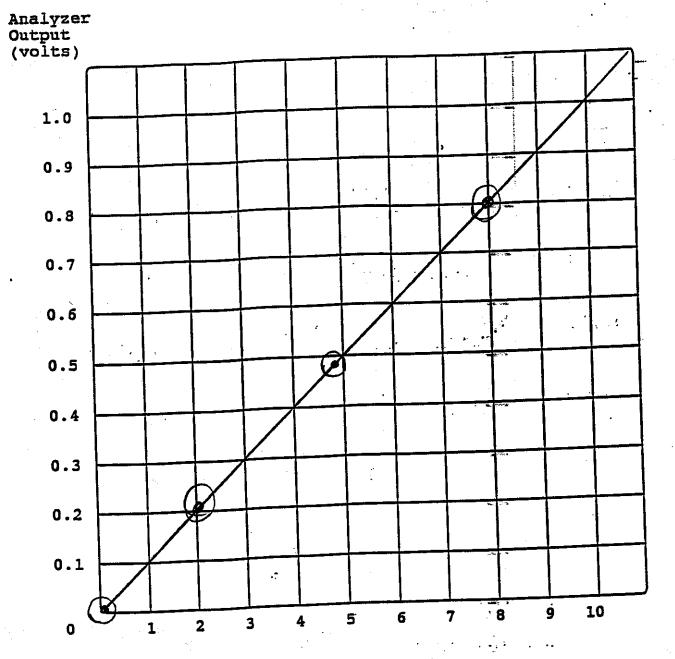
Analyzer Output (volts)



Span Gas Concentration (% 02)

EPA Span Value = 
$$+/-$$
 2.0% of 25% O2 =  $+/-$  .5% Cal Volts = Cal Volt Conc - Std Conc =  $+/-$  Conc Diff =  $+/-\Delta$ % .781 = 19.525 - 19.93 =  $-$  .405 =  $-$ 2.032 .204 =  $5.100 - 5.03 = .070 = 1.392$ 

CONTROL CHART


| !                                         | 7                   |                  | •                 |                     | -                | 1111111                                 | 1111111    | 111111                                         |             | N.                                            | 4111111                               | 1 1                | :1:11:11   | 7 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|---------------------|------------------|-------------------|---------------------|------------------|-----------------------------------------|------------|------------------------------------------------|-------------|-----------------------------------------------|---------------------------------------|--------------------|------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . 1                                       | 8                   |                  |                   |                     | b                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            | <u> </u>                                       |             | 721                                           |                                       | 11 :               |            |                 | POST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | MA NOWAK/JASTODDARD |                  | •                 |                     |                  |                                         |            |                                                |             | 18.4                                          |                                       |                    |            | 1               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                                         | 2                   | di               | 1                 |                     | 이                |                                         |            | 111111                                         |             |                                               | <u> </u>                              | <u> </u>           |            |                 | <u> 716                                   </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | 2                   | 0                |                   |                     |                  |                                         |            |                                                |             | H                                             |                                       |                    |            | 900             | Dem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           | N                   | 16               |                   |                     | 01.              |                                         |            | <u>                                     </u>   |             |                                               |                                       |                    |            | 5.0             | POST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | 4                   | Ó                | - 1               |                     | 0                |                                         |            |                                                |             | 180                                           |                                       |                    |            | Fi              | Pas ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | D                   | RANGE -0,0-45,0% |                   | i                   |                  |                                         |            |                                                |             | 19:त                                          |                                       |                    |            |                 | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           | A                   | 19               |                   |                     | 0                | ППП                                     |            | <u>      </u>                                  | <u> </u>    | Į                                             | <u> </u>                              | !!!!!!!!           |            | ដ្ឋក្           | Post'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | 3                   | Q                | Gases             | 1                   | ol               |                                         | <u> </u>   | <u>                                     </u>   |             | 124                                           |                                       |                    | <u> </u>   | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                         | 3                   | Ų                | . 4               | <del> </del> ;      | <u> </u>         | 111111                                  | <u> </u>   | <u> </u>                                       |             | 1                                             |                                       |                    |            | Lade            | PLS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | Ž                   | 35               | 9                 |                     | 0                |                                         | 11111      |                                                |             | मिष्रा                                        |                                       |                    |            | +35%            | Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | <                   | ≨                | CyLINDER          |                     |                  |                                         | !!!!!!     |                                                | Ш           | 184                                           |                                       |                    |            | 200             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,                                         |                     | I                | Z                 |                     | 0                | Heed                                    | JATTINE.   | <u>abull</u>                                   | Щ_          | 2                                             | []]Lipe                               | 1312               | المنطبة    | ויף             | P06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           | OPERATORS.          |                  | Ē                 | 2/3                 | 0                |                                         |            | <u> </u>                                       | 19.60       | 38                                            |                                       |                    |            | 폴롤              | HAUGHS 5074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           | MI                  | ارا              | ಲ                 |                     | •                | 2111111                                 |            | <u> </u>                                       | - 1         | 748                                           |                                       | 1/                 |            | 77              | Hahans S&7X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           | PE                  | Š                |                   | 388                 |                  |                                         | 1111       |                                                | USIDI<br>   | 多                                             |                                       | : 1111:            |            | =               | 7267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | ٠,                  | 37465            | द्री              | 5/2E                | ols              |                                         | 111/11     |                                                | <br>12 130  | 77                                            |                                       | <u>    :     i</u> | <u> </u>   | ទីក្រុកពេះ<br>- | HAUGHS 5074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           |                     | w                | Cochfied          | 2/5                 | iol s            | <u>શા  :   </u>                         | 111 1      | <u> </u>                                       |             | <u>                                      </u> |                                       |                    |            | 20              | <b>Post</b> (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | S                   | 7                | ပီ                | 503                 | ol               |                                         |            | <u>!      </u><br>                             | 1460        | 72 8                                          |                                       |                    |            |                 | HAUGHS 387X<br>PEGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           | 98032               | ુ                | ı i               |                     | <u> </u>         | 111111                                  |            |                                                |             |                                               |                                       |                    |            |                 | HAUGHS 307X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| =                                         | ۵                   | 8                | ·耳                | 500                 | 0 3              |                                         |            |                                                | (S)         | 36                                            | Hilli                                 | i livi             |            | 200             | Post 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3 | E A                 | 390a             | म्याक             | 2010                |                  | 0[                                      |            | <u>                                     </u>   | 1263        | 7 3                                           | 1:111:11                              |                    |            | 20%             | HAWAHS SOTX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ₹                                         | 3                   | 심                |                   |                     | <del>1 i .</del> | 2 1111111                               |            | <u>                                     </u>   |             |                                               | <u> </u>                              | V:::::             |            | +               | HAUGHS SO7X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LUNI KUL                                  | +                   | lectune          | Spans             | 沒                   | o i              | <u> </u>                                |            | <u> </u>                                       | PSSF4       | 707                                           | #111: <del>111</del>                  | XIII:              |            | 55              | POST4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                                         | 5                   | 3                | S                 | no                  |                  |                                         |            |                                                | - 12        | 7                                             |                                       |                    |            | _               | HAUGHS SOOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           | تد                  | 19               |                   | ী                   |                  | 8 : 1111                                | 4 1 1 1 1  | i                                              | <u> </u>    | 3/6                                           |                                       |                    |            |                 | PES 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           |                     | INSTRIMENT/SH TE | AND<br>AND        | SIS.                |                  | 9                                       | 1111       | <u>:                                    </u>   |             | 野然                                            |                                       |                    |            | -0-0            | HAUGHS SOTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •                                         | NO.                 | 1/5              |                   |                     |                  | 3 11 11 1                               | 111111     |                                                |             |                                               | <del></del>                           | 1 1 2 3 1 1 1      |            | 20              | POST 3<br>HAUGHS 507X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | LOCATION            | 章                | OR METHOD ZEROES  | 38                  | O                | <u> </u>                                |            |                                                |             | 15 B                                          |                                       |                    |            | 1               | Per 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | <u>-</u>            | <b>E</b>         | 25                |                     | -                |                                         |            | 1111111                                        |             | 3 8                                           | Hills                                 | !!!Nii             |            | 7 4             | HALLEHS SATX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           |                     | INS              | 14                | 問題                  | 0                | <b>*</b>                                | !!!!       | <u>      </u>                                  |             | <u> </u>                                      | · · · · · · · · · · · · · · · · · · · |                    |            | 골곡              | Per II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                                         | 1                   | ,<br>1           | <u>⊜</u> '        | <u> </u>            | O                | 6                                       |            | <u>!                                    </u>   |             | 19.4                                          |                                       | 1   11             |            | 22              | Hauais 3074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           |                     | - 1              |                   | <b>6</b> 0 8        | •                | THE STATE OF                            |            | <u>:                                      </u> |             |                                               |                                       | : 1 : 1 1 1        |            | ä.              | PLBD .<br>HAUGHS SD7X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | 2                   |                  | ~                 | <u> </u>            |                  | (1)                                     |            |                                                | R. R.D      | 国88                                           | HIN                                   |                    |            | Zero:           | P66T /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | 3                   | }                |                   |                     |                  | Toronto and the second                  | 111/1      |                                                | 1. P. C. P. | 図書                                            | 1111111                               | <u> </u>           | , 11:      | :               | H446H5-597)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           | 1                   | ರೆ               | :R1/              | 5/3                 | Ols              |                                         | خالاللن    | Les !!                                         | 1           | 12/3                                          | puol                                  |                    | السنيم الم |                 | PR6 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | ITE EEMC - WEST     | ଧା               | EFERENCE MATERIAL | Se                  |                  | ,                                       | 0          | ī '                                            | nse         | _   g                                         | 5.0                                   | 0                  | 52-        |                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                           | 5                   | اے               | πi.<br>           |                     | Actual           |                                         |            |                                                | Response    | Actual<br>Ference                             | 1                                     |                    | • •        |                 | COMMENTS<br>ACT LONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | 回                   | ETE              | ENC               | <u> </u>            | 2 3              | =                                       | ZERO       |                                                | E E         | 원률                                            | ₫<br><b>₫</b>                         | 3                  |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | 쁘                   | ARAMETER         | FER               | MTE<br>Gro Response | 61.0             |                                         | <b>3</b> E |                                                | Shan        | Span Actual<br>9: Difference                  | 1                                     | SPAII              |            |                 | 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           | _                   | <                | ñ                 |                     | <b>تا</b> .      | -9                                      |            |                                                | k/1         | जा <u>अ</u>                                   | 1                                     |                    |            | •               | in distance in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |
|                                           |                     |                  |                   |                     |                  |                                         |            |                                                |             |                                               |                                       |                    |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## EEMC

# CO ANALYZER MULTIPOINT CALIBRATION REPORT FORM

|                                                                                               | EEMC                                                                                                         |                      |               |                      |                      |        |                   |               | _             |           |                                                  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|---------------|----------------------|----------------------|--------|-------------------|---------------|---------------|-----------|--------------------------------------------------|--|--|
|                                                                                               |                                                                                                              |                      |               |                      |                      |        |                   | <u> </u>      | _ sn:_        | 408005    | —                                                |  |  |
| Calibr                                                                                        | ation h                                                                                                      | у:                   |               | D.K                  | ungm                 | an_    |                   | -             | . <del></del> |           |                                                  |  |  |
| Cal Ga<br>BE                                                                                  | s Flow:                                                                                                      | 30                   | SCFF          | Mea                  | sured<br>I           | by: Ro | tamete<br>ment ID | FEI PRI       | Mass<br>NCO   | Flowmete: |                                                  |  |  |
| Te                                                                                            | : <u></u>                                                                                                    |                      | / &           | . F                  | 5/0/02               |        | B.,,              | OV            |               | <u>^</u>  |                                                  |  |  |
|                                                                                               |                                                                                                              | : cal                | Librate       | :a:                  | 7/0/10               |        | by·_              | <u> </u>      | nonna         | <u> </u>  |                                                  |  |  |
| Cylind<br>1. #_<br>Ce                                                                         | lers:<br><u>  3225</u><br> rtified                                                                           | 7 Cor                | centra<br>LiQ | tion:                | 0.00<br>IR           |        | co cyl.           | Press<br>ate: | 0 7 9         | 8001      | PSI                                              |  |  |
|                                                                                               |                                                                                                              |                      |               |                      |                      |        |                   |               |               | 001       |                                                  |  |  |
|                                                                                               |                                                                                                              |                      |               |                      |                      |        |                   |               | •             |           |                                                  |  |  |
| Ce                                                                                            | 3. #A1692 Concentration 8.05 % CO Cyl. Press.: 600 PSI Certified by: Liquid Air Date: 12/5/84                |                      |               |                      |                      |        |                   |               |               |           |                                                  |  |  |
| 4. #A10199 Concentration 2.02 % CO Cyl. Press.: 800 PSI Certified by: Liquid Air Date 12/5/84 |                                                                                                              |                      |               |                      |                      |        |                   |               |               |           |                                                  |  |  |
|                                                                                               | Analyzer: Calibrated Range: O-10.0 % Output: O-1.0  Flow: 1.5 5CFH Measured by: Rotameter: X Mass Flowmeter: |                      |               |                      |                      |        |                   |               |               |           |                                                  |  |  |
|                                                                                               |                                                                                                              |                      |               | <del></del>          |                      |        | Result            |               |               |           |                                                  |  |  |
| Point                                                                                         | Cyl.                                                                                                         | ક                    | Exped         | ted                  |                      |        | Ac                |               | 1             | Potenti   |                                                  |  |  |
| #                                                                                             | #                                                                                                            | CO                   | Meter         | DVM                  | Meter                | DVM    | Meter             | DVM           | Dif.          | Unadj.    | i                                                |  |  |
|                                                                                               |                                                                                                              |                      |               |                      |                      |        |                   |               |               |           |                                                  |  |  |
| 1                                                                                             | 1                                                                                                            | 0.00                 | 100.0         |                      |                      |        | -                 |               |               |           |                                                  |  |  |
| 2                                                                                             | 2                                                                                                            |                      | 49.6          | .496                 |                      | .495   | 49.6              | . 496         |               | 1.32      | 1.3                                              |  |  |
|                                                                                               |                                                                                                              | 4.96                 |               | .496                 |                      |        | 49.6              | . 496         |               | 1.32      | 13                                               |  |  |
| 2                                                                                             | 2                                                                                                            | 4.96<br>8.05         | 49.6          | .496<br>.805         | 49.5                 | .786   | 49.6<br>—         | .496<br>—     |               | 1.32      | <del>                                     </del> |  |  |
| 2                                                                                             | 2                                                                                                            | 4.96<br>8.05<br>2.02 | 49.6<br>80.5  | .496<br>.805<br>.202 | 49.5<br>78.6<br>19.5 | .786   | 49.6              |               |               | 1.32      | <del>                                     </del> |  |  |

Y Intercept (B) = 0.0005456Correlation Coefficient (r) = 0.9996889



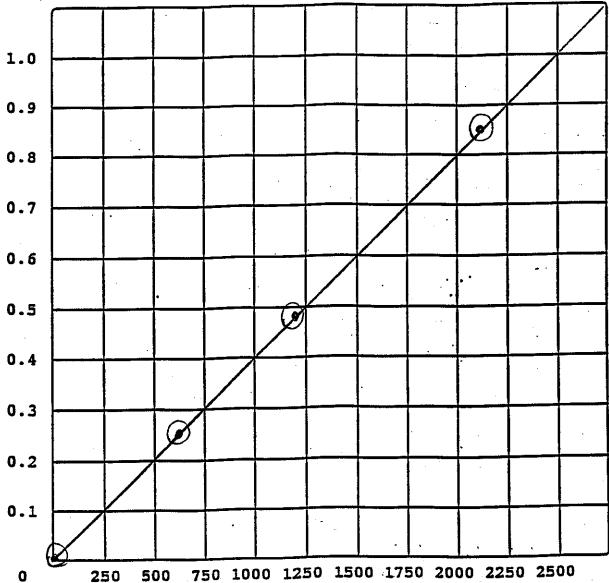
Span; Gas Concentration (% CO)

EPA Span Value =  $\pm 1.2.0\%$  of 10% CO =  $\pm 1.2\%$  Cal Volts = Cal Volt Conc - Std Conc =  $\pm 1.2\%$  Conc Diff =  $\pm 1.2\%$  . 195 =  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -  $\pm 1.950$  -

CONTROL CHARI

OPERATORS MA NOWAK/JASTODDARD RANGE .0,0-10.0% CO CREHHED CYLINDER GASES 1408005 98032 EFERENCE MATERIAL OR METHOD ZEROES AND SOANS WITH INSTRIMENT/SH HORLEA PIR 8000 LOCATION KENT, WA ITE EEMC - WEST 'ARAHETER CO

0 1051 166 O O POST LIGHT PAGE 44 O O מכה בים. 0 POST 23% 0 237 +35% 0 O 1444415 5074 롤 O HAUGHS SATX 300 Span: PRG 2 4978 HAUUHS SOTY গ্রীত 5/6 HAUGHS 587X 5008 5/18 .004 0 HAUGHS 387X +20% POST 5 HAUGHS O 多多 PLES Haughs 5/6-1 5.03 겁 HAUGHS SOTK peg 4 Haugis PST3 HANGHS Scott Scott ă ठ् Peri 3 Haughs Sanx 523 물 HOURIS SON PABS tero: HAUGHS 8 498 SE 8 HAUGHS-507) 88 <u>શુ</u> 5/13 -384 0 S ĩ Span Response ero Nesponse COMMENTS/ ACTIONS % Difference nifference. Span Actual Actua 61.0


#### REMC

# SO2 ANALYZER MULTIPOINT CALIBRATION REPORT FORM

| Site: EEMC KENT, WA Date: 5/12/92                                                                                                                                   |         |       |         |       |               |                                       |         |             |       |         |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|-------|---------------|---------------------------------------|---------|-------------|-------|---------|--------------|
| Analyzer: Make: HORIBA Model: PIR QOOO SN: 403019                                                                                                                   |         |       |         |       |               |                                       |         |             |       |         |              |
| Calibr                                                                                                                                                              | ation l | by:_  | 0.      | King  | man           | · · · · · · · · · · · · · · · · · · · | •       |             |       | • • •   |              |
| Cal Gas Flow: 1.5 SCFH Measured by: Rotameter: X Mass Flowmeter: BP: 30.36 Instrument ID: PRINCO Instrument ID: TR  Analyzer last calibrated: 5/8/92 By: 0. Kungman |         |       |         |       |               |                                       |         |             |       |         |              |
| Analyz                                                                                                                                                              | er last | t cal | Librate | :d:   | <u>5/8/93</u> | ર                                     | By:_    | <u>O. k</u> | ingn  | an      | <del>.</del> |
| Cylind                                                                                                                                                              | ·       | 7 Cor | .contr= | tion: | 0.00          | PPM S                                 | 502 Cv1 | . Pres      | s.: { | 300     | _PSI         |
| 2. #AL 2892 Concentration 1232 PPM SO2 Cyl. Press.: 450 PSI Certified by: LIQUID AIR Date: 9/24/91                                                                  |         |       |         |       |               |                                       |         |             |       |         |              |
| 3. # CC 44776 Concentration 2)27 PPM SO2 Cyl. Press.: 1000 PSI Certified by: Liquid AiR Date: 5/13/98                                                               |         |       |         |       |               |                                       |         |             |       |         |              |
| 4. #AAL 5858 Concentration 626 PPM SO2 Cyl. Press.: 1500 PSI Certified by: Liquid AiR Date 11/2/87                                                                  |         |       |         |       |               |                                       |         |             |       |         |              |
| Analyzer: Calibrated Range: 0-0500 PPM Output: 0-1.0  Flow: 1.5 SCFH Measured by: Rotameter: X Mass Flowmeter:                                                      |         |       |         |       |               |                                       |         |             |       |         |              |
| Point                                                                                                                                                               | Cyl.    | PPM   | Expe    | ted   | Acti          | Actual                                |         | Adj.        |       | Potenti | omet         |
| #                                                                                                                                                                   | #       | 1     | Meter   | DVM   | Meter         | DVM                                   | Meter   | DVM         | Dif.  | Unadj.  | A            |
| 1                                                                                                                                                                   | 1       | 00.0  | 00.0    | .000  | 00.1          | .001                                  | 0.00    | .000        |       | 4.44    | 4.           |
| 2                                                                                                                                                                   | 2       | +     | 49.3    | .493  | 49.9          | .499                                  | 49.3    | .493        |       | 3.53    | 3.7          |
| 3                                                                                                                                                                   | 3       | 2127  | 85.1    | .851  | 85.1          | .851                                  |         |             |       |         |              |
| 4                                                                                                                                                                   | 4       | 626   | 25.0    | .250  | 24.7          | . 247                                 |         |             |       |         |              |
| 5                                                                                                                                                                   | 1       | 0.00  | 00.0    | .000  | 100.0         | .000                                  |         |             |       |         |              |
| Commen                                                                                                                                                              | ts:     |       | .5=     | 1251. | 473           |                                       |         |             |       |         | ŧ            |

Y = MX + B Slope (M) = 0.0004000 Y Intercept (B) = -0.0013695 Correlation Coefficient (r) = 0.9999893 r<sup>2</sup> = 0.9999787

Analyzer Output (volts)



# Span: Gas Concentration (PPM SO2)

EPA Span Value =  $\pm 1/2.0\%$  of 2500 PPM SO2 =  $\pm 1/2.0\%$  PPM Cal Volts = Cal Volt Conc - Std Conc =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.0\%$  RS1 =  $\pm 1/2.$ 

OPERATORS MA NOWAK/JASTODDARD PANNEE .O.O - ASO DOM SOA O 2851 2851 2851 2851 2851 2851 **多** 0 1920 O רכו 0 1330 EFERENCE MATERIAL OR NETHOD ZERGES AND SPANS WITH CERTIFIED CYLINDER GASES O +35% 030 0 133 0 Hacials 2014 3 Ø HAWAIS SON 1320 1039 1403019 Span: HAULUIS 233 **6**/8 HAUGHS 98032 5/18 5/16 Pec6 Hauris 30 INSTRUMENT/SH HORUBA PIR ACCO 093 2.0% +20% HAUGHS CONTROL CHART ker, wa 5/16 HANAHS SEO SEO 겁 POST4 HAUGHS 5/15 PRS 4 Haug45 0,07 POST 3 HANGHS LOCATION 1330 Peri3 HALLEHS SATX 5/3 골 골 목 HOUWIS SON Zero: 贸 ITE EEMC - West 35 HAUGHS. 5/13 'ARAHETER SOA S ĩ Span Response aro Response % Difference COMMENTS/ ACTIONS nifference Span Actual Actual INTE



## ANALYSIS OF CALIBRATION GAS MIXTURES

| TEST DATE <u>4/29/9</u> | SOURCE TESTED Take                                                                                | LOCATION Kent IVA                          |
|-------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|
| REFERENCE METHOD        | USED EPA Method                                                                                   |                                            |
| SPECIES <u>502</u>      | CALIBRATION GAS MIXTURE SAMPLE #1 /2/7 PPM SAMPLE #2 /220 PPM SAMPLE #3 /2/9 PPM AVERAGE /2/9 PPM | GIVEN VENDOR TANK VALUE  AL 2892  1232     |
| SPECIES SO2             | CALIBRATION GAS MIXTURE SAMPLE #1 2081 PPM SAMPLE #2 2/04 PPM SAMPLE #3 2090 PPM AVERAGE 1093 PPM | GIVEN VENDOR TANK VALUE  ### 1776  ### 776 |
| SPECIES 502             | CALIBRATION GAS MIXTURE SAMPLE #1 622 PPM SAMPLE #2 666 PPM SAMPLE #3 607 PPM AVERAGE 612 PPM     | GIVEN VENDOR TANK VALUE  AH L 5858 626 ppm |
| SPECIES                 | CALIBRATION GAS MIXTURE SAMPLE #1 2/48 PPM SAMPLE #2 2/90 PPM SAMPLE #3 2/99 PPM AVERAGE 2/72 PPM | GIVEN VENDOR TANK VALUE  2065  2202 pron-  |
| SPECIES 502             | CALIBRATION GAS MIXTURE SAMPLE #1 505 PPM SAMPLE #2 520 PPM SAMPLE #3 504 PPM AVERAGE 572 PPM     | GIVEN VENDOR TANK VALUE  CC 97188  497 ppn |
| Data Taken By           | il W                                                                                              | •                                          |

Triplicate analyses of the gas mixtures shall be performed within two weel prior to use of gas, using ref. methods 6 or 7. Analyze each mixture (50 90%). Each test must be within 20% of the 3 test mean. This form applies to extractive systems only.

### SOZ TANK CALCULATIONS

```
Tank ID <u>AL 2892</u>
                                              1232 gays ...
Test # 1
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
Vm(std) = ( \frac{1.48}{0.000} cf) 17.65 ( \frac{1.01}{0.000} mcf) ( \frac{30.17}{0.000} + \frac{.0213.6}{0.000} 
        = <u>//488</u>_dscf
Concentration SO2 - ppm v/v dry

Normality (N) = 0.0099 ml Ba++ = 430

ppm v/v dry = (ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])
                          Vm(std)
ppm v/v dry = (4/30)(32)(.0099)(13.29 \times 10[-6])(10[6])
= (1.488)
Test # 2
Gas Volume - Dry Standard Conditions
Vm \text{ (std)} = VmKY[Pb+(\Delta H/13.6)]/Tm
= /.5/9 dscf
Concentration SO2 - ppm v/v dry
                                              ml Ba++ = \frac{440}{}
Normality (N) = .0099 ml Ba++ = ppm v/v dry = (ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])
                          Vm(std)
ppm v/v dry = (440)(32)(.0099)(13.29 \times 10[-6])(10[6])
= (220)
Test # 3
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
Concentration SO2 - ppm v/v dry
                                              ml Ba++ = ______
Normality (N) = _______
ppm v/v dry = (ml Ba++)(32)(N)(13.29 \times 10[-6])(10[6])
ppm v/v dry = (\frac{439}{1219})(32)(.0099)(13.29 \times 10[-6])(10[6])
= \frac{1219}{1219}
```



24-Sep-91 PACIFIC RIM OXYGEN P.O. NO.: 15626 TUKWILA, WA

CERTIFICATION OF CYLINDER # AL-2892

COMPONENT:

MEAN CONCENTRATION:

Sulfur Dioxide NITROGEN 1232 +/- 19 ppm BALANCE

Cylinder pressure: Expiration date: 2000 psi 26-Mar-93

This mixture was prepared and analyzed following EPA Revised Traceability Protocol No.1, Section 3.0.4, per Procedure G1. The concentration of the Sulfur Dioxide was determined by direct comparison with NBS SRM 1662a, Sample No.:93-9-D, S/N FF-28200, 1013 +/- 10 ppm Sulfur Dioxide in Nitrogen, dated March 19, 1991. The analysis was performed on a Tracor Atlas 825R-D Hydrogen Sulfide Gas Analyzer, and a 856 Total Sulfur Hydrogenator, Serial #3725, with furnace 001419, s/n 9009115 operated at @1265 deg C. The last multipoint range calibration was done on August 14, 1991.

Authorized signature



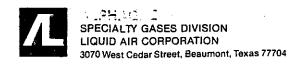
```
EPA PROTOCOL NO.1 DATA SHEET COMPONENT: SULFUR DIOXIDE
                                                            304-1317
NBS SRM 1662a
                    FF-28200 93-9-D
                                            1013 +/- 10 ppm SO2 in N2
         TRIAD #1 TRIAD #2 TRIAD #3 TRIAD #4 TRIAD #5 TRIAD #6
         109/17/91 109/17/91 109/17/91 109/24/91 109/24/91 109/24/91 1
DATE
         ! VDC X10 : VDC X10 : VDC X10 : VDC X10 : VDC X10 ! VDC X10
UNITS
                               7.470 :
             7.450 :
FF-28200 :
                       7.460
                                           8.000 :
                                                     7.950 !
                                                               7.900
                       0.000 1
                                 0.000 :
                                                     0.000 1
ZERO
             0.000 :
                                           0.000 1
                                                               0.000 :
                       9.120 L
                                 9.140 :
                                                     9.630 1
AL-2892
             9.120 I
                                           9.590 1
                                                               7.620 :
```

```
EPA PROTOCOL NO.1 WORK SHEET COMPONENT: SULFUR DIOXIDE
                                                            304-1317
NBS SRM 1662a
                    FF-28200 93-9-D
                                           1013 +/- 10 ppm SD2 in N2
         TRIAD #1 TRIAD #2 TRIAD #3 TRIAD #4 TRIAD #5 TRIAD #6 TRIAD #6
    DATE :09/17/91 :09/17/91 :09/17/91 :09/24/91 :09/24/91 :09/24/91
   UNITS !VDC X10
                  :VDC X10
                             IVDC X10
                                       IVDC X10 IVDC X10
                                                           :VDC X10
FF-28200 :
                                 7.470 :
             7.450 :
                       7.460 1
                                           8.000 |
                                                     7.950 :
ZERO
                       0.000 :
                                 0.000 :
                                           0.000 |
             0.000 :
                                                     0.000 :
                                                               0.000
AL-2892
             9.120 |
                       9.120 :
                                 9.140 :
                                           9.590 :
                                                     9.630 :
                                                               9.620
 ASSAYS: | 1240.08 | 1238.41 | 1239.47 | 1214.33 | 1227.07 | 1233.55
                            IVALID
         :VALID
                   :VALID
                                       :VALID :VALID
                                                           :VALID
                                                              1225.0
         TRIADS 1,2,3 MEAN:
                                1239.3 TRIADS 4,5,6 MEAN:
                                       CONCENTRATION IN ppm:
```

VARIABILITY VDC X10 PPM x PPM

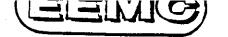
ZERO: 0.0005 0.8724

MIXd: 0.0005 0.8724


LINEARITY: 0.0100 348.94

TOLERANCE SQRT SUM: 19 ppm

(EEIMIG)


### SOZ TANK CALCULATIONS

```
Date 4/29/92 Tank ID CC 44 776
 Test # 1
 Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
= /.535_dscf
Concentration SO2 - ppm v/v dry
Normality (N) = \frac{2099}{\text{ppm v/v dry}} ml Ba++ = \frac{760}{\text{ppm v/v dry}} ml Ba++ = \frac{760}{\text{ppm v/v dry}}
                        Vm(std)
ppm v/v dry = (\frac{160}{1.535})(32)(.099)(13.29 \times 10[-6])(10[6])
= 1085
Test # 2
Gas Volume - Dry Standard Conditions
V_m (std) = V_mKY[Pb+(\Delta H/13.6)]/T_m
= 1.529 dscf
Concentration SO2 - ppm v/v dry
ppm v/v dry = \frac{.0099}{\text{(ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])}}
ppm v/v dry = (\frac{164}{2104})(32)(.0099)(13.29 \times 10[-6])(10[6])
= \frac{2104}{2104}
Test # 3
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
= /.55/_dscf
Concentration SO2 - ppm v/v dry
Normality (N) = .0069 ml Ba++ = ppm v/v dry = (ml Ba++)(32)(N)(13.29 \times 10[-6])(10[6])
                                         ml Ba++ = 770
ppm v/v dry = (770)(32)(.0099)(13.29 \times 10[-6])(10[6])
= 2090
```



# ANALYSIS CERTIFICATION

| CANDIDATE GAS STANDARD                                                                                                                                                                                                             |                                                                                              |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| SERIAL NUMBER                                                                                                                                                                                                                      | SULFUR DIOXIDE<br>NITROGEN                                                                   | CC-44776<br>2127 PPM<br>BALANCE                  |
| BALANCE GAS                                                                                                                                                                                                                        |                                                                                              |                                                  |
| PRESSURE (PSIG)                                                                                                                                                                                                                    |                                                                                              | E_19_00                                          |
| DATE OF ASSAY/CERTIFICATION                                                                                                                                                                                                        |                                                                                              | J-13-00                                          |
| DATE OF ASSAY/CERTIFICATION CERTIFICATION EXPIRATION DATE                                                                                                                                                                          |                                                                                              | 3-2-67                                           |
|                                                                                                                                                                                                                                    |                                                                                              |                                                  |
| SRM REFERENCE STANDARD                                                                                                                                                                                                             |                                                                                              |                                                  |
| STANDARD REFERENCE MATERIAL N                                                                                                                                                                                                      | IUMBER                                                                                       | 18203                                            |
| SKI CONCENTRATION                                                                                                                                                                                                                  | •                                                                                            | •                                                |
| ANALYZER READINGS FOR CALCULA                                                                                                                                                                                                      | ATIONS:                                                                                      |                                                  |
| FIRST ANALYSIS SECOND ANAL                                                                                                                                                                                                         | YSIS                                                                                         |                                                  |
| DATE 5-4-99 DATE 5-13-8                                                                                                                                                                                                            | 38                                                                                           |                                                  |
| DATE 5-6-88 DATE 5-13-8<br>(1) 2137 (1) 2118                                                                                                                                                                                       | <del>.</del>                                                                                 |                                                  |
| (1)     2137     (1)     2118       (2)     2133     (2)     2122                                                                                                                                                                  |                                                                                              |                                                  |
| (2) 2133 (2) 2122                                                                                                                                                                                                                  |                                                                                              |                                                  |
| (3) 2127 (3) 2125                                                                                                                                                                                                                  |                                                                                              |                                                  |
|                                                                                                                                                                                                                                    |                                                                                              |                                                  |
| MEAN 2132 MEAN 2122                                                                                                                                                                                                                | REPORTED ME                                                                                  | AN 2127                                          |
| MEAN 2132 MEAN 2122                                                                                                                                                                                                                | REPORTED ME                                                                                  | AN 2127                                          |
|                                                                                                                                                                                                                                    | REPORTED ME                                                                                  | AN 2127                                          |
| MEAN 2132 MEAN 2122  ANALYZER USED                                                                                                                                                                                                 | REPORTED ME                                                                                  | AN 2127                                          |
| ANALYZER USED                                                                                                                                                                                                                      |                                                                                              |                                                  |
| ANALYZER USED MAKE                                                                                                                                                                                                                 | AIR LAB                                                                                      |                                                  |
| ANALYZER USED MAKE                                                                                                                                                                                                                 | AIR LAB                                                                                      |                                                  |
| ANALYZER USED MAKE                                                                                                                                                                                                                 | AIR LAB                                                                                      |                                                  |
| ANALYZER USED MAKE                                                                                                                                                                                                                 | AIR LAB                                                                                      | CONDUCTIVITY                                     |
| ANALYZER USED                                                                                                                                                                                                                      | AIR LAB                                                                                      | CONDUCTIVITY                                     |
| MAKE                                                                                                                                                                                                                               | AIR LAB<br>TC 100<br>003<br>THERMAL<br>BRATION5-5-88                                         | CONDUCTIVITY<br>D ACCORDING TO                   |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF                                                                                                                                                       | AIR LAB TC 100 003 THERMAL BRATION 5-5-88 TION WAS PERFORME                                  | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF                                                                                                                                                       | AIR LAB TC 100 003 THERMAL BRATION 5-5-88 TION WAS PERFORME                                  | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE                                                                                                                                                                                                                               | AIR LAB TC 100 003 THERMAL BRATION 5-5-88 TION WAS PERFORME                                  | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF THIS NBS-TRACEABLE CERTIFICATEPA PROTOCOL 1, SECTION 2.0.0 G1: ASSAY AND CERTIFICATION                                                                | AIR LAB TC 100 003 THERMAL BRATION 5-5-88 TION WAS PERFORME                                  | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF THIS NBS-TRACEABLE CERTIFICATEPA PROTOCOL 1, SECTION 2.0.01: ASSAY AND CERTIFICATION WITHOUT DILUTION.                                                | AIR LAB TC 100 003 THERMAL BRATION 5-5-88 TION WAS PERFORME                                  | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF THIS NBS-TRACEABLE CERTIFICATEDA PROTOCOL 1, SECTION 2.0.0 G1: ASSAY AND CERTIFICATION WITHOUT DILUTION.  CERTIFIED BY:                               | AIR LAB TC 100 003 THERMAL BRATION5-5-88 FION WAS PERFORME 7, SUBSECTION 2.0 OF A COMPRESSED | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF THIS NBS-TRACEABLE CERTIFICATEDA PROTOCOL 1, SECTION 2.0.0 G1: ASSAY AND CERTIFICATION WITHOUT DILUTION.  CERTIFIED BY:                               | AIR LAB TC 100 003 THERMAL BRATION5-5-88 FION WAS PERFORME 7, SUBSECTION 2.0 OF A COMPRESSED | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF  THIS NBS-TRACEABLE CERTIFICATEPA PROTOCOL 1, SECTION 2.0. G1: ASSAY AND CERTIFICATION WITHOUT DILUTION.  CERTIFIED BY: LABORATORY: ALPHAGAZ- BEAUMOR | AIR LAB TC 100 O03 THERMAL BRATION5-5-88 TION WAS PERFORME 7, SUBSECTION 2.0 OF A COMPRESSED | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |
| MAKE MODEL SERIAL NUMBER MEASUREMENT PRINCIPLE DATE OF LAST MULTIPOINT CALIF THIS NBS-TRACEABLE CERTIFICATEDA PROTOCOL 1, SECTION 2.0.0 G1: ASSAY AND CERTIFICATION WITHOUT DILUTION.  CERTIFIED BY:                               | AIR LAB TC 100 O03 THERMAL BRATION5-5-88 TION WAS PERFORME 7, SUBSECTION 2.0 OF A COMPRESSED | CONDUCTIVITY<br>D ACCORDING TO<br>.7.1 PROCEDURE |



### SO2 TANK CALCULATIONS

```
Tank ID AAL 5858 (626 ppm)
 Test # 1
 Gas Volume - Dry Standard Conditions
 Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
= 1,488 dscf
Concentration SO2 - ppm v/v dry
Normality (N) = 0099 ml Ba++ = ppm v/v dry = (ml Ba++)(32)(N)(13.29 \times 10[-6])(10[6])
                                       ml Ba++ = 220
                      Vm(std)
ppm v/v dry = (\frac{220}{1.488})(32)(\frac{.0099}{13.29})(13.29 \times 10[-6])(10[6])
Test # 2
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
= /,50% _dscf
Concentration SO2 - ppm v/v dry
                                       ml Ba++ = \frac{2/6}{}
Normality (N) = ________
ppm v/v dry = (ml Ba++)(32)(N)(13.29 \times 10[-6])(10[6])
Test # 3
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(ΔH/13.6)]/Tm
= 1.484 dscf
Concentration SO2 - ppm v/v dry
Normality (N) = \frac{.0099}{\text{ppm v/v dry}} ml Ba++ = \frac{\frac{1}{4}}{\text{ppm v/v dry}}
ppm v/v dry = (2/4)(32)(.0099)(13.29 \times 10[-6])(10[6])
= (-1.484)
```

| E17.5    | .EF:.488100                             | 1. DA 92411                                     | 7919 <b>E</b> : 7                       | 14-187-187                              | 71                                                | FAX : 714-897-                                       | 3549                                           |                            | Expir               | ation :                                           | 1 1 / 3                                |
|----------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------|---------------------|---------------------------------------------------|----------------------------------------|
| T beres  | ikidiy y                                | e ER VEREUVED TRU                               | *1,115E13;}}                            | G.                                      | <del>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </del> | ###### CERTIF                                        | ECATE OF ANA                                   | LYSIS - EPÁ                | PRITTI              | ā_ 089ā1                                          | <u>+</u> ++                            |
|          | - 13.5 301<br>- 13.17 1                 | TRATERIO                                        | ·                                       |                                         | Ĉ.                                                | entilies Per Tra                                     | ceablity:                                      | (Protocol %                | 12                  | (France                                           | ១១ គំ                                  |
|          | alla si                                 |                                                 |                                         |                                         | Ç;                                                | entifiac Accurac                                     | y 1% MBS Tra                                   | ceacle to:                 |                     | CRM 1662                                          | 3                                      |
|          |                                         |                                                 |                                         |                                         | ÷                                                 | \$ <del>~</del> \$~\$\$\$\$\$ <b>\$</b> \$\$\$\$\$\$ | <b>\$</b> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | *********                  | <del>132633</del> 2 | ** <del>:                                  </del> | वेच र केंद्र                           |
|          |                                         |                                                 |                                         |                                         |                                                   |                                                      |                                                |                            |                     |                                                   |                                        |
| ÷        | ======================================= | lioder water                                    | dannardranes:                           | inesanenen<br>Cipposent                 | :235222666                                        | Analysis                                             | =======================================        | econtracco:<br>Balance Gas | 72222<br>5          | 97053078<br>97053078                              | ===;                                   |
|          |                                         | AAU-5359                                        |                                         | 12 C 1 C 1 C                            | MITE                                              | 525.51 PP                                            | 7                                              | HITREGEN                   |                     | 1986 osi                                          | ······································ |
|          | 75=====                                 |                                                 | ======================================= | ::::::::::::::::::::::::::::::::::::::: |                                                   |                                                      | *========                                      |                            |                     |                                                   |                                        |
|          |                                         |                                                 |                                         |                                         |                                                   |                                                      |                                                |                            |                     |                                                   |                                        |
|          | REFE                                    | 25465 57                                        | 3                                       |                                         | 8                                                 | AS ANALY                                             | ZER                                            |                            |                     |                                                   |                                        |
|          | KET<br>1795                             | SYLINGE<br>C.OST 1/455                          | 37.47.148                               |                                         | - <u>be</u><br>(3)                                | AKE/HOBEL/BERIAL                                     | <del>"</del>                                   | LAST DALIS                 |                     | ANNETTE                                           | AL 18                                  |
|          | <b>-</b>                                | AAL-17847 91                                    | 9.2 PPK                                 |                                         | 4                                                 | и 70 <b>кт</b><br>00<br>7 <b>2</b> 9                 |                                                | 34/14/38                   |                     | ULIRA-VI                                          | er per                                 |
| Anglysis | ::::::::::::::::::::::::::::::::::::::: | il = ~1                                         | :24 :24 ·                               | 17.7122                                 | +¶V +                                             | 1.25-82 *(aV)                                        | ^2 ÷                                           |                            | ####=# <b></b>      | ========                                          | :2321                                  |
|          | FIRE                                    | T Alaka                                         | 118                                     |                                         |                                                   | ; SEC                                                | 5 # 2 A                                        | MALYS                      | I 5                 |                                                   |                                        |
|          | ASAL                                    | /CER REA                                        | 5 1 X 2 8                               | Jate II                                 | <b>2</b> 4/27/3E                                  | i aka                                                | LYZER                                          | REABI                      | % 5 S               | Jata                                              | : 35 / (                               |
| TEET     | 345                                     | REFERENCE                                       | 2572 345                                |                                         | REBULTE                                           | i<br>i tëst gas                                      | REFERENC<br>GAS                                | E I                        | ERB BAE             |                                                   | 52                                     |
| . Av /   |                                         | 6 <b>85</b><br>1,9 <b>V</b> /                   | ज                                       |                                         | (ota)                                             | (aV)                                                 | (EV)                                           |                            | (a <sub>V</sub> )   |                                                   |                                        |
| 43, 43   |                                         | 54.45                                           | 3.00                                    |                                         | 625.81                                            | 43.42                                                | 44,68                                          |                            | 3.62                |                                                   | 53                                     |
| 43. 12   |                                         | ∂ <sup>2</sup> . 5 <b>ປີ</b><br>6¥. 2 <b>ປົ</b> | 3.08<br>3.00                            | ٠                                       | o26.81<br>826.81                                  | 43.38<br>43.40                                       | 54,68<br>64.68                                 |                            | 9.38<br>9.38        |                                                   | 51<br>5.                               |
|          | - <b>-</b>                              |                                                 | **************************************  | •                                       |                                                   |                                                      |                                                |                            |                     | <b>:-</b>                                         |                                        |
|          |                                         |                                                 |                                         | AVETAGE :                               |                                                   |                                                      |                                                |                            |                     | AVERNIE<br>STO BEVA                               |                                        |

Adenéhas chin

Jane H. Sion



### SO2 TANK CALCULATIONS

```
Date 4/29/92
                            Tank ID <u>CC97188</u> (497 ppr-)
 Test # 1
 Gas Volume - Dry Standard Conditions
 Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
 = 1.506 dscf
 Concentration SO2 - ppm v/v dry
Normality (N) = \frac{0.099}{\text{ml Ba++}} ml Ba++ = ppm v/v dry = \frac{\text{(ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])}}{\text{ml Ba++}}
                                         ml Ba++ = 180
                       Vm(std)
ppm v/v dry = ( /80 )(32)(.0099)(13.29 \times 10[-6])(10[6])
Test # 2
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
= /-506 dscf
Concentration SO2 - ppm v/v dry
                                        ml Ba++ = 186
Normality (N) = 0.099
ppm v/v dry = (ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])
ppm v/v dry = ( /86 )(32)(,0099)(13.29 \times 10[-6])(10[6])
= ( ... /.506 )
Test # 3
Gas Volume - Dry Standard Conditions
Vm (std) = VmKY[Pb+(ΔH/13.6)]/Tm
= /,540 dscf
Concentration SO2 - ppm v/v dry
                                         ml Ba++ = 188
Normality (N) = .0099
ppm v/v dry = (ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])
ppm v/v dry = ( /88 )(32)(.0099)(13.29 \times 10[-6])(10[6])
= 5/4
```



08-Aug-91 PACIFIC RIM OXYGEN P.O.#: 155901 TUKWILA, WA

CERTIFICATION OF CYLINDER # CC-97188

COMPONENT:

MEAN CONCENTRATION:

Sulfur Dioxide NITROGEN

497 +/- 19 ppm BALANCE

Cylinder pressure: Expiration date:

2000 psi 07-Feb-93

This mixture was prepared and analyzed following EPA Revised Traceability Protocol No.1, Section 3.0.4, per Procedure G1. The concentration of the Sulfur Dioxide was determined by direct comparison with NIST SRM 1661a, Sample No.:94-36-E, S/N FF28536, 485 +/- 5 ppm Sulfur Dioxide in Nitrogen, dated May 14, 1990. The analysis was performed on a Tracor Atlas 825R-D Hydrogen Sulfide Gas Analyzer, and a 856 Total Sulfur Hydrogenator, Serial #3725, with furnace 001419, s/n 9009115 operated at @1265 deg C. The last multipoint range calibration was done on July 24, 1991.

Authorized signature



```
EPA PROTOCOL NO.1 DATA SHEET
                              COMPONENT: SULFUR DIOXIDE
                                                            0-600 ppm
                                             485 +/- 5 ppm
                                                           502 in N2
                    FF28536
                              94-36-E
NBS SRM 1661a
         TRIAD #1 TRIAD #2 TRIAD #3 TRIAD #4 TRIAD #5 TRIAD #6
         107/19/91 107/19/91 107/19/91 108/08/91 108/08/91 108/08/91 1
DATE
         ; VDC X10 ; VDC X10 ; VDC X10 ; VDC X10 ; VDC X10 ; VDC X10 ;
STINU
                                  8.82 |
                                                      8.82 :
                                                                8.83 :
                        8.82 :
                                            8.80 ;
              8.83 |
FF-28536 :
                        0.00 1
                                  0.00 |
                                            0.00 |
                                                      0.00 :
                                                                0.00 |
              0.00 1
    ZERO :
                                  9.07 1
                                            9.02 |
                                                      9.04
                                                                9.03 :
                        9.05
              9.03 :
CC-97188 |
```

```
EPA PROTOCOL NO.1 DATA SHEET
                             COMPONENT: SULFUR DIOXIDE
                                                          0-600 ppm
                             94-36-E
                                            485 +/- 5 ppm SO2 in N2
                   FF28536
NBS SRM 1661a
         TRIAD #1 TRIAD #2 TRIAD #3 TRIAD #4 TRIAD #5 TRIAD #6
         :07/19/91 :07/19/91 :07/19/91 :08/08/91 :08/08/91 :08/08/91
  UNITS : VDC X10 : VDC X10 : VDC X10 : VDC X10 : VDC X10 : VDC X10
                                                              8.83
                                 8.82 |
                                           8.80 :
                                                    8.82
                       8.82 |
FF-28536 1
             8.83 :
                                           0.00 :
                                                              0.00 :
                                 0.00
                                                    0.00
ZERO
             0.00 |
                       0.00 |
                                                    9.04
                                           9.02 1
CC-97188
             9.03 |
                       9.05 |
                                 9.07
                                                            495.99
           495.99 |
                     497.65
                              498.75
                                      1
                                        497.13 | 497.10 |
 ASSAYS: 1
                                             :VALID
                                                         :VALID
                            :VALID
                                      IVALID
         :VALID
               IVALID
                                                             496:7
                               497.5
                                      TRIADS 4,5,6 MEAN:
         TRIADS 1,2,3 MEAN:
                   SULFUR DIOXIDE
                                      CONCENTRATION IN ppm:
```

```
PPM x PPM
VARIABILITY
              VDC
                        0.0885
     ZERO :
             0.0005
                      318.6225
      SRM :
             0.0300
                        0.3540
              0.0010
     SRMd :
                        0.3540
             0.0010
     MIXd:
                       35.4025
              0.0100
LINEARITY :
                             19 ppm
           SQRT SUM :
TOLERANCE
```

(ELIMICS)

### SO2 TANK CALCULATIONS

```
Date 4/29/92 Tank ID 2065
                                                                                                                  (2208 ppm)
   Test # 1
   Gas Volume - Dry Standard Conditions
   Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
   = 1.525 dscf
   Concentration SO2 - ppm v/v dry
                                                                                                                         ml Ba++ = 178
  Normality (N) = \frac{.0099}{\text{ml Ba++}} ml Ba++ = ppm v/v dry = \frac{\text{(ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])}}{\text{ml Ba++}}
  ppm v/v dry = ( 778 )(32)(.0099 )(13.29 \times 10[-6])(10[6])
= 2/48
  Test # 2
 Gas Volume - Dry Standard Conditions
  Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
 = /,499_dscf
 Concentration SO2 - ppm v/v dry
                                                                                                                         ml Ba++ = 180
 Normality (N) = 0.099 ml Ba++ = ppm v/v dry = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ = 0.099 ml Ba++ =
ppm v/v dry = (750)(32)(.009)(13.29 \times 10[-6])(10[6])
 Test # 3
 <u> Gas Volume - Dry Standard Conditions</u>
 Vm (std) = VmKY[Pb+(\Delta H/13.6)]/Tm
= 1.519 dscf
Concentration SO2 - ppm v/v dry
                                                                                                                       ml Ba++ = <u>786</u>
Normality (N) = \frac{0.099}{\text{(ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])}} ml Ba++ = ppm v/v dry = \frac{\text{(ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])}}{\text{(ml Ba++)(32)(N)(13.29 X 10[-6])(10[6])}}
ppm v/v dry = (\frac{186}{10099})(32)(\frac{10099}{1009})(13.29 \times 10[-6])(10[6])
= \frac{2179}{10099}
```



DATE:

March 3, 1990

EXPIRATION DATE:

September 3, it

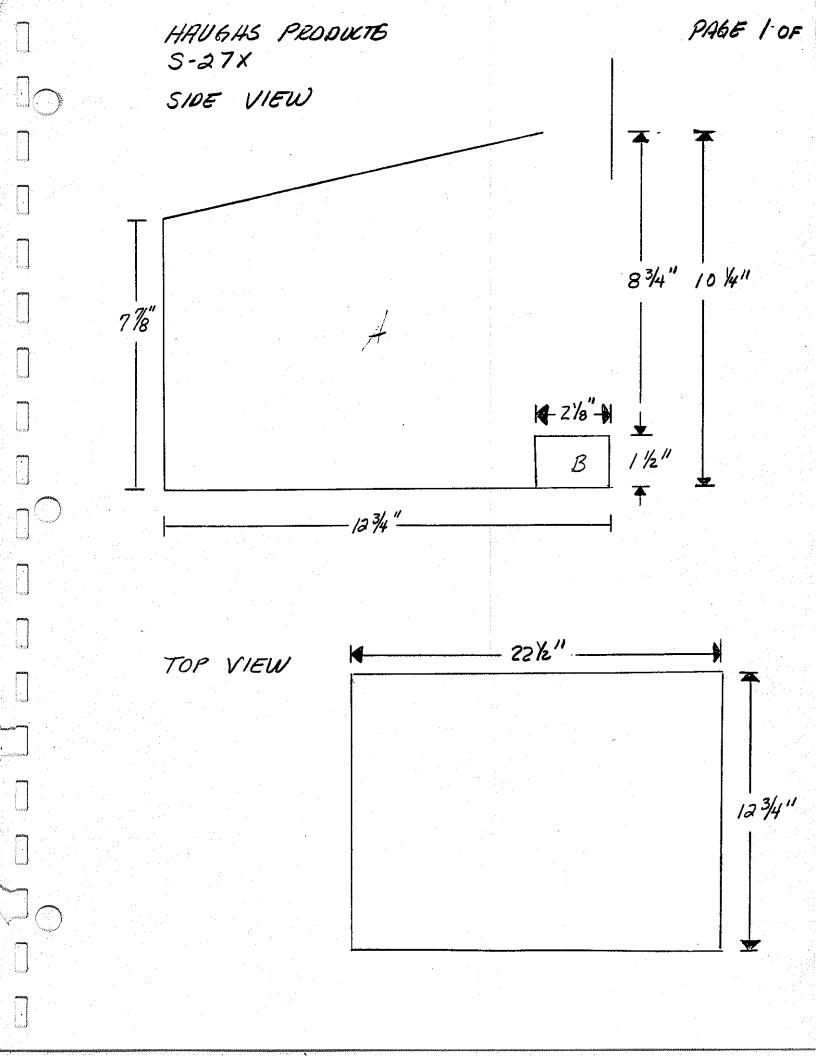
CUSTOMER: A L Compressed Gas

P. O. NUMBER:

202

CERTIFICATION OF CYLINDER AL 2065, PRESSURE 1990 psig

- 1. These gases were analyzed and certified according to EPA protocol =
- 2. Thermo-Electron Model 43a Analyzer using EPA method EQSA 0486 060 winsed for the analysis. The date of the analyzer's last audit was 12/5/1989.
- 3. National Institute of Standards and Technology's standard reference material 1664a which is 2339. ppm in sulfur dioxide in cylinder FF18327, which expires 12/27/91 was used as the reference.
- 4. Brooks flow controllers, model 5850 which was calibrated 3/5/90 was used to dilute the sample into the range of the analyzer.


#### DATA

| 2/27/91<br>Blank<br>SRM<br>AL2065 | 0.000<br>1.086<br>1.033 | 0.000<br>1.087<br>1.028 | 0.000<br>1.088<br>1.028 | Indicated | SO2 | 2212 | mqg |
|-----------------------------------|-------------------------|-------------------------|-------------------------|-----------|-----|------|-----|
| 3/9/91<br>Blank<br>SRM<br>AL2065  | 0.000<br>1.164<br>1.093 | 0.000<br>1.051<br>1.094 | 0.000<br>1.054<br>1.091 | Indicated | SO2 | 2204 | ppm |

Average 2208. ppm Sulfur Dioxide In NITROGEN balance

Jun Der

C



VOLUME CALCULATIONS

$$A = \frac{7.875 + 10.25}{2} \times 12.75 \times 22.5 = 2599.805$$

$$B = 2.125 \times 1.5 \times 22.5 = 71,719$$

$$A - B = 2599,805 - 71.719 = 2528.086$$

∡a Court pion, Ontario ada L6T 5C1 40NE: 418-792-8000 AX: 416-792-8053



Forest Home Industrial Park Orillia, Ontario Canada L3V 6H1 PHONE: 705-325-4155 FAX: 705-325-8816

# S270X STOVE LAB INSTRUCTIONS

Air settings for the various burn categories are as follows:

Maximum Burn:

Primary air fully open

Medium High:

Slider set 1/4 - 1/2 inch from closed

position

Medium Low:

Slider set 1/8 inch from closed position or completely closed for minimum burn rate possible (below

1.00 kg/hr.)

During First 5 min:

Medium High & Medium Low Keep door cracked between 1/2 inch to 1 inch. Close door at 4½ minutes.

Adjust door if wood does not seem to be

igniting.

Air setting fully open until 4 minutes 50 seconds then slowly adjusted to burn

rate setting at 5 minutes.

Maximum Burn Rate:

Keep door cracked between 1/2 to 1 inch. Adjust door if wood does not seem to be igniting. Air setting fully open. Close door at 5 minutes.

-All dimensions are taken from left primary opening. NOTE:

-Fan is turned off for first 30 minutes of test and

then turned on to high.

Ref Geroux

RECEIVED MAY 1 3 1992

EEMC

FAX to EPA - 5/13
UPS TO EPA - 5/13 1727 3316 096