

TEST REPORT

SCOPE: EMISSIONS AND OUTPUT

FUEL: EPA TEST FUEL (CRIBS)

TEST STANDARD: EPA

MODEL: HT-2000 WOOD STOVE

United States Environmental Protection Agency Wood Heater Certification Test Report

F.X. Drolet Quebec, Canada High Tek 2000 (HT2000) Certification

Report By:

Bill Nowak

CONFIDENTIAL

RELEASED ONLY BY AUTHORIZED PERSONNEL

8/6/93

PAGE NUMBER INDEX

1. Summary of Burn Rate and Emission Rate Results

2. Summary Table of Other Data

3. Wood Heater Description

4. Manufacturer's Testing Wood Heater Instructions

SECTION	LOCATION
Data Summary	Weighted Avg. Calc. Sheet pp. 1-4
Data Summary	Data Summary Sheets, pp. 5-7
Stove QC	Wood Heater description, p. 1 (varies)
Operators Manual	p. 1 of Section
Installation Description	p. 1
Stove/Cat Aging	
Stove QC	
Individual Test Runs	Data Sheets #9, 9A, 9A-1, 9A-2, 13
Individual Test Runs	Data Sheets #8, 16
Individual Pest Pome	Date Sheet #8
Individual Test Runs	Data Sheet #10
Individual Test Runs	Data Sheet #11
Photographs Individual Test Runs	Data Sheets #9A, 9A-1, or 9A-2
Individual Test Runs	Data Shects #9, 9A, 9A-1, 9A-2, 13
Installation Description	2.0
Installation Description	. c.
Installation Description	p.4
Cal Data	1.9.1
Individual Test Runs	P. 2 Data Sheet #16
Cal Data	p.3
Cal Data Individual Test Runs	p. 4 Data Shect #4
Cal Data	p.5
Cal Data	9 d.

13. Detailed Description of Sampling Systems and Locations

A. Method 5H
B. Proportional Gas Flow Rate System
C. Stack Gas Flow Rate Measurement System

2. Semi Annual
3. Pre and Post Weighing Check

Semi-Annual
 Pre and Post Test

A. Platform Scale

14. Calibrations

1. Initial

B. Analytical Balance

I. Initial

1. Thermocouples
2. Thermocouple Readout

C. Temperature

a. Semi Amual

12. Test Run Heater Operation and Air Supply Settings

A. Photographs
B. Wood Type and Line Drawing

11. Test Fuel Crib Description

7. Wood Heater Dimensions and Usable Firebox Volume

9. Pretest Facility Measurements

8. Pretest Burn Procedures

10. Test Fuel MeasurementsA. Load Weight.B. Load MoistureC. Wood Density

6. Wood Heater/Catalyst Aging Documentation

5. Test Chamber Installation Description

Data Sheet #16 p. 7 p. 8	p 9 p 10 p 11 p 13	p. 14 p. 15 p. 16 p. 17 p. 19 p. 20	p. 22 p. 23 Data Sheet #15-3 p. 24 p. 25 Data Sheet #15-1	p. 26 p. 27 Data Sheet #15-2 p. 28 p. 29 Data Sheet #15-4	Data Sheets #15-1, 15-2, 15-3, 15-4 p. 30, 31 p. varies	Data Sheet #2 Data Sheet #16 Data Sheet #16 Data Sheet #16 Table 5-Computer Printout
Individual Test Runs Cal Data Cal Data	Cal Data Cal Data Cal Data Cal Data Cal Data	Cal Data	Cal Data Cal Data Individual Test Runs Cal Data Cal Data Individual Test Runs	Cal Data Cal Data Individual Test Runs Cal Data Cal Data Cal Data Individual Test Runs	Individual Test Runs Cal Data Cal Data	Individual Test Runs Individual Test Runs Individual Test Runs Individual Test Runs Individual Test Runs

Combustion Gas (CO₂, O₂, CO) Train Response Check
 Tracer Gas (SO₂) Train Response Check
 CO Analyzer

3. Pre and Post Test Zero/Span

M. CO, Analyzer

Calibration

2. Zero/Span Control Chart

Calibration

Zero/Span Control Chart
 Pre and Post Test Zero/Span

N. O, Analyzer (Optional)

Calibration

Transfer Standard Calibration

3. Post Certification Test

2. Semi Annual

Initial

5. Wet Test Meter Calibration

I. Tracer Gas Rotameter

F. Draft Gauge G. Humidty Gauge Calibration (Sling Psychrometer) H. Dry Gas Meter

4. Tracer Gas Meter

D. Anemometer

2. Semi Annual

Barometer 1. Initial

b. Daily Check
 Dry Gas Meter

Method 3 Verification of Analysis (CO₂, O₂, CO, N₂)
 Method 6 Verification of Analysis (SO₂, N₃)

P. Calibration Gas Certificates of Analysis 1. Pre and Post Test Zero/Span Audits

Zero/Span Control Chart
 Pre and Post Test Zero/Span

1. Calibration

O. SO, Analyzer

Zero/Span Control Chart
 Pre and Post Test Zero/Span

Particulate Sampling Train
 SO, Injection System
 Combustion Gas (CO₂, O₂, CO) (CEM) Train
 Trucer Gas (SO₂) Train

A. Leak Checks

15. Quality Checks

B. Proportional Checks

16. Sample Calculations

A. Weighted Average Emission Rate
B. Dry Bum Rate
C. [Vm] - [Vm (std)]
D. Total Gas Flow Rate (Qsd)
E. Proportionality Rate (PR)
F. Particulate Emission Rate

17. Raw Test Data

18. Analytical Data

A. Filter and Beaker Tares
B. Solvent Blanks
C. Particulate Catches

D. Constant Weight Weighing Gross
 Blanks
 Net
 Gr/dscf

Data Summary Individual Test Runs Individual Test Runs Individual Test Runs

Individual Test Runs Individual Test Runs

Individual Test Runs

Individual Test Runs Individual Test Runs

Individual Test Runs Individual Test Runs Individual Test Runs Individual Test Runs Individual Test Runs

Weighted Average Calc Sheets pp. 1-3 Data Sheet #8 Data Sheet #7 (Particulate Calc Sheet) Table 4-Computer Printout Table 5-Computer Printout Table 4-Computer Printout

Data Sheets #1-16

Data Sheets #4-1, 4-2 Data Sheets #4-3, 5-3

Data Sheet #5-3
Data Sheet #6
Data Sheet #7
Data Sheet #7

Data Sheets #5-1, 5-2

M-5H INDIVIDUAL TEST RUN PAGE INDEX

The data sheets in the individual test runs are organized in the following sequence:

A.	Computer	Printouts
----	----------	------------------

O CITE		
Table	1	Field Data
Table	2	Field Data
Table	3	Field Data Averages
Table	4	Calculations
Table	5	Proportional Rate Variation

B.	Raw Data Sheets		No. of Pages
	Data Sheet # 1	Computer Input Data	1
	Data Sheet # 2	Meter box Data Sheets	variable
	Data Sheet # 3	Moisture Catch Sheet	1
	Data Sheet # 4	Scale Sheets	1
	4-1	Initial Filter Weights	variable
	4-2	Initial Beaker Weights	variable
	4-3	Constant Weights	variable
	4-4	Scale QA Checks	variable
	Data Sheet # 5	Particulate Catch Processing Sheet	1
	# 5-1	Front Half Catch	1
	# 5-2	Back Half Catch	1
	# 5- 3	Blank Catch	1
	Data Sheet # 6	Net Particulate Catch Calc Sheet	1
	Data Sheet # 7	Particulate Calc Sheet	1
	Data Sheet # 8	Miscellaneous Test Data	1
	Data Sheet # 9	Stove Operating Data	1
	Data Sheet # 10	Fuel Moisture	1
	Data Sheet #11	Wood Density	1
	Data Sheet # 12	Burn Rate And Flue Gas Data	variable
	Data Sheet # 13	Pre Burn Data	variable
	Data Sheet # 14	Temperature Data	variable
	Data Sheet #15	Pre and Post test Zero/Span Audits	1
	# 15-1	CO_2	1
	# 15-2	O_2	1
	# 15-3	CÕ	1
	# 15-4	SO_2	1.
	Data Sheet # 16	Quality Checks	1

TEST SERIES INFORMATION

Unit name and model number: High Tek 2000 (HT2000)

Type of unit:

noncat

Manufacturer:

F.X. Drolet

Address:

1700 Leon-Harmel

Quebec, Canada G1N 4R9

Contact:

Eric Laganiere

Phone Number:

418-527-3060

Observers:

Eric Laganiere

Date Rev'd 6/14/93

Aged: 6/18/93

Dates Tested: 6/23-7/1/93

Tested by: Energy and Environmental Systems Performance Corporation (EESPC) using EPA Methods 28, 28A and 5H where applicable.

Test Location:

1315 South Central Avenue, Unit C

Kent, WA 98032

Test Site Elevation:

42 feet above sea level

EESPC's Field Team

Supervisor:

Bill Nowak

Team Members:

Chip Wadington

Darla Kingman Lorrie Ulhmann

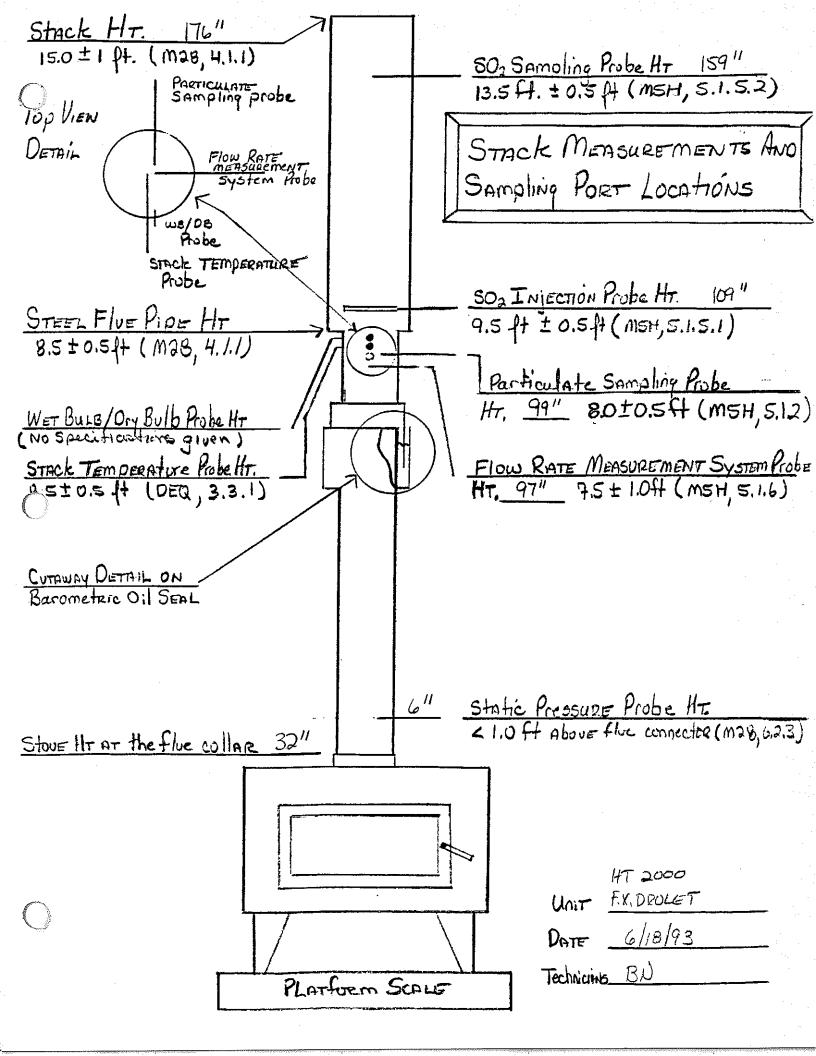
The following pages contain (1) test unit storage information, (2) a diagram showing the height and location of the stack components and sampling ports, and (3) copies of the certification test notices and cancellations sent to the EPA.

STOVE STORAGE INFORMATION

1. Temporary Storage at EESPC

A single, steel, banding strap is place around the unit, preventing opening of the loading door.

2. Permanent Storage


After certification is granted, additional banding is placed both horizontally and vertically around the unit to prevent access to the interior of the unit. An address label is then taped over the intersecting bands to act as a seal. Warning labels are affixed on the unit. The unit is then shipped via common carrier to the manufacturer's designated storage facility unless otherwise noted. A sample of the warning label follows.

WARNING

SEALED EPA TEST UNIT

DO NOT TAMPER WITH SEALS TO DO SO WILL VOID CERTIFICATION

F.X. Drolet High Tek 2000 (HT2000)

Wood Heater Emission Test Summary

Laboratory/Wood Heater Information

Stove Manufacturer:

F. X. DROLET

Model Identification:

HT-2000

Stove Type> 1=cat,

2=noncat, 3=pellet:

2

Laboratory Name:

EESPC

Laboratory Contact:

BILL NOWAK

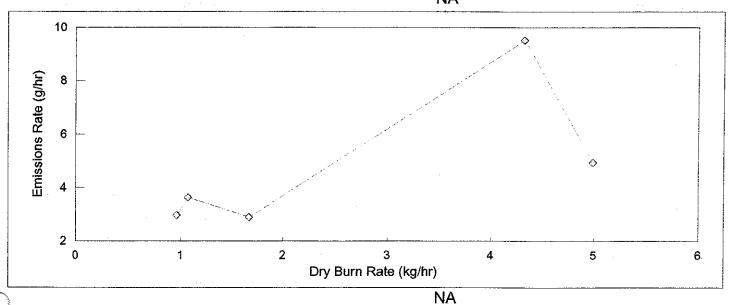
Telephone no.:

206-859-8318

Test Dates:

6/23-7/1/93

Test Methods Used


Method 28/Other:

28

Sampling Method:

5H

	Run no.	Burn Rate (kg/hr)	Emission Rate (g/hr)	Heat Output (Btu/hr)	Wtd Avg (g/hr) 3.79	
	 1	0.96	2.96	11576	# T# # # # # # # # # # # # # # # # # #	
1	2	1.07	3.62			
Ž.	4	1.67	2.88	20137		
	3	4.32	9.51			
	6	4.99	4.93	60170		
				NA		
	5	1.20	1.15	NA NA	Fan Confirmation	*
1		***		NA		

	RUN#	-	7	4	3	9	5	
Average Stack Gas								
Avg CO ₂	%	6.73	7.86	8.37	7.38	7.22	8.25	
Avg O ₂	%							•
Avg CO	%	2.18	1.26	98.	.17	.13	1.22	
Avg Moisture	%	8.88	8.23	5.45	7.88	8,58	7.40	

Average Stack Gas Flow Rate									
A CMB	dscfm	5.64	6.13	9.52	29.25	34.58		89.9	
Tacer Gas	dscfm	3.516	4.281	6.717	12.312	13.900		4.942	
Draft (static)	$\ln H_20$	028	030	055	058	081		052	
Proportionality Average	%	100	100	100	100	100	100	100	100
							:		

CO g/Kg 256.74 146.06 97.83 23.11 18.16 136.43 g/hr 246.73 155.84 163.57 99.91 90.67 163.86	Average Stack Gas Emission Factors:							
246.73 155.84 163.57 99.91 90.67	00	g/Kg	256.74	146.06	97.83	23.11	18.16	136.43
		g/hr	246.73	155.84	163.57	99.91	20.67	163.86

Average Temperatures									
Stack Gas	о Т	218	244	366	761	780		330	
Firebox	Ŧ,	671	736	903	1165	1206		815	
Secondary	ų,	992	802	876	1072	1054		870	
Catalytic Combustor	Ŧ°	NA	NA	NA	NA	NA	NA	NA	NA
Top	٠ ۲	330	347	325	502	479		370	
Left Side	T °	337	352	426	597	620		406	
Back	°F	181	159	128	122	126		284	
Right Side	Ŧ°	343	372	479	605	628		429	
Bottom	٩°	238	241	305	409	420		292	
Temperature Change	J,	-75.6	-60.0	46.2	-77.4	-51.8		-123.0	
									100000

	RUN#		2	4	3	9		5	
Test Chamber Enviroment									
Average Barometer	in. Hg	30.30	30.33	30.15	30.10	30.12		30.06	
Average Temperature	٩°	79	79	83	83	81		85	•
Ambient Moisture	% H ₂ O	1.35	1.3	1.15	1.4	1.4		4.1	
Relative Humidity	$\% m Kar{H}$	47.0	45.0	34.5	51.0	58.0		39.5	
Air Velocity	m/sec	0	0	0	0	0	0	0	0
									-
Test Fuel Weight and Burn									
Time									
Density (dry basis)	gm/cm^3	.3545	.4889	3990	3859	.4700	NA	.4268	NA
Coal Bed Weight	lbs	5.2	5.4	4.8	4.4	4.7		5.0	
Pre Test Fuel (inc kindling)	lbs	55.8	33.6	37.5	34.5	45.2		47.7	
Test Fuel	Ips	21.7	22.6	21.6	21.9	21.3		22.0	
Burn Time	min	200	470	285	110	95		405	

Unit	FX HTZO	00
Date		
Technicians	CW)	
	Page	of _ \ .
		WST5-Form3

CATALYTIC COMBUSTOR AGING DATA OR STOVE AGING DATA WOODSTOVE TEST DATA SHEET #25

		m /0#			;		
	1	T/C#	Firebox	Secondary	Post	In	
Hr. #	Date	Time	Temp	Burn Temp	Cat	Cat	Comments
1	6-18	1000	652	1218			
2	<i>I'</i>	1100	771	815		···	
3	t /	1200	809	1129			
4	17	1300	615	643		<u> </u>	
5	۱۱	1400	735_	850			
6	14	1500	580	606			
\Box	. U	1600	696	766			
8	6/21	0930	770	1384			
9		1030	877	1158			
IÙ		1130	779	1379			
						<u></u>	
		·					
	* * * * * * *						

TABLE 1 ---- RAW DATA

1

5.00

TEST No. : F.X. DROLET CLIENT

23-Jun-93 DATE: HT2000 MODEL: **************************** PERCENT PERCENT SO2 METER **DELTA** TIME METER CO₂ COCENTR. CO TEMP. READING H (%) PPM (IN. H2O) (DEG. F) (%) (MIN.) (C F) 11.00 900 0.150 80 1.23 0 35.000 6.00 300 82 0.44 5 36.500 1.320 7.50 850 0.160 85 1.04 10 41.053 8.30 750 87 1.02 42.688 0.210 15 9.80 725 87 1.24 0.220 20 44.553 725 12.00 87 0.92 0.220 25 46.482 750 87 7.50 1.33 0.210 30 48.411 9.40 750 0.210 87 1.28 50.276 35 87 1.17 10.10 775 0.190 40 52.142 10.80 750 0.99 87 53.947 0.210 45 725 88 0.72 11.60 0.220 50 55.812 725 88 0.75 11.20 57.748 0.220 55 750 0.77 11.10 88 0.200 60 59.685 725 88 0.58 12.50 0.220 61.621 65 11.90 725 0.62 89 0.220 70 63.493 725 11.20 89 0.53 75 65.437 0.220 11.90 775 89 0.190 0.95 80 67.380 11.20 750 90 0.88 0.200 69.199 85 775 11.70 90 0.91 0.190 71.085 90 775 0.82 12.60 90 95 72.910 0.190 750 11.80 91 0.49 74.735 0.200 100 775 11.30 0.190 91 0.72 76.627 105 91 0.85 10.70 800 0.180 110 78.459 775 0.76 11.20 92 0.190 80.233 115 800 11.30 92 0.73 120 82.072 0.180 800 10.90 83.852 0.180 92 0.67 125 9.80 800 92 0.63 85.633 0.180 130 92 0.64 9.70 800 0.180 87.414 135 8.60 825 93 0.76 0.160 140 89.195 8.20 875 93 2.65 0.150 145 90.983 7.70 950 0.120 94 2.65 150 92.617 1025 6.70 94 2.75 0.110 155 94.128 7.00 94 2.15 975 0.120 95.529 160 6.30 950 94 1.55 0.120 165 97.001 950 6.40 95 1.52 0.120 98.512 170 6.90 1025 95 2.33 175 100.029 0.110 95 2.07 6.10 1025 0.110 180 101.434 6.40 1025 95 1.99 0.110 102.840 185 5.30 1050 95 2.08 0.100 190 104.246 5.70 1125 95 2.08 0.009 195 105.618 5.50 1100 95 2.30 0.090 200 106.899 5.20 1050 95 0.100 2.26 108.209 205 4.90 1075 95 2.38 0.100 109.581 210 1125

95

0.090

110.921

215

2.62

490	179.178	0.080	95	1.79	4.70	1175
495	180.404	0.080	95	1.69	4.70	1175
500	181.631	0.080	95	1.95	4.30	1175
505						

CLIENT : F.X. DROLET	TEST No. 1
MODEL: HT2000 *************	DATE: ****** ****************
METER CAL. FACTOR (Y) 1.028	Wt. WOOD BURNED(LB) 21.7 Lbs
BAROMETRIC PRESS.(Pb) 30.3 in Hg	WET, FUEL MOISTURE % 18.664 %
LEAK RATE POST (Lp) 0.005 cfm	Wt. PART. COLLECTED 1.2742 g
WATER VOL. (V1c) 301.8 Ml	METER VOLUME Vm 146.631 mcf
TEST TIME (MIN) 500 min	HC MOLE FRACTION 0.0132

TABLE 3 ----FIELD DATA AVERAGES

CLIENT : F.X. DROLET	TEST No.	1
MODEL: HT2000 *************		-Jun-93
AVG DELTA H 0.13 in H2O	AVG PRCNT CO	2.18 %
AVG METER TEMP. Tm 93 deg F	AVG PRCNT CO2	6.73 %
AVG PPM SO2 1025 PPM	AVG BAL CO2/CO	3.09 %

TABLE 4 ---- CALCULATIONS

CLIENT : F.X. DROLET	TEST No.	1
MODEL: HT2000 ***********		3-Jun-93 *******
STD SAMPLE VOL. Vm(std) 145.79 ds	STACK GAS scf FLOW Qsd	338.461 dscf/Hr & 5.64 dscf/min
VOL. WATER VAPOR Vw(std) 14.206 so	PARTICULATE Cf CONCTRT. Cs	0.0087 g/dscf
PRCNT MSTR Bws 8.88 %	PARTC.EMISS. RATE E	2.96 g/Hr
BURN RATE BR 0.96 Kg	MOLES OF GAS g/Hr PER Lb WOOD Nt	0.42 Lb-mole/Lb
CO EMISSION RATE 246.73 9	PART.EMISS. g/Hr RATE & /Kgdry fuel	3.08 g/Kgdry fuel

TABLE 5 ---- PROPORTIONAL RATE VARIATION

CLIENT: F.X. DROLET TEST No.:

MODEL: HT2000 DATE: 23-Jun-93

	TIME INTEVAL Ti	PPM * Vm	**************** PROPRTN. RATE VAR. PR	PROPRTN RATE VAR. AVERAGE
	5	1372.4	96	100
	10	1386.1	97	
	15	1399.9	98	
	20	1406.5	99	
	25	1406.4	99	•
	30	1406.4	99	
	35	1406.5	99	
	40	1407.3	99	
	45	1406.6	99	•
	50	1405.3	99	
	55	1408.9	99	•
	60	1409.6	99	
	65	1457.4	102	
	70	1361.1	96	
•	7 5	1412.1	99	
	80	1411.4	99	
	85	1411.1	99	
	90	1414.6	99	
	95	1414.4	99	
	100	1413.1	99	
	105	1416.5	100	
	110	1417.3	100	
	115	1415.4	99	
	120	1420.1	100	
	125	1418.9	100	
	130	1419.7	100	•
	135	1419.7	100	
	140	1418.4	100	
	145	1467.1	103	•
	150	1420.6	100	
	155	1424.9	100	
	160	1425.4	100	
	165	1424.7	100	
	170	1423.6	100	·
	175	1428.0	100	
	180	1426.9	100	
	185	1427.9	100	
	190	1427.9	100	
	195	1427.4	100	
	200	1427.6	100	
	205	1427.7	100	
	210	1427.4	100	
	215	1427.3	100	
	220	1427.9	100	

225	1427.9	100
230	1427.9	100
235	1426.7	100
240	1427.9	100
245	1427.9	100
	1427.0	
250	1427.9	100
255	1427.9	100
260	1426.7	100
265	1427.7	100
270	1427.7	100
275	1427.9	100
280	1427.9	100
	1427.9	
285		100
290	1426.7	100
295	1427.9	100
300	1427.9	100
305	1427.3	100
310	1428.4	100
315	1427.3	100
320	1427.6	100
325	1427.6	100
330	1427.6	100
335	1427.6	100
340	1427.6	100
345	1428.4	100
350	1427.3	100
355	1427.9	100
360	1427.9	100
365	1426.7	100
370	1427.9	100
375	1427.9	100
380	1427.9	100
385	1427.3	100
390	1427.6	100
395	1427.6	100
400	1427.6	100
405	1427.6	100
410	1427.9	100
	1427.6	100
415		
420	1427.6	100
425	1427.6	100
430	1427.6	100
	1427.6	
435		100
440	1427.3	100
445	1428.4	100
450	1427.6	100
455	1427.6	100
460	1427.3	100
465	1427.6	100
470	1428.4	100
475	1426.7	100
480	1427.9	100
485	1428.4	100
490	1427.3	100

495	1427.3	100
500	1428.4	100
505		
510		

Client F. X DROLET	OVE DATA SHEET #1
Client Address 1700 LEONHARMEL	
QUEBEC, QUEBEC GI	N 4R9 CANADA
Client Phone 514-565-6336	
Project No Model No	HT 2000
Run No. Date of Test 6123193	Est Grams/Hr
Stove Type: Cat Non Cat Pellet	·
Data To Be Submitted To: Oregon Color	adoEPA
Burn Category: Low (<0.8 Kg/Hr) 9607 Med Hi Med Low (0.8 - 1.25 Kg/Hr)	(1.26 - 1.90 Kg/Hr) Max (>1.9 Kg/Hr);
Fuel % Moisture (dry) 22.947 - %(wet (00.00) (Data Sheet #10)	18.664- %
Stack Static Pressure (0.000) (Data Sheet #12)	
Barometric Pressure(00.00) (Data Sheet #2)	30,30 / "Hg
Temperature (Average Room) Combustion Air (00) (Data Sheet #14)	
Flue Gas Moisture(00.000) (Data Sheet #7)	8.8817 2
Ambient Moisture (0.00) (Data Sheet #8)	1.35 //
Stove Weight(000) (Data Sheet #8)	<u>487</u> .1bs
Stove Temperature Change (000) (Data Sheet #14)	-75.6 - OF
Particulate Emission (0.0000) (Data Sheet #7)	. 1349 gr/dscf
Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)	8694 BTU/16
Fuel Type: Wood: Pellets:	_
Total Fuel Consumed During Burn (00.0) (Data Sheet #8)	21.7 1bs
Total Particulate Catch(0.0000) (Data Sheet #6)	1,2747;
H ₂ O Captured (00.0) (Data Sheet #3)	301.8
Dry Gas Meter Volume (00.000) (Data Sheet #2)	146.631 CF
Dry Gas Meter: Y Factor: 1028, Post Tes	t Leak Rate <u>.005</u> CFM

TIME: 500

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1.028

Leak Checks: 16 " Hg @ .004 cfm cfm cfm cfm cfm cfm cfm cfm

Unit: f_X Run: f_X Sperator(s). C_X

Nozzle: Prope 9 3/8 " od

Initial Volume: 1.500

Inject SO2 @ 100 cc/min

ROTO	PRESS:	1.03	Sampling	Ratio :	13	# <u>1</u>	BAROM	eter:3	0.30
ИМ	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA	METER TEMP	66W 80S	ROTO ~	PUMP VACC
00	1040	35.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,896	,15	80	900	80	2.0
05	45	36.500		11.644	1.32	82	300	28	10.0
10	<i>S</i> o	41.053	41.053	4.087	.16	85	850	85	2.0
15	<i>SS</i>	42.688	42.688	4.615	,21	87	750	87	2.0
20	1100	44,553	44.553	4,774	122	183	725	57	2,0
25	05	46,482	46,482	4,774	122	87	725	87	2.0
30		48.411	48,411	4.615	. 21	87	750	87	کئی ا
35	15	50.276	50,276	4.615	,21	77	750	87	7.0
40	20	52.142	52.142	4,466	,19	87	175	87	2.0
45	25	53,947	53,947	4.615	; 21	87	750	87	2.0
50	1130	55,812	55.812	4.766	, 22	88	725	88	2.0
55	35	57.748	57,748	4,766	,22	88	725	88	20
ROTE	PRESS:	1.03	TOTALS :	61.633	3,54	103Z	BAROME	ETER:3	2,30
60	440	59.685	<i>5</i> 9,685	4.607	,20	88	750	88	2)
65	45	61.621	61.621	4.766	2.2	86	725	88	20
70	50	63,493	63,493	4,757	.22	87	725	84	2.0
75	<u> 55</u>	65,437	65,437	4,757	122	89	725	89	20
80	1200	67,380	67,380	4,450	119	89	715	89	2.0
85	0.50	69.199	69,199	4.590	,20	90	750	90	2.0
90	£.3	71,085	71.085	4,442	119	90	775	90	2.0
95		72.910	72.910	4,442	,19	90	775	90	2.0
100		74,735	74,735	4,582	. 20	91	750	91	2.0
1.05		76,627			119	91	775		20
110		78,459	78,459	4, 295	. 18	91	800		2.0
115		80.233				92	775	92	20
				54.548		1078	MAX VA		
TOTAL	. CU FT		TOTALS:	116,181	5,93	2110	AV BP:		

Meter Box Data Sheet Page # 2	Page
Meter Box 5H Y Factor 1.079	Unit:
	Run:
Leak Checks: 16 " Hg @ 100 cfm	

Page 3 of 3
Unit: F_X Run: I Date: G Da

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: 1,500

ROTO	PRESS:	1.01	Sampling	Ratio :	13	_ : 1	BAROM	ETER:	<u>30,30</u>
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SD2 PPM	ROTO TEMP	PUMP
240	1440	117.325	117.325	3.032	109	95	1125	95	2.0
245	45	118,606	118,606	3.032	109	95	1125	95	2.0
250	50	119,887	119.887	3.032	109	95	1125	95	2.0
255	5 5	121,169	121.168	3,032	,09	95	1125	95	2.0
260	1500	122,448	122,448	3,101	.09	95	1100	95	20
265	05	123, 758	123,758	3.101	109	95	1100	95	2.0
270	10	125.068	125.068	2.843	108	95	1200	95	20
275	15	126.269	126.269	2.843	108	95	1200	95	2.0
280	Zo	127,470	127,470	2.843	108	95	1200	95	2.0
285	25	128.671	128,671	2.843	108	95	1200	95	20
290	30	129,871	129,871	2.843	,08	95	1200	95	2.0
295	35	131.072	131.072	2.843	108	95	1200	95	20
ROTO	PRESS:	1:01	TOTALS :	<u>35 ,38 8</u>	1102	1140	BAROME	TER: 3	0.30
300	1540	132,273	132.273	2.903	108	95	1175	95	20
305	45	133,499	133,499	2.903	108	9.5	1175	95	2.0
310	50	134.726	134.726	2,903	108	95	1175	75	2.0
315	55	135,952	135.952	2.966	108	95	1150	95	20
320	1600	137,205	137,205	2.966	108	95	1150	95	20
325	05	138,458	<u>138, 458</u>	2.966	.08	95	1150	95	2.0
330	10	139,711	139.711	2.960	,08	95	1150	95	2.0
335	15	140,964	140,964	2.966	,08	95	1150	95	2.0
340	20	142.217	142,217	Z.903	.08	45	1175	95	20
345	25	143,444	143/444	2.903	.08	95	1175	95	20
350	1630	144.670	144.670	2843	.08	95	1200		2.0
355	35	145,871	145.871	<u> 2.843</u>	80,	95	1200		20
			TOTALS:		.960	1140	MAX VA	CC =	
TOTAL	CU FT		TOTALS:	70,419,	1,98	2280	AV BP:		

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1.029

Leak Checks: 10 " Hg @ 1004 cfm cfm cfm cfm cfm cfm

Page 4 of 5
Unit: fxRun: 1 Date: 6-23-93Operator(s): (ω)

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

Inject SO2 @ 100 cc/min

ROTO	PRESS:	1.01	Sampling	Ratio :		_ : 1	BAROM	ETER:3	0/32
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SO2 PPM	ROTO TEMP	PUMP
360	1640	147,072	147.072	2.843	.08	95	1200	95	2.0
365	45	148,272	148.272	2.843	108	95	1200	95	2.0
370	50	149, 473	149,473	2.843	.08	95	1200	95	2.0
375	55	150,674	150,674	2.843	,08	95	1200	95	2.0
380	1700	151,875	151,875	2.903	108	95	1175	95	20
385	0.5	153,101	153.101	2,966	,08	95	1150	95	2.0
390	10	154,354	154,354	2.966	.08	95	1150	95	2.0
395	15	155.607	155,607	2.966	108	95	1150	95	2.0
400	20	156,860	156,860	2.966	.08	95	1150	95	2.0
405	25	158:113	158, 113	3,032	109	95	1125	95	20
410	30	159, 394	159,394	2.966	.08	95	1150	95	2.0
415	35	160,647	160,647	2966	,08	95	1150	<i>75</i>	50
ROTO	PRESS:	1.01	TOTALS :	35.103	.97	1140	BAROME	TER:	30,30 <u> </u>
420	1740	161,900	161,900	2.966	, 08	95	1150	95	2)
425	45	163, 153	163,153	2.966	,09	95	1150	95	2.0
430	50	164,406	164.406	2.966	,08	95	1150	95	2.0
435	55	165.659	165,659	2.903	108	95	1175	95	2.0
440	1800	166,885	166,885	2.903	,08	95	1175	95	2.0
445	o5	168,112	168,112	2.966	.୦୪	95	1150	95	20
450	ان	169.365	169,365	2966	703	95	1150	95	2.0
455	15	170.618	170,618	2.903	.08	95	1175	95	2.0
460	20	171.844	171.844	2.966	, ුර	95	1150	95	20
465	25	173.097			30,	95	1175	95	20
470	30		174.324		,08	95	1200	95	2.0
475	35		175,524		,08	95	1200	95	2.0
			TOTALS:		196	1140	MAX VE	CC =	
TOTAL	CU FT		TOTALS:	70.197	1.93	2250	AV BP:		

Meter Box Data Sheet Page # 2 Meter Box 5H Y Factor 1029	Page 5 of 5 Unit: F_{\times}
Leak Checks: 16 " Hg @ 1004 cfm 50 " Hg @ 505 cfm cfm	Run: 1 Date: 6-23-93 Operator(s): (A)
Inject SO2 @ 100 cc/min	Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	1.01	Sampling	Ratio :	13	_ : 1	BAROMI	ETER:3	0.30
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SO2 PPM	ROTO TEMP	PUMP VACC
480	1840	176,725	176,725	2.903	,08	95	1175	95	2.0
485	45	177,952	177.952	2.903	,09	95	1175	95	20
490	50	179,178	179,179	2,903	.08	95	1175	95	2.0
495	<u>5</u> 5	180,404	180, 404		,08	95	1175	95	2.0
500	1900	181.631	181.431	2903	,09	95	1175	95	2.0
				14.515	,40	475			
				1110.181	5.93	2110			
				83,783	2.88	Z260			
				70,419	1.98	226D			
				-10.197	1.93	2280		0	101
				355.09 5	1:312	9405			
ROTO	PRESS:		TOTALS :				BAROME	TER:	
-									
				<u> </u>					
			_						
			TOTALS:			93	MAX VA	cc =	10,0
TOTAL	CU FT	146.631	TOTALS:	3,516	(130)		AV BP:		

MOISTURE SHEET Woodstove Data Sheet #3

Moisture Determination			
Initial: Level	Balance Zeroed	J Unit	e EX
Final:	-	Run:	
IMPINGER #1			6-22-13
Final Weight 797,9	grams	•	
Initial Weight 57/ 4	/ grams	Technician(s):	<u> </u>
Net_ 226.0	 -	n.	Final: Ch
IMPINGER #2	grams	Approved By:	· · · · · · · · · · · · · · · · · · ·
Final Weight 614,6	grams		
Initial Weight 59/10	grams		
Net 33.6	grams		
IMPINGER #3			
Final Weight 488.6	_ grams		
Initial Weight 4560	grams		
Net 2.6	erams		
IMPINGER #4 (SILICA GEL)	-		
Final Weight 856,2	grams		
Initial Weight 816.6	grams	_	
Ner39.6 V	grams		
		0T T 0	2010
	, 1112	OF H2O CAPTURED _	301.9 grams
Scale Check: 295.0g = 296.0	g	Front Half Filt	ar # 445 F
590.0g = <u>~299</u> 885.0g = <u>~284</u>		Back Half Filter	#
Notes:		adii Fiire	* # <u>UPSD</u>

		WOODS	TOVE	DATA S	HEET	#4-1:	AITINI	L FILT	ER W	EIGHTS (TARE V	VEIGHTS)
	Into	Dessicat	or: D	ate 5/27	<u> 93</u> T	ime <u> 030</u>	Ву_	<u>DK</u> f	ront	Half	Bac	k Half	<u>/</u>
	Manuf	acturer:	<u>S</u> & :	<u>S</u>		Size:	11 cm	Lot.N	o.: <u>7</u>	ZB 901_	Grade:	#25 g	lass
		r First		1	1	Second	1			Third			
	#	Wt 10921	Date			. 6924		Time	By DK		Date	Time	Ву
	442F		, ,	1016		6988	1	1046		/	-		-
	443F		1			,6977	1-/-	1048	 		-		
	444 F				T	T .	1/	1050	1 /				
	445 F		6/1	1090				1052		/		·	
	446F				LU			1054					
	447 F			1092	Ι"			1056	-				
	448F		WII	I		.7076		1058					
	449 F	10984				.6982		1100	i				
	450 F	,7079	6/1		T	.7080	it .	1102	\				
		_											
								 					
	_												
()	<u>441 B</u>	i .	-;	1096	LU	<u>.3745</u>	4/2	1126	DK	/			
	442B	.3730	10/1	1027		.3725		1128		/			
1	443 <u>B</u>	,3776	1011	1038	LU	.3771		1130		/			
	<u> 444 B</u>	.3779	6/1	1039	LU	.3774		1132	/	/			
	<u> 바5 B</u>	3738	6/1	1030	~**		,	1134					
	<u> </u>	3736	6/1			.373]		ا ما 113	_/_				
	447 B	,3755	1011	1033	44	.3750		1138					
	<u>448B</u>	.3-190		/V33		.3785		1140					
_	449B	.3728	1/1	1034		.3726		1142	1				
ŀ	450B	<u> </u>	(0/1	1035	LM	.3796	- 	1144					
Ĺ	73 1.		72 ;	o W			<u>_</u> _			10/03		12201	,
(necke	d by	M/	1/0	ver			_ Dat	e : <u>Ø</u>	12/93	Time_	1328	

		QA RE	WEIGH		
	Filter #	WT	Date	Time	Ву
ا م	à				
		·			

WВ	DB	%RH	Date	Time	Ву
50	70	48	161:	900	LU
62	75	48	6/2	1042	DK

loM

4/8

47

56

ن S

DL

950

WOODSTOVE DATA SHEET #4-2: INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date: 6/4/93 Time: 0900 By: DK Beaker First Second Third Date Time By Wt Date Time By Wt Date | Time Вy Wt 376 101.1787 1017 1012 LU 101.1782 1918 952 DK/ 377 10104080 1017 1014 LU 106.4076 -1954 17 930 378 105.4849 6/7 1016 LU 105.4895 958 / 379 97,6639 617 1018 LU 97.6636 380 103.9232 1617 1020 LUL 103.92301 1000 1100Z DX V 381 104.7513 617 1022 LU 104.7509 6/8 382 105.3599 > 1024 LU 105.3600 11004 | 1 383 98.6273 10210 LW 98.6268 1006/ 1005 1/ 384 105.3535 1028 LU 105.3530 / LIDIO T 385 1047878 1030 LW 104.7898 386 105.9197 6/7 1032 LUNIO5.9193 6/8 1012 CK 1034 / 199.9772 1014 199.9773 1016 7 197.9826 1036 / 197.9825 1030 / 105.5318 389 11015 1056321 1020 1040 196.1093 196.1094 95.6015 6/7 1042 LU 95.6011 7/8 1022 DX 391 1044 7 100.2325 392 100,230A/ 1024 393 100,4634 11026 / 1046//100.4631 394 1105,489101 1028 1 1048 105.4891 98.5638 10/7/1050 198,51241 10501 396 108.2162 (17/1052 LU/108.2159 95 1032 DK/ 1054 [7] [99.6750] 199.1952 11034 1 1:056 1 108.5964 108.5969 1036 / 96.8978 (399 196.898 1 1058 1038 / 95.9536 1040 195.9540 400 -1100 Checked By: 15th Mount Date: 6/8/93 Time: 1/30 QA REWEIGH BALANCE ROOM ENVIRONMENTAL CONDITIONS Beaker # DB %RH Date Time Time By WB Вy WT Date 5/0/108 LIL 41 040

				7				,	`							<u> </u>
06,	1			///	}			1.14	7							
	4			200	2			6116	4							
WST5-Form9, Pgl, 1/90			Date	+~				100 017	7 - 1				-			
	-	7				+-	-	+	-	+	-	<u> </u>	+	-		
WST5. Unit	Kun #	חמרבי	Third	1010,0305		- Contraction of the Contraction		10 R. CR92				1				
			Bv	30		13	3) j		177		Ĩ				
			Time			ain	3) [6 DIC		410		9/16				
CHTS			Date	88/4		65/0	*	80/2		10 pg 101		100	† •			
CONSTAN FINAL WEICHTS	(TS		Second	310		nn 2533/10/20		98.0897		18 OK (05,7129)		916 12/0/ 00/21 9/1				
CONSTAN	FINAL BEAKER WEIGHTS	-	By	ا_ 	-	S S	1)K ((<u>)</u> 중	/		+	-
÷.	3EAKER		Time	_		719		9381	<u> </u>) 810		000 OK		-		1
EET #2	INAL	-	Date 7	150		80/2		15 6		01 85/01	-	98/9				
Y SH	124	F	Da	101	_	3	_	10		0		و			\downarrow	\dashv
WOODSTOVE DATA SHEET #4			First	0000 10 106, 0320 10/25		100.3535		8630 BJ 98,1027 1015		105.7132		014 96.2901				
WOC			By	143		M		GD.		ă		성				
			Тіте	0 0		09[]		0630		1700		300				
g.m.	j		Date	124		40 00 1 4C/0		100		70 00T1 pc/	-	2				
		Into	Dessic				-									
		Beaker Into	#	386		387		355		389	ę C	W.				

						FIN.	AL FI	FINAL FILTER WEIGHTS						
Filter Into	_		L											
# Des	Dessic Date Time By First	Time	By	First	Date	Date Time	R _v	By Second	0,40		Ė	-		
2011		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,				7,7	Killona	חמרב	Date IIIIe	Dy	DA TUILD	Date	Time
がび	Ć,	シクニジラクブ	<u>多</u>	% % % %	200		<u> </u>	のたられり	12/2 OUT	OTTO	111	7		
					-	-	(2007	2	Z			
							•							
11.150	7	4	L		ŀ						_	,		
450	7,0	20100	1	. 57, 33	بر م ع	4 1 1 1 1 1 1 1 1	X	ころというと	75	Cho Acla	77			
			_					11111	602	7 0	Z			
		-												
			-		_		-				_			

À

TOMO	CNOT	i	%RH	717	-	UU	1, 1,	9	-	5	3	1	
T CHAC	TOWN	1	Ŋβ	ηL	-	2	7	-	*	ŕ	=		
TAT			MΒ	4.	3	1,11		ζ.)	00	7		
ONMEN	OWE	£	Δy	nk.	}	/ //	3	ئىر سىخ مىرا	e .	1 11	ったん		
ENVIR			11me	1716	,	2	1				j		
ROOM		100	nare	TE VI AU OIL I DOG		(2) 27 0 20 1 1 /c/J		604 1010 50 0	3	1 02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~		_
SCALE ROOM ENVIRONMENTAL CONDITIONS	Wetohing	Good for	Session Date 11me By	1		2		eri		77	-	ľ	
		1					1		T.				7
HTS		Rv	1					By					
WEIG		13						ΙM					
FINAL		Final						Final					
QA REWEIGH: FINAL WEIGHTS		Beaker # Final Wr						Filter # Final WT					
Q.		- u	T		_			9				_	

Date

Date

			-				
SNO							
CILCUIC							
LAL CC							
ONMEN.							
ENVIR						.	
ROOM							
SCALE ROOM ENVIRONMENTAL CONDITIONS	9	7	8	6	Comments		
,					01		
ı		- 1		-	- 1	1	

Dates: From Lolio 193

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorfus Model A1205 SN 37010004

	% RH	\sim	47	40	48	817	7 20	717	47	6/7	78	カカ	202	70	749	,											
	Wet Bulb	58	510	2	58	58	S S	57	56	555	58	(A)	10)	, v	59												
	Dry Bulb	70	(00)	9	70	70	٥٢	60	68	pp	30	hĻ	77	F	11.												
		(000	404	910	405	009	706	0830	908	900	906	1760	430	10001	406												
		0/10	1110	10114	(0115	<u>و</u> و۔	6117	lo 118	12/0)	حد ام	6/23	TC O	(25)	8C 9	5710												
	Tech	á	7/1	ک م	717	Z	277	ŎĶ	7/7	OK OK	717	K	<u>7</u>	à	717												
Blank	Beaker															-											
Blank	Filter																										
100mg	Weight	0.0474	0'1000	0.0999	6001.0	0.044B	0 0997	0.1000	0000	0.0999	0.0998	0,000	0.0845	0.0997	00110											:	
1.08	Weight	0000.	0,9998	S 449 C	10001	0000	4448	0000	0000	1.0001	1 9000	0; 4474	727	० भवत्व	1.0001												
108	Weight	10.0001	1000.01	0000101	5000 o	10,0002	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000	10.000		0 00000	- 4	1 246/6	50000	5000 01												
1008	We I gh c	1000.00	17.55	000000	22.22	000000	44.441	200.001		100.000	017.77.10	00000	21.LL 61	1000.001	137:000.3												

WOODSTOYK DATA SHRET #4-4 SCALK QA SHRET

Dates: Prom 3-11-93

Through (0/9/43

HERT F4-4

Scale Sartorius Model A1205 SN 37010004

	•	Π		Ţ	Γ	Γ	T	Τ	Τ	Τ		Τ	Γ		Γ			Τ	T		Т	Τ	Τ	T	T	1	Т	Γ	Τ	Т	Т	Т	Τ	$\overline{}$	1	Π	-
	% RH	36	32	39	39	Ch	72	41	47	777	1/2	49	1/6	78	16	45	777	19	2/4	77	45	28	79	777	78	4/0	- 87	75	<u> </u>	ph	467	48	100	47	47	77	L //
	Wet Bulb	54	52	53	57	58	60	57	09	63	(AO	55	56	ह्य	(%)	હ	(00)	59	59	્ વ	58	58	59	(S)	58	65	58	1.4	hol	6.3	58	الم)	58	51,	56	Se	ž
- 1	Dry Bulb	99	89	-25-	8	æ	75	7	73	77	75	99	9 9	75	75	76	74	71	73	75	71	0L	71	7	70	77	70	77	17	71/	7D	75	70	89	168	89	S
	Date Tine	+	0000 2110	+	2		2	5	2	1300	┿	9050 जेंग	+	021 70		1/10 946			_	~	15 1600	1	0101 71	2	21 950	724 1115	0201 30	4	7	306 87	006 17	2 440	727 226	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/	19 0400 P	
£	recu	35	1		1200			(C) YO	S NO	חלת	3	7	2		310		T	SN SN	30	1	3	で と で で に に に に に に に に に に に に に	7	7	9K 5	7	74	7 82	?	144	1 24	3 /: 2-	7 70	3 - 3 - C	1	277	,
Blenk	20000						1										+						-														
Blank	133.1.1								-			-						+			+			+		-							<u> </u>				
100mg Weight	1990	0.0097	+ 550	0.000	0.1001	6. (00)	0000	7,000	0.0999	, 0969	999V V	100/	0 0909	300	0.00	\vdash		1007	6000	000	100	J .	2000	2000	n.15400	0.100			0.100	0.0807	0,1001	0.0999	0.0999	0.0999		0.0996	!!
1.0g Weight	1.0006	0.9999	4,000	7.0000	1,000 2	1,0007	0.9998	1.0000	0000	1,0001	1.0002	1,0001	0.0999	•	0.9999	0000	1,000	7.000	0000	1,0001	1.000	9999 V		0000	0000	1.6001	0.9998	1.0000	0,9999	6000 O	1,000.	10001	0.9999	0.9999	0.9999	0.9999	-
10g Weight	1000:01	10.0000	10,000,01	10.0003	10.0001	(0,000)	10.0000			10,0001	10,000,2	1 000'01	1000,01	O I	99999			10.0002	10.0000	1000'01	10.0002	10.0001	00000	10.0002	(000.0	10.0002		=	1000001	10,000	9	9	5	٦.		9997	
100g Weight	-oaras	94,9468	100.000	100.000	100.001	100:001	99 9999	100,0003	100.003	1000000	100.000	(00,00)	100.000	_,	99. 4998	99.9997	100.0001	200.00	100,000			99.9999	99.9999	99,9997	1991,001	900 00	500 OCI	100.000	24.42	14 9999	100.000	0000:00	100.001	COO CO	44.446	94,4415	

	WOODSTOVE PARTICULATE	CATCH PROCESSING	TX	HT2-000
Character of the Control of the Cont	WOODSTOVE DATA		Run:	Date: 6-23-9
			Technician(s)	: 2:
		FRONT HALF		j
	FILTER #: 445 / g FINAL WT: .8505 / g TARE WT: .7002 / g NET WT: .1503 / g	desc: ACETONE	TARE W	T: 106.0305 / g T: 105.9193 / g T:
	FILTER #: FINAL WT: g TARE WT: g NET WT: g	BEAKER #: ml: desc: ACETONE	FINAL WY TARE WY NET WY	
		TOTAL VOLUME OF . USED IN WASH	ACETONE	
	• • •	BACK HALF		
	FILTER #: 456 FINAL WT: 5430 / g TARE WT: 3733 / g NET WT: .1697 / g	BEAKER #: 327 ml: 200 desc: ACETONE	TARE WI	1: 100,3533 g 1: 94,9772 g 1: 3761 g
	FILTER #: FINAL WT: g TARE WT: g NET WT: g	BEAKER #: 38名 ml: 75 desc: METHCHLO	TARE WT	
		BEAKER #: 329 ml: 225 desc: H20	TARE WT	: 105,7129 g : 105.5318 g : 1811 g
	,	BEAKER #: ml: 2/5 desc: H20	FINAL WT TARE WT NET WT	: <u>1807</u> g~
		ml:desc:	FINAL WT: TARE WT: NET WT:	g g
		BEAKER #: ml: desc:	FINAL WT: TARE WT: NET WT:	g
Marketon, Commencer of the Commencer of		TOTAL VOLUME OF ACUSED IN WASH TOTAL VOLUME OF DIUSED IN EXTRACTION TOTAL VOLUME OF DIWATER DRIED	CHLOROMETHANE	200 m1 75 m1 440 m1

PRTCATCH

	LIGGECTE	1.100 D1 /3.1	"VC D		27.662	Ur	nit:	HT	2006	>	(FX
		OVE DAT	ra SHI	EET #		Ru	ເກະ	1	Date:	61	123/9
В	LANKS DO	NE: <u>ل</u>	15/9	3		Te	-chni	cian(s)	: BA		
15	ml FISHER O Sml DIC FISHER O	AC PTIMA L BEAK HLOROME PTIMA L	ETONE LOT # ER #: THANE LOT #:	<u>8</u> 9107	<u>32</u>	TAR NE FINA TAR NE	E WT T WT E WT T WT	= 108.0 = 108.30 = 106.30 = 106.3	198 004 060 054 006		
200 1 Bonn	ml DIST			<u> </u>		TAR	E WT	: 106.90 : 106.9 :	63S	9	
	BEAKE	R TAR	ES	INTO	DESSC:	TIME:_	090	<u>()</u> DATI	== 10/5	1/43	
BKR #	1ST W	T TIM	E a	END WT	TIM	3RD	WT	TIME	4TH I	MT	TIME
A	108.899	17/110	7 10	8.8999	3 1044						
<u>B</u>	106.305	56 1104	f 10	6.305ع	4 1046						
<u>C</u>	1010,51104	0 :1010	100	6.963	5/1048	A.					
s	CALE ROOM	1 QC :	TARES	3		SC	ALE I	ROOM QC	: FINA	aLS	
DATE	TIME	BY W	в)B %		DATE	TII		MB	DB	7.
6/5	1042		10 la			10115	90		58	76 70	49
										,	
		BEAK	ERS:	FINAL	WEIGHT	s —					
BKR #	IN DSC	TIM	E 1	ST WT	TIME	E SND	WT	TIME	3RD W	JT	TIME
A	6/11	103		8.900			1002	912	s		
B	6/11	103		· · · · · · · · · · · · · · · · · · ·	9 930	106.3	000	914	<u>/</u>		
<u>C</u>	lolu	10=	10 لح	b.963	9 933	2 106.91	637	916	.*		<u>.</u>
BKR #	4TH WT	TIM	E 5	тн шт	TIME	6TH	WT	TIME	7TH W	IT	TIME

WSTAPP1-AppDoc19-page2 WOODSTOVE TEST DATA SHEET #6 Rev 6/90 By: Bill Hounk ____ Date: <u>6/15/9</u>3 Blank Audit: Blank Calculations: 0004 g = 200 m1 = .00 00 02 g/mVAcetone: .0006 g ÷ 75 m1 = .00 00 08 g/m1/ Dichloromethane: Front Half Catch: Filters: $\frac{1503 \text{ g}}{\text{Total Catch}} = \frac{1}{\text{No. of filters Blank Value}} = \frac{1503 \text{ g}}{\text{Net Catch}}$ Beakers: $\frac{11}{\text{Total Catch}} = \frac{100}{\text{Ml of Acetone Blank Value}} = \frac{110}{\text{Net Catch}} = \frac{1}{\text{Net Catch}}$ ml of Acetone Total Front Half Catch ______ 2613 g Back Half Catch: Filters: $\frac{1697}{\text{Total Catch}} = \frac{(.0000 \text{ g})}{\text{No. of filters Blank Value}} = \frac{1697}{\text{Net Catch}} g$ Beakers: 1. Acetone/Impingers: $\frac{376 \cdot g}{\text{Total Catch}} = \frac{200}{\text{ml of acetone Blank Value}} = \frac{3757}{\text{Net Catch}}$ ml of Acetone .00010 2. Extract/Impingers: $\frac{100}{\text{Total Catch}} = \frac{75}{\text{ml. of}} \frac{(.00008g)}{\text{Blank Value}} = \frac{100}{\text{Net Catch}}$ Dichloromethane ml of Dichloromethane 3. Water/Impingers: $\frac{(.00000)}{\text{Blank Value}} = \frac{.3614}{\text{Net Catch}} g$ ml of water

Total Back Half Catch

Total Catch % Front Half

NET PARTICULATE CATCH CALCULATION

HT2000 (FX)

Technician(s): BN

Date:

EPA METHOD 5H PARTICULATE CALCULATIONS WOODSTOVE TEST DATA SHEET #7

Date: 10/2319 Run:

unit: HT 2000

145,7377 dscf

0000.000

Technician(s): RM

" H20 30 13.6 (|4 |6,63 | Vm) (17.64) (|,000 mcf) (30,30" Hg+

1) Vm(std)=

(553 TMA

scf 11,2057 0000.00 2) Vw(std) = (.04707)(.30)(.6 ml H20) =

, ට් ග්රි ග්රි ග්රි 000.00 = 10888 Bws x 100 =.0000 14,3057,sef + 145,737,dsef) (14, 2057, sof) 3) ASW=

% H20

gr/dscf 137g 0.000.0 15.43)= 145,1377, dscf) (·b, zhl.z'() 4) Cs=

、ちょる・ 0000.00 3 5116 dscfm)(60)= -000.00 (145,7377 dsof) 5) Estimated g/hr= (1,3743,9.)

000.000 V 0.000 mcf 00.00 <mark></mark> 호 meter correction factor (Y factor) of the meter box used for the test total cubic feet pulled on meter box during test average barometric pressure during the test average delta H for the test mcf " Hg " H20

average meter temperature for the test in degrees Absolute total water caught during the test TmA ml H20

total particulate catch for the test average stack flow during the test dscfm

.000 " H2C 000 TmA 000.0 ml H2C . 00000.00 00.000 dscf computer printout ġ ġ ġ

PRTCALC

Hg

	Unit: FX HT 2000	F	Run:	Date:	6/23/9	<u>u</u>
=	Test Chamber Air Velocity S	tart:	Stop: O	Avg:	0]
	Dry Bulb Stop: WB:	DB: 72	= 50 = 44	% RH	13	%H2
=	Average % Relative Humidity 4	7.0 Averag	e % Ambient	Moistur	re: //	<u>35</u>
_	Empty Stove Weight: 487 Empty Stove Weight w/ Stack & C	lbs Dil Seal: Wet	: 533,4	Dry:[533.1	
	Kindling Weight: Pape	er: ,3 lbs	5	Wood:	5.2	lbs
	Preburn Fuel Wt: 85+ 20,3+21.			otal:		lbs
Contraction of the Contraction o	Coal Bed Weight: RANGE: 5,4- Upper = .25 x fuel wt Always round DOWN to nearest te Lower = .20 x fuel wt Always round UP to nearest tent Maximum Coal Bed Weight Removal Uppe	lbs enth h Actual h Lower	SCALE: 538 Coal Bed W			lbs lbs lbs
		1.5 x 5 " spa	cers) =		16	pcs
	Dimensions Length in inche	s No. pcs	Wt. in l	os %	of loa	ıd
j	2 x 4 NA	NA	NA		NA	
į	4 x 4 /8.5	5	21,7		100.0	
****			Test Fuel We	eight:	21.7.	lbs
		21.7 × 18664 2046) X 60 500 Time	. '	9607 Kg/Hr	
	Estimated EPA Heat Output in 19,140 X - BTU's / Hr	100	7607 = DBR		기 's/Hr	
The second	EPA Default Efficiencies: NON			ET: 78	,	
	NOTES: 8 008					
	_					
	1.25 - 385					

	Run:	Date: Wiss	3/45 Page 9
WOO	IDSTOVE OPERATI	NG DATA	
FIRE STARTED: 0735	PST/	PDST	
WARM UP AND PREBURN: PRIM up/preburn fuel charges. toreburn.	MARY AIR: set when set toC	ide open for al LOSED at	l warm- start of
SECONDARY AIR: NA	CAT BYPAS	s: <u>NA</u>	
CHARCOAL BED PREPARATION: up/preburn charge. At 1 1/2 leveled. In stove	2 min. pr ior to		
TEST: Door Wide Open duri			-
PRIMARY AIR: opened full for setting of <u>CLOSED</u>		min. , then	set to run
SECONDARY AIR: NA	CAT BYPAS	is: <u>NA</u>	**********
FAN: ON OFF during warm-up ON OFF first 30 mir Fan speed set at HGF	ON OFF duri	ong preburn ON OFF balar	nce of test run
WOOD DATA: KINDLING: a mix	of the grades	listed below	
SIZE	MIL!		
217 2	111 1 1	GRADE	SPECIES
	Manue/Tacoma		
PREBURN: 2X4			
PREBURN: 2X4 TEST: 2X4	<u>Мамче/Тасома</u> <u>Расумоос</u> Расумоос	Std or btr	s. orn D fir
PREBURN: 2X4 TEST: 2X4 4x4 PELLET FUEL APFI#: _	<u>Мамче/Тасома</u> <u>Расумоос</u> Расумоос	Std or btr	s. orn D fir
PREBURN: 2X4 TEST: 2X4 4x4	Мамче/Тасома Расмиоод Расмиоод	Std or btr #2 or btr #2 or btr	s. orn D fir s. orn D fir
PREBURN: 2X4 TEST: 2X4 4x4 PELLET FUEL APFI#: _ All grades WCLB rules	Manue/Tacoma Packwood Packwood Packwood	Std or btr #2 or btr #2 or btr	s. orn D fir s. orn D fir s. orn D fir
PREBURN: 2X4 TEST: 2X4 4x4 PELLET FUEL APFI#: _ All grades WCLB rules WARM UP INFORMATION: All pre-burn/warm up fuel p ist warm up/preburn fuel ch. 2nd warm up/preburn fuel ch.	Manue/Tacoma Packwood Packwood Packwood arge (85 arge (20.3	#2 or btr #2 or btr #2 or btr lbs) added at	s. orn D fir s. orn D fir s. orn D fir inches. t 0805
PREBURN: 2X4 TEST: 2X4 4x4 PELLET FUEL APFI#: _ All grades WCLB rules WARM UP INFORMATION: All pre-purn/warm up fuel p	Manue/Tacoma Packwood Packwood Packwood arge (85 arge (20.3	#2 or btr #2 or btr #2 or btr lbs) added at	s. orn D fir s. orn D fir s. orn D fir inches. t 0805
PREBURN: 2X4 TEST: 2X4 4x4 PELLET FUEL APFI#: _ All grades WCLB rules WARM UP INFORMATION: All pre-burn/warm up fuel p ist warm up/preburn fuel ch. 2nd warm up/preburn fuel ch.	Manue/Tacoma Packwood Packwood Packwood arge (85 arge (20.3) arge (21.8)	#2 or btr #2 or btr #2 or btr lbs) added at lbs) added at	inches. 5. orn D fir 6. orn D fir 7. orn D fir 8. orn D fir 9. orn D fir 10.005

FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Unit: FX HT OOO

Run:
Date: 10/03/93

Technician:
WST1-Form7-Rev11/89

NOTE: Record readings to the nearest 0.5% moisture
Uncor Values are corrected for temperature: Yes____. No____.
Time Test Fuel Moisture Readings taken at:____ 900____.

Calibration Checks: X / Y / 12.0 12.0 22.0 22.0

Pc #			To	T	Uncor	ttom		de	Piece Av
		Jse	Uncor	Cor			Uncor	Cor	Corrected
1	2x4x8	K	10,5	11.2	11.5	12.3	11.5	12.3	11.933
2		1							
3									
4	21418	12	19.5	1213	20,5	122.4	20,5	22.4	22,033
5	2x4x8	P	18,5	20.1	18.5	120.1	18.0	19.6	19.933
6	2x4x8	P	19,0	120.7	18,5	20.1	18.5	1201	20,300 -
7	244x8	P	21.5	23.5	21.5	235	21.0	1229	23.300 -
8	24428	3	21,0	22.9	21.0	22.9	19,5	21.3	22,367
9									107,933
10									
11									
12	424x/8/2	T	19,5	21.3	22,0	24.1	20.5	22.4	22.600
13	4418/2	7	20,0	21.8	20,5	224	215	23.5	22.567
4	4x4x 18/2	T	21,0	22.9	20.5	22.4	21.5	23.5	22,933 -
.5	4x4x/8//2	T	21.0	22.9	21.0	22.9	20,5	22.4	22.733
6	4x4x1812	T	22.0	24.1	22,0	24.1	21.5	23.5	23,900 -
.7									114.733
8									
9									
0	FEET	τ	19,5	21.3	20.5	22.4	30,5	12.cc	Z2,033

% Moisture - Dry Basis:

% Moisture - Wet Basis:

Kindling	Pretest	Fuel	Test	Load
11.933 =	21.587	7.	22.94	7 - 7
10.6612.	17.754	7	18.66	4- 7

To obtain Wet from Dry: $\frac{100 \times 7}{100 + 7}$ Dry Rdg. = % Moisture, Wet Basis

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

	Unit: FX DROLET
	Rung:
WOOD DENSITY DETERMINATION	Date: 6/22/93
WOODSTOVE TEST DATA SHEET #1:	Technician:
	WST2-form11-Rev 6/90
Wood Piece: Nominal Dimensions:	- 4 x 4 x 31/2
	- 7 X 77 X 372
Depth (D):	<u>8.9</u> c=
Width (W):	<u> </u>
Length (L): 8.4 cm	
<u> </u>	+L = 0 .17
Y,5 cm Leng	th $\overline{x} = 8.475$ cm
	me: 671,305 cm3
	(D X W X L)
MOISTURE: Room Temperature:	69 OF Correction Factor:
Uncorrected Heter Readings Correct	ed for temperature:Yes No
NOTE: Record moisture meter readi	
Wernin moisture mersi resur	ngs to the nearest 0.5%
Uncor Cor	Avg 7 Hoisture (Dry) 20.867 7
10 0 1 20 1	
	Aug Z Moisture (Wet) 17,264 Z
Bottom: 19,0 20.7 7	
Side: 20,0 21,8 7	Scale: Leveled In Our
Ī. 20.8672	Scale: Leveled In Our Zeroed: In Out
Ī. <u>\\\ \alpha^{0.86} \ \ta</u>	
Wet Weight: 285,6 g Dry Weight:	: ~238, C =
7 Moisture Dried Basis: 16,667	, •
[1 - (Dry Wt ; Wer Wt)] X 100	
Date , Time	Temp
Into Dryer <u>6/22/93</u> 100	00 2/6 of
Out of Dryer 7/1/93 106	
(ninimum Time in Dryer: 24 ars.) Minimum Dryer Temp 100°C (212°F)
Density = 238.0 g : (071,305)	$\frac{2 \text{ cm}^3}{2 \text{ cm}^3} = \frac{3545}{2} \text{ g/cm}^3$
(dry wt) (volume)	
Pellet Fuel Moisture Content Determ:	ination
Tare Beaker Wtg	
Wer Wt:g	g =g
Gross Wet Wt. Tare Beaker	Wt. Net Wet Wt.
Dry Wt:g †	g =g
Gross Dry Wt. Tare Beaker	Wt. Net Dry Wt.
Z Moisture Dried Basis:	7.
[] - (Not Des Ut Not West Ut) X	

725 775 850 725 750 800 906 725 725 750 77.5 750 725 725 50 300 125 750 150 750 SO2 PPH .556 :043 1.154 -040 1046 9h0-045 101 NEO 598 -045 \$H0. 970 04P 040 840 0.50 840 049 040 bh0-000 050 5040 240-047 OF STATIC 2007 3963 3687 293 35 308 303 289 553 320 300 308 304 308 313 309 309 3 307 700 301 3 287 STACK 301 301 PAGE 130 200 2 30 9 33 **W** 132 30 3 125 23 333 33 50 32 32 W N CAL WB 3 129 3 (n) 3 3 ω DATE 6/23/93 3 Ŋ .S.S. 0.9 10.0 **₩** 5.5 0 Š V) J. & ⊗ Ś ω \mathcal{L} N ~ N 3 (1) 12H20 0 = 2 $\dot{\infty}$ 2 0 Ö $^{\circ}$ 196 196 19 193 63 961 190 700 193 233 193 260 88 196 DRY B 180 194 8 189 194 চূ Ò Q 9 $\overline{\infty}$ 00 200 8 123 CC! 72 123 2 20 $\overline{\vec{\Omega}}$ 5 TO CO 5 ā 123 \overline{C} 12 7 124 d VΩ 3.6 w 5.0 777 رـ Op 5 5 ی 7 d σ 6.9 Ţ <u>o</u> 70 $\vec{\sigma}$ Ğ \subseteq $\underline{\mathcal{Q}}$ BA فِ ōō Ϋ́Ω $^{\circ}$ RUN افح ا 1.02 33 れ) (J) 58 8 <u>9</u> ეე ეე 67 ン) の 75 3 下0 -9 1.24 4 **7**0 7 ខ 4 .085 058 13000 C 533 250 040 (7) 23 , 687 950 170. 880 70 CL0 160 下 2 33 128 Ott 124 8.5 7.6 Ω V) 0 8 ત્ \mathcal{A} 83 10,3 ഗ 11.2 0 0 σ 00 8 Φ. တ o · \mathcal{G} 9 S σ Q ੱ 342 350 372 373 32% 344 307 347 165 334 357 368 337 = 36 371 36 19 > トゴ مي. 11:2 16.7 12.5 3 00 0 മ 11.9 <u>م</u> ~ 202 2 2 9 Ø σ X 453 478 335 48S 448 50g 432 458 434 505 5 무8 304 378 S S 3 干 394 304 ৮খ > 三 و۔ و_ DROP و و_ 90 و U) ₹, S (1)V) و۔ တ ş ō 19.5 16.2 4 20.02 20.6 14.3 <u>و</u> __ ٥ = N ∞ 7 <u>~</u> N 3 FUEL ∞ Q G 5466 5493 550.5 548.2 (五) (5) 557.8 5545 550 556,9 5499 5487 517.4 558.9 5510 555.8 5514 = 560.0 3 547 553 SCALE SS SS 553 555 7, 5,5,5 8,5 क्ष 8 9 1001 2 <u>8</u> 30 9 (관 OTAL TOTAL TOTAL

PAGE 12 DATA SHEET MANUFACT &R/MODEL

020 050 SCII 1125 1025 025 1025 975 950 1025 00 1075 125 S I 950 1125 825 800 200 SO2 PPH 800 |dC0-1.026 · 025 -020 8C0-023 -020 -038 032 926 2025 1036 -035 643 (Th (); -039 278 700-00 028 630 -027 8-S OF -031 179 STATIC 2883 5147 236 286 28G 208 83 80 300 60C 221°4 9% 98 198 <u>5</u> 82 28 R <u>0</u> 200 707 197 STACK 318 9 00 $\overline{\infty}$ PAGE **60** 105 5 <u>ල්</u> <u>ه</u> 701 (g) 70 03 8 20 118 40 500 3 ÇO 801 08 8 70 $\overline{\gamma}$ CAL DATE 6/23/93 α 7. 00 و - 0 او ح 7 0 3.9 <u>.</u> و۔ 0 و 9 \circ XH20 39 3.9 9 S 0 νij 1 7 J 80 38 220 3 36 50 500 3 134 DRY B 2 28 7 豆 وا 7 3 ω 3 الح <u>ا 0 ا</u> 89 70 47 102 9 ~ 168 8 8 3 93 76 9 W 20 g 76 œ α Q C O O |S. 6 d 6 _9 **(1)** 3 00 σ コ 0 7 S 0 (4 \mathcal{L} O_O 8 Q 8 BAL $\sqrt{2}$ 6 **¬** 3 7 a 3 RUN 800 is Services 3 200 2.30 777 C 63 8 $\frac{1}{3}$ 99 250 2.75 2 -70 73 8 و -SS 300 226 30 500 **CLC** SIS 233 200 265 3 50 230 238 295 207 > 30 16.33 13.0 3.3 (γ) o (M) 2 3 $\frac{2}{2}$ 0 0 337 (A) <u>%</u> 13.4 29 ò 8 $\underline{\omega}$ $\dot{\mathcal{Q}}$ 2000 0 3 3 0 3 3 \subseteq \bigcirc .536 ئلاكز 520 5 50 Ŋ 534 500 538 478 <u>に</u>な 11/1 175 510 区 540 **₹** 5 385 0 0 0 52 그 > d وبہ ص 7.0 W 0 T ∞ 0 J ഗ് ĝ 9 Q 7 Q 203 S) ⇉ 8 9 7 4 \times 455 3 333 193 386 203 330 198 195 439 310 202 395 25.7 239 209 284 199 39 S DATA SHEET DROP M i \bigcirc (1) 0 (4 C ત 3 3 3 و. در $^{\prime}$ ζ. ∞ 4 5 0 ω **(n)** $\langle \gamma \rangle$ 9 ココ Ø 0 T FUEL S و 7 7 547.5 15/109 545 G SDL 5,53 545.0 5433 SEN SEN 5443 5439 9136 548.2 572,4 546.8 533 5434 100 July 10 10 507 547 PAGE 12 MANUFACT 一一 512 SCALE 3 ¥ છ 3 2 A) 2 ر ک TOTAL TOTAL FOTAL TIME

150 O 1200 S. = 50 300 1200 200 1150 150 1150 1200 175 75 260 1200 135 1200 * | ; ; | | | | 100 **J**S. 0011 125 SO2 PPM -. 228 020-7020 000 733 0.0 610. 000 610-19/7 610-2019 -619-610-070 610-610: -019 610-- 619 00 610 610-<u>ु</u> -620 OF STATIC 2083 41555 M) 2072 2 168 5 173 100 **(η)** 8 5 168 2 7 7 STACK 20 = 5 PAGE CAL WB 00(9 \overline{z} 3 70 g 201 ō <u>a</u> 901 9 0 \overline{a} $\overline{\circ}$ 5 **-**2 2 0 2 6/23/93 40 0 \mathcal{L} XH20 7 **一** 丁 ~, 7 _ ____ **=** SCI I SS 2 133 ひろ 25 20 SCI pcl SS にい 122 C123 リト **æ** 127 0 DATE \mathcal{C} DRY 63 9 93 93 α 93 93 3 S 3 93 3 63 (1) **M**) 93 3 (1) 93 æ 3 () 92 NET. Ö Q Q O \circ Q O Q O Q O 3 \mathcal{C} 3 $\frac{1}{\infty}$ \mathcal{C} ω 0 3 3 3 \mathcal{C} 3 7 3 و_ 3 T ٢ $^{\infty}$ BAL ∞ S コ \mathcal{C} RON 365 3.68 380 2.72 3 3 9 3,62 5 2.68 3.50 3.80 .82 25 3.6 3.59 3 7.87 S ខ S (**Y**) 7 ന് 368 340 365 383 3 268 335 SK 745 265 364 362 35 380 78 337 350 200 251 .287 73 > 2000 5.0 7 33.0 0 13 6 3.4 13.3 0 ر ش S 3 लंग 3.4 4 3 <u>5</u> <u></u> 3 엉 3 3 <u>(v)</u> Ω 3 3 $\overline{\omega}$ 3 $\underline{\mathcal{C}}$ 3 530 SOO .530 533 525 555 529 528 <u>왕</u> 545 25 Š S 7 515 L S ES. 53 53 55 > 1 **€** 48 7 O \circ G တ T, 49 二 202 7 $\overset{\times}{\iota}$ = ⇉ 7 7 ゴ J \Rightarrow 7 186 202 195 93 189 193 (g) 194 1951 9 189 86 19 20 18 5 9 5 9 <u>∞</u> 9 <u>6</u> <u>6</u> 5 S DATA SHEET DROP S \mathcal{O} \mathscr{O} \mathcal{O} \varnothing و ر أح ৹ Oo ∞ り こ 口 8 \mathcal{M} V) ㅋ. σ Γ 3 6 ST. ξ**λ**) ÇO FUEL ゴ O mi 3 3 70 3 M 3 \cap 0 (v) 3 **5**41.2 |210.6| 200 542.0 0 30 540.5 541.8 541.3 542 d 542.3 5400 1541.6 7 3 546.7 5419 ہ 65 5H2.b 5417 SIS 1 | TS SH2.1 PAGE 12 MANUFACT 1 SCALE 200 541. 3 က္ခ 3 2 S S 200 S T/S 2 (3) <u>ာ</u> S 옷 S. TOTAL TOTAL FOTAL TIME

PAGE 12 GA DATA SHEET

MANU	MANUFACTURER/MODEL	RER/MC	DEL		× -	닠)00C		RUN		#O	DATE (e	55	193 PI	PAGE	OF	/ \
TIME	SCALE	FUEL	DROP	>	c02	۷.	05	٠,	8	BAL	WET B	DRY B	хнго	CAL WB	STACK	STATIC	SO2 PPM
	540.4	2.1		.19l	4,8	.529	13.1	1369	369	13	93	126	_ 	101	17.5	- 610	1200
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	540.4	1.0	0	, I94	48	مالدي.	13.0	1373	3.73	<u></u>	93	126	7	101	55	-019	1200
	540.3	20		961	4.8	.526	13.0	.371	3.71	1.3	93	26	4,1	101	カレー	-019	1260
	540.2	5		198	4.9	.523	13.0	376	3.76	<u>ლ</u>	93	9C1	1 h	101	17.5	-019	1200
	2,0,52	8	-	199	4.9	524	13.0	368	3.68	1.3	69	مالاا	=	101	27.	-019	17.5
	540.0			9	49	526	13.0	38	3.65	1.3	93	م <u>ا</u> را	1,7	101	r. N.	- NI9) S
	539.9	<u>و</u> ا	-	.198	4.9	.533	13.0	368	3.68	13	93	261	7	20	17.5	610-	8
ξν./ ΣΣΙ		ا. ال	_,	200	49	.528	13.1	3%	3.61	1 4	93	محا	7	101	חבו	619-	= 50 = 50
		J	-	961.	ু ১	534	13.2	355	3.5\$	7	93	125	1'h	101	STI	-019	155
		カー	Ø	.19°	% 7	537	13.3	33	છ. ડિ	1.4	63	57		101	27.5	610-	1125
	539.6	1.3		.195	4.8	.531	13.3	.3 8 8 7	3.48	וק	69	125	4.	2	761	610:	1150
² / ₂	539.5	1.2		191.	47	.ડઉ	13.4	ਜੂਨ ਜੂਨ	3.49	1.4	93		4.1	101	7.	610-	1150
TOTAL											-		-		7061	-228	
3	539.4	_	_	.193	4 8	.530	13.1	.151	I.S.I	3.2	93	୩୯।	_ 	2	7.	- 620	11.50
	539.3	0	-	.755	6.3	523	13.6	. 142	1.42	ከ ከ	93	20	7	191	17.1	-1/20	11.56
	539.3	٦.	8	<u>.247</u>	و۔	.528	13.1	[2]	1.57	3.9	93	ාල	1.7	101	50	000	- S-
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	539.2	٥.	-	243	0.0	.533	13.2	ਲ	J.SJ	3.9	ઈ 6	30	17	101	ושרו	-020	N N N N N N N N N N
	539.1	\$.73\$	5.9	.534	13.3	اکار	132	3.8	69	126	7	191	hL1	-020	= 7.
\~ ^	5396		\	042	5.5	.534	13.2	SS	1.55	3.8	93	9C1	1.4	191	p(I	-620	150
= 1 \	539.6	7	Ø	.734	5 8	540	13.4	교.	65-	3.9	93	୩୯ ।	1,4	101	177	-020	150
1/3 20 20 20 20 20		؛ و		177	5.7		V	891.	1.68	3.4	93	D _o	4.1	101	173	-, 020	175
	K	י י	_	722		.547	<u> 3</u> 6	89	1.68	3.3	93)CI	4.1	101	27.	000-	150
	538	D	- 7	,224	(5) (S)	हें	13.4	178	1.78	3.1	93	125	l h	101	75	-620	17.5
/ ادع	538.7	7 (9	22.5 20.5	، ڊ	35	13.5	5	07.1	3.3	93	125	1 7	101	hL.I	- 620	1200
	538.h	vi		.745	4.8	.574	142	215	2.15	2.2	92	125	3.8	99	PLI	- 020	1200
TOTAL															2090	- 240	
I OI AL										1					4186	894:-	1

PAGE12

101 178 SOZ PPH 1.020 .020 22000-2.870 -020 -020 -020 -028 S) OF -100 STATIC 862 173 STACK <u>~</u> PAGE 99 9 66 9 9 CAL WB DATE 6 23 93 3 30 00 XH20 3 3.8 3 25) PCI <u></u> 15 DRY B JUN (42 20 9 6 WE7 B (J 22 BAL KUN 8 25 80 وح ន 198 180 195 79 <u>69</u> > い ユ コヹ <u>동</u> 8 2000 582. .580 596 586 . . |-|- α C02 × 7 9 2 187 $\frac{\infty}{2}$ 190 > PAGE 12 S DATA SHEET MANUFACT SR/MODEL DROP Ø FUEL O 10 SE 5 28 II 538.5 5385 7400 S383 1/so 538.4 SCALE \2 2 2 2 2 3 3 3 3 3 TOTAL TOTAL TOTAL TIME

- 075 PRIMARY AIR SET AT: 470. - O 4(opheck WB/DB: 106/180 CLISED PUMPS ON AT: 1005 Z A COMMENTS .050 FAN PAGE -050 :053 -052 040 · 00 1-051 -043 . 050 Ch9'-STATIC 6/23/93 AMBIENT 851 83 ф (U) 82 ₩ W (M) 2 **が** 8 8 $\overline{\alpha}$ <u></u> $\overline{\infty}$ 8 SEC /-CAT-296 369 1379 1388 30 317 1367 107 173 2601 CHI 986 196 DATE 835 804 10H3 795 793 792 793 790 しなり 766 IREBOX 0 95 9 386 0Ch 354 352 375 393 367 344 336 b0h 7)9 BOTTOM 90 1 337 RUN 535 539 453 RT SIDE 49.S 459 2007 7777 439 437 445 0000 801 **∑** φ 2 08 9 ೨ | | 0 BACK <u>a</u> 535 4173 553 4109 458 579 447 LT SIDE 574 515 500 コのト 5 07 480 533 463 506 713 450 436 496 75 402 200 187 18 18 18 480 09 Б PAGE 1 PREBURN DATA SHEET MANUFACTURER/MODEL 360 **6**86 403 347 320 375 330 349 288 538.5 - 537.5 344 270 301 STACK 34 281 SCALE WT BURN RATE 3 3 3 -Γ و \mathcal{M} 3 0 J 501543.6 66年8 20 539 6 542.9 538.3 0<u>5</u> 541. 4 10 5210.7 540.1 8043516.1 1600 542, <u>35</u>1538. 755|539 45554 45554 44 901539 <u>ر</u> ج TIME

399.1 387.6 368.8 357.4 349.8 363.6 345.0 -055 SECONDARY AIR SET AT: 421.

PAGE 1	CEMP	ERATITE	AT AG 3	Suppa											
MANIJEA	MANUFACTURER/MODEL	/MODEL	F 11	F 11	Ϋ́	HT 2000	S RUN	NC	DATE	9	23/93	PAGE	_	OF	١٠
TIME V	TOP	LT SIDE	BACK	RT SIDE	ВОТТОМ	FIREBOX	/ CAT	AMBIENT	FURNACE	SAMPLE	IMP OUT	c. GAS	GAS IMP	SOZ IMP	345.6
	7	304	225	302	223	L ₀ 57	مااما	80	1446	LhC	37	2hC	34	34	
》 (元)	3	304	226	303	223	L657	613	98	ीर्मा	Lhe	15	94C	34	34	
1 1	5	303	226	303	223	6 55	ماام	B	1446	345	18	246	34	34	
25/25/25/25/25/25/25/25/25/25/25/25/25/2	a	303	Lec	303	202	673	P09	80	1445	LhC	75	LhC	34	34	
%/ /3/ /3/	6	362	TEE	305	Sec	070	ا اما	80	1445	8hC	37	ChC	34	34	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	273	303	Sec	306	LCC	070	019	98	ीत्रति	ShC	37	246	34	34	
\≘\ } } }	273	302	228	310	338	S ગ ગ	013	19	[447]	8hC	37	しって	34	3.1	
2/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	303	328	304	228	659	416	79	8441	ShC	37	LħC	34	34	
(S) \	273	305	929	304	230	658	809	79	1448	ShC	37	247	34	34	
		365	230	304	230	PS9	809	9۲	1447	8hC	37	Lhc	34	34	
/8/ 1/3/ 1/3/	داره	306	231	303	231	647	900	79	나바	8hC	36	LhC	34	35	
33	arc C	306	232	303	1331	Ch9	600	79	Lhhi	Lhc	370	נהכ	34	न्त	
TOTAL	3271	31/2	2737	3650	2724	7915	7322	454	T =					,	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	305	233	303	232	75 9	210	719	144C	ShC	36	747	30	34	
で (大 (大) (大)		306	233	30H	233	ا 838	8	91	1447	8hC	3,6	LhC	34	34	
		306	234	304	235	100	19	79	1446	248	36	こりつ	34	34	
λ ∠		307	235	306	238	حمم	625	79	1446	8hC	37	7 Thc	34	34	
\!		309	236	306	236	288	(C)	79	Lhh(8h¢	37	747	34	34	
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	الہ	308	236	309	236	663	627	79	१५५६	248	31	LhC	34	34	
′i /	 ;	310	237	307	238	100	(627	79	1448	8hC	37	She	34	34	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>_ 1</u>	304	237	308		LS3	<u> এ</u>	7 0	ीपप ⁹	She	36	LhC	34	34	
3/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/	714	310	238	307	237	1657	TC9	79	।पंपव	8hC	36	The	30	34	
	~~!	308		310	239	lo Si	L01	18	।पंपव	ShC	36	Shc	34	34	
(u) /		308	238	311	239	Ch9	628	78	bhh1	ShC	36	ShC	200	34	
32/3/2		30°	338	309	<u>240</u>		1017	77	क्षीय	She	36	ShC	1	35	
	33.74	5 11	2834	3684	2838	1157	مالهر	ժոհ					,	1	
TOTAL	S15a	7338,	553	7334	5562		14798.	1848,							

3456 SOZ IMP 3 OF. m 4 34 GAS IMP 3 7 30 34 が PAGE 345.6 ひこと 0.07C 340 500 GAS **3**5 7 75. ن (V) IMP OUT (A) 35 M DATE 6/23/93 STIPIET 3 STOP 3 247 246 SAMPLE The 5 3 1 1446 9141 1445 FURNACE 0 : ב İ 8009 AMBIENT 00 ري 20 389 8 20 o C RUN 760 OHLL OHLL 595 SEC / CAT 603 3004 5 709 593 2000 1086 <u>__</u> و_ 598 3049 100 <u>ه</u> IREBOX <u>=</u> و_ 238. 24072 240 Show Show 242 1267 Ohc BOTTOM 243 PAGE 14 MPPERATURE DATA SHEET HANDEL 34693 300 343 SIDE 308 1493 260 295 CX R 181, 18321 238 73% 23% 238 1190 238 BACK 34012 363 800 LT SIDE 364 300 300 337 301 330, 33287 SIC 273 1374 현 1900 1840 1840 TOTAL TOTAL TOTAL 480

PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: E	EMC - Wes	t, Kent	, WA 980	32 Dat	e: <u>6/2</u>	3/93 _{Ana} :	lyte: <u>CO</u> 2	(15-1)		
	FX H				•	•				
Zero Cy	1 #: <u>T13</u>	2257		Conc. 00.0	% CO2	_ Cyl Pı	cess: <u>20</u> 0			
							Date:			
							ress: <u>50</u>			
							Date: 1/11			
							SN: 407			
							0			
							Flowmeto			
EPA Span	Value =	25.0% C	O2							
6	rol Limit									
Pre Run	Audit: B	y:	<u>UK</u>	Ti	me: <u>(</u>	930	_ Temp: _84	0		
Point	Elem a	-4-2 B-		Audit Res	ults			:		
#		cted Res		Meter	DVM DVM	sponse %	+ Conc. Difference	Δ		
Zero	00.0	.000	00.0		7		-029	-116		
span 504 .504 12.6 50.5 .505 12.538062488										
Comments:										
										
Post Run	Audit: B	y:	DK	Tin	ne: 19	10	Temp: <u>78</u>	o _F		
Dodat 1				Audit Resu						
Point #	Expec Meter	ted Res	ponse %	Act Meter	ual Res	sponse %	<u>+</u> Conc Difference	∆ 8		
Zero	00.0	.000	00.0	00.3	.003	.046	.046	183		
Span	50.4	.504	12.6	50.1	.501	12.439	161	-1.278		
Comments:										
+ Conc. D	ifference	= Act	% - Exp	(Std) %						
TETO & DI	fferece =	ACT 8	(ppm) - ill Scal	e Value	<u>m)</u> X 10	0				

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: EEM	C - West	, Kent	, WA 980	032 Dai	te: <u>6</u> 153	93 Ana	alyte:	02 (15-2)
Source:						-		,
Zero Cyl	#: <u>T13</u>	2257		Conc. 00.0) ⁸ 02	Cyl F	Press: 🔍)000 ps
								10/93
Span Cyl	#: <u>AS4</u>	D875		Conc. 12.	8 02	Cyl P	ress:	500 ps:
								1/4/93
Analyzer:								
Range: 0								
Flow: 1.								
EPA Span V								
Pre Run Au	dit: By	7:	<u>Dk</u>	Ti	ime:	35	Temp:	84 o f
Coint	77		 	Audit Res				
<i></i> #	Exped	DVM	sponse %	Meter	tual Re	ponse	+ Con Differe	C. A.
Zero			 				642	
Span	12.8	.512	12.8	12.8	.511	12.605	135	-1.056
Comments:	Teledyn	e#2 C	71 %	Exp %	Act %	Adj t	o <u>+ Δ</u>	8
		_						-
	· · · · · · · · · · · · · · · · · · ·							-
Post Run Au	dit: B	y:	DK	Ti	me:	115	Temp.:	78 of
Point				Audit Res				
#	Meter	ed Res	ponse %	Meter	tual Res	ponse %	+ Conc. Difference	
Zero	00.0	.000	00.0	00.1	,	.057	. 057	230
Span	12.8	.512	12.8	12.7	.510	12.640	160	-1.250
comments:	Teledyne	#2 Cy	1 % I	Exp & Z	Act %	Adj to		
								
Conc. Dif	ference		- D	/C+3\ 9				

conc. Difference = Act % - Exp (Std) % ro % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: <u>E</u>	EMC - West	, Kent	, WA 9803	2 Date	: 6/23/	<u>9</u> 3 Ana	lyte: <u>CO</u>	(15-3)
Source:	FX H	T 200	00	Run	#:			
						•	ress: <u>20</u>	<u> </u>
Cert	ified by:	LIOU	10 AIR				Date: <u>6</u>	10/93
							ress: <u>50</u>	
Cert:	ified by:	MAT	THESON				Date: 1/1	11/93
Analyze	: Make:_	Horiba		Model:	PIR-200	0	SN: 40	8005
Range:	0 - 10.0%	CO	Ar	nalyzer O	utput:_	0 - 1	.0	v.
Flow:	1.5 SCFH		Measu	red by:	Rotame	ter:	X Flowmet	ter:
	value = : rol Limits			.0% CO = ±	± 0.25%	CO	·	
Pre Run	Audit: By	7:	OK_	Tin	ne: 9	40	Temp: 8	o _F
			Ą	udit Resu				
Point			sponse	Act Meter	ual Re	sponse	+ Conc.	
#	Meter	DVM		<u> </u>	· · ·		Difference	
Zero	00.0	.000	00.0	00.0	.000	,000	- 000	.000
Span	50.1	.501	5.01	50.2	.502	5.020	.010	.200
Comments	<u>:</u>							
Post Run	Audit: B	157.0	DK	Tim	e:	1920	Temp.: 78	o _{Fl}
		.7 •				. , , , , ,		
Point	Expec	ted Res		udit Resu Act	ual Res	ponse	+ Conc.	
#	Meter	DVM	8	Meter	DVM	ક	Difference	△ ફ
Zero	00.0	.000	00.0	00.1	,001	.010	.010	.100
Span	50.1	.501	5.01	49.9	.499	4.990	020	- 399
Comments	:					·		
Conc. 1	Difference	= Act	% - Exp	(Std) %		 		

+ Conc. Difference = Act % - Exp (Std) %
Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: EEMC - West, Kent, WA 98032 Date: $\frac{239}{3}$ Analyte: SO ₂ (15-4)
Source: <u>FX HT 2000</u> Run #: 1
Zero Cyl #: <u>T132257</u> Conc.00.0 ppm SO ₂ Cyl Press: <u>2000</u> ps
Certified by: LIQUID AIR Date: 6/10/93
Span Cyl #: <u>CC 79076</u> Conc. 1268 ppm SO ₂ Cyl Press: 500 ps
Certified by: LIQUID AIR Date: 2/26/93
Analyzer: Make: Horiba Model: PIR-2000 SN: 403019
Range: 0 - 2500 ppm SO ₂ Analyzer Output: 0 - 1.0 v
Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter:
EPA Span Value = 2500 ppm SO ₂ EPA Control Limits = +2.5% of 2500 ppm SO ₂ = +62.5 ppm SO ₂
Pre Run Audit: By: OK Time: 945 Temp: 84 of
Audit Results
Point Expected Response Actual Response + Conc. # Meter DVM ppm Meter DVM ppm Difference A
DILLETERICE AS 5
zero 00.0 .000 00.0 00.4 .004 5,400 5,400 .216
span 50.7 .507 1268 50.9 .509 1276. 8.392 .662
Comments:
Post Run Audit: By: DK Time: 1925 Temp: 78 of
Audit Results
Point Expected Response Actual Response + Conc. # Meter DVM ppm Meter DVM ppm Difference A
Meter DVM ppm Meter DVM ppm Difference \(\Delta \) \& Zero 00.0 .000 00.0 02.0 .020 45.669 45.669 1.827
span 50.7 .507 1268 50.5 .505 1266 -1.676132
Comments:
Conc. Difference = Act ppm - Exp (Std) ppm

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

QUALITY CHECKS DATA SHEET 16

Unit: FX	000G TH			_Run:I	Date: 6/33/93
Thermocouple (Check:				•
T/C #1	68.8	°F	T/C #13	(A.O	°F
T/C #2	68,9	°F	T/C #14	68,3	°F
T/C #3	73,4	°F	T/C #15	69.1	°F
T/C #4	<u> 75.5</u>	°F	T/C #16	56.2	°F
T/C #5	<u> </u>	°F	T/C #17	58.6	°F
T/C #6	<u>75.8</u>	°F	T/C #18	73. <i>4</i>	°F
T/C #7	<u>754</u>	°F	T/C #19	•	°F
T/C #8	<u> 75,2</u>	°F	T/C #20		°F
T/C #9	<u>75,7</u>	°F	T/C #21		°F
T/C #10	74,/		T/C #22		<u> </u>
T/C #11	68.2	_	T/C #23	<u> </u>	°F
T/C #12	<u>69.4</u>	°F	T/C #24	807,2	°F
Thermocoouple pretest zero and span chezero $\frac{1}{2}$ SPAN $\frac{1}{999.2}$ Thermocouple R $0 = \frac{600}{1200} = \frac{600}{179}$ $1800 = \frac{1}{179}$	ek and calibration °F ADJ. TO °F ADJ. TO cadout Pretest Linea °F 200 =	100.0 rity Check = 20.1 = 80.1 = 1.39	PF ZERO PF SPAN	1000 = 100	% difference :010 - .110 - 78. 7 °F 0.0 °F 99.0 °F
	Train Leak Check (SO ₂) Leak Check		Pre Pre Pre	Post Post Post Post Post	
Scale Check Pre Post Stack Cle	543,4/- 53 548.2 - 53° aned Proir to Test Ri	8.2 = 1	/0.0 0.0 _✓ NO		

CLIENT: fx drolet TEST No.: 2

TIME	METER	********* DELTA	METER	PERCENT	PERCENT	**************************************
TIME	READING	H	TEMP.	CO	CO2	COCENTR.
(MIN.)	(C F)	(IN. H2O)	(DEG. F)	(%)	(%)	PPM
	186.000	0.150	85	0.88	12.30	875
0 5	187.500	1.120	85	0.38	5.20	325
10	191.584	0.160	88	0.85	5.30	850
15	193.171	0.240	89	0.67	7.50	700
20	195.103	0.230	90	0.64	7.20	700
25	197.043	0.290	90	0.83	10.30	625
30	199.214	0.220	91	1.22	6.60	725
35	201.094	0.190	91	1.43	8.20	775
40	202.853	0.200	91	1.15	8.80	750
45	204.670	0.230	91	1.00	9.20	700
50	206.617	0.270	92	0.94	11.60	650
55	208.720	0.270	92	0.96	10.30	650
60	210.824	0.250	93	1.18	10.60	675
65	212.857	0.270	93	0.98	11.40	650
70	214.968	0.270	93	0.84	11.90	650
75	217.080	0.290	93	0.62	12.10	625
80	219.275	0.270	93	0.60	12.30	650
85	221.386	0.270	94	0.71	12.50	650
90	223.505	0.250	94	0.69	12.70	675
95	225.546	0.250	94	0.47	13.20	675
100	227.586	0.250	94	0.47	12.40	675
105	229.627	0.250	94	0.62	11.70	675
110	231.668	0.210	95	1.14	10.10	725
115	233.575	0.160	95	1.71	8.00	825
120	235.251	0.170	95	1.33	9.30	800
125	236.983	0.150	95	1.79	7.50	875
130	238.566	0.170	95	0.93	8.80	800
135	240.297	0.210	95	0.67	9.60	725
140	242.208	0.210	95	0.74	9.30	725
145	244.118	0.200	95	0.83	9.00	750
150	245.965	0.190	95	0.78	9.20	775
155	247.752	0.190	95	0.71	9.90	775
160	249.539	0.160	95	1.07	7.80	825
165	251.218	0.160	95	1.04	8.20	825
170	252.897	0.190	95	0.99	8.30	775
175	254.684	0.190	95	1.10	8.50	775
180	256.472	0.170	95	1.04	9.10	800
185	258.203	0.170	95	1.11	9.20	800
190	259.935	0.160	95	1.23	8.60	825
195	261.614	0.150	96	1.35	7.70	850
200	263.249	0.150	96	1.42	7.30	850
205	264.885	0.150	96	1.34	7.30	850
210	266.521	0.140	96	1.40	7.70	875
215	268.110	0.150	96	1.54	7.30	850

220	269.745	0.150	96	1.51	7.30	850
225	271.381	0.150	96	1.51	7.30	850
230	273.017	0.160	96	1.44	6.90	825
235	274.702	0.150	96	1.32	7.00	850
240	276.338	0.150	97	1.28	7.10	850
		0.130	97	1.29	7.30	875
245	277.982		97	1.34	7.30	
250	279.579	0.140				900
255	281.132	0.140	97	1.67	6.70	900
260	282.685	0.140	97	1.57	6.70	875
265	284.283	0.140	97	1.57	6.80	900
270	285.836	0.150	97	1.54	6.50	850
275	287.480	0.150	97	1.61	6.50	850
280	289.124	0.140	97	1.79	6.50	900
285	290.677	0.140	97	1.83	6.60	900
290	292.230	0.140	97	1.83	6.60	900
295	293.783	0.140	97	1.90	6.40	875
300	295.381	0.140	97	1.88	5.90	875
305	296.978	0.140	97	1.81	6.10	900
310	298.531	0.150	97	1.73	5.80	850
315	300.175	0.150	97	1.71	5.70	850
320	301.820	0.140	97	1.71	6.30	900
325	303.373	0.130	97	1.70	6.30	925
330	304.884	0.140	97	1.62	6.30	900
335	306.437	0.140	97	1.65	6.30	900
340	307.990	0.140	97	1.65	6.40	900
345	309.543	0.140	97	1.59	6.50	900
350	311.096	0.140	97	1.51	6.50	875
		0.140	97	1.45	6.20	850
355	312.693		97	1.39	6.30	875
360	314.337	0.140	97		7.00	925
365	315.935	0.130	97 97	1.29	· ·	925
370	317.446	0.130		1.20	7.10	
375	318.957	0.140	97	1.23	7.10	900
380	320.510	0.140	97	1.21	7.10	900
385	322.063	0.140	97	1.21	7.10	900
390	323.616	0.140	97	1.20	7.10	900
395	325.169	0.150	97	1.17	6.70	850
400	326.813	0.150	97	1.23	6.60	850
405	328.458	0.140	97	1.32	6.90	875
410	330.055	0.140	97	1.39	6.80	875
415	331.652	0.140	97	1.45	6.60	875
420	333.250	0.150	97	1.49	6.70	850
425	334.897	0.150	97	1.53	6.60	850
430	336.544	0.150	97	1.50	6.20	850
435	338.191	0.160	97	1.53	6.20	825
440	339.888	0.150	97	1.52	6.10	850
445	341.535	0.130	97	1.62	6.40	900
450	343.090	0.130	97	1.68	6.30	900
455	344.646	0.130	97	1.50	6.30	900
460	346.202	0.130	97	1.51	6.30	900
465	347.757	0.130	97	1.35	6.10	900
470	349.313	0.130	97	1.22	6.30	900
475 475	フェン・フェコ	4110			- ·	
4/5						

TABLE 2---RAW DATA

CLIENT: fx drolet	TEST No. 2	
MODEL: ht 2000	DATE: 24-Jun-93 ***************	*
METER CAL. FACTOR (Y) 1.028	Wt. WOOD BURNED(LB) 22.6 Lbs	
BAROMETRIC PRESS.(Pb) 30.33 in Hg	WET, FUEL MOISTURE % 18.492 %	
LEAK RATE POST (Lp) 0.001 cfm	Wt. PART. COLLECTED 1.5937 g	
WATER VOL. (V1c) 308.4 M1	METER VOLUME Vm 163.313 mcf	
TEST TIME (MIN) 470 min	HC MOLE FRACTION 0.0132	

TABLE 3 ----FIELD DATA AVERAGES

CLIENT :fx dro	let	T	EST No.	2	
MODEL: ht 200	0 *******		ATE: 24-Ju		
AVG DELTA H	0.18 in H2O	AVG PRCNT CO -		1.26	양
AVG METER TEMP. Tm	95 deg F	AVG PRCNT CO2 -		7.86	%
AVG PPM	815 DDM	AVG BAL		6 22	9.

TABLE 4 ---- CALCULATIONS

CLIENT: fx drolet		TEST No.	2	
MODEL: ht 2000	*****		24-Jun-93 ******	*****
STD SAMPLE VOL. Vm(std) 161.94	dscf	STACK GAS FLOW Qsd	367.983	dscf/Hr &
			6.13	
VOL. WATER VAPOR Vw(std) 14.516	scf	PARTICULATE CONCTRT. Cs	0.0098	g/dscf
PRCNT MSTR Bws 8.23	8	PARTC.EMISS. RATE E	3.62	g/Hr
BURN RATE BR 1.07	Kg/Hr	MOLES OF GAS PER Lb WOOD Nt	0.41	Lb-mole/Lb
CO EMISSION RATE 155.84	g/Hr & g/Kgdr fuel	PART.EMISS. RATE	3.40	g/Kgdry fuel

TABLE 5 ---- PROPORTIONAL RATE VARIATION

CLIENT: fx drolet TEST No.:

	TIME INTEVAL Ti	PPM * Vm	PROPRTN. RATE VAR. PR		PROPRTN RATE VAR. AVERAGE	
	=======================================					
	5	1325.8	96		100	
	10	1340.2	97			•
	15	1353.9	98			
	20	1355.2	99			
	25	1359.5	99			
	30	1357.4	99		-	
	35	1362.0	99			
	40	1362.2	99			
	45	1361.7	99			
	50	1360.7	99			
	55	1363.7	99			
	(60	1363.1	99			
	65	1366.4	99			
	70	1366.4	99			
	75	1367.0	99			
•	80	1366.2	99			
	85	1365.1	99	•		
	90	1369.1	100			
	95	1369.3	100			
	100	1368.7	100		•	
	105	1369.3	100			
	110	1368.1	99			
	115	1371.6	100			•
	120	1371.6	100			
	125	1374.5	100	•		
	130	1373.9	100			
	135	1373.7	100			
	140	1374.5	100			
	145	1373.8	100			
	150	1374.2	100			
	155	1373.9	100			
	160	1373.9	100			
	165	1374.0	100			
	170	1374.0	100			
	175	1373.9	100			•
	180	1374.6	100			
	185	1373.7	100		*	•
	190	1374.5	100			
	195	1372.8	100			
	200	1376.0	100			
	205	1376.9	100			
	210	1376.9	100			
	210 215 220	1376.9 1376.6 1376.0	100 100 100	-		

225 230	1376.9 1376.9	100 100
235	1376.4	100
240	1375.6	100
245	1381.1	100
250	1381.1	100
255	1381.4	100
260	1381.4	100
265	1381.9	101
270 275	1381.4 1381.1	100 100
280	1381.1	100
285	1381.4	100
290	1381.4	100
295	1381.4	100
300	1381.9	101
305	1381.1	100
310	1381.4	100
315	1381.1	100
320	1382.0	101
325 330	1381.4 1381.3	100 100
335	1381.4	100
340	1381.4	100
345	1381.4	100
350	1381.4	100
355	1381.1	100
360	1381.1	100
365	1381.9	101
370	1381.3	100
375	1381.3	100
380 385	1381.4 1381.4	100 100
390	1381.4	100
395	1381.4	100
400	1381.1	100
405	1382.0	101
410	1381.1	100
415	1381.1	100
420	1381.9	101
425	1383.6	101
430	1383.6 1383.6	101 101
435 440	1383.8	101
445	1383.6	101
450	1383.1	101
455	1384.0	101
460	1384.0	101
465	1383.1	101
470	1384.0	101
475		
480		

Client FX DROLET	OVE DATA SHEET #1
Client Address 1700 LEONHARMS	<u> </u>
QUEBEC, QUEBEC	GIN 4R9
Client Phone 514-566-6336	
Project No Model No	
Run No. 2 Date of Test 10124193	_ Est Grams/Hr
Stove Type: Cat Non Cat Pelle	t
Data To Be Submitted To: Oregon Color	radoEPA
Burn Category: Low (<0.8 Kg/Hr) Med Hi Med Low (0.8 - 1.25 Kg/Hr) .0	i (1.26 - 1.90 Kg/Hr)
Fuel % Moisture (dry) 22.667 %(wet (00.00) (Data Sheet #10)	18.492
	<u>-, 030 -</u> "н ₂ о
Barometric Pressure(00.00) (Data Sheet #2)	<u> 30.33 </u>
Temperature (Average Room) Combustion Air (00) (Data Sheet #14)	79 of
Flue Gas Moisture (00.000) (Data Sheet #7)	8.2279 - %
Ambient Moisture (0.00) (Data Sheet #8)	1.3
Stove Weight(000) (Data Sheet #8)	<u> 487 – 1bs</u>
Stove Temperature Change (000) (Data Sheet #14)	-60.0 - of
Particulate Emission (0.0000) (Data Sheet #7)	.1519 - gr/dscf
Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)	,
Fuel Type: Wood: Pellets:	<u> </u>
Total Fuel Consumed During Burn (00.0) (Data Sheet #8)	
Total Particulate Catch(0.0000) (Data Sheet #6)	1.5937 · g
H ₂ O Captured (00.0) (Data Sheet #3)	3084
Dry Gas Meter Volume(00.000) (Data Sheet #2)	163.313 - cf
Dry Gas Meter: Y Factor: 1028 Post Tes	st Leak Rate 1001 CFM
TIME: 470.	

11110 1 / 9 Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1.029

Inject SO2 @ 100 cc/min

Page 1 of 4
Unit: $F \times$ Run: 2 Date: 6-24.95Operator(s): $C \times$

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	1.01	Sampling	Ratio :	<u> 13</u>	11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	BAROM	ETER	30,40
MM	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SOE PPM	ROTO TEMP	PUMP
00	1015	186.200		3,983	115	85	875	85	2.0
05	20	187.500		10,724	1.12	85	325	85	11.0
10	25	191.584	191.584	4.678	16	88	850	88	2.0
15	30	193, 171	193.171	4.943	124	89	700	89	3,0
20	35	195,103	195,103	4.934	.23	90	700	90	3.0
25	40	197.043	197,043	5,526	,29	90	625	90	37)
30	45	199.214	199,214	4,755	172	91	725	91	2.0
35	<u> </u>	201.034	201,094	4.448	.19	91	775	91	2.5
40	<u> 55</u>	202.853	202.853	4.596	120	91	150	91	20
45	1100	204.670	204.670	4,925	123	91	700	91	2.0
50	05	206.617	206,617	5.294	127	92	650	92	3-0
55	10	208,720	208,720	5,294	. 27	92	450	72	30
ROTO	PRESS:	1.01	TOTALS :	13,500	3,57	1075	BAROM	ETER:3	0,40
60	1/15	210.824	210,824	<u>5,089</u>	125	73	675	23	3.0
65	20	212.857	212.857	<u>5.284</u>	127	93	650	43	3.0
70	25	214 968	214.968	5.284	, 27	93	650	93	3,0
75	30	217.080	217,080	5.496	129	93	625	93	3.0
80	34	219.275	219.275	5.284	127	93	650	93	3.0
85	ر به	221386	221.386	5,275	,27	94	650	94	3.0
90	45	223,505		5.079	: 25	94	675	94	3,0
95	50	275,546	225.546	5,079	125	94	675	94	3.3
100	55	227,586	227,586	5,079	125	94	675	94	3.0
105	2	229.627		,	_, 25		675	94	30
110		231.668			.71		725	95	3,0
115		233,575			.16	95			3.0
			TOTALS: (2.99	1125	MAX VA	CC =	
TOTAL	CU FT		TOTALS:					******************	

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1.028

Leak Checks: 15 " Hg @ 1005 cfm | Hg @ 1001 cfm | Hg @ 1005 cf

Inject SO2 @ 100 cc/min

Page **1** of <u>4</u>
Unit: <u>F</u>X
Run: <u>7</u> Date: <u>16-24-93</u>
Operator(s): <u>Car</u>

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	1,03	Sampling	Ratio :	13		T====		20.25
						-:1	-	ETER:	
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA	METER TEMP	SO2 PPM	ROTO	PUME
120	1215	235,751	235,251	4.271	17	195	800	.95	3.6
125	20	236,983	236,983	3,905	:15	95	875	95	30
130	25	1238,566	238,566	4.271	1,)7	95	800	95	13.0
135	30	240,297	240,297	4.713	15,	35"	725	25	30
140	35	242.208	242.208	4.713	,21	95	725	95	130
145	40	244.118	244.118	4.556	,20	95	750	195	3.0
150	45	245.965	245,965	4.409	,19	95	775	95	13.0
155	50	1247,752	247,752	4.409	,19	95	775	95	3.0
160	44	249,539	249,539	4,142	116	95	825	95	3.0
165	1306	251,718	25 1.219,	4.142	116	95	825	95	300
170	05	252.897	252, 897	4.409	119	95	775	95	3.0
175	10	254.684	254.684	4,409	:19	95	775	95	3.5
ROTO	PRESS:	1.03	TOTALS :	52,349	2.19	1146	BAROME	TER: 3	0.35
180	1315	256,472	256,472	4.27)	17	95	00E	95	3.5
185	2 0	258,703	258.203	4,271	17	95	800	95	3.0
190	25	259,935	259,935	4.142	16	95	825	95	3.0
195	30	261.614	261.614	4.013	.15	96	750	96	3.0
200	35	263.249	263,249	4.013	115	96	850	96	30
205	¥5	264.885	264.885	4.013	115	46 9	850	36	3.0
210	45	266,521		3,898	,14		375	96	3.0
215	50	268,110		1.013	115	96 8	350	96	3.0
220	55	269.745	269, 745	4,013	115		350	96	30
225	1400	271:381	271.381	1.013	115	96 8	350		30
230	05	273.017	273,017	1,134	116		<u> </u>		3.0
235	10		274,702 4	1.013	.15				<u>3. U</u>
			TOTALS: 4				AX VAC	:C =	
OTAL	CU FT		TOTALS: /	01,156,	4.04 - 1.	2289-F	V BP:		

Sub T4 225.553/10.6 / 4489

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1.028

Leak Checks: 15 " Hg @ 1005 cfm

" Hg @ ____ cfm

Inject SD2 @ 100 cc/min

Page 3 of 4
Unit: FxRun: 2 Date: (6-24-93)

Nozzle: Probe @ 3/8 " od

Operator(s): CW

Initial Volume: 1.500

ROTO	PRESS:	1.03	Sampling	Ratio :	<u>13</u>	_ : 1	BAROM	ETER:	30,3 <i>0</i>
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	S 02 P PM	ROTO TEMP	PUMP
240	1415	276,338	276,338	3,999.	115	97	850	97	3.0
245	<i>2</i> 0	277.982	277.982	3.885	114	197	875	97	3.0
250	25	279,579	279,579	13,777	114	97	900	97	3.0
255	30	281.132	281,132	3,777	114	197	900	97	3.0
260	35_	28Z.685	28Z 685	3.885	.14	97	875	97	30
265	40	284,283	284, 283	3,777	. 14	97	900	97	30
270	45	285.836	28 <u>5,83</u> 6	3.999	.15	97	850	97	30
275	50	287,480	287.480	3,999	15	97	850	97	3.0
280	55	289,124	289,124	3,777	, 14	97	900	97	30
285	1500	290.677	290.677	3, 777	.14	97	900	97	3.0
290	05	297.230	292,230	3,777	.14	97	900	97	3.0
295	10	293,783	293,783	3,885	. 14	97	875	97	3.0
ROTO	PRESS:	1.03	TOTALS:	46,314	1,71	1164	BAROM	TER: 3	0.30
300	1515	295.381	295,381	3.885	,14	97	875	97	3.0
305	<i>2</i> ט	296,978	296,978	3,777	114	9.7	900	97	3.5
310	25	298.531	298.53	3,999	. 15	97	850	97	30
315	35	300,175	300,175	3,999	115	97	<u>850 </u>	97	3.0
320	35	301,820	301,820	<u>3.777</u>	, 14	97	900	97	3.0
325	40	303.373	303,373	3,675	, 13	97	925	97	3.0
330	45	304, 884	304.884	3.7 7 7	.14	97	900	97	3.0
335	50	306 437	306.437	3,777	. 14	97-	900	97	3.0
340	55	307.990	307.990	3,777	14	97	900	97	3.0
345	1600		309,543		,14	97	900	97	30
350	05		311.096		, 14	97	875	97	3.0
355	10	312.693	312.693	3,999	.15	97	850	97	3.0
			TOTALS:	46,104	1,70		MAX VA		
TOTAL	CU FT		TOTALS:	92,418,	3.411	2328	AV BP:		

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1028

Leak Checks: <u>/5</u> " Hg @ <u>.005</u> cfm ______ " Hg @ _____ cfm ____ " Hg @ _____ cfm

Inject SO2 @ 100 cc/min

Page $\frac{4}{4}$ of $\frac{4}{4}$ Unit: $\frac{FX}{X}$ Run: $\frac{Z}{A}$ Date: $\frac{6 \cdot 24 \cdot 93}{A}$

Nozzle: Probe @ 3/8 " od

Initial Volume: <u>1500</u>

ROTO	PRESS:	1.03	Sampling	Ratio :	13	_ : 1	BAROM	ETER:	0.30
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SO2 PPM	ROTO TEMP	PUMP VACC
360	1615	314,337	314,337	3,885	, 14	97	875	97	3.0
365	20	315,935	315.935	3,675	1.13	G7	925	97	3.0
370	25	317.446	317.446	3,675	13	97	925	97	3.0
375	30	319,957	318,957	3,777	114	97	900	97	3.7
380	35	320,510	320,510	3,777	14	97	900	97	3,0
385	40	322.063	322,063	3, 7 77	14	97	900	97	3.0
390	45	323,616	323.616	3,777	.14	97	900	97	3,0
395	50	325.169	325,169	3.997	.115	97	850	97	3.0
400	53	326.813	326,813	3,999	115	97	850	97	3.0
405	סטדן	328, 459	328,458	3,885	114	97	875	97	3,0
410	05	3 <i>3</i> 0. <i>05</i> 5	330,055	3,885	,14	97	.875	97	3,0
415	70		331.652	3.88 <i>5</i>	,14	의구	875	97	3.0
ROTO	PRESS:	1.03	TOTALS :	45,996	1168	1164	BAROME	ETER: <u>3</u>	
420	1715	333,750	333,250	3,992	115	97	<u>850</u>	7	5.0
425	20	334,597	334,897	3,992	,15	9.7	550	97	3,0
430	25	334.544	3 36.544	3,992	115	97	850	97	3.0
435	30	338 . 191	338 191	4.113	.16	97	825	97	3.0
440	35°	339,858	<i>33 9,</i> 888	3,992	, 15	97	850	97	3.0
445	$U_{i,j}$	341,535	341, 5 3.5	3,771	, 13	97	900	97	3.0
450	45	343,090	343,090	3.771	113	97	900	97	3.0
455				3,771	113	97	900	97	3.0
460	5.5	346,202	346.202	3,771	,13	97	900		3.0
465	1800	3 <i>47,757</i>	347.757	3.771	113	97	900	97	30
470	05	349.313	349,313	3,771	113	97	900	97	3.0
475	10			42,107	1.54	1067			
			TOTALS:		3,22		MAX VA		
TOTAL	. CU FT	163.313) TOTALS:	406.674	17.23	9048	AV BP:	(30 ₁ 3	3)]

1 95

4,281, (181

(555)

MOISTURE SHEET Woodstove Data Sheet #3

Moisture Determination		/	•
Initial: Level	Balance Zeroed	//	: F/ H-2000
Final:		Run:	
IMPINGER #1			
Final Weight 8271/	grams		: 6.24.73
Initial Weight 572.0	grams	recunician(s);	Initial: (w)
Net_ 250		4	Final:
IMPINGER #2		Approved By:	
Final Weight 601,5	grams		
Initial Weight 582.6	grams		
Net 18.9.			
IMPINGER #3			
Final Weight 489,8	grams		
Initial Weight 486,2	grams		
Net 3.6			
IMPINGER #4 (SILICA GEL)			·
Final Weight 89/ 9	grams		•
Initial Weight 856/	grams		
Net 35.8	_ ~	•	
		OF H2O CAPTURED	308.4 grams
			•
Scale Check: 295.0g = 205.0 590.0g = 520.7 885.0g = 72.5	<u>, </u>	Back Half Filts	#
Notes:			1

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

	Into 1)essicat	or: D	ate <u>5/27</u>	/ <u>9</u> 3 T	ime <u>1030</u>	By_	<u>DK</u> F	ront	Half	∠ Bad	k Half	/
		cturer:		_						ZB 901			
	Filter	First	T	T	T	Second	1	1	T-	Third			
	#	Wt	Date	Time	Ву		Date	Time	Ву	Wt	Date	Time	Ву
	441F	16921	· · · · · · · · · · · · · · · · · · ·	1016	411	7	6/2	1044	DK	/	ļ <u>.</u>		
	442F	.10988		1017	Lil			1046		/			
	443F	.6982	Jeli .	1018	111		/	1048					
	444 F	,7058	10/1	1019	44	.7054		1050		/			
	445 F	.70rx	10/1	1090	LU	.7002	1	1052		/			
	446F	.6996	6/1	1601	114	.6994	2	1054					
	447 F	,7022	10/1	10 00	11	.7022	1	1056	}				
	448F	7079	411	10 OR	Lle	.7076		1058					
	449 F	10984	10/1			.6982		1100	i	/			
	450 F	.7079	6/1	1025			Į.	1102	\		1		
		•	 			. 100		1,0	 			.	
						-					1		
													
~_										·			
Ž.	441 B	,3750	1011	1501	111	.3745	6/2	1126	DK.				
	442B			1026		.3725	\\		7	<u> </u>			
	443B	3730	,	1077	LU			1128	-\	<u>/</u>			
	444 B	3776	10/1	-/	. 1	3771	-/	1130					
		3779	6/1	· · · · · · · · · · · · · · · · · · ·	44	.3774		1132					
	<u> 単58</u>	3738	le/1		Lu	.3733	\ 	1134	/-				
3	446 B	.3736	6/1		ļ	.3731	/ 	1136	_/_				·
	447B	,3755	1011			.3750		1138					
	H48B	.3-190	(0)	1033	LW.	3785		1140					<u> </u>
1	_ 1	.3728	10/1	1034	LU	.3726		1142		/			
	450B	3801	6/11	1035	LU	.3796		1144					
(Checked	l by	Sil	1/60	ijes	le		Dat	e:6	12/93	Time	1328	
								<u> </u>	/	- / - /		, <u>-</u>	

	QA RE	WEIGH		
Filter #	WT	Date	Time	Ву
	_			
1				

WB	DB	%RH	Date	Time	Ву
50	70	48	101:	900	LU
62	75	48	6/2	1042	DK

WOODSTOVE DATA SHEET #4-2: INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date: 6/4/93 Time: 0900 By: DK Beaker First Second Third Date Time By Wt Date Time By Wt Date Time Вy Wt 6/8 952 DKL/ 376 101.1787 1017 1012 LU 101.1782 954 1010,4080 (017 1014 KU 106.4076) 95, 378 105,4899 617 1016 LU 105.4895 958 | 97,6639 617 1018 44197.6636 380 103.9232 617 1020 Lu 103.9230 1000 381 104.7513 1/7/1022 LU 104.7509 6/8 1100Z DX / 382 10535991 11024 LL 105.31,00 1004 1006 383 98,6373 1006 24 98.6268 384 105,3535 1028 44105.3530 1008 1/ 385 1047898 1010 1 11020 LUL 104.7898 105.9197 6/7 1032 LU 105.9193 6/8 1012 OK 99.9772 1014 99.9773 1034 388 1016 97.9826 1036 197.9825 389 105.5318 1018 1055321 1038 1040 196.1093 96.1094 1020 391 95.6015 6/7 1042 24 95.6011 9/8 1022 DX 392 100,2329 1044 1 100.2325 1024 393 100.4634 1046 100,4631 1026 394 1105.48961 1048 105.4891 1028 395 198,56411 198.5638 10/7/1050 1030 108.21102 6/7 1052 LU 108.2159 6/8 1032 DK 396 1034 1254 17 99.67501 199,1952 1108.59641 1036 108.5969 10510 196.8978 399 196.8991 1038 1058 1100 95.9536 1040 05.4540 400 Checked By: Sell Mount Date: 6/8/93 Time: //30

	VA KE	WEIGH	160		
Beaker #	WT	Date	Time	Ву	

WB	DB	%RH	Date	Time	Ву
56	108	47	6/7	940	LU
54	68	47	4/8	950	DK

				WOO	WOODSTOVE DATA SHEET		#4-3:	CONS	CONSTAL FINAL WEIGHTS	ICHTS			WST5-For	orm9, Pg	WST5-Form9, Pg1, 4/90	,06,
1						FINAL	L BEAKER WEIGHTS	R WEI	CHTS				Run # Date:	50	2012	
# Dess	Dessic	Date	Time	By	First	Date	Time	Ву	Second	Date	T imp	, a	Th. 1 2 d			
391		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1300 OK	ă	95.7377 Was		1034	8	95.737V	10 pela	28	4		חמוב	1 1 THE	βλ
									A COLOR TO THE PROPERTY OF THE	-						
3		- - - - - - - - - - - - - - - - - - -	300	್ರ ೧	100. 46 85	889	ବ୍ଦର)		OK 100, 1010 14 10139 920 LU (100, 66,73	(Selection)	920	LKL		4/30	1056	ă
ĵ.		1		· ·												
0		SOLA		3	4/35 13(x) UK 100,6057	800	8C01	ă	100.6035 6129 922 LU 100.6023	600	922	3		6/30	4130 1058 DX	DY
-					$\overline{}$	7	9116	7/	~7	7/2	7/2 914	台				i i
7)) 일 5	(C)	30	300 DK 105.1118	8C),	1430	ă	1430 DK 105,7105 6/29 924 LL 105,7108	6 12G	424	111		6/30	6/30 1100 OK	Q Q
1				;												
5		100	202	ă	98.8143	809	1032	2	DV (98.8138) 4139 926 LU	697	926	LIK				
-																
+										•						

							FIN	AI. PT	FINAL FILTER WEIGHTS							
Filter Into	Into			L					100000000000000000000000000000000000000				i	٠		
#	Dessic Date Time By First	Date	Time	By	First	Date	Time	Вv	By Second	4 6	£		·			
7 = 1		1	(1		. [Ŀ		Date 11me by Third	1 1 me	à	Third	Date	Date Time	β
1011-1				$\overline{\widehat{j}}$	っていんし	V ()	CINT	***		200	Vol pour solv	-				
						1	+)		00	2021	<u> </u>				

1111/10			1	L	1											
Qd) 1 t		117 (1)	053	9	1000	57	0176	111	19410 1 11 1 1 1 1 1 1 1 1 1 1	10/4 1020 10K	1036	ă	(10 00 1 10 m)	00	340	-
		<u> </u>					,			36	3		19000	. O	エスス	7
																*
												_				

ROOK		Date	(Cla)	200	75/0	200	1
SCATE ROOM	Weiching	Session		2	3	4	Ľ
	,	·		,			
HTS		By			By		
NAL WEIG		į į			nal WT		
FI		F1			Fi		
QA REWEIGH: FINAL WEIGHTS		Beaker # Final Wt			Filter # Final WT		
ďγ		Date			Date		

SCALE	SCALE ROOM ENVIRONMENTAL CONDITIONS	ENVIR	ONMEN	TAL C	CONDIT	SNOL
Weighing						
Session	Date	Time	By	WB	DB	%RH
1	1005	930	M7	110	7.17	<u>5</u> #
2	4138	et ol	710	50	11	49
3	10/39	1-10 b	77	3	7	40
4	०६/१	1054	DK DK	09	73	11
5		alb	717	ુ		C.J.
		1		زد	`	

SCALE KOUM ENVIRONMENTAL CONDITIONS	KUUM	ENVIR	JNMEN.	EAL C		SNO
9	7/2	1/2 908 DIC 52	X	N.	710	200
7				_		4
8						
6						
Comments						

Dates: From 6/10/93

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorfus Model A1205 SN 37010004

_		7	,	<u> </u>	η-		_	т	-,		- 1			_		_	-	- -	_		1	_	 	 		,				T			Ţ-				
	% RH	p	777	770	קס	Qr'	077	7.0	7 7	<u>_</u> _h	4.h	48	לל	67	70	70		71,	<u> </u>	87																	
	Wet Bulb	25°	5/,	10.3	八なな	307) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	717		36	200	US	(40)	104	. A.C.	49		00	(aC	59																	
	Dry Bulb	70	80)	1/2	9	70	127	2007	0.7	C ø	99	d7	77	17	ŗ	16	12	1,0	(5)	۵/																	
-		000	100	016	5 40x	9	-	1/23V	†_	1,	╁	1	001 56	2	28 1000		Ľ	╀	777	+											-					1	
	ے	<u>이</u> 항	101	1 0 1	51191 7	, j	9	P	10	1	下	<u>ځ</u> د	\$		٩	101	1012	1	+	1104				-		-	-	$\frac{1}{1}$	+	1	1	1		1	$\frac{1}{1}$	+	
	+	á	77	ò	111	מא	77	Č		2		1/2	5	7	ă	77	YO	=	130	4	-			-	_	+		-	+	+	+	+	1	1	+	1	-
	Beaker																																				
Blank	Filter																																				
100mg	Neight A MOO	0.077	0001'n	0.0999	6001.0	0.0998	0.0997	0.1000	0000	0,0999	0.0000	000	2000 N	2500	0.00	000110	0.0999	0001.0	₽-																		
1.0g	10000	00000	22.22	3 TA TO	10001	- 1	0.4498	0000	1.000	1.000.1	16660	0.9999	0 4007	0000	5,7,7	1200-1	1.0001	0000	COOCI																		
108	-	1	7-	-1-	- 6000 N	10,000	1 700 000	5000.01	10000.0		9.9997	_	1.0000	2000	C 700 01		10.0001	10.000	C000001																		
100g Velsbr	100 000	00 000	6000	0000 00	20.000	07.7.00	97.7.7.5	100.000		100.001	49.4996	8438	99.9998	100.001	PO. 000.2	C.200	700,000	24.442	100,0003																		

Scale Sartorius Model A1205 SN 37010004

Dates: From 3-11-93

Through (2/9/33

WOODSTOVE DATA SHRET #4-4 SCALK QA SHRET

			1		,	-	_	- 	_,	- F		_		_			_	,,,,														_					٠
	7 RH	98	32	39	39	CF	47	77	4.7	7/7	77	65	20	37	17,	77	12	70	2/7	77	45	48	67	7/7	48	410	- 87	104	<u>5</u> 5	49	70	707	120	47	47	47	177
	Wet Bulb	54	52	53	57	58	09	57	09	63	00)	55	56	reg P	00)	G	00)	59	59	ا م	58	28	59	()	58	65	58	47	401	6.3	58	49	58	ल	56	56	É
- 1	Dry Bulb	3,0	68	-25-	ره	رد رو	75	F	73	7.7	75	99	69	75	75	76	74	1	73	75	71	0L	71	Z	70	77	70	77	17	70	70	75	70	89	90	89	40%
I	Dare Tine	-	1.	<u>.</u>	2	7	20	3/19 0900	53	3 19 1300	+	9050 नेटा	4.28 0100	04 1130	0000	2/10 946	7	2	2211 1000	١٤)	5.13 1600	2/14 1000	0101 7110	1		274	0201 575	<u>a</u> .	1	305 unc	19	0/70	63 956	05,00		0060 8/	_
1		36	1	372	1	1/2/	1	1	Ĵ	DK DK	3	ž,	3/2	*	38	ر ک ک		Ĺ	3	1	3	**************************************		1	* * - - -].		\$ 2		1))))		12K		101/10	1 201
Blank														-						1											<u> </u>						
Blank								-											-	-		-	+									-					-
100mg Weight	66400	0.0997	+ 660,	000 0	0.1001	6. 1001	0000	7400	0.0099	10969	V 1999	1007	0 0000	200	000	0000	0000	1,00	0000	1000	00.	00000	2002	0000	D.040a	0.001	0,1000	0.1000	0.1000	0,0997	0,1001	0.0999	0.0999	0.0999	0.0999	1) 0996	
1.0g Weight	7.0000	0.9999	1,0000	1.0000	1,000 2	7,000/	0.9998	1.0000	1,0000	1,0001	1,000	1,0001	0.9999	7.0000	0.9999	0000	1,0001	7.000.1	0000	1,0001	C000 /	6.9999	0,999.8	0000	0000	1.6001	0.9998	0000	6666,0	0.9999	1,000	10001	0.9999	0.9999	0,9999	0.9999	
10g Weight	1000:01	10.0000	100000	(0.00g	10.0001	€000001	10.0000			100001	10,000,2	1 000' 01	1000,01	_	6,9999	10.00.01	10.0002	10.0002	10.0000	10000101	10.0002	10.0001	10,0000	10.0002			9	<u> </u>	100000	0000 01	10.0003	~ï.	الس	5	2 `	0.9997	
100g Weight	70000	44.44	50000	00.00	100.00	(30) GRO 1	99999	100,0003	100,001	1000000	100.000	(000,00)	100.000	100,000	99.4998	49.9997	100.000	2000:00	100,0000	100.000	49.9957	9 9 9999	98 9999	94,9997					0.000	13.99	100,000	ana ro	100.001		44.446	99.995	

	WOODSTOVE PARTICULATE WOODSTOVE DATA				Unit:			1+a· A ¬	<u> </u>	_
		5112-	"			~		ite: 62	1-7	<u>)</u>
			FROI	T HALF			-			_
	FILTER #: 4466 FINAL WT: .8550 TARE WT: .6994 NET WT: .1556	Beai J J	(ER #: ml: desc:	ACETONE	-	TARE	WT:	95.73 95.601 ,130	1 /	ž
•	FILTER #: FINAL WT: TARE WT: NET WT:	BEAK J J	ER #: ml: desc:	ACETONE		FINAL TARE NET	WT: WT: WT:			9
			AL VO	LUME OF A	ACETON	E	_	100-	n	ıl
			BACK	HALF						_
F	FILTER #: <u>4468</u> FINAL WT: <u></u>	BEAK	ER #: ml: desc:	37Z 200 ACETONE	;	FINAL TARE NET	WT:_ WT:_ WT:_	100.10107 100.232. .4348	3	g g
म म	TILTER #: g TINAL WT: g TARE WT: g NET WT: g	BEAK	ER #: ml: iesc:	393 75 METHCHLO) PR	FINAL TARE NET	WT:_ WT:_ WT:_	100.599 100.4631 .1365) (p = 1	g g
		BEAKI	ER #:	225	·	INAL	WT:	105,7108 105,4891 105,4	2 - 6	ά
	,		R #:_ ml:_ lesc:	250	F	INAL TARE NET	WT:_ WT:_ WT:_	98,813, 98,563 ,2508	3 8 2 2	l
			ml:			TARE	WT:	. 4717	g	Ţ
			ml:			INAL TARE NET	WT:		g	

TOTAL VOLUME OF ACETONE

USED IN WASH

WATER DRIED

TOTAL VOLUME OF DICHLOROMETHANE USED IN EXTRACTION TOTAL VOLUME OF DISTILLED ml

PRTCATCH

75

ml

ml

		WOODST	∩UE	BI QNKC		ESST	NG		Un	it:	f	- X	_ HT	- 20	00	<u></u>
				E DATA					Ru	n:	2	-	Date:	10	5	1/0-
	В	LANKS D	ONE:	:	193				Te	 chni	cia	m(s)	• 27	J/		
	15	ml FISHER : Ml DI: FISHER :	OPTI CHLO OPTI	BEAKER ROMETH	#: 9 #: 9 #: ANE #: 9	2405 B L073	<u>a</u> 2		FINA TAR NE	L WT E WT T WT E WT T WT	= 1	08.9° 08.8° .0 .0 .0 .0	002 198 004 060 054 006			
	200 i Bone	ml DIS <u>FAS Peo</u> s	TILL Det S	ED WATE	ER F:ED		-		TAR	E WT	= _1	06 9 ·0	<u> </u>	9		
									·					:=1		
1		BEAK	ER	TARES	IN	ום מד	ESSC:	Τ:	IME:_	090	0	DATE	=: 614	1/9:	3	
	BKR #	1ST L	NT.	TIME	SND	WT	TIME		3RD	WT	Т	IME	4TH	WΤ	Т	IME
	A	100.39	97	1107	108.8	998	1044	•	•							
	B	106.30	56	1104	106.3	3054	1046		,			Ī				
- Pilling	С	1010 Gin	40	11010	106.9	<u>635</u>	1048									
	SC	CALE ROO	OM Q	C : TAI	RES				SCA	ALE I	1005	M QC	: FIN	als		
	DATE	TIME	BY	MB	DB	1/.		E	ATE	TIN	ηE	BY	MB	DE	3	%
	615	940	DK	6 56	68.	47			115	90		DK LU	58	70	·—	49
													•	(-	
			1	BEAKERS	3: FI	VAL V	VEIGHT:	S								
	BKR #	IN DS	ic	TIME	157	WT	TIME		SND	WT	T]	ME	3RD ₩	JΤ	Т:	IME
	A	6/11		1030	108.9	1001	928		108.9	200	91	2	-		·	
	\mathcal{B}	6/11		1031	106.3	3059	930	T	106.3			, i				
1	C	10 IN			106 C	639	932	\neg	106.96	- 1		16	,			
[BKR #		, _ T	TTME	570	,,,	TIME	7					***************************************			ME
	H 7/19	4TH W		TIME	5TH	WI	TIME	+	6ТН	W i		ME	7TH W	1	<u> </u>	ME
								+								
- !!	1		1			!		1		ļ				1		l

Rev 6/90 By: Bill 1/ bunk Date: 6/15/93 Blank Calculations: .0004 g; 200 m1 = .00 00 02 g/m1 Acetone: .0006 g = 75 m1 = .00 00 08 g/m1/ Dichloromethane: Distillted Water: 0002 g: 200 m1 = 0000 0/ g/m1/ Front Half Catch: Filters: $\frac{1556}{\text{Total Catch}} = \frac{1556}{\text{No. of filters Blank Value}} = \frac{1556}{\text{Net Catch}} =$ Beakers: $\frac{1363}{\text{Total Catch}} = \frac{100}{\text{Ml of Acetone Blank Value}} = \frac{136}{\text{Net Catch}} = \frac{136}{\text{Net Catch}}$ ml of Acetone Total Front Half Catch 2917 g Back Half Catch: Filters: $\frac{2605}{\text{Total Catch}} = \frac{1}{\text{No. of filters Blank Value}} = \frac{2605}{\text{Net Catch}} = \frac{2605}{\text{Net Catch}} = \frac{1}{\text{Net C$ filter Beakers: Acetone/Impingers: Total Catch $\frac{348 \text{ g}}{\text{ml of acetone}} = \frac{200 \text{ (.00002 g)}}{\text{ml of acetone}} = \frac{4344 \text{ g}}{\text{Net Catch}}$ ml of Acetone 2. Extract/Impingers: $\frac{.1365}{\text{Total Catch}} = \frac{.559}{\text{ml. of}} = \frac{.0008}{\text{Blank Value/}} = \frac{.359}{\text{Net Catch}} = \frac{$ ما٥٥٥. Dichloromethane ml of Dichloromethane

ml of water

Total Back Half Catch Total Catch

% Front Half

Technician(s):

WSTAPP1-AppDoc19-page2

NET PARTICULATE CATCH CALCULATION

WOODSTOVE TEST DATA SHEET #6

EPA METHOD 5H PARTICULATE CALCULATIONS WOODSTOVE TEST DATA SHEET #7

Date: 604 Unit: 472000

Technician(s): BND¥

(8)" H20

0000.000

161,9133, dscf 1) $Vm(std) = \frac{(1/63,3/3^{5}Vm)(17.64)(1/638^{2}mcf)(30,33^{2}mHg+13.6)}{(30,33^{2}mHg+13.6)}$

(555°, TMA

scf 14.5161 0000.00 2) $Vw(std) = (.04707)(.308, 4^2 ml H20) = .$

8.2279 % H20 0000.00 = $\frac{6823}{100}$ Bws x 100 = .0000 14.5164sof + 1101,9133dsof) (14.5164 sof) 3) Asw=

, 15/9 gr/dscf 0.0000 16/ 0133 dscf) (1,59379.) 4) Cs=

4,281 dscfm)(60)= 2,5283 g/hr 0000.00 000.00 ()[6],9133, dscf) (1.6937.9.) 5) Estimated g/hr=

000.000 V 0.000 mcf 00.00 " Hg .000 " H2O (000 TmA 000.0 ml H20 .p 0000.00 00.000 dscf (computer printout 0000 meter correction factor (Y factor) of the meter box used for the test average meter temperature for the test in degrees Absolute total cubic feet pulled on meter box during test average barometric pressure during the test total particulate catch for the test total water caught during the test average stack flow during the test average delta H for the test " Hg \mathbf{TmA} mcf " H20 ml H20 dscfm

PRTCALC

Miscellaneous Test Data Sheet Page # 8

Unit: F	X HT 2000	Run:	Q Date:	4/24/93
Test Cham	ber Air Velocity St	art: Stop:	O Avg	: 0
Wet Bulb Dry Average % 1	Start: WB: 6	3 DB: 80 =	5/ % RH 39 % RH bient Moistu	1.3 %H20 1.3 %H20 ure: 13-
Empty Stove	e Weight: 487	lbs il Seal: Wet: 53	3.2 Dry:	532.9
Kindling We	eight: Paper	:: 3 lbs	Wood:	10,4 lbs
	el Wt: 23,2 ing & Preburn Fuel We	eight (Wood Only) =	Total:	
Coal Bed We Upper = .25 Always roun Lower = .20 Always roun Maximum Coa Weight Rem	eight: RANGE: 56 - 6 x fuel wt do nearest tend x fuel wt do nearest tenth	1bs SCALI th Actual Coal + 4.6 / 1/2).	E: \[\sum_{8.5} \] - Bed Weight: 25 =	
Test Fuel Dimensions 2 x 4 4 x 4	(.75 x Length in inches	NA 5	in lbs WA 22.6 Tuel Weight:	16 pcs % of load NA /00.0
Estimated D Burn Rate Calculation		.6'×./8492-) 046 x -	60 <u>470</u> = 1	.0667 - Kg/Hr
Estimated El Output in BTU 's / Hr	PA Heat 19,140 X —	63 x 1.0667		862 / U's/Hr
		-CAT: 63 CAT: 72	PELLET: 78	· · · · · · · · · · · · · · · · · · ·
NOTES: \$357				

Unit: FX HT	<u> </u>	Run:	Date: 6	1 03 Page 9
	WOOD	STOVE OPERA	ATAG DAIT	
FIRE STARTED:	0750	ps	PDST	
WARM UP AND PREBU up/preburn fuel co preburn.				
SECONDARY AIR:	NA	CAT BYPA	SS: <u>IVA</u>	
CHARCOAL BED PREPA up/preburn charge. leveled. In stove	At 1 1/2	min. Prior	eled prior to to loading las	each warm— t fuel, raked and
TEST: Door Wide C				
PRIMARY AIR: opens	ed full for	first	min., the	en set to run
SECONDARY AIR:	NA	CAT BYP	ASS: <u>//</u>	
FAN: ON OFF during ON OFF first 30 Fan speed set at) minu 	tes of test	ON OFF bal	•
WOOD DATA: KINDLI			•	•
	SIZE	MILL		SPECIES
PREBUR	N: 2X4 M	anke/Tacoma	Std or btr	<u>s. orn D fir</u>
TES	T: <u>2X4</u> P <u>4x4</u> P	<u>ackwood</u> ackwood	#2 or btr #2 or btr	<u>s. arn D fir</u> s. arn D fir
PELLET FUEL	APFI#:			
All grades WCLB rul	les			
WARM UP INFORMATION	N: up filel pia	BCSB M문가당 B1	ther <u>/3</u> or	
1st warm up/preburr	n fuel char	-ge (<u>23,2</u>	lbs) added	at 0846 .
2nd warm up/preburr	fuel char	-ge (lbs) added	at
3rd warm ub/preburr	fuel char	-ge (lbs) added	at
4th warm up/preburr	fuel char	-ge (lbs) added	at
Sth warm up/prebury	, fuel char	rae (lbs) added	at

FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Unit: F Runs Date: Technician:

Ye"

WST1-Form7-Rev11/89

Room Temperature:

Correction Factor: _

NOTE: Record readings to the nearest 0.5% moisture Uncor Values are corrected for temperature: Yes Time Test Fuel Moisture Readings taken at: 000

Calibration Checks: X Y 12.0 2.0 22.0

_									
Pc			To	•	Во	ttom	Si		Piece Av
		Use	Uncor		Uncor		Uncor	Cor	Corrected
1	2x4x8	K.	10.5	1//2	11.0	11.8	10,5	1/1,2	11,400 -
2					<u> </u>				
3									
4	KV48	P	21.0	122.9	21.5	23.5	121,5	23.5	23,300 -
5	2x4x8	P	19,5	21.3	20.0	21.8	20,0	21.8	21.633 -
6	3x4x8	P	21.0	122,9	21.0	22,9	21.5	23.5	23.100 -
7									68,0331
8									
9									
10									
11									
12	4x4x17/2	τ	22.0	24.1	0.55	24.1	22.0	24.1	24,100
13	12/11/2	T	Z1.5	23,5	21.5	23.5	21.0	22.9	23,300
14	4x4x17.1/2	T	22.0	24.1	220	24.1	21.0	ည.၅	23.700
15	4x4x17/2	τ	21.0	22.9	18.5	<i>2</i> 0.]	19.5	21.3	21,433
16	4x4x17/2	τ	19,5	21.3	19.0	20.7	-	20.7	20.900
17									113.433
18							٠.		
19								_	
20	FEET	T	P1.5	21,3	20.0	21,8	50.0	21.8	21.633

% Moisture - Dry Basis:

Pretest Fuel <u>Kindling</u> Test Load 22.678, 11.400 % 22.68

% Moisture - Wet Basis:

/0.233% 1

To obtain Wet from Dry: 100 X 7 Dry Rdg. = % Moisture, Wet Basis 100 + % Dry Rdg.

16-20% wet; 19-25% dry Acceptable Ranges: (17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

WOOD DENSITY DETERHINATION WOODSTOVE TEST DATA SHEET \$11 WOODSTOVE TEST DATA SHEET TEST TO COME	•			CUPOSION FOR	~ ~
WOOD DENSITY DETERMINATION WOODSTOVE TEST DATA SHEET \$11 Technician: WEST2-form11-Rev 6/90 Wood Piece: Nominal Dimensions: ### ### ### ########################				FXIMULE! HI-HO	00
Wood Piece: Nominal Dimensions: West2-forml1-Rev 6/96 Wood Piece: Nominal Dimensions: Depth (D): Width (W): Length (L): Width (W): Length (L): Wolume: Wolum		_	Dates	6/24/93	
Wood Piece: Nominal Dimensions: # x # x 3/2 Depth (D): 90 cm Width (W): 90 cm Length (L): 86 cm	WOODSTOVE	TEST DATA SHEET #1	l Technician:		
Depth (D): Width (W): Length (L): \$\begin{array}{c} \limits_{\begin{array}{c} \limits_{\begin				WST2-form11-Re	y 6/90
Depth (D): Width (W): Length (L): \$\begin{align*} \left(\text{Depth} \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Wood Piece: No	ominal Dimensions:			2
Width (W): Length (L): \$ \begin{align*} \left(\text{cm} \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Depth (D):				
Length (1): S.6	Width (W):				
Wet Weight: Solution Solutio	Length (1):	8.6		<u></u>	
Wet Weight: 404 S g Dry Weight: 336,6 g Zhoisture Dried Basis: 10,786 T are Beaker Wt		8 65 Cm	_	•	
Wet Weight: #04 S g Dry Weight: 336.6 g Z Moisture Driver Gost Wet Weight: 404 S g Dry Weight: 336.6 g Z Moisture Driver Gost Weight: 336.6 g Z Moisture Driver Gost Weight: 22 hors or (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g = 688.500 cm³ g g Wet Weight: 405 g Gost Weight: 25 g Density = 336.6 g = 688.500 cm³ g g Wet Weight: 405 g Gost Weight: 25 g Density = 368.6 g = 688.500 cm³ g g/cm³ Wet Weight: 405 g Gost Minimum Dryer Temp 100°C (212°F) Density = 368.6 g = 688.500 cm³ g/cm³ Wet Weight: 405 g Gost Minimum Dryer Temp 100°C (212°F) Density = 368.6 g = 688.500 cm³ g/cm³ Wet Wet: g =		8,35 cm Leng	th $\overline{\mathbf{x}} = \underline{\S}.5$	<u>C</u>	
MOISTURE: Room Temperature: 70 of Correction Factor: 0 Uncorrected Meter Readings Corrected for temperature: Yes No Note: Record moisture meter readings to the nearest 0.57 NOTE: Record moisture meter readings to the nearest 0.57 Top: 20.5 20.4 7 Avg 7 Moisture (Dry) 20.933 7 Bottom: 21.5 23.5 7 Side: 21.0 20.9 7 Scale: Leveled In Out V I. 2eroed: In Out V Zeroed: In Out V Wet Weight: 40.4 5 g Dry Weight: 336.6 g Z Moisture Dried Basis: 16.786 7 [1 - (Dry Wt ; Wet Wt)] x 100 Into Dryer 26.94.93 Time Oyso Temp Or Out of Dryer 7/1/93 (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : 68.500 cm ³ = 4289 g/cm ³ Pellet Fuel Moisture Content Determination Tare Beaker Wt	_	Volu:	me: (.00 a)	\3	
Uncorrected Meter Readings Corrected for temperature: YesNo			(D X W X	L)	
Uncorrected Meter Readings Corrected for temperature: YesNo	MOISTURE: RO	om Temperature:	70 or -		_
NOTE: Record moisture meter readings to the nearest 0.57 Uncoz Cor Avg Z Moisture (Dry) 20.933 7 Top: 20.5 23.4 7 Aug Z Moisture (Wer) 18 655 7 Bottom: 21.5 23.5 7 Side: 21.0 22.9 7 Scale: Leveled In Our O	_		r Correc	tion Factor:	0
NOTE: Record moisture meter readings to the nearest 0.57 Uncoz Cor Avg Z Moisture (Dry) 20.933 7 Top: 20.5 23.4 7 Aug Z Moisture (Wer) 18 655 7 Bottom: 21.5 23.5 7 Side: 21.0 22.9 7 Scale: Leveled In Our O	Uncorrected Met	er Readings Correct	ted for temperat	ure:Yes No_	_
Top: Top: ZO.5 ZO.4 Z Aug Z Moisture (Dry) 20.933 Z Bottom: ZI.5 23.5 Z Side: ZI.0 ZO.9 Z Scale: Leveled In Out Out Ti					
Top:					
Bottom: 21.5 23.5 7 Side: 21.0 22.9 7 Scale: Leveled In Our V Zeroed: In Our V Wet Weight: 404 5 g Dry Weight: 336,6 g Z Moisture Dried Basis: 16.786 7 [1 - (Dry Wt; Wet Wt)] x 100 Into Dryer Out of Dryer 7/1/93 1005 221 or Or Out of Dryer in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : (28.500 cm ³ = .4889 g/cm ³ Pellet Fuel Moisture Content Determination Tare Beaker Wt g Wet Wt: g = g			Avg Z Moisture	(Dry) <u>22,433</u>	_ %
Botrom: 21.5 23.5 Z Side: 21.0 22.9 Z Scale: Leveled In Out V Zeroed: In Out V Zeroed: In Out V Wet Weight: 40.4 S g Dry Weight: 336.6 g Z Moisture Dried Basis: 16.786 Z [1 - (Dry Wt; Wet Wt)] X 100 Into Dryer C/34/93 Time Oyso 217.9 or Out of Dryer 7/1/93 /005 221 of (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : 68.500 cm ³ = 489 g/cm ³ Pellet Fuel Moisture Content Determination Tare Besker Wt	Top: 20),5 22.4 2	Aug 7 Moisture	(Wat) 18.655	7
Wet Weight: #0# 5 g Dry Weight: 336.6 g Z Moisture Dried Basis: 16.786 Z [1 - (Dry Wt ; Wet Wt)] x 100 Into Dryer 6/34/93 Time 7/1/93 OF Out of Dryer 7/1/93 OF (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : 68.500 cm³ = 4889 g/cm³ Pellet Fuel Moisture Content Determination Tare Besker Wtg Wet Wt:g	Bottom: 21	.5 123.5 z			-~
Wet Weight: $\frac{1}{1000}$ g Dry Weight: $\frac{336.6}{100}$ g Z Moisture Dried Basis: $\frac{16.786}{1000}$ Z [1 - (Dry Wt; Wet Wt)] x 100 Into Dryer $\frac{1000}{1000}$	Side: 21.	0 22,9 2	Scale: Leveled :	- / 000	
Wet Weight: $\frac{1}{1000}$ g Dry Weight: $\frac{336.6}{6}$ g Z Moisture Dried Basis: $\frac{16.786}{1000}$ Z [1 - (Dry Wt; Wet Wt)] x 100 Into Dryer $\frac{0.000}{1000}$ $\frac{0.0000}{1000}$ $\frac{0.000}{1000}$ $\frac{0.000}{1000}$ $\frac{0.000}{1000}$ $\frac{0.000}{1000}$		1 1	Zeveled 1	un u	
Into Dryer Out of Dryer (Minimum Time in Dryer; 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : 68.500 cm ³ = 4889 g/cm ³ Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	Ī.	22.933 2	4erbed: I	n v out	
Into Dryer Out of Dryer (Minimum Time in Dryer; 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : 68.500 cm ³ = 4889 g/cm ³ Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	Wet Water 404	a Dan Badaba	. 33 /. /-		
Into Dryer Out of Dryer Out of Dryer (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : (88.500 cm ³ = .4889 g/cm ³ Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g			<u> </u>		
Into Dryer Out of Dryer Out of Dryer (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g : (88.500 cm³ = .4889 g/cm³ Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	% Moisture Dried	Basis: 10, 766 7	4		
Into Dryer	II - (Dry Wt	; Wet Wt) X 100			
Out of Dryer 7/1/93 /OOS 22/ of (Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g = 688.500 cm ³ = 4889 g/cm ³ (dry wt) (volume) Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	_	//	Temp		•
(Minimum Time in Dryer: 24 hrs.) Minimum Dryer Temp 100°C (212°F) Density = 336.6 g ÷ 68.500 cm³ = 4889 g/cm³ (dry wt) (volume) Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	•		~ ~ 1 1 1 1		
Density = 336.6 g = 688.500 cm ³ = 4889 g/cm ³ Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	(Minimum Time	in Dryer: 24 hrs.) Minimum Drypr	OF 	2011
Pellet Fuel Moisture Content Determination Tare Beaker Wtg Wet Wt:g =g	Density - 336,6	g : 688.500	cm ³ = Upaq	_/_3	/
Tare Beaker Wtg Wet Wt:g =g	(dry wt	(volume)	1780/		
Tare Beaker Wtg Wet Wt:g =g		•			
Tare Beaker Wtg Wet Wt:g =g	Pellet Fuel Moist	ure Content Determ:	ination		
Wet Wt:gg					
		g			
Gross Wet Wt. Tare Beaker Wt. Net Wet Wt.			g =		
				•	
Dry Wt:g =g		···			
Gross Dry Wt. Tare Beaker Wt. Net Dry Wt.	Gross Dry	Wt. Tare Beaker	Wt. Net Dry Wt.	•	
Moisture Dried Basis: [1 - (Net Dev Wt - Net Wet Ut)] X 100	7 Moisture Dried 1	Basis:		7.	

PAGE12

			3.0		_]		<u> </u>	1										Ī				T		Τ.	<u></u>		
7	SOZ PPM	875	325	850	100	100	625	725	775	750	700	1,50	υS0		15	250	1,50	625	650	1,50	157S	515	1572	1575	725	828		
0 F	STATIC	3ko:	:059	240.	540-	-044	†h0-	042	. O45	-045	SH0-	940-	7 th 0.7	.553	- 050	050	- 050	-050	-050	-050	050	-,050	5h0:	bh0	- 047	043	-, 588	-1.141
		378	b8h	308	299	PLC.	308	272	7वन	290	862	335	329	3879	328	33%	इ	348	348	347	342	351	341	338	318	TLC	4018	1897
93PAGE	CAL WB	130	131	130	130	126	130	127	129	130	130	131	3.		130	130	130	130	130	130	130	130	129	128	270	120		
1/6/9		7.0	4.7	9.5	9.2	0 b	9.3	4.2	9.2	9.3	93	9.5	93		9.0	96	8.5	8.5	8,5	8.5	& ?	00 73	9.0	73.	2.3	la.5		
(E 6	DRY B	88	238	203	189		136	177	179	180	182	192	190		986	060	192		9b]		195	196	լ լրbl	193	187	173		-
DATE	WET B	112	109	ارد	19	8	20	119	119	120	120	10	120		118	811	117	117	117	11	117	117	116	111	113	011	-	
9 0	BAL W	3,9	13,6	0.2	11.2	1.2	12.4	5.4	ور در	7.6	9.2	12.3	10.7	-	0 b	1,7	4.2	19.5	20.5	17.7	8.5	28.0	26.5	8.8	8.8			
RUN	8		38		1 70	ا لما	83 1	22	43 (. 15	8	94	96	1	18	98	84	L62	200	7	ا	47 2	7 14	102		11	<u> </u>	<u>i</u>]
	٧.	988	638	685	ريار	U64 1	083	122	143	15	1001.	094	960		118	. 848	18d		090	150	ემე	047	C47	062				1
00	05	2 0	14.8		~	W	S	∞.		ن	<u> </u>	3.	.2 6		00	2	00		70		-	<u>-</u>	Ŋ		╡	12.0		
3000		1 7.		33 14.4	1 12.		2 10	λ 5	<u>9</u>	11.80	<u>=</u> 	<u>Б</u>	2			ن			22	-	ه	0	_	33	138 10.9	485		
上	٧.		.598	5 583	.5	.538	422	555	.408	.458	pµ.	<u>ج.</u>	141		.397	.374	1357	351	_	328	-	2 310	JUE.	.353	<u> </u>	<u> </u>		
FX	C02	12.3	5.2	X 3	7.5	7.2	10.3	9	8.2	8.8	9.2	<u>د</u> =	16.3		10.b	1.1	<u>Б:</u>	2	12.3	7.5	' .	<u>w</u>	12,4	Ξ	2	8		
_	۲,	494	.209	.213	302.	.289	415	265	372	.35t	13.	و ا ا	21.	L	,428	097.	180	187	<u>율</u>	505	55	.530	55	5 - 1	904.	.323		1
PAGE 12 GAS DATA SHEET MANUFACTURER/MODEL	DROP	Ø	و.	,5	Ŋ	ν.	L.	νi	J.	٩	م	١.	او		<u></u>	و۔	اوـ	ور	و	و_	و۔	و۔	و	N.	<u> </u>	ن،		
ER/MO	FUEL	22.b	22.0	21.5	21.0	20.5	19.8	19.3	18.7	18.1	17.5	8.9 	16.2		<u>र</u> र	14.9	五.3	13.7	* 1	12.5	=	= 33	7,01	\circ	~]	4.5		-
12 GA	SCALE	560.9	5603	559.8	5593	558.8	558.1	15 S51.6	505510	S(556.4	555.8	555,1	554.5		553.8	553.7	552.6				5502	549.b	549.0	548.5	징	%: - - - - - - - - - - - - - - - - - - -		
PAGE	TIME	0 \S		<u>2/</u> ४/	\%\ _\%\ _\%	(K) (S)		<u>%</u> 人	(S)		1/2 S S	(S) 3)		TOTAL	3/ Y	3	5/ /X/	l_{u}			矧/	δ)	$\langle \langle \rangle \rangle$	/\ `	5/5 /S/	2	TOTAL	TOTAL

538.3

850 850 825 850 850 875 825 300 75 825 850 850 775 825 S17S 98 SO2 PPM 88 750 800 125 725 176 025 -, 02b -026 026 :032 026 -02S <u>.03</u>b -035 -,630 -,028 040: -031 770 329 - 038 - 447 038 040: 638 -031 038 -, 038 034 103 물 OF STATIC SHZ 3185 9년 (2 235 2 5887 26c 260 225 50 263 まる 510 2704 252 37 263 212 757 古る 力に STACK PAGE SO (80 108 109 ∞ ○ 9 \S\{\sigma} 7 1 80 0 二 5 0 | 2 <u>い</u> 0 = 9 120 <u>~</u> <u>e</u> 5 (ā CAL DATE 6 24/93 ίU, 0 5 ハ ゴ S) 4 R) G 5.7 S W 0 \sim 6.3 O %H20 J. _ S V) ഹ Ť J J M ヹ 30 74 3 158 156 533 50 38 <u>کا</u> ار ا € () 2 30 5 ربز (س و۔ و۔ <u>-</u> 62 152 69 9 DRY B <u>ء</u> 3 J الح <u>و</u> ن 70 90 <u>م</u> **S** 6 (N 103 102 701 5 5) 0 53 102 9 5 50 5 107 8 0 S O V) ~ ⊗ N) 8.9 8: =:8 ∡ 0 ٨ Г S 3 13.9 တ Γ F **(**() σ $^{\circ}$ 2 v) BAL 7 φ ഗ് S ゴ $\vec{\exists}$ S ٢ 主 \overline{C} Г σ Г 7 KUN 23 W 7 3 3 42 <u>7</u>0 34 2 $\widehat{\mathsf{M}}$ 33 03 3 1.07 66 S 79 28 S 7 3 ន 9 23 683 **13**8 27 王 132 101 693 811 8 <u> 10</u> 3 9 33 50 79 101 V) 674 V 2 5 > 9 12.2 いい 9 9.0 10.9 ا اج 7 12.1 2000 立 2 <u>م</u> ه 7 10.9 3 02 2 2 \subseteq 2 9 472 486 295 486 458 436 Ϋ́ 432 504 6617 439 439 453 **62h** 432 <u>무</u> 439 484 487 492 2 3 45 > 上 w 3 % % V) N σ OO 3 3 V) Г ŝ 9.2 0 N σ ()200 Ø ÇO, O 00 Q Q Q Q $\overset{\sqcap}{\times}$ 5નત 296 355 335 3 2 8 346 295 280 2952 369 309 29k 370 316 386 362 33 344 784 304 374 331 > S DATA SHEET ER/MODEL N N DROP N 3 C 3 M 3 N 3 3 丁 4 7 3 0 200 Q 3 コン V) **(1)** ∞ O. (\mathcal{N}) J 4 寸 φ, Ġ FUEL V) V) J Q V) \vec{z} O Γ **5435** 517.5 543.6 517.8 543,9 SE3.1 546 0 545.7 545,4 544.6 543 542.9 547 6 |S46.℃ 55. 544.8 2432 542.7 547,4 7.17.0 3 $^{\sim}$ PAGE 12 MANUFACT 543. SE ... SCALE 546 S. 1/400 2% Sol 101/07 4 S S 8 n O (M) λχ /χ 3 /<u>고</u> 20 Ŋ 2 TOTAL TOTAL COTAL TIME

538 J

850 \$50 900 850 9 8 900 900 850 875 878 900 850 900 900 9 9 SOZ PPM -, 620 -514--022 - 020 970 -020 .023 023 -023 -020 020 : 024 022 , 024 750 --, 621 -021 -07 -,02 170 - 021 OF -02 -62 STATIC 2355 न् । 2439 <u>م</u> 8 98 205 202 200 195 9 20° 000 90 203 192 194 204 202 203 205 9 707 197 STACK 707 <u>8</u> 201 PAGE 20 O N 5 20 104 105 S 70 80 <u>8</u> \$ 0 55 101 80 <u>5</u> 70 70 100 CAL WB 50 9 70 080 501 Ç 0 T 4 S 'n 1 (N 2 $(\sqrt{})$ 3 43 ~ C XH20 DATE () JU 7 J 7 7 ゴ 7 33 34 34 3 36 $\frac{2}{3}$ 3 3 34 135 34 37 3 7 3 134 137 <u>@</u> $\overline{\mathcal{C}}$ 3 œ 'n 3 DRY <u>و</u> 5 <u>و</u> 5 9 ا<u>و</u> ح ด ผ 9 N <u>و</u> 5 Ŝ <u>و</u> 5 9 13 98 9 Q N g 98 95 20 Q S m S WET و. س و_ ش W O OG V 3 σ 9 0 7 3 3 0 \sim ω BAL ⇒<u>:</u> Ś ω 7 7 α ന് 3 ന് 3 \supset 7 NOW থু الح 9 <u>လ</u> တ 83 83 3 2 29 3 70 4 5 \sqrt{f} 4 وا ശ 8 约 公 0 83 833 S 字 7 88 20 עע ב **५**८। <u>უ</u> 15 5 の = $\frac{\infty}{\infty}$ $\overline{\mathcal{N}}$ <u>a</u> > 2000 13.3 13.0 13.0 13.0 12.9 12.7 12.9 12.7 3 Q 12.7 3 3 12.7 12.7 $\overline{\Sigma}$ 엉 W ന് $\underline{\circ}$ \Box C 530 530 525 535 53% 52% 543 536 520 222 508 522 537 1994 794 493 521 52 对 > 1 (V ف è M V) و W σ 9 B M ر و ∞ 202 FΧ 76b 258 286 .23b 265 213 235 762 754 **以** 2204 293 797 264 न 294 292 137 237 254 249 769 231 > S DATA SHEET ER/MODEL DROP 8 0 ೨ V) (1) و 3 3 O 5 --1 0 ∞ ~ Ø Q Г FUEL ന N ര 3 M **(1)** 3 3 SH0.6 5.0.0 45540.8 160 <u>1</u>216 S 7000 540.4 541.5 542.3 0.ChS <u>St. 1.</u> 5.13 <u>3</u> 541.0 20万cg 10101 5424 54122 541.7 5.1.5 る 五 五 SE. 1 PAGE 12 MANUFAC <u>..</u> 贡 SCALE 25 2 8 10 3 20 8 30 Š 2 7 ನ್ನ TOTAL TOTAL FOTAL 11분

25.00

.i. 8 850 969 850 900 8 850 850 850 900 85 900 925 900 906 900 SOZ PPM 99 875 -,036<u>)</u> -2,8,9 6105 610-209 -1019 610 40 1019 -019 -019 010 -019 010 610: -019 00 010-019 010 020 0 0)0 6107 919 010 OF STATIC 244 1961 200 13151 2200 203 <u>1</u>68 203 198 195 200 200 ン 9 200 202 200 2311 204 9 207 **00** 197 92 <u>P</u> <u>0</u> C STACK PAGE 165 5 107 10 20 104 5 5 S 505 5 05 105 70 55 70 <u>₹</u> 500 2 10 70 104 0.1 <u>စ</u> 24/93 70 0 R 7. 43 C^{\downarrow} ر ا 1. J W S) 2 なける 3 3 ∞ 3 \mathcal{C} XH20 7 J ⇉ Ť DATE $(_o/$ 33 3 3 5 135 135 733 33 3 **1** 133 3 134 13 135 32 33 134 32 œ \mathcal{C} ď $\mathcal{C}(\mathbf{J})$ $\overline{\Omega}$ 7 DRY رو ن <u>0</u> 9 <u>و</u> 0 O N 9 9 N V) 9 S 9 96 9 æ \Re ટ્ટ G 9 O S Q クセ W 7 (و 8 Q ろ 3 0 0 Ç ွ 0 9 ئـــ Ī BAL v Í 7 3 J V) ١Ō 5 \supset J RUN f 25 . SS S S S .20 8 5 ۋ ___; ⊗ .23 29 20 133 S .2 \sim 8 ĺŪ 7 145 52 <u>्</u>र S0 33 5 <u>्</u>यु 123 3 153 20 22 139 39 달 $\vec{\omega}$ 79 23 ī \overline{N} .121 > 13.0 13.5 ا2. 3,0 3.0 13.0 13.4 7 Γ 0.7 7 32 Š 2000 7 엉 $\overline{\mathbb{C}}$ 3 $\underline{\circ}$ $\vec{\omega}$ ω ഹ് 3 3 525 538 533 525 53% 532 Ω S 529 5 541 25 507 S 贡 Si 可 > Σ (M و 4 6.0 $\mathcal{C}_{\mathcal{I}}$ (3 8 202 9 $\stackrel{\times}{\sqcup}$ 1268 273 280 738 26c 25 \frac{\partial \partial \parti 710 255 500 756 .788 286 747 248 28lo 767 754 187 251 949 281 > S DATA SHEET ER/MODEL DROP 8 -00 ω Q \exists () Ö \circ <u>....</u> N ſ ∞ 3 \bigcirc Ċ, T \bigcirc FUEL 538.5 5384 538.5 539.5 539,4 5200 538.8 538.6 539.3 Ç 5363 (2) (3) (3) 538.9 0.95 539.1 530 538 8 PAGE 12 MANUFACT SCALE <u>S</u> 548 3 多 35 () (S) 3 S 2 g (a 8 38 8 2 2 2 0 TOTAL TOTAL OTAL 11HE

PAGE 13 PREBURN DATA SHEET

IT SOCO RUN S DATE $(a 24 93)$ PAGE OF	BACK RT SIDE BOTTOM FIREBOX SEC / CAT AMBIENT STATIC COMMENTS	107 449 346 927 1350 77 -080 PRIMARY AIR SET AT: YO	520- 87 895 805 194 1	77 351 804 13/3 77	1321 78	351 776 1372 78	7 SSO- 1	443 351 766 1335 79 -058	80	331 788 1318 79 :051	87 7961	327 820 1288 79 -148	101 457 323 833 1376 79		106 458 321 BCT 1293 79 - 1113	1 463 332 1013 912 74 - 147	0							
hC(0) ₹	SEC / CAT	/350	8%	13/3	1331	1372	1356	`				├	ļ	╫	╫─	╁	1							
	FIR	\parallel				776	764				_	 		<u> </u>	$\!$		-						-	
	II L		348								_	 		-	╫─	+	+							
000	RT SIDE	ЬН	10/		452	453					3/1/2	ISh	457		455	┢	1							
HT 2	B/8	70/	103	762	700	101	150	181	_				!! 		901	PC!								
TX T	LT SIDE	544	453	439	8¢h	419	405	397	399	399	398	397	399		9017	7077	├—							
SHEET	ТОР	622	230	464	45%	456	535	563	510		484	1487	디그	1	443	445								
	STACK	(P4)	375	365	361	358	369	375	371	365	36	351	321		bbC	378							_	
PAGE 13 PREBURN DATA MANUFACTURER/MODEL	BURN RATE	0		<u>∞</u>	&	∞,	8,	<u></u>	1	7.		Ň	7		.3	7								
IS PRE CTURER	SCALE WT			945.1	943	543.5	12/5/	342.0	541.3	S	539.9	539.4	539.0		538.7	538.3								
PAGE MANUF	TIME	8	() () ()	5/ 18	(2)	S/ S/	12/2	8/	8) E/S	3/ 8)^ 	16 18	S/ S/		3 ∫5	15/2/	20/20/	25 25		\				\

	<u></u>	351.0																											
0	OF.	SOZ IMP	37	1.4	37	3.7	37	37	37	37	37	37	37	37		37	37	37	27	37	37	37	37	27	27	7 7	7 7	,	
		GAS IMP	35	7	35	3	3,6	36	36	36	36	36	36	36		36	36	36	6	36	35	35	36	200	7	7	7	,	
	PAGE	C. GAS	220	Jeg C	737	233	236	140	SH3	SHC	246	LhC	747	ShC		747	247	747	ShC	ShC	248	ShC	ShC	248	ShC	SAC	216	2	
-	6/24/93	IMP OUT	36	36	36	37	37	37	37	37	37	757	37	37		37	37	37	2	37	37	36	36	3%	3%	31,	200		
~	- 1	SAMPLE	231	233	237	ShC	ShC	14C	LhC	24C	245	∂hC	onle	LhC		246	34C	24lo	246	2HZ	LhC	247	LhC	247	2416	LhC	LhC		
	DATE	FURNACE	1410	1406	1395	1386	1386	1388	1341	1393	1395	139 b	1399	1403		1407	1409	1414	1422	LCH1	1431	1435	1441	ीतति	14प%	6001	1448		
(RUN /	AMBIENŢ	78	77	77	LL	LL	78	7	10	76	م	75	75	d1d	75	75	76	مال ا	مال		76	76	مال	78	11	28	916	1025
		SEC / CAT	963	001	مالم	718	683	398	765	898	829	857	442	902	8646	848	1012	1040	1094	1143	9	8101	1138	1054	1016	893	854	12386	27191
, ()002 1	FIREBOX	1013	592	568	570	583	574	572	595	595	900	603	509	9 LHL	blø	(S)	0৮৭	اSها	စု ၈	676	989	693	769	70d	וור	119	8075	15.5.5
	<u>+</u>	ВОТТОМ	322	330	331	324	323	319	319	315	313	300	287	283	376b	283	PLC	275	260	258	253	248	onhC	242	237	230	229	3040	1,961
SHEET		RT SIDE	463	3	425	403	396	38c	382	375	375	371	375	373	4774	370	365	364	363	367	36k	368	3108	369	371	378	379		9202
E DATA		BACK	ከሮ፣	ماما	192	119	108	102	151	179	194	129	103	100	1667	136	164	186	117	101	99	125	15.5	180	<u>ਹ</u>	102	dd	1577	3244
PAGE 1 TEMPERATURE	/MODEL	LT SIDE	1017	391	373	364	355	345	333	325	324 -	330	333	334	42.58	325	325	330	344	35	361	36Z	36to	365	372	372	370	4243	8451
TEMP	CTURER	TOP	445	452	040	381	349	347	389	397	418	34 <u>4</u>	405	20 h	4823	462	488	509	482	Salt	467	5 le	248	560	70 ग	77	87	5855	10678
PAGE 1	MANUFA	TIME	0/2/01/2		5/ \S/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S/S	\$\frac{2}{5}\	以 (3)	ΔL	₹/₹ \%\	小 引) (S) (S)	2	TOTAL	3/1 2/1	00/2/20	2/ 2/ 2/	(R) 2\{	ĴĹ		$\backslash \backslash $	ÌΙ		\80\ 2\2\2\2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(2) (2)	TOTAL	TOTAL

Sex (March

Site: EEMC - West, Kent, WA 98032 Date: 62493 Analyte: CO2 (15-1)												
Source:	FX H	<u> 20</u>	00	Run	#:	2						
							tess: <u>20</u> 0					
Cert	ified by:	LIQ	110 AIR				Date: _6/	10/93				
Span Cy	1 #: <u>AS</u> 4	10875		Conc. 12.6	%_CO2_	Cyl Pr	ess:	<u> </u>				
Certified by: MATHESON Date: 1/11/93												
Analyzer: Make: Horiba Model: PIR-2000 SN: 407069												
Range: 0 - 25.0% CO ₂ Analyzer Output: 0 - 1.0 v.												
Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter:												
EPA Span Value = 25.0% CO ₂ EPA Control Limits = ± 2.5% of 25.0% CO ₂ = ± 0.625% CO ₂												
Pre Run Audit: By: BD Time: 95 Temp: 78 of												
Audit Results Point Expected Response Actual Response + Conc.												
#		DVM	8	Meter	DVM	\$ \$	Difference	€ 4				
Zero	00.0	.000	00.0	00.0	1000)	-,029	7,029	-116				
span 504 .504 12.6 SD.6 .506 12.563037291												
Comments:												
Post Run Audit: By: DK Time: 1815 Temp: 81 or												
Audit Results Point Expected Response Actual Response + Conc												
#	Meter	DVM	\$	Meter	DVM	gonse %	+ Conc Difference	4				
Zero	00.0	.000	00.0	00.0	.001	004	004	-016				
Span	span 50.4 .504 12.6 50.5 .505 12.538062488											
Comments:												
Conc. Difference = Act % - Exp (Std) %												

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Site: EEMC	- West	, Kent	, WA 980:	32 Date	: 6/24/	<u>9</u> 3 Ana	lyte:O	2 (15-2)				
Source: _												
Zero Cyl #	: <u>T13</u> 2	2257		Conc. 00.0	⁸ _0 ₂	Cyl P	ress: <u></u>					
Certifi	ed by:	LIQU	10 AIR		-		Date: 10	10/93				
Span Cyl #												
Certifi	ed by: _	MAT	HESON		<u> </u>		Date:	11/93				
Analyzer:												
	Range: 0 - 25.0% O2 Analyzer Output: 0 - 1.0 v.											
Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter:												
EPA Span Value = 25.0% O ₂ EPA Control Limits = + 2.5% of 25.0% O ₂ = + 0.625% O ₂												
Pre Run Audit: By: BN Time: 900 Temp: 77 of												
Audit Results Point Expected Response Actual Response + Conc.												
#	Meter		8	Meter	DVM	\$	Differen	ce Δ %				
Zero	00.0	.000	00.0	0.1	204	1057	,057	,230				
							,108	.845				
Comments: Teledyne#2 Cyl % Exp % Act % Adj to + \(\Delta\)%												
Post Run Audit: By: OK Time: 1820 Temp.: 81 of												
Point	Expect	ed Res		udit Resu	lts ial Res	Dongs (+ Conc.					
#	Meter	DVM	8	Meter	DVM	& S	Difference	₽				
Zero	00.0	.000	00.0	00.0	.001	.017	-, 017	:068				
Span	12.8	.512	12.8	12.8	.518	12.839	.039	.304				
Comments: Teledyne#2 Cyl % Exp % Act % Adj to + A%												

ro % Difference = Act % - Exp (Std) %
ro % Differece = Act % (ppm) - Exp % (ppm) X 100
Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

Site: EEMC - West, Kent, WA 98032 Date: 624/93 Analyte: CO (15-3)												
Source: <u>FX HT 2000</u> Run #: 2												
Zero Cy	1 #:	3225	7 c	onc.00.0	%_CO	Cyl F	ress: <u>2</u> 0	000 _ps				
Cert:	ified by:	LIOU	10 AIR				Date:	110/93				
	span Cyl #: <u>AS 40875</u> conc. <u>5.01 % co</u> Cyl Press: <u>500</u> psi											
Certified by: MATHESON Date: 1/11/93												
Analyzer: Make: Horiba Model: PIR-2000 SN: 408005												
Range: 0 - 10.0% CO Analyzer Output: 0 - 1.0 v.												
Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter:												
EPA Span Value = 10.0% CO EPA Control Limits = ±2.5% of 10.0% CO = ± 0.25% CO												
Pre Run	Audit: By	7: <u>L</u>	3N _	Tin	ne:	N5	Temp:	78 o ₁				
				Audit Resu								
Point #		ted Re	sponse %	Act Meter			+ Conc. Difference	е Д 8				
Zero	00.0		1		1		,000					
Span	Span 50.1 .501 5.01 51.7 .517 5.17 .160 3.194											
Comments:												
Post Run Audit: By:OF												
Audit Results Point Expected Response Actual Response + Conc.												
# Meter DVM % Meter DVM % Difference \triangle %												
Zero	00.0	.000	00.0	00.4	.004	.040	.040	.400				
Span	Span 50.1 .501 5.01 50.9 .509 5.090 .080 1.597											
Comments	•			•		·						
	Difference ifferece =	Act %		Exp & (ppi	n) X 10	0						

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

Site: EEMC	- West	, Kent	, WA 9803	32 Date	:6041	93 Ana	lyte: <u>SO</u> 2	(15-4)			
Source:	FX	IT 20	<u> </u>	Run	#:	<u>2</u>		,			
Zero Cyl #	: <u>TI3</u>	2257		onc.00.0	ppm SO	2 Cyl P	ress: <u></u>	<u> </u>			
Certifi	ed by:	Lia	10 AIR				Date: 6	110/93			
							ress: 5	•			
	Certified by: LIQUID AIR Date: 2/26/93										
Analyzer: Make: Horiba Model: PIR-2000 SN: 403019											
Range: 0 - 2500 ppm SO ₂ Analyzer Output: 0 - 1.0 v.											
Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter:											
EPA Span Value = 2500 ppm SO ₂ EPA Control Limits = +2.5% of 2500 ppm SO ₂ = +62.5 ppm SO ₂											
Pre Run Audit: By: BD Time: 930 Temp: 78 or											
Audit Results Point Expected Response Actual Response + Conc.											
#		DVM		Meter	DVM	ppm	Difference	△ 8			
Zero	00.0	.000	00.0	01.5	,015	33.085	33,085	1,323			
Span	50.7	.507	1268	52,0	1520	1304.077	36.077	2,845			
Comments:											
Post Run Au	dit: B	y:	OK	Time	e: <u> </u>	830	Temp: 8	o _F			
	Audit Results										
Point #	Expec Meter	ted Res	ponse ppm	Act: Meter	ual Res	ponse ppm	+ Conc. Difference	₽			
Zero	00.0	.000	00.0	01.0	.010	20. 501	20.501	.820			
Span	50.7	.507	1268	51.7	.517	1296. 526	28.526	2.250			
Comments:											

+ Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

QUALITY CHECKS DATA SHEET 16

			1721121		1 10			1 2	
Unit:	FX	HT Q	<u> </u>			_Run:	Date	e: 6/20	_
Thermocoupl	e Check								٠
T/C #1		69.8	°F	T/C	#13	6	9.0	°F	
T/C #2	<u> </u>	69.8	°F	T/C	#14		9.2	− °F	
T/C #3		12.0	°F	T/C	#15		,9.7	− °F	
T/C #4		72.6	°F	T/C	#16		4.0	~ °F	
T/C #5		72.7	°F	T/C	#17		2.6	~F	
T/C #6		73.4	°F	T/C	#18		4.8	− °F	
T/C #7		72.7	°F	T/C	#19			°F	1 1
T/C #8		73.4	°F	T/C	#20			°F	
T/C #9		73,8	°F	T/C	#21			− °F	
T/C #10		73./	°F	T/C	#22			− °F	
T/C #11		69.7	°F	T/C	#23	7	0.2	 °F	
T/C #12		69.9		T/C	#24	21	9.2	− °F	
								_ 	
Thermocooup									
pretest zero and span ZERO -,2	check and ca F	ADJ, TO	Λ	°F	-	ero and span		% difference	
SPAN 5000	_	ADJ. TO	2000.0	°F	ZERO SPAN	2003 3	°F _	005=	
SI AIV JULY	<u> </u>	ADJ. 10	aw.u	r	SFAIN	2003.3	°F	165-	
Thermocouple	Readou	it Pretest I in	earity Che	-ck					
0 =	/)		-	11.4	°F	400 =	398,7	' °F	
600 = 7	01,0	_		1.2	°F	1000 =	1000.3		
1200 = /	198.0	°F 140		99.0	°F	1600 =	1599.6		
1800 = /	799.9	°F 200		10.0	- °F	1000	1017.0	_ r	
			<u> </u>		- * 				
Sample Train	Leak Ch	eck			Pre	Post			
Combustion G			-		Pre	Post			
Tracer Gas Tr	ain (SO ₂	2) Leak Chec	k		Pre	Post	V .	<u></u>	
Darft (Static)					Pre	✓ Post	_/		
									
Scale Check	51/2	7 - 62) n = .	1/3 /~					
Pre	<u>543,</u>		3.2 = 1		-				
Post _	<u>548.</u>	<u>0 - 539</u>	3.0 = 10	<u>u, U</u>	<u> </u>				
•									

Stack Cleaned Proir to Test Run: YES _____ NO ____

TABLE 1 ---- RAW DATA

CLIENT: FX DROLET TEST No.:

HT 2000 DATE: 29-Jun-93 MODEL: ****************** TIME METER DELTA METER PERCENT PERCENT **SO2** CO₂ COCENTR. READING Η TEMP. CO 왕) (%) (DEG. PPM (C F) (IN. H20)F) (MIN.) 0 381.500 0.150 80 0.77 6.40 600 5 383.000 0.610 82 0.35 0.92 300 550 0.180 0.59 2.20 10 386.058 84 387.742 0.200 85 0.60 3.60 525 15 450 20 389.432 0.270 86 0.51 8.30 25 391.504 0.240 88 0.85 8.00 475 393.482 0.230 89 0.84 9.60 475 30 90 0.76 10.30 450 395.468 0.260 35 397.571 0.230 91 10.50 475 40 1.08 45 399.571 0.210 91 1.07 11.30 500 50 401.471 0.210 92 0.87 12.30 500 92 0.76 12.80 500 55 403.378 0.210 405.285 0.230 93 0.30 13.10 475 60 93 65 407.299 0.230 0.28 12.30 475 94 0.30 13.30 475 70 409.313 0.230 0.210 94 0.30 13.30 500 75 411.335 80 413.256 0.230 95 0.27 13.40 475 95 0.19 13.50 475 85 415.285 0.230 95 13.80 475 0.230 0.24 90 417.314 96 14.40 500 95 419.343 0.200 0.24 96 0.18 14.20 475 100 421.277 0.230 97 0.20 12.00 475 105 423.314 0.220 425.357 0.220 97 0.24 10.70 475 110 0.200 97 0.23 10.40 500 427.401 115 429.343 0.200 98 0.29 10.40 500 120 98 0.33 10.70 500 431.295 0.200 125 98 0.33 10.60 500 130 433.248 0.200 0.180 99 0.25 9.90 525 135 435.201 99 7.70 0.160 0.69 550 140 437.067 438.849 0.160 99 0.73 7.80 550 145 7.50 0.180 99 0.72 525 440.631 150 0.65 7.60 442.497 0.180 99 525 155 99 0.72 7.50 525 444.364 0.180 160 0.180 99 0.74 7.30 525 165 446.230 0.180 99 0.91 6.90 525 170 448.097 99 1.00 6.70 525 449.963 0.180 175 0.180 99 1.12 6.60 525 451.829 180 453.695 0.180 99 1.19 6.60 525 185 1.21 6.60 525 190 455.561 0.180 99 457.427 0.180 99 1.29 6.50 525 195 6.50 525 459.293 0.180 99 1.30 200 99 1.53 6.20 525 0.180 461.159 205 0.180 99 1.50 6.20 525 210 463.024 215 464.890 0.180 99 1.50 6.30 525

TABLE 2---RAW DATA

CLIENT : FX DROLËT	•	TEST No.	4	
MODEL: HT 2000 ******************			29-Jun-93 *****	*****
METER CAL. FACTOR (Y) 1.028	Wt. WOOD BURNED(LB)		21.6	Lbs
BAROMETRIC PRESS.(Pb) 30.15 in Hg	WET, FUEL MOISTURE %		18.963	%
LEAK RATE POST (Lp) 0.001 cfm	Wt. PART. COLLECTED		0.5417	g
WATER VOL. (V1c) 131.7 M1	METER VOLUME Vm		109.179	mcf
TEST TIME (MIN) 285 min	HC MOLE FRACTION		0.0132	

TABLE 3 ----FIELD DATA AVERAGES

CLIENT :FX DROLET	TEST No.	4	
MODEL: HT 2000 ********************		Tun-93	
AVG DELTA H 0.20 in H20	AVG PRCNT CO	0.86	%
AVG METER TEMP. Tm 96 deg F	AVG PRCNT CO2	8.37	%
AVG PPM SO2 509 PPM	AVG BAL	9 79	2

TABLE 4 ---- CALCULATIONS

CLIENT : FX DROLET	TEST No. 4
MODEL: HT 2000 **************	DATE: 29-Jun-93 ***************
STD SAMPLE VOL. Vm(std) 107.52 dscf	STACK GAS FLOW Qsd 571.275 dscf/Hr
	9.52 dscf/min
VOL. WATER VAPOR Vw(std) 6.199 scf	PARTICULATE CONCTRT. Cs 0.0050 g/dscf
PRCNT MSTR Bws 5.45 %	PARTC.EMISS. RATE E 2.88 g/Hr
BURN RATE BR 1.67 Kg/Hr	MOLES OF GAS PER Lb WOOD Nt 0.40 Lb-mole/Lb
CO EMISSION RATE 163.57 g/Hr & 97.83 g/Kgdry fuel	PART.EMISS. RATE 1.72 g/Kgdry fuel

TABLE 5 ---- PROPORTIONAL RATE VARIATION

CLIENT: FX DROLET TEST No.: 4

MODEL: HT 2000 DATE: 29-Jun-93

	TIME INTEVAL Ti	PPM * Vm	PROPRTN. RATE VAR. PR	****************** PROPRTN RATE VAR. AVERAGE	
	5	910.4	96		
	10	925.6	97		
	15	930.9	98		
	20	890.2	94		,
	25	933.1	98		
	30	937.6	99		
	35	939.7	99		•
	40	941.0	99		
	45	943.7	99		
	50	942.8	99		
	55	945.4	99		
	60	944.6	99		
	65	946.9	100		•
	70	946.0	99	•	
	7 5	948.9	100		
	80	948.1	100		
	85	950.5	100		
	90	950.5	100		
	95	949.6	100		
	100	951.9	100		•
	105	951.7	100		
•	110	953.6	100		
	115	954.1	100	to a	
	120	953.3	100		•
	125	957.3	101		•
	130	957.8	101		
	135	956.9	101		
	140	959.1	101	•	
	145	959.5	101		
	150	959.5	101		
	155	959.1	101		
	160	959.6	101		•
	165	959.1	101		
	170	959.6	101		
	175	959.1	101		
	180	959.1	101		
	185	959.1	101		
	190	959.1	101		
	195	959.1	101		
	200	959.1	101		
	205	959.1	101		
	210	958.6	101		•
	215	959.1	101		
	220	959.1	101	•	4 - 4

225	959.1	101
230	959.1	101
235	959.1	101
240	959.1	101
245	959.1	101
250	959.1	101
255	959.5	101
260	959.6	101
265	959.1	101
270	959.6	101
275	959.0	101
280	959.5	101
285	959.5	101
290	•	
295		

Client FX COMPUTER INPUT DATA WOODSTOVE	DATA SHEET #1
Client Address 1700 LEON HARMEL	
QUEBEC, QUEBEC, CANADI	A GIN UR9 .
Client P. ne 514-565-6336	
Project No. Model No. 470	$\triangle \triangle$
Run No L Date of Test 6/29/93 Fs:	t Grame/Hr
Stove Type: Cat Non CatX Pellet	
Data To Be Submitted To: OregonColorado_	
Burn Category: Low (<0.8 Kg/Hr) Med Hi (1. Med Low (0.8 - 1.25 Kg/Hr) .6715 M	lax (>1.9 Kg/Hr) .
Fuel % Moisture (dry) 23,400-%(wet) (00.00) (Data Sheet #10)	18,963- 2
Stack Static Pressure (0.000) (Data Sheet #12)	055/
	H ₂ U
Barometric Pressure(OG.00) (Data Sheet #2)	30.15 - "Hg
Temperature (Average Room) Combustion Air(00) (Data Sheet #14)	93 / OF
Flue Gas Moisture (00.000) (Data Sheet #7)	5.4564- %
Ambient Moisture (0.00) (Data Sheet #8)	1.15 - %
Stove Weight(900) (Data Sheet #8)	487 lbs
Stove Temperature Change(000) (Data Sheet #14)	-46,20 OF
Particulate Emission (0.0000) (Data Sheet #7)	.0778 - gr/dscf
Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)	8637 BTU/16
Fuel Type: Wood: X Pellets:	
Total Fuel Consumed During Burn(00.0) (Data Sheet #8)	21.6 - 1bs
Total Particulate Catch(O.0000) (Data Sheet #6)	5417 / g
H ₂ O Captured (00.0) (Data Sheet #3)	131.7
Dry Gas Meter Volume (00.000) (Data Sheet #2)	109,179 cf
Dry Gas Meter: Y Factor: 1.028 Post Test Le	ak Rate <u>(00)</u> CFM

Unit: FX

Run: 4 Date: 6-29/3 :

Operator(s): (r), DK

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	1.03	Sampling	Ratio :		_ : 1	BAROM	ETER:	30,15
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SOS Mqq	ROTO TEMP	PUME
00	1035	381,500		5.821	115	80	600	8/)	1.0
05	40	383.000		11.598	.61	82	300	82	5.0
10	45	386.059	386.059	6.303	118	ह्रप	550	84	1.0
15	<u> </u>	387,742	387.742	6.591	, ZO	85	525	85	1.0
20	<u>55</u>	389,432	329,432	7.675	.27	86	450	186	1:0
25	1100	391,504	391.504	7.245	.24	88	475	88	2.0
30	<u> </u>	393,482	393,482	7,232	,23	हित	475	87	2.0
35	15	395,469	395, 468	7.620	126	90	450	90	2.0
40		397.571	397,571	7.205	. 23	91	475	91	20
45	ي د وسام کو دره کو	399.571	399.571	6.845	,21	91	500	91	2.0
50	25	401.471	401.471	6833	. 21	92	500	92	20
55	1130	403.378	403.378	6.833	, 2/	92	500	92	2.0
ROTO	PRESS:	1.03	TOTALS :	87,801	3.00	1050	BAROME	eter:3	0.18
60	1155	405,285	405.285	7,179	123	93	475	93	20
65	45	407.299	407.297	7.179	, 23	93	475	93	20
70	75	409.313	409.313	7.166	. 23	94	475	94	2.0
75	<u> 50</u>	411,335	411.335	6.808	121	94	500	94	2.0
80	<u>55</u>	413,256	413.256	7,154	, 23	25	475	95	2.0
85	1200	415,785	415,285	7.154	123	15	475	95	2.0
90	05.	417.314	417.314	7.154	,23	95	475	95	20
95	10	419,343	419.343	6.784	,20	96	500	96	20
100	15	421-277	421.277	7.141	.23	96	475	96	2.0
105	20	423,314	423.314	7,128	,22		475	97	20
110	25	425,357	425.357	7.128	22.		415	97	2.0
115	<u>3</u> 0	427.401	427.401	6.771	.20			97	20
			TOTALS: (84.746	2.66	1142	MAX VA	CC =	
TOTAL	CU FT		TOTALS:	172 347	5.66	2192	AV BP:		

Meter Box Data Sheet Page # 2 Meter Box 514 Y Factor 1.028

OOZ cfm Leak Checks:

Inject SD2 @ 100 cc/min

Page __ Unit: <u>F</u>X 629.93 Run: _4 Date: _

Operator(s): (40 DK

Nozzle: Probe @ 3/8 " od

Initial Volume: 1500

ROTO	PRESS	PRESS:1.03 _ Sampling Ratio : 19 _ : 1 BAROMETER: 30					21:05		
MN	TIME	METER READING	SAMPLE	STACK DSCFM	DELTA H	METER TEMP	SOS	ROTO	PUMI
120	1235	429,343	429,343	6.746	. 20	198	500	1.98	2.0
125	40	431,295	431.295	6,746	120	98	500	98	2.0
130	45	433.248	433.248	6.746	120	98	500	98	12.0
135	<i>5</i> 0	435.201	435.201	6.413	,18	99	525	99	2.0
140	55	437.067	437.067	6,122	116	199	550	99	2.0
145	1300	438.849	438,849	6.122	,16	199	550	99	2.0
150	05	440.631	440.631	6.413	.18	99	525	99	2.0
155	10	442.497	442.497	6.413	.18	99	525	99	2.0
160	15	444.364	444.364	6.413	.18	99	525	99	2.0
165	20	446. 230	446.230	6.413	.18	99	525	99	2.0
170	25	448,097	448.097	ل, 413	-18	199	525	99	2.0
175	1330	449.963	449.963	6.413	.18	99	525	99	2.0
ROTO	PRESS:	1.01	TOTALS :	77.373	2.18	1185	BAROME	TER:	<u>30.13</u>
180	35	451.829	451.829	6415	.18	199	525	99	2.0
185	40	453.695	453.695	6.415	.18	99	525	99	2.0
190	45	455.561	455.561	6.415	.18	99	525	99	2.0
195	50	457, 427	457.427	6.415	.18	99	525	99	2.0
200	<i>5</i> S	459. 293	459.293	6.415	.18	99	525	99	2.0
502	1400	461.159	461.159	6.415	.18	99	<u> 525 </u>	99	2.0
210	<u>05</u>	463.024	463.024	6415	.18	99	525	99	2.0
215	10	464.890	464890	6.415	.18		525	99	2.0
550	15		466756		.18		525		2:0
225		468.622	468.622		.18			99	2.0
SEO	25	470,488	470.488		. 18		<u> </u>	99	2.0
235	30	472, 354		6.415	.18		$\underline{\hspace{0.1cm}}$	99	2.0
			TOTALS:		2.160		MAX VAC	C =	
TOTAL	CU FT		TOTALS:	54-353	4.340.	2373-1	AV BP:		

Meter				_			
Meter	Вох	51	}	Y Fa	cto	or <u>1.0</u>	28
Leak C	heck	s:	16.0 "	' H□	Œ	.002	cfm

Inject SO2 @ 100 cc/min

Page 3 of 3
Unit: FX HT 2000
Run: 4 Date: 6/29/93
Operator(s): (W. DK)

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	1.00	Sampling Ratio : 19			. 1	BAROMETER: 30.12		
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	S02 PPM	ROTO TEMP	PUMP
240	1435	474.220	474.220	6.413	.18	99	525	99	20
245	40	476.086	476.086	6.413	. 18	99	5 25	99	2.0
250	45	477.952	477.952	6.121	.110	99	550	99	2.0
255	50	479.734	479.734	6,413	.18	99	525	99	2.0
260	55	481.601	481.601	6.413	.18	99	525	99	2.0
265	1500	483.467	483.467	10.413	.18	99	57.5	99	2.0
270	05	485,334	485.334	121	ما۱۰	99	550	99	2.0
275	10	487.115	487.115	10.121	.110	99	550	qq	2.0
280	15	488.897	488.897	6.121	.16	99	550	99	2.0
285	20	490.679	490.679	(0.121	.16	99	550	99	2.0
590	25						÷58		
295				62.670	1.700	990			
ROTO	PRESS:		TOTALS :	389.570	11.700	<u> 5555</u>	BAROME	TER:	
300						96			
305									
310									
315									
320									
325									
330									
335									
340									
345									
350								_	
355							10V 115		
			TOTALS:	, -, -,	202	14	MAX VA		5.0
TOTAL	CU FT	109.179	TOTALS:	<u>6.717/1</u>	.202/	5561	AV BP:	<u> </u>	

MOISTURE SHEET Woodstove Data Sheet #3

Moisture Determination	,
Initial: Level Zeroed Unit	Ev
Final: /	: × ^
IMPINGER #1	7
Final Watcher (0(05 4	6-29-93
Initial Weight 566 grams	Initial: Ch
War 97 2 /	Final: Ch
IMPINGER #2	
Final Rev. (200 Z	
Initial Weight 577.8 grams	
Net 22.4 grams	
IMPINGER #3	
Final Weight 488.5 grams	
Initial Weight 486.6 grams	
Net 25 grams	
IMPINGER #4 (SILICA GEL)	
Final Weight 906,5 grams	
Initial Weight 891,9 grams	:
Net 9.6 grams	
	
TOTAL MASS OF H2O CAPTURED	
Scale Check: $295.0g = \frac{2950}{590.0g} = 2950$	er # 44816 %
885.0g = (50/5) g Back Half Filts	# /// / / / / / / / / / / / / / / / / /
Notes:	

WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

				•	
Into Dessicator:	Date 5/27/93 Time 103	D By DK	Front Half	✓ Back Half ✓	ــــــــــــــــــــــــــــــــــــــ
Manufacturer: SE	Size:	11 cm Lot.	.No.: <u>ZB 901</u>	Grade: #25 glass	>
		8-2UN		.•	

Edman (8.20	<u>m</u>			+	<u> </u>	
First Date Time		econd t Dat	e Time	Ву	Third Wt	Date	Time	Ву
10921 6/1 10110		0924 4/2		DK		Date	iime	ВУ
10988 ieli 1017		0988	1046					
10982 6/1 1018		,977 /	1048				· · · · · · · · · · · · · · · · · · ·	
.7052 6/1 1019		1054 /	1050		/			
70H WI 1020	LU .7	002	1052	·	/			
16996611 1071	111.6	0994	1054		/			
7022 10/1 1022	LU	1022	105%		/			
7079 6/1 1032	45.70	076):	1058		/			·
10984 1011 1024	44.60	982	1100	· ·	/			
	LW.7	080 /	1102	\	/			
<u> </u>	·		_					
3750 6/1 1096)		DK				
		725	1128	\rightarrow	/			
	LW.3		1130					
222		174 /	1132					
		733	1134					
	Щ.3		1136	$-\!\!\!/\!\!-\!\!\!\!+$				
	1	150	1138					
3-190 1/11 1033	LW.3	185 11	1140					
3728 6/1 1034			1142	++				
3801 lel1 1035	LW.31	140	111441	1				·····
			<u>.l</u>		10/00		10-01	
3801 101	11035	1 1035 LW.37		11035 LW.3796 1144	111035 LW.3796 1144 \	111035 LW.3796 1144 /	11035 LW.3796 1144	111035 LW.3796 1144

		QA RE	WEIGH		
	Filter #	WT	Date	Time	Ву
				1	
V					
No.		- w	 		

WB	DB	%RH	Date	Time	Ву
50	70	48	Wi.	900	12
62	75	48	6/2	1042	DK

WST5-Form9, Pg1 74/90
: CONSTAL FINAL WEIGHTS
WOODSTOVE DATA SHEET #4-3:

•						FINAL B	L BEAKE	EAKER WEIGHTS	CHTS				Run # 4		86	
Beaker Into	Into	Лать	J. E	R A	# 1 # # 1 # # 1 # # 1 # 1 # # # 1 # # # 1 # # # 1 # # # # # # # # # # # # # # # # # # #	400	T T	Å					Date:	27 00		
,		22.7	7	3 -	-		TTILL	λa	pecond	Date	Time	Ā	Third	Date	Time	By
\$ Q		C83 C830 B/9	0690	<u> </u>	198,1702 7h		930	111	(HOLLIST)	3	000	2				
						•										
40%		16/30	0060	ă	1/5 1/4/7 DIO 0000 08/4	1-	922	137 14	(15/0, 5/2 UZ)	31.	200	È				
											1	1				
<i>%</i> 0/1		6/30	දින	$\frac{\omega}{\mathcal{S}}$	6/30 Co30 30 95,77110	1/1	किउत्र ।	 	LU 95,7704	400 cl1) 	(95 7 60)	1/2	022	=
											ı		1000	1	740	\
100 d		6/30	0%%	3	1000 100 98,2563 T		2000	7	936 UK (98.2565)	CI.	000 00	120				
									2000							
6/10		6/30	0990	K	0900 DK 167,4194	1	2000	1 1	(107, 4)1910	4/1-	0.0	2				
								7		0//	0 L,					
																1

		7.4.5	nare						
		Ry Thing		1					
		R	77	~				Ś	
		Date Fime	2	240			1 C/20 1 1 1	1201	
		Date	1 6	_			<u>آ</u>	•	
FINAL FILTER WEIGHTS		By Second	(0.1. O.L.)	(2007) e			18/30 11/22 10K/ 1/21/21	120.12	
AL FI		Ву	Ž	ב כ			ž		
FIN.		Date Time	001	150 1140 DK			1122		
		Date	ورا	000			30		
		First	7050	-			4883		
		By	3	,		Ī,	3000		
		Time	`	4		13	\mathcal{Q}		
		Date	62.5)		 1.70	20		
	Into	Dessic Date Time By							
	Filter Into	#	1482			11100	いってい		
			~~~~		~~	 			,

By

Time

SCALE	SCALE ROOM ENVIRONMENTAL CONDITIONS	ENVIR	ONMEN	TAL (	TIONO	IONS
Weighing						
Session	Date	Date Time	By	WB	DB	%RH
	8111 08/0	8111	OK	(p)	73	17
2		JID.	LIA	00)	73	7
3	7/12	908	R	58	21.	248
4	7116	90b	111	(१४)	73	3
5					)	

By

Final WT

Filter #

Date

FINAL WEIGHTS

QA REWEIGH:

Ву

Final Wt

Beaker #

Date

Scale Sartorius Model A1205 SN 37010004

Dates: From Colid 93
Through Through

# WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

															_		_	ŗ			 	 	 							
	% RH	48	77	07	48	48	48	47	77	49	48	לל	49	. 6/5	6/7	17	ココ	017	7,0	7.7										
i	Wet Bulb	58	56	50)	28	82	Q Ç	57	56	55	58	04)	1,01	<b>5</b> .	59	09	00/	No.		00										
ŀ	Dry Bulb	0,	Gar	16	0	0)	×	50	e z	00	70	<u> </u>		Ē	71	73	73	70	22											
	7	000			- 6	$\overline{}$	1,202,	0820			1	1700		1000	4	1045	9/6	806	900	127										
	3 3	0 7	2			<u>ا</u> و د		8 [ 9	18	*   -	24.05	75.0		SC A	6770	1630	7/1	7/12	71/2											-
#00 F	2 2	) ) ]	12	1	\$2		3/2	1	<u>ځ</u> رک	1:	757	<b>∠</b>  -	7 2	j Ž	3	ž	117	S	711											
Blank	41																													
Blank	*33**																													
Vetobt	0.0099	0.1007	\$ 0000	0.100	0.0098	C 0997	1.	1~	5650	20000	200	A 000c	7 000 7		┒.	1000 C	7	00110	0.0999											
I.US Weight	1.0000	0,9998	) 666 C	10001	0000	0.9998	0000	1.0000	1.0001	n 9997	A. 0999	0 4997	0.0000	1000	1330	2000	1,000	E000	1.0000											
108 Weight	10.0001	10.0001	10.0000	10.0003	10,0002	1.000	10.0003	10.0001	10.0000	9.9997	9.4999	9,994	0.000.0	F 000, al	, –	-1-	7		7000'01						-	1				
Weight	1000.001	99.9999	100.0003	99.9999	25.000	96656	100.000	100.001	1000.001	99.9996	9649 pp	94.998	1000.001	E 000 00	00.000	00 0000	2700 001	0000	21, 4710											_

Scale Sartorius Model A1205 SN 37010004

Dates: From 3-11-93

Through (0/9/93

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

								T	T	T	T	T	Τ	T	T		T	T	T	T	T	1				<u> </u>	<u> </u>	Γ	Γ	Γ	T	Τ	T	T	T	<u> </u>	Ť	<u> </u>
	}	2 RH	36	33	39	b£	Ch	47	7	<u> </u>	777	77	49	1/2	78	1/17	3/7		101	27.7	77	オフ	45	87	64	- 7/7	48	46	87	64	710	2/7	177	150	000	277	177	474
		dlud 15	75	107	5.7	57	58	60	57	09	63	00)	55	Slo	89	(%)	7	000	70	60	1, 1	200	00	58	53	Ç,	58	65	58	47	79	29	50	13	na Can	70	56	56
	Drw Rulh	-lo	D O	2	77	<b>ે</b>	73	75		73		75		69		75			-	73	75	1	1,5	0-		Į,	0	1	10	77		71	75	75	100	000	68	89
-	Tibe	+	76.90	X 200	+	2010		7	+	_	1300	-	┪	2010	1120	9000	946	0001	0060	(000	006		1	200	1200	200	200	Ϊ.	2201	7.530	1	4	900		956	0930	O <del>3</del> -10	0060
	Tech Dat	14	OK	71-51	710	†	e e	7	<b>2</b> 100 YA	ń		_		7 4.78		5-9	1/2 15/10			J 5-11	ارا	Ė	1	アルカ	<del>]</del>	<b>)</b> (	70					875	1017	200	L 613	707	7	2000
-		0		Ü	(	7	?k	3	2 K	2	ă ,	3		3/2	<u> </u>	15		9	8 8	ક	ŏ	3	Ē	10	12	 		Ċ		12	1	1	7	카	7	ğ	7	DK T
Blank	44						-																															
Blank																																						
100mg	Weight	P P P O .	0.0997	+ 5501	000 0	0.1001	6. 1001	0000 1	N400	0.0000	10999	V 0999	100/	0 0999		7000	0000	2000	2273	100/	0.0444		1001-0	0,0978	0.099.29	0,0998	6,0999	0.1001	00010	0.1000	0.1000	C 6897	77	n naga	00000	0 0000	0.0999	0.0996
1.0g	Weight	0007.7	D: 454 B	2000	0000	1,000 a	7,000/	0.9998	1.0000	. 0000	1,0001	1.0002	1,0001	0.4999	1. •	0. 9999		2777	0000	3000	0000	1,000	0002		0,496	0000	0000	1,000	0.4998	0000	0.9999	0.9999	1,000,1		†	0,9999	0,9999	0.9999
108	We fight	2000	10.0000	7 00010	E000.01	10.000	(0,000)	10.0000	1000.01	10.00.01	100001	10,000,2	1 000' 01	1000,01	10, appl	99999	10,000	10 000	10.0002	10000	1000.00	2007	70007	000:00	C COCC	10.0002	7000.01	10-003	0 200 0	10.0002	10000	10,000	10.0003	100000	- 0000	Ш	Н	0.9997
100g	We I ght	00.000	2 CALL 1994	3	000	1000.001	130,000	99.999	100,0003	100.000	100:00	100.000	(000,00)	100.000		99. 4998	1 dd' ddd-1	100.000	100.000 Z	100,0000	1000:001	49 0994	90 000	900000	200,000	144	1000			00.00		13.0041	100.000	0000:00	100,0001	DOUGO CE	969.90	99.9495

WOODSTOVE PARTICULATE	CATCH PROCESSING	Unit: FX	HT 2000
	SHEET # 5	Run: 4	
		Technicia	n(s): (6)
	FRONT HALF		<u> </u>
FILTER #: 448F  FINAL WT: .7959 / g  TARE WT: .70716 / g  NET WT: .0883 / g	BEAKER #: 406 ml: 50 desc: ACETONE	FINA TAP NE	AL WT: 98.1704 g RE WT: 98.1374 g RT WT: .0330 g
FILTER #: g FINAL WT: g TARE WT: g NET WT: g	BEAKER #: ml: desc: ACETONE	FINA TAR NE	AL WT: g RE WT: g T WT: g
	TOTAL VOLUME OF I	ACETONE	_50 mi
	BACK HALF		
FILTER #: 448B FINAL WT: .4878 g TARE WT: .3785 g NET WT: .1093 g	BEAKER #: 407 ml: 115 desc: ACETONE	FINA TARI NE	L WT: 106.5642 g E WT: 106.4078 /g F WT: ,1564 g
FILTER #: 9 FINAL WT: 9 TARE WT: 9	BEAKER #: 403 ml: 75 desc: METHCHLO	TARI R NET	L WT: <u>95.71.99</u> g E WT: <u>95.7324</u> g F WT: <u>.0375</u> g
	BEAKER #: 409 ml: 150 desc: H20	FINAI TARE NEI	WT: 98,2565 g WT: 98,1952 g WT: 0613 g
,	BEAKER #: ml: 150 desc: H20	TARE	WT: 107.4196 g WT: 107.3625 g WT: .0571 g
•	BEAKER #: ml: desc:	TARE	WT: g WT: g WT: g
	BEAKER #: ml: desc:	TARE	WT: g WT: g
	TOTAL VOLUME OF ACUSED IN WASH TOTAL VOLUME OF DIUSED IN EXTRACTION TOTAL VOLUME OF DIWATER DRIED	CHLOROMETE	115 ml HANE 75 ml 300 m1

PRTCATCH

	UCCROS		<b>5.1</b> 5.11.5			h 105	01	1777	FX	H7 c	ノル	<u>ر</u>
	HECCOW SCIOON		DATA				Ru	ın:	4	Date:		
I	BLANKS D	ONE:	6/15	5/93			Te	chni	cian(s		W	
	) m1 FISHER <b>5</b> m1 DI FISHER	OPTII I CHLOI OPTII	BEAKER ROMETH MA LOT	#: 9 #: 9 ! #:_ !ANE #: 0	<u>2405</u> B 11073	<u></u>	TAR NE FINA TAR NE	E WT T WT L WT E WT T WT	108. 108. 106.3 106.3	3998 2004 3054 0006		<del></del>
200 Bon	ml DIS MFAD PEO( BEAK	TILLE Doct G	CERT	ER FFD			TARI NE	E WT	. 106.9 . 106.9	1635 0002	_ 9*	<u> </u>
BKR #	157		TIME	Т	WT	TIME	3RD	<del></del>	TIME	4TH	<del></del> ;	TIME
A	102.30	(10)	1107	108.8	3998	1044		-		1		
B	106.30	- 1		آ.ما۱۵	3054	1046						
<u> </u>	Dla Sil	40 :	1 bio	106.9	1635	1048						
S	CALE RO	OM QC	: TA	RES		,	SCA	ALE F	ROOM QC	: FIN	ALS	
DATE	TIME	BY	MB	DB	7/-	<u> </u>	DATE	TIN			DB	7.
6/5	1042	DK	50 50	68	47		0115	90			70	49
			<u> </u>									
	.1	В	EAKER!	! 3: FII	NAL V	 VEIGHTS		****	<u> </u>		,	
BKR #	IN DS	C	TIME	15T	WT	TIME	SND	WT	TIME	3RD ↓	JT.	TIME
A	6/11		1030	108.9	7001	928	108.9	1002	912	, 1		***
$\mathcal{B}$	6/11		1031	106.3	305 <b>9</b>	0.33	106.3	i	914			
C	L/g IN		4501	106°	1639	0-0-3	106.96		916			
BKR #	4TH W	JT	TIME	5TH	WT	TIME	6TH	WT	TIME	7TH k	JŢ .	TIME
		- 1		!	Ţ			- 1			1	

Rev 6/90 Bill Wounk Date: 6/15/93 Blank Audit: Blank Calculations:  $0004 \text{ g} = 200 \text{ m1} = .00 \times 02 \text{ g/m}$ Acetone: .0006 g = 75 m1 = .00 00 08 g/m1/ Dichloromethane: 0002 g = 200 m1 = .00 00 01 g/m1 Distillted Water: Front Half Catch: Filters: DAS3g - (.0000 g) = DAS3g

Total Catch, No. of filters Blank Value/ Net Catch  $\frac{50' \quad (.00002g)}{\text{M1 of Acetone Blank Value/}} = \frac{.0329g}{\text{Net Catch}}$ ml of Acetone Total Front Half Catch 1212 g Back Half Catch: Filters:  $\frac{1093}{\text{Total Catch}} = \frac{1}{\text{No. of filters Blank Value}} = \frac{4}{\text{Net}}$ (.0000 g) = .1093gfilter Beakers: 1. Acetone/Impingers: Total Catch ml of acetone Blank Value/ ml of Acetone عا٥٥٥. 2. Extract/Impingers: (.000008g) = .03Blank Value/ Dichloromethane ml of Dichloromethane 3. Water/Impingers (.000001 g) = .1/9/gml of water

Total Back Half Catch

Total Catch % Front Half

NET PARTICULATE CATCH CALCULATION

WOODSTOVE TEST DATA SHEET #6

Unit: Run: Date:

Technician(s):

WSTAPP1-AppDoc19-page2

# EPA METHOD 5H PARTICULATE CALCULATIONS WOODSTOVE TEST DATA SHEET #7

HILMO Date: Unit: Run:

Technician(s):

dscf

107,4131

0000.000

,202 " H20 (109,179 Vm)(17.64)(1,028 mcf)(30,15" Hg+

( SSG TMA 1) Vm(std)=

scf 100 9 0000.00 2) Vw(std) = (.04707)(|3/1/7| ml H20) =

で、上の。は Bws X 100 = ( /o | dd/ sct) 3) ASW=

% H20

0000.00

.0000 107, 4131, dscf) , 1991, scf. +

15.43 )=

4) Cs=

gr/dscf 0.000.0 107,4131 dscf)

2.0325 0000.00 (b, 7)7 dscfm)( 60 )= -000.00 (107,4/31 dscf) (.b, L1/2) 5) Estimated g/hr=

000.000 V 0.000 mcf ġ total cubic feet pulled on meter box during test meter correction factor ( Y factor) of the meter box used for the test mcf

average barometric pressure during the test Hg

average meter temperature for the test in degrees Absolute average delta H for the test TmA" H20

total particulate catch for the test total water caught during the test ml H20

average stack flow during the test dscfm

.0000.00 00.000 dscf (computer printout

PRTCALC

" Hg

00.00

ф.

.000 " H20

( 000 TmA 000.0 ml H20

ď **ф** 

. م

#### Miscellaneous Test Data Sheet Page # 8

Unit: FX HT 20	000	Run: 4	Date: 6/20/93
Test Chamber Air Velo	ocity Start:	Stop:	Avg:
Wet Bulb / Start: Dry Bulb Stop:	WB: 60 DB: 9	6 = 40 $60 = 20$	% RH   1.5
Average % Relative Hum	idity 34.5 Ave	rage % Ambient	Moisture: 1115-
Empty Stove Weight: Empty Stove Weight w/	以87 lbs Stack & Oil Seal: V	Net: 536.7	Dry: 536,3
Kindling Weight:	Paper: ,3	lbs	Wood: 8.3 lbs
Preburn Fuel Wt: 6,9	+ 22.3	7	Total: 29.2 lbs
Total Kindling & Prebur	n Fuel Weight ( Woo	d Only) ==> T	Total: 37.5 lbs
Coal Bed Weight: RANGE: Upper = .25 x fuel wt Always round DOWN to ne Lower = .20 x fuel wt Always round UP to near Maximum Coal Bed Weight Removal	earest tenth est tenth (( $\frac{5.4}{\text{Upper}}$ + $\frac{4.4}{\text{Lower}}$	ual Coal Bed W	
Test Fuel	( .75 x 1.5 x 5 " s	spacers ) =	/6 pcs
	in inches No. pcs	Wt. in l	bs % of load
2 x 4 /\/	NA	NA.	NA
4 x 4 /8.5	5	21.6	100.0 -
		Test Fuel We	eight: 21.6. lbs
Estimated Dry Burn Rate Calculation	(2/6 x //806) 2.2046	3 ) x <u>60</u> <u>285</u> Time	-= 1.615. Kg/Hr
Estimated EPA Heat Output in 19, BTU 's / Hr	,140 x <u>63</u> x [	1.6715 = DBR	20,155 - BTU's/Hr
EPA Default Efficiencies	S: NON-CAT: 63	CAT: 72 PELL	ET: 78
NOTES: 7.9393			
1.9 = 250			
1,25 = 381			

Unit: FX HT 2000 Run: 4 Date: 6/29/93 Page
WOODSTOVE OPERATING DATA
FIRE STARTED: 0800 PST PDST
WARM UP AND PREBURN: PRIMARY AIR: set wide open for all warm- up/preburn fuel charges. then set to at start of preburn.
SECONDARY AIR: NA CAT BYPASS: NA
CHARCOAL BED PREPARATION: raked and leveled prior to each warm-up/preburn charge. At 1 1/2 min. prior to loading last fuel, raked and leveled. In stove sec.
TEST: Door Wide Open during loading 0 min 50 sec
PRIMARY AIR: opened full for first min. , then set to run setting of
SECONDARY AIR: NA CAT BYPASS: NA
FAN: ON OFF during warm-up ON OFF during preburn ON OFF first $30$ minutes of test ON OFF balance of test run Fan speed set at $\frac{H/6H}{}$
WOOD DATA: KINDLING: a mix of the grades listed below
SIZE MILL GRADE SPECIES
PREBURN: 2X4 Manke/Tacoma Std or btr s. orn D fir
TEST: 2X4 Packwood #2 or btr s. orn D fir
PELLET FUEL APFI#:
All grades WCLB rules
WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either or inches.
ist warm up/preburn fuel charge ( $69$ lbs ) added at $0830$ .
2nd warm up/preburn fuel charge ( $22.3$ lbs) added at $09/5$ .
3rd warm up/prepurn fuel charge ( lbs ) added at
4th warm up/preburn fuel charge ( lbs ) added at
5th warm up/prepurn fuel charge ( lbs ) added at

#### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Unit: FX HT 2000 Date: 6 29193 Technicians

WST1-Form7-Rev11/89

Room Temperature:	<u>70</u> of	Correction	Factor:	0

NOTE: Record readings to the nearest 0.5% moisture Uncor Values are corrected for temperature: Yes No V. Time Test Fuel Moisture Readings taken at: 930
Calibration Checks: X Y 12.0 22.0 22.0

_							_	23.0	
Pc #			To		Uncor	ttom	Sic		Piece Av
		7	Uncor	1			Üncor	Cor	Correcte
1	2x4x8	K	10.5	11,2	11.5	12.3	11,5	12,3	
2	_								
3									
4	2x4x8	1	720	24.1	215	235	72.0	24.1	23.900-
5	Dv4v8	P	18,5	120.1	19,0	20.7	18.0	19.6	20,133
6	2x4x8	P	21,0	122.9	21.5	23.5	20,5	22.4	22.933
7				1			0.00	1	166.967
8									1
9									
10									
11									
12	4x4x	T	20,5	22.4	22.0	24.1	20,5	22.4	22.967
13	9x 4x	T	20.5	224	21.5	23,5		22.9	22,933 -
14	444y	$\tau$	22.0	24.1	22.0	24.1		23.5	23.900 -
L 5	4,4,	$\tau$	ည္ကပ	24.1	215	23,5		24.1	23.900-
16	4x4x	T	21.5	23.5	21.0	22.9		23.5	23.300
7									117,000-
8							٠.		
9									
0	FEET	7	205	22.4	21.0	22.9	20,0	21.8	20,367

% Moisture - Dry Basis:

% Moisture - Wet Basis:

Kindling	Pretest Fuel	Test Load
11.933-7	22.322-2	23,400 - 7
18.661 -7.	18.249- 2	18,963 - 7

To obtain Wet from Dry:  $\frac{100 \times 7}{100 + 7}$  Dry Rdg. = % Moisture, Wet Basis

Acceptable Ranges: 16-20% wer; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 700F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

WOOD DENSITY DETERMINATION	Date:	6129193
WOODSTOVE TEST DATA SHEET #11	Technician:	DK
		WST2-formil-Rev 6/
Wood Piece: Nominal Dimensions:		$4 \times 3/2$
Depth (D):	9,0	
Width (W):	8.98	<del></del>
Length (L): _ 8.8cm		G PH
865 cm		•
cm Length =cm	<del>x</del> = <u>8.73</u>	cm
Volume:	705,559 (D X W X	. cm3
MOISTURE: Room Temperature:	OF Correc	tion Factor:
Uncorrected Meter Readings Corrected		
NOTE: Record moisture meter readings	to the near	est 0.5%
Uncor Cor Avg	% Moisture	(Dry) <u>22,567-</u> 7
1 1 1		
Bottom: 20,5 22.4 z	* Moisture (	(Wet) 18.412/2
		· · · · · · · · · · · · · · · · · · ·
	le: Leveled I	n / Out /
Ī. 22.567 z	Zeroed: I	nOut
Wet Weight: 200 g Dry Weight: 29	21 52	
	<u>or 0~</u> g	
7 Moisture Dried Basis: 17.6842.7 [1 - (Dry Wt : Wet Wt)] X 100		
the cary we have never a roo		
Into Dryer Date 71me 430	Temp	
Out of Deven 71, 193	<u>- 2/3</u>	—oF oF
(Minimum Time in Dryer: 24 hrs.) M:	inimum Dryer	Temp 100°C (212°F)
Density - 281.52 g : 705.559- cm	3 - 3007	\3
(dry wt) (volume)		A S C m
Pellet Fuel Moisture Content Determinat	ion	
Tare Recker Ut		•
Tare Heaker Wtg Wet Wt:g		
		g
Gross Wet Wt. Tare Besker Wt.	Net Wet Wt.	
Dry Wt:gg	-	g
Gross Dry Wt. Tare Besker Wt.		_
% Moisture Dried Basis: [1 - (Net Dry Wt - Net Wet Wt.)] X 100		7.

FXHT 2000

a ^{ji}								<b>,</b>				-			-	.,		<del></del>		,		,						
3	SO2 PPM			550	525	450	115	475	450	475	500	500	500		47.5	47.5	47.5	500	475	475	47.5	500	475	47.5	47.5	500		
o Fo	STATIC	050	150:	-046	.050	000°	- 056	05b	090:	-062	-063	-,01,4	100-	-1.92	-01.4	7,010	ololo.	- 010 L	-Olola	10 lou	063	-662	-063	10107	:058	.05k	154	-1.મ3્
AGE /	STACK	360	388	761	334	다	402	h0h	hhh	797	467	47.3	101	ીવ?	_	$\overline{}$			Ī	493	767					409	5768	116741,
	CAL WB	bH	bH	011	115	126	122	125	129	130	130	13.	131	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131	131	132	132	131	13.1	<u>w</u>	121	131	128	125	122		
1961	%н20	3.2	25	17.4	3.0	3.4	3.9	1 h	L 17	8 h	5.0	5.0	5.0		20.25	4.1	4.5	<u>ء</u> 3	ከከ	р' h	4.3	4.2	1	3.9	3.7	3.6		
	DRY B	þЬ	95	110	ما۱۱	123	ככו	124	124	126	12h	126	127		125	123	173	122	121	126	118	117	114	109	105	104		
፭ 	WET B	ક	77	98	85	89	Ъ	93	9	41	86	98	86	-	Ь	32	95	95	Ьb	44	93	92	91	တ	97	86		
7	BAL	8.3	2.6	(J)	و	16.2	4.4	7.1	13.6	4.7	10.6		8 2	1	43.7	44.	मृत् त	44.4	49.6	71.0	57.3	59.8	78.6	59.8	44.6	45.1	<b>1</b>	1 1
RUN	03	177.	.38	.59	0g.	<u>.</u>	8S	.84	76	108	1.07	.87	76		.30	87.	.30	.30	12.	, 19	124	.24	. 18	.20	24	.23		
	٧.	LLO.	\$50,	.059	0000	.051	580.	1,89	J-0.	.108	Lot.	1.89	JLQ.		.030	.028	050	530	.627	910,	h20.	hZ0.	810.	.020	.624	.623		
000	20	13.4	19.3	18.1	14.7	0.11	12.2	10.6	10.0	9.7	ر 0.80	\$	7.7		7.6	2'8	7.3	7.2	7.2	7.2	ら	62	9 g	8.3	. 1	!!		
-	۷.	542	. 778	.730	594	.443	194,	.426	.40Z	.390	360			1	.ઝી	.331	.295	.793	.290	.296	272	253	7269	.33 ₆	313	.382		7
×	c02	4. ما	765	2.2	3. 16-	8.3	8.0	9.b	10.3	5.01	1.3	123	12.8		3.1	12.3	13.3	13.3	13,4	13.5	13.8	ם ה	14.2	12.0	10.7	16.4		
	٧.	.258	.b38	160.	147	.334	.322	.387	4116	ከζከ	455	न्युव	.515		.528	794,	.53L	.53%	.539	.543	,554	578	570	.482	133	-418		
A SHE	DROP	Ø	N.	7.	9.	٠ د	8.	8.	σ.	5.	8.	1.0	6.		٥,	8	0	9	8.	1,	8.	_9	1,	9	٦,	7		
S DAT	FUEL	21.6	21.1	20.7	20.1	19.3	18.5	11.7	8.91		15,1	14.1	13.2		٠.	1.5	o 01	10.0		1	7.7		-	4	• 1	- 11		
ACTUR	SCALE	562.7	562.2	57.1.8	561.2	560.4	559.4	558.8	5519	557 0	5562	555.7	554,3		553.4	557,6	551.7	55.	550.3	549.6	548.8	548.2	547.5	<u>3</u>	54%	54b.	-	
PAGE	TIME	/氡	\Z\	(원)			7.7	\g\	\ <del>_</del> 5	(?)			NS.	TOTAL	<u>%</u>				3	\ <u>\S</u> \	(3)	\2\  2	$\mathbb{Y}$	8/	3/		TOTAL	TOTAL
	HT 2006 RUN 4 DATE $(a/2q/93)$ PAGE 1 OF 3	INFACTURER/MODEL FX HT 2000 RUN 4 DATE $(a/3q/q3)$ PAGE OF 3 SCALE FUEL DROP V. CO2 V. CO BAL WET B DRY B ZH20 CAL WB STACK STATIC SOZ PPM	F 12 6\$ DATA SHEET   F X   H T 2000   RUN   H	F 12 C\$ DATA SHEET   F X HT 2000   RUN   HET 6/39/93   PAGE   OF 3   PAGE   OF 3	SCALE   FUEL   DROP   V.   COZ   V.   COZ   V.   COZ   V.   COZ   DATE   O.   O.   O.   O.   O.   O.   O.   O	SCALE   FUEL   DROP   V.   COZ   RUN   WET B   DRY B   ZHZO   CAL WB   STACK   STATIC   SOZ PPM   CAZ   D.   L.   CAZ   D.   L.   CAZ   D.   CAZ   D.	SCALE   FUEL   DROP   V.   COZ   V.   COZ   V.   COZ   V.   COZ   V.   COZ   COZ	Scale   Fuel   Drop   V.   Coz   V.   Coz   V.   Coz   V.   Coz   Coz   Run   Het   Date   Coz   Coz   We   State   Coz   Co	Scale   Fire   Drop   V.   Co2   V.   Co2	Scale   Fuel   Drop   V.   Co2   V.   Co2   V.   Co3   Co4   WET B   DRY B   ZHZO   GO3   PAGE   OF   State   State   Co4   Co4	Scale   Fuel   Drop   V.   Coz   V.   Coz   V.   Coz   V.   Coz   University   A   Date   Color   Cal ub   State   Ope   Scale   Color   Cal ub   State   Color   Co	Scale   Field   Day   Day	Scale	Scale   Fuel   Direct   Dire	Name   Column   Col	Name	Factor   Park   Park	State   Name   Name	State   Color   Colo	State   Face   Park   Park	State   Continue   Data State   F × HT 2000   Run   4   Data   Log   Gal was   State   Or   State   Continue   Data State   Or   State   Continue   Cont	State   Factor   Fa	Factories Particles   Partic	State   Park   Park	Section   Continue   Continue	Factories Days Street   F x   H T 2000   Name     Days     Days   Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days   Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days   Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days   Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days     Days	State   December   F x   H T 2000   Ray   4   Date   Lab   Lab	Section   Continue   Continue

525 525 525 525 525 525 525 57 525 あるな 225 525 525 525 N. KB 550 525 575 525 ----525 500 500 500 550 SO2 PPH (7.53 (3.03) 0.62 -,053 .,052 2001 7,055 .053 - 33 1.054 053 7645/11.247 1554 052 7,052 185 1049 :050 · 539 624 624 ,052 940-:052 -,048 1001 1.051 9 -052 STATIC 4083 3562  $\frac{g}{c}$ 284 90 K 300 7000 293 <u>e</u> 300 305 294 292 287 京 38 324  $\frac{\sim}{m}$ 294 333 <u>m</u> 387 STACK 392  $\overline{\widehat{n}}$ 곮 381 PAGE  $\mathcal{C}$ 9 9  $\leq$ <u>ျ</u> 20 ĊΟ.  $\leq$ <u>+</u> 1 7 N 7 CAL 1,129/93 (f) (M) w ⊙ 4  $\ddot{v}$ ₽ N 30 2.9 М О w Ö 200 29 V) S ブゴ N 3,4 2 0 %H20 (M)  $\alpha$ ന് m) m N m m 9 00 م 5 ê  $\tilde{a}$ (C) 9 Se S C 80  $\tilde{\boldsymbol{v}}$ 9 3  $\hat{q}_{0}$ 701 9 N **က** သ € 60 8 9 2 9 T DATE  $\dot{\boldsymbol{\omega}}$ O DRY 3 8 8 200 79 000  $\alpha$ 2 78 3 82  $\frac{\alpha}{1}$  $\frac{\omega}{\omega}$  $\omega$ 5 5 2 8 7 8 7 00 Γ Ŕ 1  $\infty$ WET  $\alpha$ M 7,0 [10] 47 9.8 <u>-</u> 47 ا<u>ہ</u> او ろろ 3 3 らら 50  $\sigma$ Ŵ らず 4.1 7 (3)  $i \nabla$ S マ BAL 32 30 35 28 **_** ⇉ <u>_</u> 1 Į KÜN <u>か</u> 1.30 120 C 150 3 20 Ŧ 33 .25 7 33 Ī M 73 ভ īŪ 7 29 69 ខ N 0 E 129 153  $\hat{\mathcal{X}}$ 0.12 00 3 5 130 50 633 529 10 613 5 t 633 Š <u>=</u> ୬୭ 7 > 200 700 DIE <u>й</u> 50  $\alpha$ 200 3.4 Ġ 7 30 13.2 2,0 12.9 7 11:9 <u>-</u> = 7,0 ~ الم ر م 7  $\infty$ 엉  $\stackrel{\cdot}{\simeq}$  $\sigma$ S G 2000 270 1 0 0 525 1525 522 087; 57 Slo 5.K (J) 5/6 403 tech, SI 524 977 53 世の <u>-</u> 381 उर् 440 > :0 <u>|</u> <u>و</u> و 3 0.0 6.9 <u>ه</u> ē N <u>_</u> N 6 0 Q ũ ന んろ <u>و</u> <u>د</u>  $\infty$ 16.7 10. L 703 C05 1 ۵ Ś × 5 Q 1266 738 12/05 304 777 2lcb 1250 254 255 242 242 1294 267 300 250 430 1397 38 313 419 3 цZd <u>.</u> AS DATA SHEET RER/MODEL DROP ²CO Š J  $\omega$ 7 N ~ _ 2 = 4 N 2,0 <u>ා</u> 2,3 ۵ Ū  $\frac{6}{6}$ 7 7 ol 75 <u>و</u> م 'n 0. Ś ī [ - $\mathcal{N}$ FUEL  $\omega$ M (1) J S42.3 543.7 250 542.9 542.6 542,5 028.6 5430 542.8 644.0 934 5443 548.8 553 54.5 545.8 17/1/17 515.1 いたが、 Q 511 SCALE 55.4 312 545. PAGE 12 MANUFAC Ŝ R R <u>₹</u> K <u>S</u> <u>(V)</u> <u>%</u> 3 5 B 2 g ห 23.5 2 S (A) TOTAL TOTAL TOTAL TIME

	Ì	,		*******			****						-1-	•					 			 		
	W	SOZ PPM	525	525	550	525	525	525	550	550	550	550	2		1									
	OF	STATIC	-, nu				1.85.	Q <b>S</b> Q'_	-,DE0	15t7Q'-	-1049	Ph0'-	-8th-	-3,181		- NEX	1		•					
	PAGE 3	STACK	2000	782	29%	2910		280	273	275	282		2826 - 498	21212		2/2/2								
		CAL WB	Ξ	=	Ξ	=	2	911	691	109	No	9											1	
	100	%H20	3.1	<u>ئ</u>	3.0	ω Ω	3,0	3.1	3,2	3.0	3,0	ω Q												
	DATE (6 109/93	DRY B	<u>5</u>	9	16	16	16	41	45	20	92	92								ļ			1 1	
	PA DA	WET B	80	8	Ы	61	66	80	80	$\mathcal{Z}$	80	250											1	
	7	BAL	⊒ wì	4.1	4,8	4,9	4.4	40	3,9	3,8	s B	3.6			-									
	RUN	ខ	1,42	1,49	133	1.23	1.29	1.37	141	144	1.5	立												
		>	142	149	5.83	, 123	,129	137	<u>=</u>	ተተ	145	153												
	Q	05	13.2	13.2	13.0	13.b	13.7	0.13.6	<u> </u>	13.7	13.9	13,9												
	T 2000	٧.	533	<u> </u>	,524	1547	,553	155%	,557	300	1559	Sec			]									
	FX HT	202	(e, 1	<u> </u>  -	é Š	Q: 3)	5:1	びエ	から	6.5	ふって	がず						-						
Ī	- 11	۷.	. 245	1246	1256	1244	1230	,22c	,221	.223	,220	1219												
	DEL	DROP				4	=		-	_														
	ER/MC	FUEL	۵ آ	6	æ	1 (6	ū	7	w	7,		Þ			[								1	
· ·	MANUFACTURER/MODEL	SCALE	Sp.1	92.C	<u>जा</u>	10000	651541.W	気のから	100 SAIL4	10/2/11.3	59112	541.1			1 1									
ָ עַלָּ	MANUE	TIME	<b>%</b>		が	$\mathbb{N}$		ŊΙ.						3	TOTAL								TOTAL	TOTAL

PAGE PREBURN DATA SHEET

			-								7	1017	-										
- H	COMMENTS	PRIMARY AIR SET AT:	3/8"	SECONDARY AIR SET AT:	TM	FAN: 1416 H			PUMPS ON AT: 1000		CHECK WB/DB: 8U/117	Of a mystosid				365.07							
PAGE	STATIC	3801	-076		1170:	070.	690:	20L8	<u> </u>	<u></u>	70°4	-057	£50:	 	-050	-050							
33	AMBIENT	11		77	77	80	80	8	82	85	85	85 SS	84	1	<u>-</u>	84						-	
DATE (0)39/03	SEC /-CAT-	1951	1422	1390	1367	8911	1499	1482	1431	1320	1434		9Sb		897	788							
DATE	FIREBOX	945	880	pL8	402	088	b9b	10b	905	673	1043	9891	186		hhb	900							
-1	OTTOM	三丁	407	404	398	394	391	384	380	375	371	368	368		372	374							
RUN	RT SIDE	429	453	177	482	496	30F	512	513	52)	530	541	548		540	528							
000	BACK	118	110	0	011	801	107	011	Ξ	110	113	コニ	7 =		비네	115							
HT 30	LT SIDE	423	Chh	%।तं	451	459	नीष्	477	489	502	512	517	516	-	502	7490							
SHEET $arphi_ imes$	ТоР	400	558	50t	489	493	498	501	501	717	455	437	383	-	343	331							
	STACK	1002	2) 170)	586	571	Slos	541	535	521	485	4109	429	365	  -  -  -	341	360							
PAGE 2 PREBURN DATA MANUFACTURER/MODEL	BURN RATE	A PARTY NAME OF TAXABLE PARTY NAME OF TAXABL	그, 	ا.ل	1.4		۵.1		Ь.	٦.	9	7	-		-	_							
CTURER	SCALE UT	551.7	5.50,3	548.7	547.3	546.2	5450	543.9	543.0	542.4	541.8	5था. प	541.3		541.2	541.1							
PAGE NANUFA	TIME	े ठभु३० ्र	25, 35 35	5/2/2/	(A)	/20 /20 /20	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	)         	3/	=    2  2	ਹੈ. ਨ	\? \?	% %		(%) (%)	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						V	\ \

PAGE	TEMP	ERATIR	משמח פ	Haan V			0							0	
MANUFA	CTURER	MANUFACTURER/MODEL	1 11	- 11	Ϋ́	HT 20	OO RUN	T N	DATE	160/9 3	6/43	PAGE	-	OF	3
TIME	T0P	LT SIDE	BACK	RT SIDE	воттом	FIREBOX	SEC / CAT	AMBIENT	FURNACE	SAMPLE	IMP OUT	C. GAS	GAS IMP	SOZ IMP	3/25 0
2501	321	4d0	115	525	3.74	00 b	88 L	8प	0011	230	38	1.00	33	38	
(2) (3) :	285	70/7	113	8617	372	(Ab)	7817	118	1398	23d	31	233	33	36	
5/v 5/	Slet	433	15		374	819	525	82	1395	239	s S	233	33	37	
(A)	6	393	153	435	374	637	٦١٩	82	1390	OhC	37	233	33	38	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 1	369	191	418	372	rs 1	414	82	1387	2HC	37	232	33	38	
	356	371	137	413	367	798	872	82	1385	Sus	37	232	33	38	
8/2 8/2/	334	36,9	119	426	357	823	901	82	1381	243	38	233	33	38	
2\ }\ }	353	366		443	352	843	1142	98	1386	hhc	38	234	33	38	
\$/₹ \\\\	369	360	110	455	346	905	628	8	1389	ShC	38	236	33	38	
/8/ //3	380	360	01	467	339	934	वितृष	18	1396	245	38	237	33	38	
3/5	383	310le	101	480	334	876	क्पव	18	1400	4hC	38	238	33	38	
8	7400	36,9	b01	તવન	327	487	1031	18	1406	7h7	88	0hC	33	38	
TOTAL	4093	4708	1490	5575	4288	9759	96001	982				-			
3/	413	378	110	509	321	921	1261	82	1413	7 h C	37	176	33	39	
2 (E	4118	384	Ξ	510	315	408	1901	82	ग्नार	7HZ	37	7h7	33	38	
X F	428	396	110	510	308	901	1351	83	1420	247	36	EhC	34	38	
2\2 2\2	437	408	110	511	304	906	1325	82	1422	247	31°	Ehe	n8	38	
3/2 3/	441	417		ري ت	300	919	1234	84	1425	2H1	36	ኮኮሮ	34	38	
$\sqrt{ z }$	517	17.17	110	51.6	298	938	1281	Sul	1426	247	35	ShC	pε	38	
$\tilde{\mathbf{X}}$	הוחה	436	011	524	293	951	1403	95	1429	8hC	35	ሳከሮ	ħε	38	
$\langle \cdot   \cdot \rangle$	451	445	0	531	192	960	1438	<b>§</b> 5	1433	248	34	246	18	38	
١.	454	456	112	533	287	مال	1401	84	ולחלו	248	33	LhC	34	37	
١k	447	465	112	536	284	विध्य	1161	85	ाप्पड	ShC	23	LhC	34	3.7	
(   )	412	דר א	112	538	282	वनद	1123	\$S	1447	248	23	8hC	न्त	37	
R 1	341	\$ 7	=	532	TLC	995	1118	85	1449	248	33	ShC	34	36	
TOTAL	518 ₄	516	-	626b	3560	11302	15360	1001							
TOTAL	71.1.	4869	2819,	11785	7734 8,	21061.	25456	1988,				- Ac		1	

3650 SO2 IMP (4) (0) W w W  $C_{ij}^{j}$ K 3 S S すの する S 太 (d) 33 To 8 و ۳  $\overline{m}$  $\omega$ Ŕ (1)  $\Omega^{0}$ įΩ 33 M W M  $i\Omega$ 3 J **(Y**) m M 116 a l M M 37 34 34 34  $\frac{\mathcal{M}}{\mathcal{W}}$ 0 M 3 6 GAS 'n (I)30 N g()  $\mathcal{M}$ B W M M) ۸۸ 3 3  $\hat{A}$ 246 PAGE な生の かけら てもら 747 747 子と 法 2先 248 8hC 744 GAS 348 ShC **₩** 255 747 **(1)** ShC 3.4°C THO 2 字 5 77 キス 八 ن OUT 0 30 300 A M **M**) ፈ (N) M) T 1 i i m 30 36 36  $\mathfrak{S}_{\mathfrak{H}}$ 7 E0/00/03 ared 3  $\mathcal{L}$ 3  $\hat{w}$ が 37 10 f()1  $\alpha$ 잼  $\mathfrak{M}$ ٧.) m  $\alpha$  $\alpha$ 8hC ピエバ 246 240 246 247 248 **%**で 2无 いまい SAMPLE 8hC 248 77 747 2十 なか 7 なな N になる ガガ 1 1438 9 1439 1438 T437 1483 430 143.1 1437 1452 を主 117 李 (0)FURNACE コジュ 工器 1 3 1441 サゴ 1 <u>手</u> ユニ 145 王3 Ξ **FOOK** 7 100 666 ď.  $\Upsilon$ 13 SO OD AMBIENT 60 n a) 10 **⊗** (S) (1) 8  $\Omega$ 8 9 M M 10 20 な 78 200  $\hat{\mathcal{C}}$  $\mathcal{Q}$  $\omega$ Œ  $\omega$  $\mathfrak{A}$ 0 σó 00 Ó  $\boldsymbol{x}$  $\omega$ S  $\mathcal{O}_{\mathcal{O}}$ RUN 0.76 7999 11 30894 800 773 9583 00 00 00 00 の古 73 733 EC / CAT  $x_{\mathcal{L}}$ 2007 010 30 正窓 79% 794 187 C 901 906 2 S C 7. ا<u>و</u> ع ססת 3 から 1121  $\omega$ 00 066 2000 886 10820 1052 1053 12/50 899 250 986 886 1052 なのの 106 1052 100 25 9 2 2 892 246 FIREBOX 954 616 404 912 102 <u>a</u> <u>|-</u> 12 m 3338 276 6643 مالان 767 2 297 3505 276 205 290 292 29D 797 BOTTOM 794 297 294 200 LLC 202 201 57 SHEET  $\overline{\phantom{a}}$ 1117611 エのソ 1887 1 458 39 6252 476 438 SIDE 400 465 7.47 436 SSS 35 **छ** तत्र **4** の の **7** で 0773 472 540 **रम** विम 532 450年 34 525 519 で SOF CO V) S S 물 PAGE 1 TEMPERATURE DATA 3050 123 208 3 75 9 700 2 3 子の 100 100 BACK 17 13 112  $\cong$ 2 2 <u>2</u>  $\frac{1}{2}$ 55 'n 133 7 2 462 0000 5684 430 422 422 LT SIDE 433 420 496 817 469 469 944 4110 486 130 130 5n5 190 430 cbh ~3 100 J 430 187 45 413 5 265 296 3203 769 (1)  $^{\circ}$ 350 3 S) S) 253 とらり 295 03 260 **で** 67 371 319 367 200 3 000 200 261 S V) 29 10p ¥ 8 3 B B 8 9 V) ခို 2 ¥ 8 8 2 R 2 TOTAL TIME TOTAL TOTAL

3650 START 318,8/5TUP 3650 72191-SO2 IMP  $\alpha$ ψ (J  $\omega$ n M M) (1)M <u>ጠ</u> (N) S 3  $\alpha$ (f) M 3 M GAS 1MP M Z  $\omega$  $\triangle$ ( ) $\mathcal{M}$  $\mathfrak{M}$ 10  $\Omega_i$  $(\Omega)$ (⁽) ĺΨ 10 3 6 (F) Ŋ 743  $\mathbf{f}$ 243 700 PAGE 443 an これ 243 243 773 7.十 10 GAS 7  $\overline{\mathcal{D}}$ 1 ن 38 IMP OUT 30  $\omega$ B Ţ. 5.  $\hat{Q}$ 38 DATE 6/29/93 (x)  $\hat{X}$ N 747 于公 747 だが 力で 747 SAMPLE ンド 7 209 77 1430 1430 8 8 1727 1100円 FURNACE アプロ M 15 1432 1260 100 N7) (n) 4829 A⁽¹⁾  $\dot{a}$ 89 W AMBIENT 少 7 B **6**00 20 3 å Ø  $\mathcal{D}$  $\omega$ RUN 928 734 53849 SEC / CAT 747 7499 ē Y 5 3 [ .... ( ....  $\mathcal{C}$ 2000 795 000 000 で の 52355 8324 \$00 00 2007 S. 200 802 765 00 Oct. 725 FIREBOX PAGE 1 PEMPERATURE DATA SHEET FX HT 298 798 300 (f) (2) 300 (n) (n) (A) 305 3020 705 BOTTOM 304 432 135 479, 432 428 SIDE 4256 423 21.8 435 428 413 2778 717 R 208 <u>T</u> 300 JHID 200 られ 9 185 エニ <u>で</u> 1491 BACK ナニ 24718 dop 397 405 494 400 397 LT SIDE 4.0 402 394 426 60 h 500 325, 282 765 1881 2600 248 255 273 259 238 267 744 한 7 5 5 2 8 M 30 2 TOTAL TOTAL TOTAL

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: <u>EE</u> M	1C - West	, Kent	, WA 98	032 <b>D</b> at	e: 669	193 An	alyte:(	D ₂ (15-2)
				Run				
							Press: 2	000 p:
Certif	ied by:	Liqu	10 AIR	<u>,                                      </u>			Date: 6	110/03
Span Cyl	#: <u>AS4</u>	087 <u>5</u>		Conc. 12.8	\$ O ₂	Cvl	Press:	500 ne
Certif	ied by:	MAT	HESON	<u> </u>			Date:	14/03
Analyzer:	Make:_	Teledy	ne	Model:	320 Ax		SN:_3	<del>/                                    </del>
Range: 0	- 25.0%	02		Analyzer O	utput:	0 - 1	0	V
Flow: 1.	5 SCFH		Mea	sured by:	Rotam	eter:	X Flowme	
EPA Span V	7alue = 2	5 As A	_					
Pre Run Au	dit: By	:	DK.	Ti	me:	935	Temp:	17 o _i
				Audit Resu				
Point #	Expec	ted Res	ponse %	Act	ual Re	sponse	+ Conc	
			<del> </del>				Differen	
Span	12.8	.512	12 8	12.8	513	12 715	.085	
Comments:	Teledyne	2 # 2 Cv	1 8	Exp % A	1.010	14.10	.08⊖ • + <u>_</u> 8	-667
						Adj	- T A6	
Post Run Au	ıdit: By	7:				1535	Temp.: 8	2o _f
Point	Expect	ed Res		Audit Resu	lts ual Res	200000	+ Conc.	
#	Meter	DVM	8	Meter	DVM	& Sponse	Difference	₹ \(\sigma\)
Zero	00.0	.000	00.0	00.1	.003	.033	. 033	.130
pan	12.8	.512	12.8	12.7	.510	12.640		-1.250
omments:	Teledyne	#2 <u>Cy</u> ]	<u> </u>	Exp & Ac	et 8	Adj t	<u>+ Δ ε</u>	
Conc. Dif	ference	= Act %	- Exp	(Std) %			<del></del>	

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

## PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: I	EEMC - Wes	t, Kent	, WA 980	32 Date	e: <u>( ) ට</u> ු	03 An	alyte:C	0 (15-3)			
Source:	FX F	T 20	00	Run	#:	•		•			
Zero Cyl #: T/32257 Conc.00.0 % CO Cyl Press: 2000											
						6/10/93					
Span Cy	1 #: AS	10875		Conc. 5.01	% CO	Cvl F	ress: 5	SAA ne			
Span Cyl #: <u>AS 40875</u>											
Analyzer: Make: Horiba Model: PIR-2000 SN: 408005											
								v.			
				urea by:	Rotame	ter:	X Flown	eter:			
EPA Spar	n Value = rol Limit	10.0% C s_= ±2.	0 5% of 10	.0% CO =	± 0.25ቄ	CO	·				
1				_				77 o _F			
				Audit Res				<u>, r</u>			
Point			sponse	Act	tual Re	sponse	+ Conc				
#	Meter	DVM	8	Meter	DVM	8	Differen	ce 🛆 🖁			
Zero	00.0	-000	00.0	000.	. 000	.000	.000	.000			
Span	50.1	.501	5.01	50.2	.502	5.020	.010	.200			
Comments	:										
	<del>- "</del>										
		<del></del>				<del> </del>					
Post Run	Audit: B	y:	DK_	Tim	ie:	1540	Temp.:	82 of			
				udit Resu							
Point #		ted Res			ual Res		+ Conc.				
	Meter	DVM	8	Meter	DVM	8	Differenc				
Zero	00.0	.000	00.0	00.0	,001	.010	.010	.100			
Span	50.1	.501	5.01	50.0	.500	5,000	-, 010	- 200			
Comments	:					·					
<u> </u>				•							
+ Cong I	Difference	- 3	a - Fern	/C+A) a		<del></del>	<del>-</del>				

Zero % Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: <u>EEMC - West, Kent, WA 98032</u> Date: <u>  29 93</u> Analyte: <u>SO₂ (15-4)</u>										
Source: <u>FX HT 2000</u> Run #: 4										
Zero Cyl #: 132257 Conc.00.0 ppm SO2 Cyl Press: 2000 ps										
Certified by: LIQUID AIR Date: 6/10/93										
Span Cyl #: <u>CC 79076</u> Conc. 1268 ppm SO ₂ Cyl Press: <u>SCO</u> ps										
Certified by: LIQUID AIR Date: 2/26/93										
Analyzer: Make: Horiba Model: PIR-2000 SN: 403019										
							. 0			
							X Flowme			
EPA Span t	7alne =	2500 pr	m 50a				so ₂			
							Temp:			
				Audit Resu	ılts		-			
Point #	Expe	cted Re	sponse ppm	Act Meter	ual Re	sponse	+ Conc.	100		
				00.7			Difference	] _		
Zero		.000	<del>                                     </del>		.007	<del> </del>	12.951	. 518		
Span	50.7	.507	1268	50.9	.509	1276. 392	8.392	.662		
Comments:										
Post Run A	ıdit: B	y:	DK	Tim	e:	545	Temp:	<u> 2</u> o _f		
Dodat				udit Resu						
Point #	Meter	ted Res	ponse	Act: Meter	ual Re:		+ Conc. Difference	<b>△</b> 8		
Zero	00.0	.000	00.0	01.0	.010	20.501		.820		
Span	50.7	.507	1268	50.6	.506	1268.	. 841	مامال.		
Comments:										
Conc Dif	ference	= Act	nnm - Ev	p (Std) pr	777		<del></del>			

+ Conc. Difference = Act ppm - Exp (Std) ppm

Tero % Difference = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

#### QUALITY CHECKS DATA SHEET 16

Unit: FX HT 2000	Run: 4 Date:	6/29/93
Thermocouple Check: T/C #1	69,7	°F
T/C #2	70,2	°F
T/C #3 °F T/C #15	70~5	°F
T/C #4 °F T/C #16	- Colil	°F
T/C #5 °F T/C #17	63,3	°F
T/C #6 °F T/C #18	74.4	°F
T/C #77/,8 °F T/C #19	70,8	°F
T/C #8 °F T/C #20		°F
T/C #9		°F
T/C #10 °F T/C #22		°F
T/C #11 °F T/C #23	70,9	°F
T/C #12	210,7	°F
Thermocoouple Readout:  pretest zero and span check and calibration  ZERO $\cancel{\cancel{+}}$ °F ADJ. TO $\cancel{\cancel{0}}$ °F ZERO  SPAN $\cancel{\cancel{0}}$ 000.6 °F ADJ. TO $\cancel{\cancel{0}}$ 000.0 °F SPAN  Thermocouple Readout Pretest Linearity Check $0 =                                  $	.3 °F .0	°F °F
Sample Train Leak Check  Combustion Gas Train Leak Check  Tracer Gas Train (SO ₂ ) Leak Check  Pre Darft (Static) Gauge Zero Check  Pre	Post Post Post Post Post	
Scale Check  Pre 546.7 - 536.7 = 10.0 -  Post 550.9 - 540.9 = 10.0 -  Stack Cleaned Proir to Test Run: YES NO		

#### TABLE 1 ---- RAW DATA

CLIENT: FX DROLET TEST No.: 3

110

115

381.202

0.090

MODEL: HT2000 DATE: 28-Jun-93 ********************************** **DELTA** PERCENT PERCENT TIME METER METER **SO2** READING TEMP. CO CO2 COCENTR. Η (%) (%) (MIN.)(C F) (IN. H20)(DEG. F) PPM 77 0 350.000 0.150 0.10 12.20 250 5 351.500 0.120 79 0.19 9.80 275 10 352.889 0.120 80 0.14 10.90 275 15 0.120 354.284 82 0.15 9.40 275 20 355.689 0.120 84 0.11 9.40 275 25 357.104 0.120 85 0.08 8.90 275 30 358.525 0.120 85 0.06 8.90 275 35 359.945 0.120 86 275 0.07 8.00 40 361.371 0.120 87 0.07 7.80 275 45 362.802 0.110 88 0.07 7.80 275 50 364.238 0.110 89 0.05 8.10 275 55 365.679 0.110 89 0.03 8.30 275 60 367.121 0.110 90 0.04 8.10 275 65 368.568 0.110 90 0.05 275 7.20 70 91 370.014 0.100 0.04 7.40 275 75 371.466 0.100 92 0.05 6.90 275 80 372.924 0.100 92 0.09 5.40 275 85 374.381 0.100 92 0.30 4.60 275 90 0.090 375.838 93 0.31 4.50 300 95 377.179 0.090 93 0.40 4.20 300 100 378.520 0.090 93 0.49 4.10 300 105 379.861 0.090 93 0.51 3.90 300

93

0.51

4.00

300

#### TABLE 2---RAW DATA

CLIENT: FX DROLET	T	EST No.	3	,
MODEL: HT2000 ********************			-Jun-93 ******	*****
METER CAL. FACTOR (Y) 1.028	Wt. WOOD BURNED(LB)		21.9	Lbs
BAROMETRIC PRESS.(Pb) 30.1 in Hg	WET, FUEL MOISTURE %		20.221	%
LEAK RATE POST (Lp) 0.001 cfm	Wt. PART. COLLECTED		0.1685	a
WATER VOL. (V1c) 56.5 M1	METER VOLUME Vm		31.202	mcf
TEST TIME (MIN) 110 min	HC MOLE FRACTION		0.0132	

#### TABLE 3 ----FIELD DATA AVERAGES

CLIENT :FX DROLET	TEST No.	3
MODEL: HT2000 **************		un-93 *****
AVG DELTA H 0.11 in H2O	AVG PRCNT CO	0.17 %
AVG METER TEMP. Tm 88 deg F	AVG PRCNT CO2	7.38 %
AVG PPM SO2 279 PPM	AVG BAL CO2/CO	13.43 %

#### TABLE 4 ---- CALCULATIONS

CLIENT : FX DROLET		TEST No.	3	; **
MODEL: HT2000 *******	*****	DATE:	28-Jun-93 *****	*****
STD SAMPLE VOL. Vm(std)	31.11 dscf	STACK GAS FLOW Qsd	1755.052 29.25	dscf/Hr & dscf/min
VOL. WATER VAPOR Vw(std)	2.659 scf	PARTICULATE CONCTRT. Cs	0.0054	g/dscf
PRCNT MSTR Bws	7.88 %	PARTC.EMISS. RATE E	9.51	g/Hr
BURN RATE BR	4.32 Kg/Hr	MOLES OF GAS PER Lb WOOD Nt	0.48	Lb-mole/Lb
CO EMISSION RATE	99.91 g/Hr & 23.11 g/Kgdr	PART.EMISS. RATE	2.20	g/Kgdry fuel

TABLE 5 ---- PROPORTIONAL RATE VARIATION

CLIENT: FX DROLET

TEST No. :

3

MODEL: HT2000 DATE: 28-Jun-93

 TIME INTEVAL Ti	PPM * Vm	PROPRTN. RATE VAR. PR	PROPRTN RATE VAR. AVERAGE	
 = <b>======</b> = 5	380.8	97	100	
10	386.8	98		
15	387.4	99		
20	388.7	99		
25	390.4	99		
30	391.7	100		
35	391.1	99		
40	392.0	100		
45	392.7	100		
50	393.3	100		
55	394.3	100		
60	394.2	100		
65	395.2	101		
70	394.6	100		
75	395.5	101		
80	396.8	101		
85	396.5	101		
90	396.2	101		
95	397.4	101		
100	397.4	101		•
105	397.4	101		
110	397.4	101		
115 120				

Client FX DeoleT	DATA SHEET #1
Client Address 1700 LEON HARMEL	
QUEBEC QUEBEC CANAD	A G1N 4R9
Client Phone 514-565-6336	
Project No. Model No.	
Run No. 3 Date of Test 6/28/93 Es	t Grams/Hr
Stove Type: Cat Non Cat Pellet	
Data To Be Submitted To: Oregon Colorado	<b>E</b> PA
Burn Category: Low (<0.8 Kg/Hr) Med Hi (1. Med Low (0.8 - 1.25 Kg/Hr) N	Max (>1.9 Kg/Hr) 4.3008
Fuel % Moisture (dry) 25.347 %(wet) (00.00) (Data Sheet #10)	20.721 %
Stack Static Pressure(O.000) (Data Sheet #12)	<u>-, 058</u> "н ₂ о
Barometric Pressure (00.00) (Data Sheet #2)	30.10 <u>"</u> "Hg
Temperature (Average Room) Combustion Air(00) (Data Sheet #14)	93 <b>o</b> f
Flue Gas Moisture (00.000) (Data Sheet #7)	7.8809- %
Ambient Moisture (0.00) (Data Sheet #8)	1.40 %
Stove Weight(000) (Data Sheet #8)	487 lbs
Stove Temperature Change(000) (Data Sheet #14)	- 77.4 of
Particulate Emission(O.0000) (Data Sheet #7)	, 0836 gr/dscf
Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)	8624 BTU/16
Fuel Type: Wood: X Pellets:	
Total Fuel Consumed During Burn(00.0) (Data Sheet #8)	21.9 Ibs
Total Particulate Catch(O.0000) (Data Sheet #6)	.1685 - 9
H ₂ O Captured (00.0) (Data Sheet #3)	56,5 1g
Dry Gas Meter Volume (00.000) (Data Sheet #2)	31.202 cr
Dry Gas Meter: Y Factor: 1.028 Post Test Le	eak Rate <u>.001</u> cFM
ME: 115	

Meter	Вех	Data	Sheet	Þ	age	抖	2
Meter	Вох	51	1	Υ	Fact	i mar	1,028
Leak (	Chec!	<b>(⊈</b> :	15 "	! <b>-</b> j	g @	i (	002 cfm

Inject 802 @ 100 cc/min

Page 1 of 1
Unit: Fy
Run: 3 Date: 6-28-95
Operator(s): CD

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.509

ROTO	PRESS:	1:05	Sampling	Ratio :	47		BAROM	ETER:	30.10
MM	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	802 802	ROTO TEMP	PUMP VACC
00	1155	350,000		14.011	115	77	250	77	20
05	1200	351,500		12.690	112	79	275	79	1.0
10	05	352.889	352.889	12.666	117	80	275	80	1.0
15	10	354.284	354,284	12.620	112	82	275	82	1.0
20	15	355.689	355,689	12,573	112	84	1275	84	1.0
25	20	357.104	357.104	12.550	117	85	275	85	1.0
30	25_	358,525	358,525	12.550	511	85	275	<b>8</b> 5	1.0
35		359, 945	359.945	12.527	.12	86	275	86	1.0
40		361,371	361,371	12.504	112	87	275	87	1.5
45	40	362.802	362,802	12.481	1]]	88	275	88	1.0
50		364.238	364,238	1Z.459	111	89	275	87	10
55	50	365,679	365,679	12.459	: 1/	89	275	89	10
ROTO	PRESS:	1,05	TOTALS :	152.030	1,44	1011	BAROM	ETER:3	0,10
60	1255	367.121	367,121	12.436	, 11	90	275	90	10
65	130U	368,568	368.568	12.436	.11	90	275	90	10
70	05	370.014	370.014	12,414	110	.91	275	91	1.0
75	/ <u>U</u>	371.466	371.466	12.391	110	92	275	92	1.0
80	15	372.924	372.924	12.391	10	92	275	92	1.0
85	<u> 20</u>	374.38(	374,38)	12.391	110	92	275	92	1.0
90		375.835	375,838	11,338	109	93	300	93	1.0
95	3 <u>0</u>	377.179	377.179	11.338	109	93	300	93	1.0
100	35	378.520	378,520	<u> </u>	,09	93	300	93	1.0
105		379.861				13	300	93	1.0
110		381.202			109	J. Company	30 D	93	1,0
115				131,149	1,07	1012			
			TOTALS:	283,/79	2.51	2023	MAX VA	CC =	(2.0)
TOTAL	CU FT	31,202	TOTALS	12.312)	(109)	88	AV BP:	(30,17	>

(548)

#### MOISTURE SHEET Woodstove Data Sheet #3

Moisture Determination	
Initial: Level Zeroed	Unit: Fy
Final:	Run: 3
IMPINGER #1	**************************************
Final Weight 601, Z grams Technic	Date: 6-26-93
Initial Weight 553,8 grams	ian(s): Initial:
117/1	Final: Cu
IMPINGER #2	d By:
Final Weight 580.3 grams	
Initial Weight 577, 9 grams	
Net grams	
IMPINGER #3	
Final Weight 487, grams	
Initial Weight 486.   grams	
Net 1.0 grams	
IMPINGER #4 (SILICA GEL)	
Final Weight 897.2 grams	
Initial Weight 89/,5 grams	
Net 5.7 grams	•
	-1 -1
TOTAL MASS OF H2O CA	PTURED 56.5 grams
Scale Check: 295.0g = 295.0 g Front Ha 590.0g = 590.0 g 885.0g = 865.0 g Back Hal	ilf Filter # 447 F
885.0g = SSS U g Back Hall	f Filter # 447 5

	WOODS	TOVE	DATA SI	HEET	#4-1: 1	NITIA	L FILT	ER W	EIGHTS (	TARE V	EIGHTS	)
Into Dessicator: Date 5/27/93 Time 1030 By DK Front Half V Back Half V												
Manufa	cturer:	S&S	<u>S</u>		_ Size:	1 cm 2.2 cm	Lot.N	o.: <u>7</u>	B 901	Grade:	#25 g	lass
Filter #	First	Date	Time	Ву	Second	Date		-	Third	Date	Time	Ву
441F	16921	6/1	10110	411	.6924	6/2	1044	DK	1			
442F	10988	1	1017	1	1		1046					
443F	10982		1018				1048	/	/			
444 F	.7058	,	1	1			1050	1	/			<u></u>
445 F	.7004	6/1			.7002		1052		/			<del></del>
446F	.6996		1071	LL	1		1054				-	<del></del>
447 F	,7022	10/1	1092	LHE	.7022		1056		/			
448F	.7079	4/1	10.93	,	.7076		1058		/		-	
449 F	10984	10/1	1074	22	.6982		1100	į	/			
450 F	,7079	6/1	1025	LU	.7080		1102	\	/			
	<u> </u>											
	_											
441 B	3750	6/1	1096	Lu	.3745	4/2	1126	DK.				
442B	,3730	10/1	1027	LU	,3725	$\mathcal{L}$	1128	$\sum_{i}$				
443B	,3776	10/1	1028	LU	.3771	)	1130					
444 B	.3779	6/1	1024	111	.3774	_/_	1132		/			
445B	3738	6/1			.3733		1134					
446 B	.3736	6/1	1031	LU	.3731		1136	_/_				
447 B	,3755	1011	10 33	LUC	.3750	)	1138	/				
448B	.3-190	611	1033	LU.	.3785		1140					
 449 B	.3728	6/1	1034	LK	.3726		1142		/			
450B	13801	10/1	1035	LU	.3796		1144	\				
		الرر										
Checked	і ву 📈	Sil	1/60	ver	k		Dat	e : <u>(0)</u>	12/93	Time_	1328	<del> </del>

	QA RE	WEIGH		
Filter #	WT	Date	Time	Ву

WВ	DB	%RH	Date	Time	Ву
58	70	48	1011	900	LU
62	15	48	6/2	1042	ΟK

### WOODSTOVE DATA SHEET #4-2: INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date: 6/4/93 Time: 0900 By: DK Beaker First Second Third Date Time By Wt Date Time By Date | Time Вy Wt Wt 418 376 1/01.1787 1017 11012 LU 101.1782 952 DKI/ 377 1010,4090 1017 1014 KU 106.4076 954 105.4899 617 1016 LU 105.4895 950 958 97,6639 617 1018 441976636 1000 103.9232 1017 1020 LUL 103.9230 381 104.7513 617 1027 LW 104.7509 6/8 1002 OK 382 1053599 1004 11024 LU 105.3600 383 98.6373 10210 LV 198.6268 1006 384 105,3535 1028 LLL 105.3530 1008 1/ 385 1047898 1030 LU 104.7898 1010 1012 OK 386 105.9197 6/8 1032/4/105.9193 387 99.9772 1014 99.9773 1034 97.9826 97.9825 1016 1036 389 105.5318 1055321 1015 1039 196.1093 1020 96.1094 10401 95.6015 6/7 1042 LU 95.6011 4/8 1022 DK 391 1044 7 100.2325 392 1100,232g 1024 393 100.4634 1026 100.4631 1046 105.4891 394 105,4896 1048 1028 10/7/1050 98.5638 1030 396 108,21102 (17/1052 LUG108,2159 14/8 1032 DK/ 99.6750 1034 199.1052 1054 1 398 108.5969 108.5964 1036 10510 196.8978 399 1038 910.898 1 1058 95.9536 1040 05.4540 11 00 II 400 Checked By: Stl Mouse Date: 6/8/93 Time: 1/30 / QA REWEIGH BALANCE ROOM ENVIRONMENTAL CONDITIONS Beaker # Date Time By DВ %RH Time WB Date Вy WT 510/108 LIL 41 loM C14D

56

68

47

4/8

950

DI

FINAL WEIGHTS
 CONSTRACT
#4-3:
SHEET
DATA
WOODSTOVE

WST5-Form9, Pg v4/90 Unit Fx Run # 3

WEIGHTS	
BEAKER	
NAL	

			 						, ··		 	
		À	È	)			7	5				
73	Timo	21077	911.	_			010	Т				
5.82.0	Date	2000	417	2			4/1	2				
Date: 628.9	Third		1.11 (as. 7341)				( 25 017 70	1				
	PA PA	Ĭ	77	}	7		ž		77 (	Ś		
	Тіше	918	977		600		GOY LW	)	9214	A)		
	Date	7	17		7/1		17		15	-		
GHTS	By Second	108.2323)	106 DK 99.7337		108,6131)	The second second	DK 9/0,9033		(45.95101X			
R WEI	By	OK (	ОĶ		DΚ		ă		K			
BEAKER WEIGHTS	Time	1104	1106		1108		0111		1112 DK			
FINAL	Date	0E/s	08/4		08/9		4/30 1110		88			
	First	0900 DV 108.2328	9/23 0900 DL 99.7350		129 0900 DK 108.6134		0000 Dt 96.9045		0900 DK 95.9561			
	By	ă	đ		ă		ZJ.		凶			
	Time	9050	00 FO		3000		OUDO		00 <i>b</i> O			
	Date	649	₹ <i>©</i> /5		11/29		63/6		, , , , , , , , , , , , , , , , , , ,			
	Into Dessic											
Į.	Beaker Into # Dess	036	397		398		399		400			

WEIGHTS	
FILTER	
FINAL	

By

Time

Date

978

THE THIRD WEIGHT		Time By Second Date Time By This	111 (7278-)			1120 011 061 11 10 01 11 10 01 11 10 10 11 10 10 10
4		Date   Time			120	D 230
		Time By First D	10	İ	14/4	
	_	j	25 1415 0		グラス	7 ( ; ; )
Ľ	Into	Dessic Date	6		27	)
	Filter	#	4471		2017	1

	<u></u>	T	1				7
SNO						٠.	
NDITI							
ral co							
ONMEN							
ENVIR							
ROOM						ļ	
SCALE ROOM ENVIRONMENTAL CONDITIONS	9	7	8	6	Comments		
					Ş		

	 	 		 	<u>-</u> ,
HTS	By		By		
WEIC	Wt		WT		
FINAL WEIGHTS	Final Wt		Final	_	
QA REWEIGH:	Beaker #		Filter # Final WT		
φ	Date		Date		

SCALE	ROOM	ENVIR	ONMEN	TAL C	SCALE ROOM ENVIRONMENTAL CONDITIONS	IONS	
Jeighing							
ession	Date	Date Time	By	WB	DB	%RH	
1	16159	Algori	65 n7	59	=	\$	
2	08/0	ر 10℃	0K 60	୍ଡ	<u>F</u>	7	
3	711	916	ار ا	0 m	73	4.7	•
4	-113	80b	N N	58	QL.	×,	
5	_						

Dates: From 10/10/93

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorius
Model A1205
SN 37010004

	_	,	Т	1	_	_	1	<del></del>	1	,-	Τ-	,	7	Т	_	<b>.</b>			<del>-</del>	· -	<del>-</del> -	_	-,	 _	_	,	<u>,                                     </u>	•	_	_	·	<u>.                                    </u>		<del></del>
7. RH	p	77	bh	10	84	D.T.	47	47	6/2	48	44	61	570	7.0	1-11		7	2.5																
Wet Bulb	li o	51,	50	58	58	1. 20	57	56	55	58	(40	104	2,	69	100		22	72																
Dry Bulb	11~	80)	96	٥L	70	۵Ľ	60	68	olol	70	ጎሳ	77	Ē	11	72	72	35	2																
Time	(000)	पळा	्।	405	600	वन	0830	908	900	906	700	430	1000	406	1045	912	000	077																
Date	01/0	11/9	10 14	6115	و	1110	8 9	6121	را ا	6/23	700	0.25	9 38	10/29	6/30		712																	
Tech	<u>/</u>	7/7	ď	707	ă	7/7	ă	7/2	OK	7/7	ğ	7	à	757	Š	177	ž									1							1	
Blank Beaker																																		
Blank Filter																																		
100mg Weight	0.0444	0001.0	0.0949	60010	0.0348	166.0	200	0000	0.0447	ながらな	0.1000 2007	2550.7	0.074	000110	0.0999	0001.0	0, 00 1									***************************************								
1.0g Weight	0000	27372	3	1000	00000	4.332	0000	1,000	1,000	0000	6 0007	7227	-	1.000	1.000.1	1.0000	1,0003																	
10g Weight	10.0001	1000.01	5000.01	5000	1.000 k	F 000 01	2000	0000	ŧ	þ	17		6,440			100001	8000101																	
100g Weight	000000	100 000	10 0000	43 8000	00 000	100,000	1000.000	1000	04 9001	वय वक्सक	00 0000	100 001	COM.001	27,000,00	700.000	77.72	1000/001																	

WOODSTOVE DATA SHRET #4-4 SCALE QA SHRET

Through (0/9/93

Dates: From 3-11-93

Scale Sartorius Model A1205 SN 37010004

		1			-		_	-	-	1	1	_		-		_					_	_		15	<u> </u>	<del>,</del>	<del></del> -	_			<del></del> _	_	_		_		_
	!	7, RH	35	294	119	77	47	41	47	7/7	lh	<u>bh</u>	1/h	27	1/2	72	777	70	3/7	77	45	27	707	777	48	410	817	25	<u>0</u> h	49	7/0	787	201	47	Lh	1.j	1
		qing 25	52	45	57	58	99	57	09	63	(A)	55	56	চপ	09)	63	00)	59	SI	[9]	58	58	59	(S)	58	65	28	h 1	79	16.3	58	لړ،)	58	25	56	56	``
	410	į,	891	75	(A)	7	75	٦	73	77	75	99	6 6	75	75	76	אר	11.	73	15	17	70	71	7	70	77	70	77	17	71	<u>م</u>	35	<b>7</b> 0	89	60	89	¥)*/
<u> </u>	4 1 4 1 4	12	3/12 0830	15 0930	0010 41	3/17 1330		5	23	راج		9060 961	4	4 1130	3000	110 946	7	9	0000 11	ত্র	5	_ 크		Spo 120	1 950	4	0201 5	26 (230	4	306 87	+	2 940	13 956	1 0430	7	0000 B	
	Tech Da	1	0k 3		014 3	DK 3		0 VO VO		5 XA	7	<u>,                                    </u>	# 75-1		3			BN 5-		7	50.05	2 2	7	35	OK 5	2	200	77		2 77	2 - XX	3 3 1 1	9 77	138 6	5-1-2-2	2/2	7.7
Rlank	ب ب																					-				 					\\ \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	+	+				
Blank	. 🛶							-												-																	
100mg	Weight	6560.		+ 550,	000 .	1001.0	0000	Vago	0000	, 0999		1007	A A999	2007	232		10000	1,55	0000	7,7,7		0000	02.00	2500	D.15400	0.100/		7 🔾	01010	0,000	0,1001	n 0900	0,000	0.0999	0.0999	0.0996	
1.08	Weight	7.0000	0.4999	2000	0000	1,000	2000 V	• 1	0000	1,0001	1.0002	1,0001	0.0999	0000	A. 9994	0.000	1000	1,0007		1,000	2000	A 9999		0000	0000	1.0001	0.9998	1.0000	0.9999	0.9999	1,000	1000	0.9999	0.9999	0,9999	0.9999	
108	Weight	1000.00	10.0000	2000	800.0	10,000	10.000	10.0001	10.0001	10000101	10,000,2	1 000' 01	1000,01	10,001	9.9999	10.00.01	10,000,2	10.0002	┶		10.0002	100.00	0.0000	10.0002		Ĭ		10.0002	ヿ	10,000		10,0000	9. 9999	9999	10.0001	9.9997	
100g	Weight	000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000		100000	99.999	100,0003	100,000	10000001	100.000	(000,00)	100.000	1000,000	866h 66	99.9997	100.000	20000	100,000	1000,0001	49.9997	व व ववतन	99.9999	99,9997	1000.00	1000 00	נטנט טמו	00.000	27.55	74.0004	100.000	000000	100,0001	120 00 0C	949. 949 le	99.9495	

				•	Unit:	I	-X			
	WOODSTOVE PARTICULAT WOODSTOVE DAT			ESSING		3		te:	6-28	93
					Techn	ician	(s):		)	
			FRON	T HALF						
	FILTER #: 4476 FINAL WT:	BEA g g	KER #: ml: desc:	396 50 acetone	- Ī	FINAL TARE NET	WT:_	<u>'10</u>	8.232 8.215 .01164	3 9 1
-	FILTER #: FINAL WT: TARE WT: NET WT:	BEA g g	KER #: ml: desc:	ACETONE	-	FINAL TARE NET	WT:			_ ;
			FAL VO	LUME OF WASH	ACETON	IE	_	50	ر.	_ m]
			BACK	HALF		•				
	FILTER #: 447B FINAL WT: , 4186 TARE WT: , 3750	BEAI g g	KER #: ml: desc:	397 90 ACETONE		FINAL TARE NET	WT:	99	7.7341 7.6750 0591	
	FILTER #: FINAL WT: TARE WT: NET WT:	BEAR g g g	TER #: ml: desc:	398 75 METHCHLO	OR	FINAL TARE NET	WT:	108	5964 0117	g
		BEAK	ER #:_	399 150		FINAL TARE NET	WT: WT: WT:	96	, 9035 , 8978 0057	; _ g
	•		ER #:_ ml:_ desc:	400 50 H20	:	FINAL TARE NET	WT: WT: WT:	95, 95,	95/21 9536 CDZS	g g g
			m1:_		1	FINAL TARE NET	WT: WT: WT:	.0.	067	_ g _ g
		BEAK	ER #:		T	TNAT.	<b>₩</b> Ͳ•			~

ml:

TOTAL VOLUME OF ACETONE

TOTAL VOLUME OF DISTILLED

USED IN EXTRACTION

TOTAL VOLUME OF DICHLOROMETHANE

desc:

USED IN WASH

WATER DRIED

75

ml

ml

m1

TARE WT:

				was as because	2000		NIC .	Un	it:	FX		47	· >	700				
		WOODST		DATA				Ru	n:	3	ם	ate:	6/	78/9				
	Bi	_ANKS DI	DNE:	6/15	93		<del>,</del>	Te	chni	cian(	s):	200Z 0 998 9 0004 9 054 9 0006 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 637 9 607	N/	1200				
	15	m1 FISHER ( m1 DI( FISHER (	TTQC	MA LOT BEAKER ROMETH	DNE #: <u>9</u> 1	2405 B	<u>9</u>	TAR NE FINA TAR	E WT T WT L WT E WT	: 108 : 106 : 106	108.900 108.306 106.305 .000 106.963 106.963 .000 DATE: TIME		9					
	200 n	nl DIST	B FILL DUCTS	EAKER ( ED WATE CERTI	#: ER F <u>\EO</u> _	<u> </u>	_	FINA TAR NE	L WT E WT T WT	= <u>106</u> = <u>106</u>	96 96 •00	37 35 002	9					
ļ		BEAK	ER .	TARES	IN	TO DI	ESSC: T	IME:_	090	<u>О</u> р	ATE	= 6/4	193	<u></u>				
	BKR #	1ST V	NT	TIME	SND	WT	TIME	3RD	WT	TIM	E	998 g 0004 g 0004 g 0006 g 0006 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 0007 g 000						
	A	108.89	97	1107	108.8	998	1044.											
	B	106.30	56	1,01	3.ما10	•		,						<del></del>				
	C	1010,510	40	11010	106.9	<u>635</u>	1048	pr'										
ز ئے	SC	CALE ROO	OM Q	C : TAF	RES	•	·	SC	HLE I	ROOM (	ac :	: FINA	ALS					
	DATE	TIME	BY		DB	1/-		DATE	TII					i i				
	63	940	DK		68	47		0115	90		U.							
											-		· · · · · · · · · · · · · · · · · · ·					
													<del> </del>					
										7			(					
[							EIGHTS	1			1		- 1					
	BKR #	IN DS	SC	TIME	1ST		TIME	SND	WT	TIME		SRD W	17	TIME				
	A	6/11		1030	108.9		928	108.	1002	912	_							
	$\mathcal{B}$	6/11		1031	106.3			106.3	•		$\overline{}$	,		· · · · · · · · · · · · · · · · · · ·				
	C	10 N		1032	106.	1634	<u>1937</u>	106,91	637	916	)							
	BKR #	4TH V	JT	TIME	5TH	WT	TIME	6ТН	WT	TIME		7TH W	Т	TIME				
						- 1	<u> </u>											
1											<del></del>							

NET PARTICULATE CATCH CALCULATION WOODSTOVE TEST DATA SHEET #6

Unit: HT 2000

Run:
Date: 10/28/93

Technician(s): 1/29

WSTAPP1-AppDoc19-page2

Rev 6/90

		VEA (	7,90
Blank Audit: By:	Bill Thunk	3	Date: 6/15/93
Blank Calculations:			
Acetone:	.0004 8; 2	200 m1 =	.0000 02 g/ml
Dichloromethane:	.0006 8 ;	75 m1 = _	00 00 08 g/m1/
Distillted Water:	.0002 e ÷ _ 2	m1 = .	00 00 01 g/m1/
Front Half Catch:			
Filters: 10256 Total Catc	g - /- No. of filters	( .0000 Blank Value filter	g) = <u>//25/o</u> g / Net Catch
Beakers: DIGH- Total Catch	g - 50 / M1 of Acetone	C.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	g) = <u>60163</u> g Net Catch
	Total F	ront Half Cat	ch <u>*0419-</u> g
Back Half Catch:			
Filters: , 5436 Total Catch	g - / No. of filters	( .0000 Blank Value filter	g) = .0436g Net Catch
Beakers:			
1. Acetone/Impinger	g - 90' ml of acetone	(.00002 Blank Value/ ml of Aceton	g) = <u>0589</u> g Net Catch
	ml. of Dichloromethane		
3. Water/Impingers: <u>. こうらて</u> Total Catch	g - 200' ml. of water	(,00000) g Blank Value, ml of water	g) = <u>0080</u> g Net Catch

Total Back Half Catch Total Catch

% Front Half

# EPA METHOD 5H PARTICULATE CALCULATIONS WOODSTOVE TEST DATA SHEET #7

Date: (408/98 Run:

Unit: FX 11 JOCO

Technician(s):

109 " H20

31,08/201 dect 0000.000 (3),202 Vm)(17.64)(/,028 mcf)(30,10" Hg+ 13.6 ( VML/の方()) 1) Vm(std)=

2, 6595, sof 0000.00 2) Vw(std) = (.04707)(6 % % % ml H20) =

1. 8.609 \$ H20 0000.00 = 10788 Bws x 100 = .0000 2,6595 sof + 31,0868 dscf) (2,6898.scf) 3) Asw=

gr/dscf .00.30. 0.000.0 (15.43) =(3/108/0A, dscf) ( .P& 3.)

12.312 dscfm)( 60 )= 4.00/1/2 g/hr 0000.00 000.00 (3),08(60, dscf) (.ह े डिन्रा(, 5) Estimated g/hr=

000.000 V 0.000 mcf 00.00 " Hg .000 " H2C ( 000 TmA <u>ф</u> total cubic feet pulled on meter box during test meter correction factor ( Y factor) of the meter box used for the test average meter temperature for the test in degrees Absolute average barometric pressure during the test average delta H for the test TmA = Hg. " H20 mcf

total particulate catch for the test total water caught during the test average stack flow during the test m1 H20 =dscfm

000.0 ml H2C 00.000 g. ( computer printout o o

00.000 dscf PRTCALC

### Miscellaneous Test Data Sheet Page # 8

Unit: <u>FX HT 2000</u>	R	un: <u>3</u>	Date: 🙋	<u>  28   93</u>	5
					w. w
Test Chamber Air Velocity Sta	rt: 0 :	Stop:	Avg:	0	
Wet Bulb / Stop: WB: 60		= 54 = 48	]% RH [ ]% RH [		%H20 %H20
Average % Relative Humidity 51.	0 Average	≥ % Ambient	Moisture	e: / 4	4
Empty Stove Weight: 497. Empty Stove Weight w/ Stack & Oil	lbs   Seal: Wet:	536.7	Dry:[	536.3	
Kindling Weight: Paper:	1bs	;	Wood:	1 ما . ما	lbs
Preburn Fuel Wt: $20.2 + 5.1 + 3$	2.6	1	Total:	7.9-	lbs
Total Kindling & Preburn Fuel Wei	ght ( Wood O	nly) ==> I	otal: 3	45	lbs
Coal Bed Weight: RANGE: 5,4 - L Upper = .25 x fuel wt Always round DOWN to nearest tent Lower = .20 x fuel wt Always round UP to nearest tenth Maximum Coal Bed Weight Removal ((5,4)	h Actual + 4,4 , Lower	Coal Bed W	eight:	44-	
•	.5 x 5 " spac	ŕ			pcs
Dimensions Length in inches	No. pcs			of load	d ————————————————————————————————————
2 x 4	5	Z1.9		<u> </u>	
	r	rest Fuel We			lbs
Estimated Dry 21.9 - (21.0) Burn Rate Calculation 2.20		) x60 Time	_	3228 - (g/Hr	
Estimated EPA Heat Output in 19,140 X — BTU's / Hr	100	3228 = DBR	52,12 BTU'	5 s/Hr	
EPA Default Efficiencies: NON-C			ET: 78	-/ ++L	
NOTES:					

Unit: FXHT 2000			28/93 Page 9
u	DODSTOVE OPERATI	NG DATA	
FIRE STARTED:1001	PST(	PDST	
WARM UP AND PREBURN: PR up/preburn fuel charges. preburn.			
SECONDARY AIR: NA	CAT BYPAS	s: <u>NA</u>	<del></del>
CHARCOAL BED PREPARATION up/preburn charge. At 1 leveled. In stove	1/2 min. prior to Sec.	loading last	fuel, raked and
TEST: Door Wide Open dur			
PRIMARY AIR: opened full setting ofWIDE	for first <u>5</u> OPEN	min. , ther •	n set to run
SECONDARY AIR: NF	CAT BYPAS	is: <u>NA</u>	
EAN: ON OFF during warm-d ON/OFF first 30 m Fan speed set at	p ON OFF duri inutes of test <u>Hog H</u>	ng preburn ON OFF bala	ince of test run
WOOD DATA: KINDLING: a m	ix of the grades	listed below	
SIZE	MILL	GRADE	SPECIES
PREBURN: 2X4	Manke/Tacoma	Std or btr	s. orn D fir
TEST: 2X4 4x4	<u>Расмирос</u> Расмирос	#2 or btr #2 or btr	s. orn D fir s. orn D fir
PELLET FUEL APFI#:	، ہے جن پہنے کے ست کہ جب نور کے سے چند سے چہ		
All grades WCLB rules		•	
WARM UP INFORMATION: All pre-burn/warm up fuel			
ist warm up/preburn fuel (			·
2nd warm up/preburn fuel 9			
3rd warm up/preburn fuel o			
4th warm up/preburn fuel C			
Sth warm up/preburn fuel o	thange (	lbs ) added a	it

### FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

FX HT 2000 Unit: Date:

Technician: WST1-Form7-Rev11/89

Room Temperature:

Correction Factor:

NOTE: Record readings to the mearest 0.5% moisture Uncor Values are corrected for temperature: Yes No Time Test Fuel Moisture Readings taken at: 1000

Calibration Checks: X V Y 12.0 17.1 22.0 71.9

	<del></del>	_							
₽0		1_	To		Bo	ttom	81		Piece Av
-#	Dimen	Use	Uncor	- 1	Uncor	Cor	Uncor	Cor	Corrected
1	3×4×8	K	12.5	13.5	11.0	11.8	11.5	123	12.533
_2	_								
13									
4	2×4×8	P	20.0	1218	19:5	121.3	20.0	21.8	21.633 -
5	3×4×8	P	23.0	25.2	23.5	25.7	23,5	25.7	25.533 -
6	2×4×8	P	21.5	1235	210	22.9	21.0	22.9	23,100 -
7									70.266-
8									
9	4x4x17"		22.0	24.1	22.0	24.1	23.5	25,7	24.633
10	11	7	23.5	25.7	22 0	24.1		25.7	25.167-
11	(t	ナー	23.5	25.7	23.5	25.7	23.5	25.7	25,7001
12	y	T	23.5	25,7	23.5	25.7	23.5	25.7	25,700-
13	b	7	23.0	25.2	23.5	25.7	2335	25.7	25,533.
14									126.733
15									
16									
17									
18							٠.		
19									
20	75×1.5 x 5"	7 1	23.0	25,2	23.0	25.2	22.5	24.6	25.000

% Moisture - Dry Basis:

% Moisture - Wet Basis:

Kindling	Pretest Fuel	Test Load
12.533	23.422-2	25,347
11.1372		20,221-

To obtain Wet from Dry: 100 X 7 Dry Rdg. = 7 Moisture, Wet Basis 100 + % Dry Rdg.

Acceptable Ranges: 16-20% wet; 19-25% dry (17.5 - 22.5 on Meter [Uncor reading] at 700F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

		Unit	: FX HT 2000
		Run≢	3
	NSITY DETERMINATION		
WOODSTO	VE TEST DATA SHEET	#11 Technician	11
		. 11	WST2-form11-Rev 6/
Wood Piece:	Nominal Dimension	s: 4 " ,	$\mathbf{x} + \mathbf{y}' \mathbf{x} + \mathbf{y}''$
Depth (D):		9.0	<u>5</u> _cm
Width (W):		9.00	
Length (L):	8986 cm		<u> </u>
	8.855 cm		•
	8.715 cm Le	ength X =	31
	<u> 巻: フつち</u> C型		<del></del>
		lume: 716.5	
MOISTURE:	Room Temperature:	72 OF COTTE	ection Factor,
	Heter Readings Corr		
NOTE: Record	d moisture meter re	edings to the nes	rest 0.5%
[	Uncor Cor	Avg % Moisture	(Dry) 25.533 %
Top:	23.0 25.2 2		
· · · · · · · · · · · · · · · · · · ·		Aug & Moisture	(Wet) 20,346 %
	23.5 25.7 2		
Side:	23.5 75.7 2	Scale: Leveled	In V Out V
Ī.	25.533	Zeroed:	In V Out
			•
Wet Weight:	<u>58.6                                    </u>	ht: <u>276.51</u>	
% Moisture Dr	ied Basis: 22.8918	%	
[1 - (Dry	Wt : Wet Wt)] X 10	0	
	Date Ti	·	
Into Drve	bate 111 6-25-93	<u>/000</u> <u>73</u> 0	or
Out of Dra	ver 7/6/93	1030	Or
(Minimum :	Fime in Dryer: 24 h	rs.) Minimum Drye	r Temp 100°C (212°F)
Density = 276	(volume	$\frac{3}{3}$ cm ³ = .385	9 9/5=3
(dx3	(volume	•)	
Pellet Fuel Mo	pisture Content Dete	Tminetion	
Tare Beaker Wt		, <b>\$</b>	
Wet Wt:	g	g =	g
Gross	Wet Wt. Tare Beak		
Dry Wt:	g ÷	g <b>=</b>	g
Gross	Dry Wt. Tare Beak		
% Moisture Dri	ed Basis:		7.
[I - (Net Dry	Wt - Net Wet Wt.)]	x 100	

	SOZ PPM	350	175	75	278		13	275	275			1	75		ν, Γ	75	75	1			. 1 ( )	300	300	300	300			
OF.		-064 B	C 570	C 510		270	15 Calo		190	1,0		200	09	746	0,10	058 3	5 13	C 69.	-	51		H		048 3	1		330	58
	STATIC	9	0;		1	, .	<u> </u>	) _	1	090-		į ·		1	<u> </u>	70-			70	<del>      </del>	<del>-</del>	Ö	<u></u>	<u> </u>	,	1 -		1
30¥	STACK	SLL	451	999	922	913	888	L98	8CB	918	<u>~</u> ∞	830	815	10413	785	763	796	733	<b>あ</b> 。	(20°)	585	570	558	539	53%	1991	17564	761
93 PAGE	CAL WB	141	149	152	677	149	148	147	145	144	至	丁二	143		142	三	三	140	35	134	133	33	131	3	131			
80	хнго	2,8	2.6	4.0	3.9	3.8			3.3	3	3.1	3.0	29		Ω %	رې ا	7.7	38	25	2.6	ЪC	ħC	70	) ic	ħС			1
DATE (	DRY B	197	177	SLI	1.11	ከግ		J.S.	<u>CS</u>	148	Lhl	911	143		139	13%	134	133	8C1	(22	cci	20	811	911	115			-
D2	WET B	100	99	101	99	98	96	95	76	G	G	9	ପ୍ର		68	88	88	87	85	84	83	83	83	83	83			
Org	BAL	(C)	51.5	77.7	73,7	85.0	<u>ر =</u>	148	丁二	=	=	اوا	276	# # # # # # # # # # # # # # # # # # #	100	144	184	137	0.09	15,4	コエ	.S.	_ <del>_</del> ⊗	7.7	7.8			
RUN	00	91.	9	, اد <del>ا</del>	, SI,	<u> </u>	80.	90.	10.	10.	T0.	.0S	.03		h01	,0S	70,	.0S	,09	30	3	oh'	49	Ŋ	N)			
	۷.	. 610	910.	, ०१ व	S10:	110.	800.	200.	100	100.	L00;	.005	.003		h00'	500,	200g	. 00S	£004	<u>න</u>	150:	040.	940	150	iso.		1	
) ) ) )	02	7.9	9.9	9.S	8.01	L.01	0		00	<u>-i</u>	0.0	117	11		1.7	12.5		8CI	14.3	55	15,3	15.b	15.7	15,91	15.8			
	٧.	.318	1000	381	. ⁴ 3%	.433	446	054,	.483	.488	.485	.473	146)		, H73	Ŗ	865	515	.S]	ا م	819.	٩٣).	(£3)	.l ₀ 42	.637		-	
<u>.</u>	C02	C.CI	98	10,9	7 6	<u>0.</u> 1	8.9	8,9	- 1	\cdots	78	8.	8,3		<u>~</u>	7.2	74	رق و۔	\ <u>7</u>	9	45	4.2	17	39	0.7			
H. H.	>	964.	.394	438	379	377	୬୯୦	351	ĘŖ.	314	314	333	334		SC.	हर्	1,297	Lei	8 (C.	8	081	0[]	·llolo	159	091.			
'A SHE	DROP	Ø	9	<u></u>	8		اد	\ \ \	7	6	رج 	7	_	1	0	∞	8	او_	70	J,	d d	m	7	6	7.			
S DAJ	FUEL	21.9	0.00	5	٦٠,	エゴ	<u>લ</u>		9.0	8. L.	7.5	6.3	رج ب		4.2	コで	اق ف	0.0	9	7.7	0	<u>, , , , , , , , , , , , , , , , , , , </u>	ن.	رني	9			
PAGE 12 DATA SHEET	SCALE	562.6	566.7	558.6	555,8	1,555,1	553.5	552,0	30,550,6	7. U.S.	148.2 148.2	3.T.O	5,5,5		54E.9	544.9	5/33	Α.	5423	ही।	厉	<u>ड</u> ्	3		ζζ. ΘΕΘ			
PAGE	TIME	100	\ <b>8</b> 2\\\	<u> }</u>			<b>١</b>	$\Delta M$						TOTAL	SS/ SS/ SS/ SS/ SS/ SS/ SS/ SS/ SS/ SS/	3 3	\$\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			A I	13 2/3	2/3 2/3	۱ I	·/ I		3	TOTAL	TOTAL

2:37	1.11.2 54.02	.45	° 2.772				, we							
PAGE 13 PREBURN DATA SHERT	3 PRE	3417 BURN D2	- 540.7	F F			<b>~</b> - ⁸							710
MANUFA	CTURER	/MODEL		FΧ	/ HT	೦೦C	RUN	N	DATE	8C  9	193	PAGE	E OF	<u>}</u>
IME	SCALE WT	BURN RATE	STACK	TOP	TI SIDE	BACK	RT SIDE	BOTTOM	FIREBOX	SEC / CAT	AMBIENT	STATIC	COMMENTS	1
000	557,4		252	75C	1304	1777	320	393	390	363	60)	- 11 - 0	RIMARY	5
20/	556 3		651	277	278	186	308	303	199	1020	5	7(0,	WINE OBEN	
3/2/	5843	2.0	786	376	1.27	Aleksange Jackson W. Services	327	10 10 K	679	1143	77		SECONDARY AIR SET AT:	1
(z./	525	8.7	40%	439	325	126	2/18	37	135	1296	73			7   5
2) 2) 2)	1,055	2,1	278	457	361	103	i	368	208	1370	76	-	FAN:	×   ×
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	518.1	2,3	268	493	404	ЬЬ		362	998	1463	78			` ` >
,3\ 	$\sim$	71	1027	245	<u>.</u> Sh.h	101	428	364	Slad	1382	300	£80'-	ANDER SALIBA	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	5-18.3	4	955	_1	485	(CO)	45k	3.13	81,9	1418	30	61.7-	PUMPS ON AT: 1130	
$\frac{\tilde{\chi}}{\tilde{z}}$	548.7	_ '	0001	584	514	201	CLIY	380	885	1430	18	-677	+2.6	กั
	546.4	رن ان	30	009	538	<u>۳۵۱</u>	497	388	6101	H33	cs	1	CHECK WB/DB: //// / (	3 =
	) [] []	00	913	[6]7	5	164	532	ր0/ч	1627	147.5	82	7-	200	<u> </u>
	5455. S	اور ا–	903	598	578	104	SSI	નાન	8SC1	1495	83	7,10,		7 0 2 1
													2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>
13/	541.12	ん.	8S9	559	594	101	241	8Ch	2001	וחחוני	60	- 71.1		γ).
\S\ \S\ \S\	540.4	 	715	STS	605	801	087	701	1392	020	ر در	7 7 7 7	0 0 11	
								7	3	7 20	0	100-	8 1995	
													-	
V														
V			į											

		00/11	1	ع اد	120	2	158	158	158	158	155	15.5	153	CN	ט ב	2		150	118	727	1410	100	لام	167	11,27	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7-9)[	23	3		
	0.F	SOZ IMP	1	2 %	2 0	7 (7)	50	304	39	39	30	38	38	22	200	3		~	38	39		39	39					$\vdash$	L'		
	_	GAS IMP	29	39	700		7	500	50	39	77 Se	38	38	38	38			7	37	37	37	36	36	3,5	35	35	3S	35	177-		
	PAGE	C. GAS	& D.C.	248		7 = 6	2 6	1 40	110	3hC	246	247	348	Sho	243			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	940	500	240	239	0hC	50	IhC	Sul	ChC	212	3924		
, <del>,</del> ,	8/93	TUO 9MI	3.3	33	40	) = 4	7 7	0 ا د	0,0	2	3		37	31	37		La	) (	0	37	37	27	37	3	37	36	36	36	28.5		
	E 6/28/	SAMPLE	ahc	0110	חחכ	= 7	07.0	9 - 1	777	0111	7	248	8hC	370	7 1		7117		0410	245	Sho	70	943	che	240	239	339	238	7		
	DATE	FURNACE	1911	1011	717	14311	11149	17111	1127	007	14.51	וחחת	944	1448	7447		1448	-1117	7 1 7	100	25.7	1449	8448	55.5	9h 1	77	95H	1430	: 23	-	
7	KUN	AMBIENT	83	83	78	93	25	23	000	8 6	, , , ,	300	200	83	83	99.S	178	CA	3 6	ָל מ	700	227	200	]     	700	22	200	250	8 5	1913	83
		SEC /-EX	CSCI	1005	1029	1015	9501	1019	ע	7001	500		1304	- 12.6 - 1	1313	13578	1304	AC!		8 1 5	001	2 6	700	7 000	545	~	707	205	87011	24646	C_01
} (	0008	FIREBOX	· 4	90°6	916	PC01	1088	7	וחק	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 5	100	<u> </u>	1901	1253	13571	PLC1	2861	23.67	2005	1873	7000	2 5	0 - 5	101	0011	0001	10.13	PC7C1		165/
بر بر براء		ROI 10M	41	F 193	4/6/	465	457	677	137	V (	200		2 3	168	373	5225	389	384	786	200	27.10	2 16	-	270	7	276	204	(S)	7 2	2040	4047
SHEET	Tota To		0C9	3	109	<b>58</b> 3	574	574	JLS 1	0%.	л - 201	7007	100	7 6	200	رة <u>ا</u>	Lol	[C2]	05°	ターファ	2 -	500	7 (	613)	3	18 P.	) L L	1582	1302	2/3/2	ر در ا
E DATA	BACK	NAME OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PR	80:		S	3	ا (د	117	SI	119	()			200		14087	<u> १८।</u>	20	100	101	80	138	LC1	TC1	LCI	157	[C]	1396	2PTC	) ( ( I	j j
ERATUR	LT SIDE	111 7	7)	Δ, C.	220	516	572	579	586	£93	594	197	CV	100g	1 000	1,00	619	628	60°	800	(52)	613	[607	594	577	5%	551	1699	02721	597,	-
PAGE 1 TEMPERATURE MANUFACTUREN/MODEL	106	7) [1]				623		1007	596	577		547	543		4	001-01	1		489	479	hhh	396	380	369	349	336	329	4574	11542	505	
PAGE 1	TIME	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\2 \2 \2	//~ \?\ \?\	2 <b>\</b> ?	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/8	\%  % 	25/ 28/	=/ /⊹	(字) (字)	8) E/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOTAL		ハバ		5/ (3)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	% /s7	\2\ \30 \00	25 010	45 30 30	00/ 25/	\01 \01 \01 \01	0 = 1  }  }	2.5 So/	TOTAL	TOTAL	

Site: E	EMC - Wes	t, Kent	, WA 980	32 Date	e: <u>७१३</u> १	<u>ි</u> 3 Ana:	lyte:cc	) ₂ (15-1)
Source:	EX H	r 20	00	Run	#:	3		
Zero Cy	1 #: <u>T13</u>	2257		Conc.00.0	% CO2	_ Cyl Pı	ress: Q	
	ified by:				_			
	1 #: <u>AS</u> 4							
	ified by:							
	r: Make:_							
	0 - 25.0%							
	1.5 SCFH			sured by:	Rotame	eter: X	Flowme	eter:
EPA Spar EPA Cont	value =	25.0% C $s = + 2$	0 ₂	5.0% COn	= + 0.e	25% COn		
	Audit: B							1.0
		<i>.</i>				<u> </u>	_ remp: _	0 1
Point	Expe	cted Re	sponse	Audit Resi		sponse	+ Conc	
#		DVM		Meter	DVM	8	Differen	ce 4 %
Zero	00.0	.000	00.0	00.0	.000	029	-, 029	ط11.
Span	504	.504	12.6	50.5	.505	12.538	062	-488
Comments							·	
	<u></u>							
							_	
Post Run	Audit: H	By:	DK	Tin	ne:	355	Temp: 🖇	3 0
				Audit Resu			<u> </u>	*
Point	Exped	ted Res			ual Re:	sponse	+ Conc	T.
#	Meter	DVM	ક	Meter	DVM	8	Differenc	ce A &
ero	00.0	.000	00.0	00.2	.002	.021	.021	.084
pan	50.4	.504	12.6	50.6	.506	12.563	037	291
comments					·····			
	<del>-</del>							
Conc. I	Difference	= Ac+	& - Eyn	(S+d) *				

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Site: EEM	<u> IC – West</u>	, Kent	, WA 980	32 Date	:: 6/28	193 An	alyte: _	02 (1	5-2)
				Run					;
Zero Cyl	#: <u>T13</u>	2257		Conc. 00.0	8_0 ₂	Cyl I	Press:	200	) ps
Span Cyl	#: AS4	0875	(	Conc. 12.8	₹ O2	Cv1 I	Proce.	WIO14	<u>ــــــــــــــــــــــــــــــــــــ</u>
				Model:					
				Analyzer O					
				sured by:				wmeter:	
EPA Span '	Value = 2 ol Limits	25.0% O	2 .5% of 2	25.0% O ₂ =	+ 0.62	5% On			
				Tim				1.0	
				Audit Resu		1000	_ remp: _		
Point	Exped	ted Re	sponse	Act		SDODSA	+ Cc		
* #			ક	Meter	DVM	8	Differ	rence	<b>∆</b> §
Zero	00.0	.000	00.0	00.0	.001	1			068
Span				12.8			085		667
Comments:	Teledyn	e#2 C	y <u>l %</u>	Exp & A	ct %	Adj t	0 + 4		
		-	<del></del> -	<del></del>	<del></del>			<del></del>	
			<u></u>						
			OV			1.5.0	<del>".".</del>		
Post Run A	udit: B	у:				<u> 400</u>	Temp.:_	83	°F
Point	<del> </del>			Audit Resul					
#	Meter	ted Res	ponse %	Meter	lal Res		+ Con	۵. \ \	- &
Zero	00.0	.000	00.0	00.Z	.009	. 182	Different . 182		27
Span	12.8	.512	12.8	12.7		12.640			250
Comments:	Teledyne	§ .			:t %		-160		~~
	<b></b> 1	- T A SI				Adj to	≏ <u>+                                   </u>	<u> </u>	
		<del></del>			<del></del>			_	
+ Conc. Did	foronce	_ >	0. E	/C+3\ 9					

+ Conc. Difference = Act % - Exp (Std) %

ero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Site: E	EMC - West	. Kent	, WA 9803	32 Date	: 6/28	<u>  0</u> 3 Ana	lyte: <u>CO</u>	(15-3)
Source:	FX H	T 20	00	Run	#: 3			
Zero Cy	1 #: 11	3225'	7 0	Conc.00.0	% CO	Cvl F	ress: <u>2</u> 0	(1) ps
			_				ما : Date	
		_					ress: <u></u> 5	
Cert:	ified by:	<u> </u>	THESON		-	<del></del>	Date: _//	11/93
Analyze	r: Make:_	Horiba	L	Model:	PIR-200	00	SN:_40	8005
Range:	0 - 10.0%	CO	A:	nalyzer O	utput:_	0 - 1	.0	v.
							XFlowme	
	value =			-				
	rol Limit			.0% Co = ୁ	± 0.25%	со		
Pre Run	Audit: By	y:	DK	Tir	ne:	1055	Temp:	70 of
	·			Audit Resi			<del>-</del>	
Point			sponse	Act	ual Re		+ Conc.	
#	Meter	DVM	8	Meter		T	Difference	
Zero	00.0	7	<del> </del>	00.0	.000	.000	. 000	<del></del>
Span	50.1	.501	5.01	50.2	.502	5.020	.010	.200
Comments	:							
	<del></del>							
Post Run	Audit: E	By:	DK	Tim	e: <u> </u>	105	Temp.: 83	3 <b>o</b> f
		·	A	udit Resu			-	
Point		ted Re	sponse	Act	ual Res		+ Conc.	
#	Meter	DVM	8	Meter	DVM	- 8	Difference	Δ &
Zero	00.0	.000	00.0	00.1	٥٥٥١	.010	.010	,100
Span	50.1	.501	5.01	56.3	-503	5:030	.020	.399
Comments	·		- •	<b>,</b>				
	_							
- CORC	Difference	= \\ \alpha = \	9 - Fyn	(Std) &	<del></del>	·		

Zero % Difference = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Site: <u>EEMC</u>	- West	, Kent	, WA 980:	32 Date	: 6/29	3/93 Ana	lyte: SO	(15-4)		
Source:	FX }	IT 20	$\infty$	Run	#: <u>3</u>					
Zero Cyl #	: <u>TI3</u>	2257		Conc. 00.0	ppm SO	2 Cyl E	ress: <u>QC</u>	000 ps		
							Date:			
							ress: <u>S</u>			
		_								
							Date: <u>2</u> /	•		
Analyzer:	Analyzer: Make: Horiba Model: PIR-2000 SN: 403019									
Range: 0 - 2500 ppm SO ₂ Analyzer Output: 0 - 1.0 v.										
Flow: 1.	5 SCFH		Meas	ured by:	Rotame	eter:	X Flowme	ter:		
Flow: 1.5 SCFH Measured by: Rotameter: X Flowmeter: EPA Span Value = 2500 ppm SO2										
EPA Span Value = 2500 ppm SO ₂ EPA Control Limits = 42.5% of 2500 ppm SO ₂ = +62.5 ppm SO ₂										
Pre Run Audit: By: DK Time: 1100 Temp: 72 of										
				Audit Resu	lts					
Point #		ted Re	sponse ppm	Act Meter		sponse		A 2		
Zero		1	00.0	1			15.467			
Span			1268	50.9			8.392	662		
Comments:	*			<u> </u>	<del>-  </del>		<u> </u>			
COMMICTION .										
Post Run Au	dit: B	y:_	り下	Tim	e: )	410	Temp: 8	3 <b>o</b> f		
		· · · · · · · · · · · · · · · · · · ·		udit Resu						
Point		ted Res	ponse	Act	ual Re	sponse	+ Conc.			
#	Meter	DVM	ppm	Meter	DVM	ppm	Difference	<b>₽</b>		
Zero	00.0	.000	00.0	1.2	.012	25.53	25.535	1.021		
Span	50.7	.507	1268	50.6	.506	1268.	. 841	.066		
Comments:										
				p (Std) pr						

+ Conc. Difference = Act ppm - Exp (Std) ppm

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

### QUALITY CHECKS DATA SHEET 16

Unit:	FX HT	<u> </u>				_Run:3	Date:	0/28/93
Thermocou	ple Check:							
T/C #1	•	عا، 8	۰F	T/C	#13	l	9.1	°F
T/C #2		8.5	°F	T/C	#14		8.2	°F
T/C #3	7عا	.4	°F	T/C	#15		694	°F
T/C #4	69	.6	°F	T/C	#16	·	52. 3	°F
T/C #5	<u>69</u>	. 3	°F	T/C	#17		1.5	°F
T/C #6		7. 7	°F	T/C	#18		3.6	°F
T/C #7	69	9	°F	T/C	#19	•		°F
T/C #8	69	.4	°F	T/C	#20			٥F
T/C #9		3.6	°F	T/C	#2 I			۰F
T/C #10		ال ا	°F	T/C	#22			°F
T/C #11		۵.4	°F	T/C	#23	.8 ما	2	°F
T/C #12		9.9	٥F	T/C	#24			°F
ZERO	<u>1.9</u> °F A	DJ. TO	ty Chec 20 80	1.6	post test zer ZERO SPAN  °F  °F  °F  °F	400 = 1600 =	%di %F0 %F1 399.0 1000.6 1599.7	°F °F
Sample Train Combustion Tracer Gas T Darft (Static)	Gas Train Le Train (SO ₂ ) L	ak Check eak Check			Pre Pre Pre	Post Post Post Post Post		
Scale Check Pre Post Stack	5年 らると Cleaned Pro		56.7 10.1	= 10				
		1441			— ``V –			

### TABLE 1 ---- RAW DATA

CLIENT: FX DROLET TEST No.:

MODEL: HT2000 DATE: 01-Jul-93

TIME (MIN.)	METER READING (C F)	DELTA H (IN. H2O)	METER TEMP. (DEG. F)	PERCENT CO (%)	PERCENT CO2 (%)	SO2 COCENTR. PPM
0	626.500	0.150	80	0.11	5.50	250
5	628.000	0.150	80	0.14		250 250
10	629.524		82	0.12		250
15	631.060	0.150	.83	0.11		250
20	632.601		84	0.15		250
25 25	634.148	0.150	85	0.10		250
30	635.701	· ·	86	0.05		250
35	637.259	0.150	87	0.05	7.80	250
40	638.823	0.140	88	0.05		250
45	640.393	0.140	88	0.05	7.00	250
50	641.962	0.140	89	0.06	6.80	250
55	643.538	0.140	89	0.04	7.00	250
60	645.114	0.140	90	0.05	6.70	250
65	646.695	0.140	90	0.06	6.80	250
70	648.276	0.140	91	0.07	6.40	250
75	649.863	0.140	91	0.10	5.60	250
80	651.450	0.140	92	0.20	4.70	250
85	653.043	0.140	92	0.31	4.50	250
90	654.636	0.170	92	0.38	4.50	225
95	656.405	0.170	92	0.41	4.30	225
100					•	•

CLIENT : FX DROLET TEST No. MODEL: HT2000 DATE: ************************* Wt. WOOD METER CAL. FACTOR (Y) ----- 1.028 BURNED(LB) -----21.3 Lbs WET, FUEL BAROMETRIC PRESS.(Pb) ----- 30.12 in Hg MOISTURE % -----જ 18.158 LEAK RATE Wt. PART. POST (Lp) ----- 0.002 cfm COLLECTED 0.0709 g WATER METER VOL. (V1c) ---- 59.5 Ml VOLUME Vm 29.905 mcf

HC MOLE

FRACTION

0.0132

TEST

TIME (MIN) ----- 95 min

### TABLE 3 ----FIELD DATA AVERAGES

CLIENT :F	X DROLET				TEST No.	6	
	T2000 *****	*****	· *****	*****		01-Jul-93 *****	
AVG DELTA H		0.15 i	n H2O	AVG PRCNT CO		0.13	%
AVG METER TEMP. Tm		88 d	leg F	AVG PRCNT CO2		7.22	%
AVG PPM SO2	~ ~ ~ ~ ~ ~ ~	248	PPM	AVG BAL CO2/CO		55.33	8

### TABLE 4 ---- CALCULATIONS

CLIENT : FX DROLET		TEST No.	. 6	
MODEL: HT2000	*****	DATE: (	)1-Jul-93 *****	*****
STD SAMPLE VOL. Vm(std)	29.86 dscf	STACK GAS FLOW Qsd	2074.725 34.58	dscf/Hr & dscf/min
VOL. WATER VAPOR Vw(std)	2.801 scf	PARTICULATE CONCTRT. Cs	0.0024	g/dscf
PRCNT MSTR Bws	8.58 %	PARTC.EMISS. RATE E	4.93	g/Hr
BURN RATE BR	4.99 Kg/Hr	MOLES OF GAS PER Lb WOOD Nt	0.49	Lb-mole/Lb
CO EMISSION RATE	90.67 g/Hr & 18.16 g/Kgdr fuel	PART.EMISS. RATE	0.99	g/Kgdry fuel

TABLE 5 ---- PROPORTIONAL RATE VARIATION

CLIENT : FX DROLET

TEST No. :

6

MODEL:	HT2000	DATE:	01-Jul-93

TIME INTEVAL Ti	PPM * Vm	PROPRTN. RATE VAR. PR	PROPRTN RATE VAR. AVERAGE	
 <del></del>	379.7	97	100	
10	385.0	99		
15	387.0	99		
20	387.5	99		
25	388.3	99		
30	389.1	100		
35	389.6	100		
40	390.4	100	·	
45	391.6	100		
50	391.0	100		
55	392.3	100		
60	392.0	100		
65	392.9	101		
70	392.5	101		
75	393.6	101		
80	393.3	101		
85	394.4	101		
90	394.4	101		•
95	394.2	101	•	
100 105				

Client FX DROLET	E DATA SHEET #1
Client Address 1700 LÉON-HARMEL	
QUEBEC, QUEBEC G	
Client Phone 4/8-527-3060	
Project No. Model No. HT 2	000
Run No Q Date of Test 11195 E	st Grams/Hr
Stove Type: Cat Non Cat X Pellet	
Data To Be Submitted To: Oregon Colorado	D EPA
Burn Category: Low (<0.8 Kg/Hr) Med Hi () Med Low (0.8 - 1.25 Kg/Hr)	Max (>1.9 Kg/Hr) 4.9941
Fuel % Moisture (dry) 22.187 %(wet) (00.00) (Data Sheet #10)	18.158
(O.CCC) (Data Sneet #12)	08) - "H ₂ 0
Barometric Pressure (00.00) (Data Sheet #2)	
Temperature (Average Room) Combustion Air	
Flue Gas Moisture (00.000) (Data Sheet #7)	<u>8.5863</u> "
Ambient Moisture(O.00) (Data Sheet #8)	1.4. %
Stove Weight(000) (Data Sheet #8)	487 · 1bs
Stove Temperature Change(000) (Data Sheet #14)	<u>-51.8</u> •
Particulate Emission(O.0000) (Data Sheet #7)	.0367 gr/dscf
Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)	BTU/16
Fuel Type: Wood: X Pellets:	
Total Fuel Consumed During Burn (00.0) (Data Sheet #8)	
Total Particulate Catch (0.0000) (Data Sheet #6)	.6709 g
H ₂ 0 Captured(00.0) (Data Sheet #3)	<u>59.5</u> g
Dry Gas Meter Volume(00.000) (Data Sheet #2)	29.905 cf
Dry Gas Meter: Y Factor: 1,028 Post Test L	eak Rate <u>, 002</u> CFM

TIME 95.

Meter	Box	Data	Sheet	Page	9 #	2 .	· ()
Meter	Box	<u>51</u>	1	Y Fac	erb da	r // (	<u> </u>
Leak (	Check	<5: _,	!5 " !5.0 "	Hg Hg	- E	1001	ofm ofm

Page 1 of 1
Unit: FXRun: 0 Date: 7-1-93Operator(s):  $C\omega$ 

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	.90	Sampling	Ratio :	96	1	BAROM	ETER:	30,12
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DEL TA H	METER TEMP	802 PPM	ROTO TEMP	PUMP VACC
00	1035	626.500		13,940	.15	80	250	80	1.0
05	40	628,000		13,940	15	80	250	20	1.0
10	45	629,524	629,524	13.888	,15	82	250	82	10
15	<u>50</u>	631.060	631.060	13.863	115	83	250	83	10
20	<i>5</i> 5	632.601	632.601	13.837	.15	84	250	84	1.0
25	1100	634, 148	634.148	13.812	115	85	250	85	1,0
30	05	635,701	635.701	13,787	115	86	250	86	1,0
35	10	637.259	637,259	13.762	15	87	250	87	1.0
40	15	<i>6</i> 38, 823	638.823	13,736	, 14	88	250	88	1,0
45	20	640,393	640,393	13.736	.19	88	250	88	1.0
50	25	641.962	641.962	13.711	14	89	ZSD	89	1.0
55	1130	643,538	643,538	13.711	,14	89	250	89	1.0
ROTO	PRESS:	198	TOTALS :	165.723	1,760	1021	BAROME	ETER: 3	0.12
60	1135	645.114	645,114	13.686	,14	90	250	90	1.0
65	40	646.695	646.695	13.686	,14	90	250	90	1.0
70	45	648,276	648.276	13.662	114	91	25O	<u> </u>	1.0
75	50	649.863	649.863	13.662	,14	91	250	91	2.0
80	55	651,450	651.45D	13,637	14	92	250	92	2.0
85	1200	653.043	653.043	13.637	114	92	250	92	2.0
90		654.636	654.636	15.152	117	92	ZZS	92	2.0
95	10	656,405	656.405	15,152	7	92	225	92	2,0
100							[		
105			201	112.274	1,180	730			
110									
115				277.997	2,940	1751			
			TOTALS:				MAX VA		2.0-
TOTAL	. CU FT	29.905	TOTALS:	13.900	.147/	88	AV BP:	30,	12

# MOISTURE SHEET Woodstove Data Sheet #3

Initial: Level	Moisture Determination			,
Final:  IMPINGER #1  Pinal Weight	_ Balance /	_		. Fx
IMPINGER #1  Final Weight	Final:	-		
Pinal Weight	IMPINGER #1	<del></del>		
Initial Weight 57/3 grams  Net 480 grams Approved By:  IMPINGER #2  Final Weight 57/6 grams  Initial Weight 587/6 grams  Net 2.8 grams  Impinger #3  Final Weight 486.6 grams  Initial Weight 486.0 grams  Initial Weight 486.0 grams  Initial Weight 486.0 grams  Initial Weight 486.0 grams  Impinger #4 (SILICA GEL)  Final Weight 85/3 grams  Initial Weight 85/3 grams  Initial Weight 85/3 grams  Initial Weight 85/40 grams  Scale Check: 295.0g = 2650 grams  Scale Check: 295.0g = 2650 grams  Scale Check: 295.0g = 2650 grams  Back Half Filter # 45/6	/ 2 2 /	<b>62</b> n.m		
Net 48.6 grams Approved By:  IMPINGER #2  Final Weight 57.6 grams  Net 2.8 grams  Net 2.8 grams  IMPINGER #3  Final Weight 486.0 grams  Initial Weight 486.0 grams  Net 6 grams  IMPINGER #4 (SILICA GEL)  Final Weight 857.3 grams  Initial Weight 857.3 grams  Initial Weight 857.3 grams  Initial Weight 857.3 grams  Initial Weight 857.3 grams  Scale Check: 295.0g = 295.0 grams  Scale Check: 295.0g = 295.0 grams  Scale Check: 295.0g = 295.0 grams  Back Half Filter # 45/6			Technician(s	): Initial: Co
IMPINGER #2  Final Weight 570,   grams  Initial Weight 5870 grams  Net 2.8 grams  IMPINGER #3  Final Weight 486.6 grams  Initial Weight 486.0 grams  Initial Weight 486.0 grams  IMPINGER #4 (SILICA GEL)  Final Weight 873 grams  Initial Weight 8740 grams  Initial Weight 8740 grams  Net 7.3 grams  TOTAL MASS OF H20 CAPTURED 59.5 grams  Scale Check: 295.0g = 2650 grams  Scale Check: 295.0g = 2650 grams  Back Half Filter # 45/6				<del></del>
Final Weight 540.4 grams  Initial Weight 587.6 grams  Net 2.8 grams  IMPINGER #3  Final Weight 486.6 grams  Initial Weight 486.0 grams  Net (0 grams  IMPINGER #4 (SILICA GEL)  Final Weight 85/3 grams  Initial Weight 85/3 grams  Initial Weight 85/3 grams  Initial Weight 85/3 grams  Scale Check: 295.0g = 265.0 grams  Scale Check: 295.0g = 265.0 grams  Scale Check: 295.0g = 265.0 grams  Back Half Filter # 45/6		grams	Approved By:	
IMPINGER #3  Final Weight 486.6 grams  Initial Weight 486.0 grams  Net (0 grams  IMPINGER #4 (SILICA GEL)  Final Weight 85/3 grams  Initial Weight 85/3 grams  Initial Weight 85/4 grams  TOTAL MASS OF H20 CAPTURED 54.5 grams  Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6  590.0g = 590.0 g Back Half Filter # 45/6		grams		
IMPINGER #3  Final Weight 486.6 grams  Initial Weight 486.0 grams  Net (0 grams  IMPINGER #4 (SILICA GEL)  Final Weight 857.3 grams  Initial Weight 857.3 grams  Initial Weight 857.3 grams  TOTAL MASS OF H20 CAPTURED 59.5 grams  Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6  590.0g = 590.0 g Back Half Filter # 45/6	Initial Weight 5876	grams		
IMPINGER #3  Final Weight 486.0 grams  Initial Weight 486.0 grams  Net (0 grams  IMPINGER #4 (SILICA GEL)  Final Weight 85/3 grams  Initial Weight 87/4 grams  Initial Weight 87/4 grams  TOTAL MASS OF H20 GAPTURED 59.5 grams  Scale Check: 295.0g = 2650 g Front Half Filter # 45/6  885.0g = 2650 g Back Half Filter # 45/6	Net 2.8 /			
Final Weight 486.0 grams  Net 486.0 grams  Net 6 grams  Impinger #4 (SILICA GEL)  Final Weight 877.3 grams  Initial Weight 877.0 grams  Net 7.3 grams  TOTAL MASS OF H20 CAPTURED 59.5 grams  Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6  885.0g = 295.0 g Back Half Filter # 45/6				
Initial Weight 486.0 grams  Net (0 grams  IMPINGER #4 (SILICA GEL)  Final Weight 87/3 grams  Initial Weight 87/0 grams  Net 7.3 grams  TOTAL MASS OF H20 CAPTURED 59.5 grams  Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6  885.0g = 965.0 g Back Half Filter # 45/6		erame		
Net				
IMPINGER #4 (SILICA GEL)  Final Weight		<u> </u>		
Final Weight		_ grams		
Net 7.3 grams  TOTAL MASS OF H ₂ O CAPTURED 59.5 grams  Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6  590.0g = 590.0 g Back Half Filter # 45/6		grams		
## Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6 885.0g = 965.0 g Back Half Filter # 45/6	Initial Weight 844.0	grams		
## Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6 885.0g = 965.0 g Back Half Filter # 45/6	Ner7.3	grams		
Scale Check: 295.0g = 295.0 g Front Half Filter # 45/6 885.0g = 965/0 g Back Half Filter # 45/6			OF H-0 G17	
Scale Check: 295.0g = 26.0 g Front Half Filter # 45/6 885.0g = 46.0 g Back Half Filter # 45/6 Notes:				
885.0g = <u>%6<!--/--> %6<!--/--> Notes:</u> Back Half Filter # <u>45/6</u>	Scale Check: 295.0g = <u>295.0</u> 590.0g = <u>590.0</u>	§	Front Half Fi	1ter # 45/6
Notes:	885.0g = <u>%6<!--/</u--></u>	)g	Back Half Fil	ter # <u>45/8</u>
	Notes:			

### WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date 5/27/93 Time 1030	By DK Front Half / Back Half
Manufacturer: S&S Size: 110	cm Lot. No.: <u>ZB 901</u> Grade: #25 glass

		· · ·			7	8-2cm	<u> </u>				<del></del>	
	First				Second				Third			
#	Wt	Date	Time	Ву	Wt	Date	Time	Ву	Wt	Date	Time	Ву
441F	16921	6/1	1016	411	.6924	4/2	1044	DK				
442F	16988	ieli	1017	Lil	.6988		1046					
443 F	.6982	10/1	1018	111	.6977	/	1048					
444 F	.7058	6/1	1019	44	.7054		1050		V			
445 F	,70rH	6/1	1090	LU	.7002		1052	<u> </u>	V			
446F	.6996	6/1	1071	LL	.6994		1054					
447 F	.7022	10/1	1092	Lu	.7022		1056	;				
448F	.7079	411	1093	LL	.7076	-	1059	<u> </u>				
449 F	10984	iol	1094	Lie	.6982	1	1100					
450 F	.7079	6/1	1005	LL	67080	\	1102	\				
		_										
	-			<u>.</u>								
ļ												
441 B	.3750	6/1	1026	LU	.3745	4/2	1126	DK.				
442B	.3730		1027	LU	.3725		1128		/			
443B	,3776	10/1	10.38	LU	.3771	)	1130					
444B	.3779	6/1	1034	14	.3774		1132					
445B	3738	6/1	1030	LU	.3733		1134	1				
446 B	.3736	6/1	1231	LU	.3731		1136	/				
447B	3755	10/1	1033	44	3750		1138	/				
448B	.3-190	1011	1033	LU.	.3785		1140		/			
449 B	.3728	7 . 1	1034	LK.	.3726		1142	1				
450B	.3801	6/1	1035	Luct	.3796		1144	\				

Checked by

Bil Mowek Date: 6/2/93 Time 1328

	QA RE	WEIGH		
Filter #	WT	Date	Time	Ву
	<del></del>			

BALA	NCE R	OOM ENVI	RONMENTA	AL COND	ITIONS
WB	DB	%RH	Date	Time	Ву
52	70	48	101:	900	LU
62	75	48	6/2	1042	DK

### WOODSTOVE DATA SHEET #4-2: INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date: 6/8/93 Time: 730 By: DK Second Third Beaker First By Wt Date Time By Wt Date | Time | Βy Date Time Wt 401 96.2832 410 1026 OK 96.2827 6/11 916 LUN 918 105 5758 6/11 1028 402 1105.575 10103135 6/11 920 403 106.3133 1030 108, 2124 6/11 922 404 108,2121 1032 197.11080 6/11 924 405 97.1689 1034 198.1375 410 1036 DK 98.1374 6/11 926 LuV 406 100,4078 1038 928 407 1106.4073 930 /195.7384 | 95,7319 408 1040 98.1952 932 409 98.1956 1042 107, 3625 410 107.3623 1044 1106.4695 610 1046 DK 106.4700 6/11 936 LUV 411 938 -107.7044 1048 412 1107.7046 1194,3927 940 94.3924 1050 413 942 107.4813 414 107.4818 1052 944 98,3551 415 198.3546 1054 946 LUV 104.5937 640 1056 DX1/045935 416 949 101. DHO1 417 107.0401 11058 950 104.2896 418 104.2895 1100 1120.2896 1 120.2894 952 419 1102 98.8130 420 198.8126 1104 956 LUI 104.8317 410 1106 DK 104,8320 (6/1) 421 953 97.14.24 422 97.1427 1108 1000 1 423 197.8661 197.8660 1110 116001 11cb. 4692 1112 424 106.4696 1004 425 100.00651 1114 100.0060 Checked By: Bill / Swale Date: 6/11/93 Time: ///30_ QA REWEIGH

)	Beaker #	WT	Date	Time	Ву
		<u></u>			

WB	DB	7RH	Date	Time	Ву
58	70	48	6/10	1024	DIC
56	102	47	(0/1)	904	LU

WEIGHTS
FINAL
CONSTRAINT
#4-3:
SHEET
DATA
WOODSTOVE

		1	1			1			· ·	<del>-</del>	<del>-</del> 1	1		_	_		<u> </u>
06/			m														
WST5-Form9, ( ), Rev4/90 Unit FX HT3000	5.07	C /	Time														
orm9,1	9-		Date														
WST5-F Unit	Run #	1	tutra														
			<del></del>	-		,	-				-		1			+	
		<b>⊢</b>	4	+	ĕ		·- T-	2		2		Ĉ	5			1	
		, T.	939		9410	-		442		विवात		9.115	2				
ICHTS		Date.	7		۲/۲	-	-	117		۲/۲		<u> </u>	-				
CONSTANT FINAL WEIGHTS	GHTS	Second	LU(104.10114)		[07.0494]			LK (104. 2424)		(120.2927)		111/98 8153	0000				-
CONS	R WEI	Ву	727		777		1	アア		7		1.11	<u></u>				
#4-3:	FINAL BEAKER WEIGHTS	Time	932		934	, 7	100	2 36		938		ano	2				
SHEET	FINAL	Date	210		7/10		7	9		D/L		7/10	*				
WOODSTOVE DATA SHEET #4		First	900 Ltc 104.6111		107,0493 716		1000 100	01/07/7/101		900 LH 120.2926		98.8123					
WOC		Бy	13		й /		Ē	-		= 1							
		Time	900		∂(}¢		100	200		900		900					
		Date	6/1		215	_	17.			ell		مار					
		Dessic															
	Books	# Dess	9117		417		01.5			bih		0Ch					

•	<u> </u>		<u> </u>	<u> </u>	_!	1	<del></del> -
HIS		By			Ву		
QA REWEIGH: FINAL WEIGHTS		Final Wt			Filter # Final WT		
REWEIGH		Beaker #			Filter #		
ΨÖ		Date			Date		

SCALE	ROOM	ENVIR	ONMEN	TAL (	SCALE ROOM ENVIRONMENTAL CONDITIONS	IONS
Weighing						
Session	Date	Date Time	By	WB	DB	%RH
1	2//3	1/2 908	70	<i>\$</i>	al.	Sh
2	9/1	906	111	(0)	12	47
3	11	43% 区	当	وَ	74	117
4						-
5						

SCALE ROOM ENVIRONMENTAL CONDITIONS					8	
SCALE ROOM E	9	7	8	6	Comments	

Scale Sartorius Model A1205 SN 37010004

Dates: From John 193

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

	_		-	ł	Т	_	ī	1	<u> </u>	7	1	Τ.	1	<u> </u>	1	1	-		·	·	Τ-	_	 _	 _,		1	_	_	<del>, -</del>	<del></del>	7	<u>,                                     </u>	<del>-,</del> -	 <del></del>	
		% RH	87	4.1	bh	46	48	ユカ	177	17	1 217	5/7	- TA	70	197	2,5	77	47	47	87	47	-	***************************************												
		Wet Bulb	58	56	<i>b</i> 3	58	58	50 20	57	56		58	(*)	100	94	50		0.0	(gQ	58	00)	101													
		ury Sulb	0/						60	68	997	94	77,	- 4		1,5	72	2	73	0/	73	74				***************************************									
		<u>- </u> -		L		*05 cil	00%	_	0830	_				25 930	\$ 1000	_	Ľ	╀	276	+	90%	950													
	ا د			9		3	<u>ح</u> و	9	8 9	613	<u>त</u>	612	DC of	10/2	SC 9	10/2	1,130		#	8	יוב	-							1	1	1	1		4	
	- - -		2	*	#	北	4:	37	台	777	2	7/7	ă	3	ă	75	ď	=	ic	1	3/2	5													
Rload	به 4	ıi 💮																							,										
Blank	-																																		
100mg	Weight	0.0999	0.1007	0 0999		0.000		0001	100 C	0000	0,0777	27.27.2	0000	2550	6:0:4	2001	0.0 999	00001.0	0, 000 1	0.0900	0.1000														
1.08	Weight	1.0000	0,9998	7666,0	10001	0000	8000 0	4 ~	COOV	120	C 0007	A 0000	× 6007	00000	-	7700	1.000	0000	1,0003	1,0000	1,0001														
108	Weight	10.0001	1000.01	10.0000	10.0003	0.0002	1000 b	10.0003	10.00.01	12	ŀ	9.4999	I	00000	12 AND 21	000	ł	000001	C000.01	70,00,01	10.0003						1								
100g	Weight	100.0001	79.000	100 COO 3	99.9999	44 8008	966666	100.004	1000.001	1000.001	99.9906	वेत वववंत्र	9000 00	100.001	500,001	100,000	00 000	7.2.2.2.2	1007 OO	14.4 days	(0.0003)														

Scale Sartorfue Model A1205 SN 37010004

WOODSTOVE DATA SHRET #4-4 SCALK QA SHZET

Through (e/9/93

Dates: From 3-11-93

108	1.08	100mg	Blank	Blank						
1000;00	We 1ght	Weight	Filter	Beaker	Tech	Date .	Tine	Dry Bulb	Det Bulk	
10.0000	7. 999 9	000			3	3-11	3915		N	/ KH
100000	1.0000	1000			1		0830	68	52	वह
10.000 a	0000	12				2	0930	75	53	295
10.0001	1,000 2	0.1001				3	88	رو (	57	110
(0,00,0)	7,0007	6, 100)			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		330	72	58	42
10,0000	0.9998	6.0999				<u></u>	ş	75	90	47
10,0001	1.0000	. 6499			I	<u>=</u> ;	0060	7	57	41
10.00.0	1,0000	0.0999					0000	73	09	47
10.000 01	1,0001	10999			7	2	300		63	41,5
10,000,2	1.0002	0.0999				-	2 2 3 3	75	(40	175
1 000 01	1.0001	1001			*  	1981	9050	99	55	49
1000 01	0.9999	0.0999			3/2	+	0100	6-9	Sk	7/2
/Ü, att	1. 0000	000/					000	75	reg es	78
9.9999	0.9999	0.1000			3	5.5	300	75	(%)	1
10.00.01	1.0000	0.0999				7/6	376	76	69	45
2000 01	1.0001	0999				7	000	74	(00)	777
10.0002	7.000.7	100/			Ţ		0000	7	59	b/7
0000	0000	0.0999			32	1	000	73	SI	3/5
1000:01	1,0001	1000			1	大派	200	75	اما	77
10.0002	1.0002	1001.0			3/2		000	71	58	45
000.00	6.9999	0,0998				70		70	58	48
COOP CI	0.998	0.099 B			7 2	+			59	57
10.003	0000	0,0998			1	3		Ζ,	(%)	3
7000.7	0000	0.0999				17	200	0/1	58	48
* 200 CI	1000	_			20	Ţ.			65	46
200.00	V. 149B	0, 000			4	7	36.6	70	58	877
70007	0000	0.1000				976	25.5	- 12	144	104
700012	2,4494	0001.0			半年	+		77	ام	710
0000-0	D.9999	D 0997			1	47/7	305	7/	6.3	707
00000		0,1001			1/2	77	200	9	56	70
		8660'd			) /: }	1	07%	15	لوع	27
0 0000	1	0.0999					126	70	58	120
	50000	66600						χρ' 9-	3	47
0000	0.444	0.0499			ž	10/	+ 355 555 555 555 555 555 555 555 555 555	88	56	47
7 22 5	0.4444	0.0996			1	- 2	25.7	89	Sle Sle	17

			Unit:	FY DA	ROLET	• .
	WOODSTOVE PARTICULATE WOODSTOVE DATA		Run:			1193
Ø			Technici	an(s):		<u>, , , , , , , , , , , , , , , , , , , </u>
		FRONT HALF		-	<u>, , , , , , , , , , , , , , , , , , , </u>	<del></del>
	FILTER #: 450F FINAL WT:	BEAKER #: 4/6 ml: /75 desc: ACETONE	FI T	NAL WT: ARE WT: NET WT:	104.61	14 g 935 g 19 g
	FILTER #: g FINAL WT: g TARE WT: g NET WT: g	BEAKER #: ml: desc: ACETONE	FI T	NAL WT: ARE WT: NET WT:		g g
		TOTAL VOLUME OF USED IN WASH	ACETONE		175	ml
		BACK HALF		······································		
	FILTER #: 45013 FINAL WT: ,3801 g TARE WT: ,3796 g NET WT: ,0005 g	BEAKER #: 417 ml: /25 desc: ACETONE	FII T? 1	ARE WT:	107.04 40.04 900.	ol g
Contraction of the second	FILTER #: g FINAL WT: g TARE WT: g NET WT: g	ml: 75 desc: METHCHLO	FIN TI OR N	VAL WT:	104.292 104.28 .002	24 g 96 g
		BEAKER #: 4 9 ml: /50 desc: H20	TA	ARE WT:	120 29	<u> </u>
	•	BEAKER #: 420 ml: /00 desc: H20	TA	RE WT:	98.815 98.813 .002	<u>,                                    </u>
		BEAKER #: ml: desc:	FIN TA N	AL WT:_ RE WT:_ ET WT:_	,005	g g
		BEAKER #: ml: desc:	TA	RE WT:_		g
		TOTAL VOLUME OF A USED IN WASH TOTAL VOLUME OF D USED IN EXTRACTIO TOTAL VOLUME OF D WATER DRIED	ICHLOROM N		125 75 250	<del></del>

PRTCATCH

Technician(s): WOODSTOVE TEST DATA SHEET #6 WSTAPP1-AppDoc19-page2 Rev 6/90 By: Bill Mourk Date: 6/15/93 Blank Calculations: 0004 g; 200 m1 = 000002 g/m1Acetone:  $_{.000}$  g ÷  $_{.0000}$  g =  $_{.00000}$  g/m  $_{.0000}$ Dichloromethane: Front Half Catch: Filters:  $\frac{.036}{\text{Total Catch}}$  g =  $\frac{1}{\text{No. of filters Blank Value}}$  g) =  $\frac{.036}{\text{Net Catch}}$  g Beakers:  $\frac{.0179}{\text{Total Catch}} g = \frac{.175}{\text{M1 of Acetone Blank Value/}} = \frac{.0176}{\text{Net Catch}} g$ ml of Acetone Total Front Half Catch .0537 g Back Half Catch: Filters:  $\frac{.0005}{\text{Total Catch}} g - \frac{1}{\text{No. of filters Blank Value}} = \frac{.0005}{\text{Net Catch}} g$ filter Beakers: 1. Acetone/Impingers:  $\frac{0.093 \text{ g}}{1.0093 \text{ g}} = \frac{125}{\text{ml of acetone Blank Value}} = \frac{0.091 \text{ g}}{\text{Net Catch}}$ ml of Acetone .000La 2. Extract/Impingers:  $\frac{.0028}{\text{Total Catch}} g - \frac{75}{\text{ml. of}} \frac{(.00008g)}{\text{Blank Value}} = \frac{.0022}{\text{Net Catch}} g$ Dichloromethane ml of Dichloromethane 3. Water/Impingers:  $\frac{0.05_{10}}{\text{Total Catch}} g - \frac{250}{\text{ml. of water}} \frac{(.00000)}{\text{Blank Value}} g = \frac{.0054}{\text{Net Catch}} g$ ml of water

> Total Back Half Catch Total Catch

% Front Half

NET PARTICULATE CATCH CALCULATION

FXHT 2000

.0172 g

7/11/93

Run:

Date:

EPA METHOD 5H PARTICULATE CALCULATIONS WOODSTOVE TEST DATA SHEET #7

Date: 7 | 1 | 93 Run:

Unit: FX HT 2000

Technician(s):

" H20 147

dscf 0000.000 29,8171 13.6 548 TmA

scf 2.8007 0000.00 2) Vw(std) = (.04707)(.59.5 ml H20) =

% H20 8.5863 0000.00 Bws X 100 = , 0859 .0000 dscf) scf) scf. + 29.8171 (2,8007 2.8007 3) ASW=

gr/dscf .0367 0.0000 15.43 )= dscf) g.) 6010, 29,817 4) Cs=

1,9831 0000.00 13.900 dscfm (60 )= 000.00 dscf) (.e poro.) 29.8171 5) Estimated g/hr=

" Hg " H20 000.0 ml H20 000.000 V ( 000 TmA 00.000 g. 0.000 mcf 00.000 dscf 00.00 000. computer printout <u>ф</u> o, Ω ġ Q, meter correction factor ( Y factor) of the meter box used for the test average meter temperature for the test in degrees Absolute total cubic feet pulled on meter box during test average barometric pressure during the test total particulate catch for the test total water caught during the test average stack flow during the test average delta H for the test " Hg TmA mcf " H20 ml H20 dscfm

PRTCALC

### Miscellaneous Test Data Sheet Page # 8

	Unit: F	000C TH X		F	Run: <u>6</u>	Date:	7/1/93	<u>3</u>
<i>]</i> =	Test Chambe	er Air Velocity	Stai	rt: 0	Stop:	Avg	: 0	
	Wet Bulb / Dry B Average % Re	Start: WB: Bulb Stop: WB:	60	DB: 69  DB: 71  Averag	$= \boxed{62}$ $= \boxed{54}$ e % Ambient	% RH % RH Moistu	III	%H20   %H20
_	Empty Stove	Weight: บุร Weight w/ Stack	<del></del>	lbs Seal: Wet	: 537.4	Dry:	537.	<u>ن</u>
	Kindling Wei	.ght:	Paper:	,3 lbs	3	Wood:	8.7	lbs
		Wt: 9,2 + 21,				Total:[ Fotal:[		lbs lbs
	Coal Bed Wei Upper = .25 Always round Lower = .20 Always round Maximum Coal Weight Remo	ght: RANGE: 5.3 x fuel wt DOWN to nearest x fuel wt UP to nearest t  Bed ((	tentn	13 lbs h Actual + 43 Lower	SCALE:			lbs lbs lbs
	Test Fuel Dimensions	( .7 Length in ir		.5 x 5 " spa No. pcs	cers ) = Wt. in 1	bs	/6 % of 10	_
	2 x 4 4 4 x 4	NA 18 <		<u> </u>	21.3		100.0	
		/ 14			Test Fuel W	eight:	2/,3 -	lbs
	Estimated Dry Burn Rate Calculation	21,3 -	( <i>21.</i> 3	3 × 18158 6	) x <u>60</u> 75 Time		1,9941 Kg/Hr	
	Estimated EPA Output in BTU's / Hr	A Heat 19,140	Λ	<del></del>	9941 - = DBR	しい。 BT	220 U's/Hr	
	EPA Default B	Efficiencies:	NON-C			LET: 78	•	
ر	NOTES: 7.907	3	-					

Unit: FX HT 2000 Run: 6 Date: 7	193 Page 9
WOODSTOVE OPERATING DATA	ing the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
FIRE STARTED: 0815 PST PDST	
WARM UP AND PREBURN: PRIMARY AIR: set wide open for up/preburn fuel charges. then set to $\underline{W10F0PFN}$ preburn.	all warm- at start of
SECONDARY AIR: NA CAT BYPASS: NA	
CHARCOAL BED PREPARATION: raked and leveled prior to up/preburn charge. At 1 1/2 min. prior to loading lasteveled. In stove sec.	each warm- st fuel, raked and
TEST: Door Wide Open during loading min _5	O sec
	<del></del>
PRIMARY AIR: opened full for first 5 min., the setting of WIDE OPEN	en set to run
SECONDARY AIR: NA CAT BYPASS: NA	
FAN: ON OFF during warm-up ON OFF during preburn ON OFF first 30 minutes of test ON OFF ba	lance of test run
WOOD DATA: KINDLING: a mix of the grades listed below	
SIZE MILL GRADE	SPECIES
PREBURN: 2X4 Manke/Tacoma Std on btm	s. orn D fir
TEST: 2X4 Packwood #2 or btr	s. orn D fir
PELLET FUEL APFI#:	
All grades WCLB rules	
WARM UP INFORMATION: All pre-burn/warm up fuel pieces were either 13 or	inches.
1st warm up/preburn fuel charge ( $92$ lbs ) added	at <u>0855</u> .
2nd warm up/prepure fuel charge ( $21.2$ lbs ) added	
2nd warm up/preburn fuel charge ( $\frac{h(\cdot h)}{h}$ lbs ) added 3rd warm up/preburn fuel charge ( $\frac{h(\cdot h)}{h}$ lbs ) added	
	at 1001 -

# FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Unit:  $Y \times$ Run: QDate:  $Y - l \cdot 9$ Technician: QWST1-Form7-Revi1/89

Room Temperature: 70 of	Correction	Factor:	Ø
NOTE: Record readings to the nearest Uncor Values are corrected for tempera Time Test Fuel Moisture Readings taken Calibration Checks: X Y 12.	ture: Yes	. No <u>X</u>	_
THE THE CHECKS: A V 13 12.	0 <u>72.0</u> 22.0 2	<u>に台</u>	

	<del></del>							<u></u>	
Pc #		.	To		Uncor	ttom	81		Piece Av
F							Uncor	Cor	Corrected
1		IK.	8.0	8,4	9.0	9,5	9.0	19.5	9,133 -
2					ļ				
3	2×4×8	P	20.5	22.4	200	121.8	200	21.8	22.000 -
4	. 31	P	19.5	21.3	19.5	21.3	20.0	21.8	21,467
_5	N	P	23.0	25.2	22.5	24.6	23.5	25.7	25.167
6									68,634
7									00001
8									
9									
0	4×4×	17	21,0	20,9	21.5	23,5	22,0	24.1	23,500 -
1	} {	T	20.5	22.4	21,0	22,9	21,0	22,9	22,733
2	ŧI.	T	19,0	20.7	195	21.3	18.5	20.1	20,700
3	t!	T	18.5	20.1	18.5	20.1	18,5	20.1	20.100
4	į.	T	22,0	24.1	21.5	23.5		24./	23,980
5									110,933
5									
7									
8							•		
9									
o	75-15-5	-	21.0	329	19.5	21.3	19,5	21.3	21,853

% Moisture - Dry Basis:

7 Moisture - Wet Basis:

Kindling	Pretest Fuel	Test Load
9,133 2	22.878 - 2	22, 187
8,369 7	18.618 - 2	18,158 - 7

To obtain Wet from Dry:  $\frac{100 \times 7}{100 + 7}$  Dry Rdg. = % Moisture, Wet Basis

Acceptable Ranges: 16-20% wet; 19-25% dry
(17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Prefest Fuel T= Test Fuel

WOOD DENSITY DETERMINATION WOODSTOVE TEST DATA SHEET #11	Date: 7/1/93 Technician:
- · · · · · · · · · · · · · · · · · · ·	WST2-formil-Rev 6
Wood Piece: Nominal Dimensions:	_ 4 x 4 x 3/2
Depth (D):	8,95 cm
Width (W):	
Length (1): 9.4 cmcm	
9/0 cm Length	
Note that the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the	x = 9,178 cm
Volume:	$\frac{737.605}{(D \times W \times L)}$ em ³
**************************************	(D X W X L)
MOISTURE: Room Temperature:	
Uncorrected Meter Readings Corrected	for temperature: Yes No
NOTE: Record moisture meter reading:	
	·
	3 % Moisture (Dry) 20,500 %
Top: 18.5 20.1 Z Aug	2 Moisture (Wet) 17,012 2
Bottom: 19,0 26,7 Z	
Side: /9,0 20.7 % Sca	le: Leveled In V Our
Ī. 20,500 Z	Zeroed: In V Out V
Wet Weight: 411.4 g Dry Weight: 34	16.71 g
Z Moisture Dried Basis: 15.724 Z	
[1 - (Dry Wt # Wer Wt)] X 100	
Date Time	Temp
Into Dryer 7/1/93 /000 Out of Dryer 7/6/93 1030	223 of
(Minimum Time in Dryer: 24 hrs.) h	finimum Dever Torn 1000c (2120F
Density = 346.71 g = 737.405 cm	.3 = .4700 g/c=3
(dry wt) (volume)	
P-17	
Pellet Fuel Moisture Content Determina	tion
Tare Beaker Wtg	
Wet Wt:gg	=g
Gross Wet Wt. Tare Beaker Wt	. Net Wet Wt.
Dry Wt:g	
Gross Dry Wt. Tare Beaker Wt.	. Net Dry Wt.
<pre>7 Moisture Dried Basis: [1 - (Net Dry Wt - Net Wet Wt.)] X 100</pre>	7.
the ther bry we - net wer wr. / i w 100	

PAGE 12 DATA SHEET EX

J5 [	ER/MC	PAGE 12 C DATA SHEET	SET F	<u>コ</u>		2000		RUN	o l	Ma	DATE 7	7/1/93		PAGE	OF	-
FUEL		DROP	٧.	c02	٧.	05	۲.	ಐ	BAL		DRY B	%н20	CAL WB	STACK	STATIC	SO2 PPM
7	3	Ø	.223	5.5	, S80	14.4	= 0.	=	50.2	86	1551	4.1	138	1509	970-	250
의	7	9	1127	10.6	0Zh`	10'1	1014	1:1	75.7	109	  S	اه. ج ا	153	149	ħ60°	250
2	6	2.5	.386	9.6	µ3d	10.8	, 612	.12	79.8	117	<u>_</u>	် လ	156	096	160:	250
꾀	15,0	6	.394	್ಯ	.428	10.6	110.	11,	88.9	SI	121	8.8	157	958	- 040	250
5		7.8	401.	1.01	, 40S	0.01	.015	SI,	67.2	11	コナニ	2.7	157	0770	060:	250
-	C-1	0)(0	37,	10.9	28,5	90	010	01.	601	111	139	8.0	157	683	160-	250
0	0	<u> </u>	343	8 S	474	П7	,005	.05	071	801	132	7.5	152	862	-,086	250
$\infty$	24	7 -	.313	7.8	.4pqq	12.4	.00S	.05	155	105	801	∞ فــ	150	431	-085	250
			.296	7.3	SIS	12.8	.005	05	147	102	126	0.0	814	508	-,082	250
$\neg$	0.0	_	.281	70	,579	13.1	.005	.05	139	101	127	ر <del>ر</del> ون	1418	788	180:	250
1	J.	9.	273	د د_	18.50 18.00	13.2	,00 L	.0lo	113	100	127	<b>13</b>	147	184	-083	250
	4.2	ै व	284	70	.524	13.0	h00	þ0'	176	86	125		147	779	180:	250
╩			1		]						-	       	-	10265		
• 1	3.4	8.	769	6.7	245	13.4	, WS	50′	133	95	0C1	コロ	777-	750	180-	250
\ •	2.8	<u> </u>	.733	ر 8	.532	13.2	900,	.00	13	93	<u>h</u> []	J V)	三 元	749	-081	250
` "	2.2	<u>,</u>	1259	7 9	L'ES.	13.6	100	.67	1116	9	901	0.4	142	724	- 079	25,
	7	s.	,226	5,6	582	14.4	010	.10	56.0	88	96	8	139	678	140-	250
	7	べ	.188	7 7	, <del>6</del> 24	15,5	.020	.20	232	86	86	3.7	138	639	-11-0-	250
	7	Ň	.183	<u>ب</u> س	127	<u>ふ</u>	.031	.31	146	81	104	3.2	136	613	900-	2.50
1	$\omega$	77-	180	45	629.	15,6	.038	.38	11.7	h8	891	3.2	135	598	P010-	225
	Ø	wi	175	4.3	435	15.7	140.	14.	10.6	84	801	3.2	135	587	590-	225
																÷20
														5338	. 595	<u> </u>
														15/2/12	-11.75	
														787	- 781	
	-													3		
	-											1				

PAGE12

7.9 +	į
547.9	SHEET
<u>م</u> َ	DATA
642.9 - SULA	PAGE PREBURN DATA
79	
	PAGE

PAGE .	CTURER	FAGE TO PREBURN DATA MANUFACTURER/MODEL		Sheet $ au_{ imes}$	1	)00C	RUN		DATE	7/1/93	ar)	DAGE.	- E
TIME	SCALE WT	BURN RATE	STACK	T0P	LT SIDE	BACK	RT STOF	ROTTOM	ETDEBOY	ַנַן ווי	ANDTONE	0.1,110	
\ c	7 < 1		!	(					VO THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF TH	<b>,</b> []	ANDIENI	314116	COMPENIS
433/	) ()	$\frown$	465	352	45S	149	467	360	730	4	76	-071	PRIMARY AIR SET AT:
G C C C C C	557.8	2.4	966	473	451,	= 3	450	379	834	950	76	l 60 -	WINE OPFI
5/ /2/	554 4	3.4	1105	533	1617	107	462	390	188	1113	12	2005	AIR
2/2/20/20/20/20/20/20/20/20/20/20/20/20/	552.2	88	PC11	580	500	108	486	391	935	1197	78	- 094	KN
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5549.7	2. S	934	588	513	108	506	393	1179	Hall	80	086	FAN: ON
55/ 186/ 186/	548.0	1	935	576	575	108	537	398	1043	1377	8	- 087	+
8/ /2/	551.1	3.0	1098	242	592	109	562	398	h911	1493	80	1602	-
(a)	548.3	2.8	1044	669	(008	011	593	399	ShOI	1542	79	1	PUMPS ON AT: 100 5
3/ /\\		2.2	906	_	625	113	bl 9	399	1305	1508	79	969-	
少 约	544.5	9	<b>89</b> 5	1019	<b>638</b>	트	০৮৭	1017	2 8	1385	$\frac{\alpha}{2}$	-087	CHECK WB/DB: 111 ), , , ,
8) (X)	543.5	1.0	<u>ु</u> १	503	9E91	<u> </u>	663	8017	60/C1	1793	<u>&amp;</u>	187	
\% V%\	542.7	8.	186	123	638		700)	1 = 1 × 1 × 1	1284	771	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0-17-	0 / 1
1											5	-	
\\rac{\rac{\rac{\rac{\rac{\rac{\rac	7 TE 2 A		173	17.5	- U.S.	7	\ \ \ -	2	-	2	(		
	<u>}</u>	t	700	I T	(6.0)	<u>_</u>	7	<del>ا</del> ا	2120	468	7.8	-076	4622~
1													
1													
/													
/													
						:							
	·												
Y													
Y													

PAGE	PAGE TEMPERATURE	ERATUR	Е ВАТА	SHE											
MANUF	ACTURER	/MODEL	- 111		FX H	T 2000		RUN (	DAT	DATE 7/1/	93	PAGE		OF	_
TIME	TOP	LT SIDE	BACK	RT SIDE	воттом		/ <del>cA</del> T	AMBIENT	FURNACE	SAMPLE	IMP OUT	c. GAS	GAS IMP	SO2 IMP	41,2.2
	7	633	121	05J	hoh	SICI	896	82	1398	210	38	LhC	33	34	
0 0 1 3 1 3		Clo	hCl	637	4143	1005	835	~	1400	212	38	LhC	33	34	
5/7 (元)	47		135	613	458	1028	909	82	1417	೨۱५	88	747	33	34	
	<u> </u>	598		109	459	1080	985	81	1433	216	88	9.hc	<i>ع</i> د	34	
3/v /x	$\overline{\downarrow}$	100	128	597	45k	1081	1570	82	<u> </u>	218	38	246	34	34	
9/2  - 		619	900	599	453	00H	1173	81	8441	330	37	246	34	39	
8/k /3/	—k-	lo35	hC(	b0 <i>9</i> 1	प्रप3	1202	1138	18	िनिनि	238	37	ChC	34	39	
?\\ ?\\\$	553	193n	1.0 d	819	435	0 hCl	100 n	8	9	145	9E	7 L LC	37	39	
         	-	L32	hCl	624	429	1247	1026	92	1440	24 lo	35	Lhe	34	38	
\?\ 2\2 3\2	748	632	ر 133	ଜଅଣ	420	1253	1001	8)	1441	Sho	34	245	34	38	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	(CO)	133	635	で <u>I</u> h	1262	1186	81	1438	244	3d	hhC	34	38	
λ (%		(027	124	ا <i>ا</i> م	407	1291	1260	81	1439	りりつ	90	245	34	35 SC	
TOTAL	(44G3	7453	1492	7462	5239	14027	12702	97P				 			
S/ S/ SS/		625	127	1109	00H	pbC1	11102	80	1442	LhC	34	9 h C	34	38	
	_	<u>629</u>	12lo	1042	397	1310	1159	80	וחמת	747	34	9 hC	34	37	
5/5/	7	(633	121	(pd3	395	1325	1120	81	8441	3n8	34	3hC	34	36	
2/3 /S/		(,31	bCI	ls9	393	1305	1030	82	1448	SHE	hε	8hC	34	36	
9/5 2//		625	LC	9/29	392	1268	1035	82	1440	246	34	348	34	36	
	υ 1) :	612	127	(037	392	1224	686	8	1448	21/10	34	1-170	34	36	
-/   _     _       _ 	ی ار	548	921	624		1191	0.54	80	1445	245	34	346	hE	36	
2/	331	285	127	(e)3	393	===	927	90	1441	hhC	34	ShC	34	36	
	, , ,									DT S	TAKI	462.2	6.5		
/	2087	11.55	1018	5097	3155	10088	8376	64kg	:20	v	S 0.18	h Olh			
	9580	12394	2510	12559	8394	24115	21078	1622				八 8.15			
	479	Lo 20 °	126	1628	420	1206	1054	81							
TOTAL.															
TOTAI.													1.00		

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: E	EMC - West	, Kent,	WA 9803	<u> B2</u> Date	: 7/1/93	Anal	yte: <u>CO</u> 2	(15-1)
Source:	FX HT	200	00	Run	#: <u>lo</u>			
					_		ess: <u>2000</u>	
Certi	ified by:	Liai	110 AIR	·			Date: 6/10	0/93
Span Cyl	#: <u>AS4</u>	0875	C	onc. 12.6	8_co ₂ _	Cyl Pre	ess: <u>500</u>	ps
Certi	ified by:	MA	THESON			·	Date:	93
Analyzer	: Make:_	Horiba	<del></del>	Model:	PIR-200	0	SN:_4070	69
Range:	0 - 25.0%	CO2	A	nalyzer O	utput:_	0 - 1.0	)	v
Flow:	1.5 SCFH		Meas	ured by:	Rotame	ter: X	Flowmete	r:
EPA Span	value = 2	25.0% C	02	E 08 GO .		050		
							7/	
Pre Run	Audit: By	7:					Temp: 74	<u> </u>
Point	1	B		Audit Resu	lts	<u>"</u>	+ Conc.	
#	Expec Meter	DVM	gonse %	Meter	DVM DVM	sponse %	<u>+</u> Conc. Difference	4
Zero	00.0	.000	6	1	4		004	
Span	<b>50</b> H	.504	12.6	50.6	.506	12.563	- 037	291
Comments	<u>:</u>							
			01/		·		0.0	
Post Run	Audit: B	By:	<u> </u>	Tim	e:	<u> </u>	Temp: 80	o _F
				Audit Resu				
Point #	Meter	ted Res	ponse %	Act Meter	ual Res	ponse %	<u>+</u> Conc Difference	4
Zero	00.0	.000	00.0	00.0	,000	7.029	7.029	-116
Span	50.4	.504	12.6	50.4	.504	12.514	- 086	-686
Comments	:					•		
<del></del> _			·					· 
	Difference ifferece =				n) X 10	0		· · · · · · · · · · · · · · · · · · ·
		F	ull Scal	e Value	<del></del>			

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: EEMC	- West,	Kent,	WA 9803	2 Date	: 7/19	3 Ana	lyte: <u>02</u>	(15-2)	
Source:	FX H	T =	0000	Run	#:	)		·	
							ress: <u>200</u>		
Certifie	ed by: _	LIQU	DAIR	· · - *** · · · · · · · · · · · · · · ·			Date: <u>10/1</u>	0/93	
Span Cyl #	: <u>AS40</u>	875	C	onc. 12.8	02	Cyl P	ress: <u>50</u>	<u>O</u> ps	
Certifie	ed by: _	MATI	HESON			· · · · · · · · · · · · · · · · · · ·	Date://	1/93	
Analyzer:	Make:	Teledyı	ne	Model:3	320 Ax		SN:_374	65	
Range: 0 -	- 25.0%	02	Aı	nalyzer Ou	tput:_	0 - 1	.0	v	
Flow: 1.5	SCFH	- <u></u>	Meas	ared by:	Rotame	ter:	X Flowmet	er:	
EPA Span Va	lue = 2 Limits	5.0% O ₂ = + 2.	2 .5% of 25	5.0% O ₂ =	+ 0.62	5% O ₂			
1							Temp: 7	(o 01	
·			Į.	Audit Resu					
Point	Expec	ed Res	ponse	Act	ual Res	sponse	+ Conc.	Ι Δ .	
#							Differenc		
							.008	<del></del>	
							061	- 473	
Comments:	Teledyne	≇#2. <u>Cy</u>	<u>1 % E</u>	xp & A	ct %	Adj t	<u>ο</u> + Δ ξ		
Post Run Audit: By: 0K Time: 1225 Temp.: 80 of									
				udit Resu					
Point #	Expect Meter	ed Res	ponse %	Act Meter	ıal Res	ponse	+ Conc. Difference	<b>₽</b> 8	
Zero	00.0	.000	00.0	00.1	.004	.057	.057	.230	
Span	12.8	.512	12.8	12.8	.513	12.715	:085	667	
	Teledyne	#2 Cy	1 % E	xp & Ac	t 8	Adj t		<u>, ,                               </u>	
			<del></del>					-	
+ Conc. Dif:								·	

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

# PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: El	EMC - West	, Kent,	WA 9803	2 Date	= 7/1/9	3 Ana	lyte: <u>C</u>	) (15-3)
Source:	FX H	T 200	0	Run	#: <u>6</u>			
	1 #: <u>T13</u>					•	_	<u>000</u> psi
	ified by: _		_					. 1
	#: <u>AS4</u>							
	ified by: _							1 1
	: Make:_							• •
Range:	0 - 10.0%	со	Ar	nalyzer Ou	itput:_	0 - 1.	. 0	v.
Flow:	1.5 SCFH		Measu	red by:	Rotame	ter:	K Flown	eter:
EPA Span	value = l	10.0% C	0 5% of 10.	.0% CO = <u>+</u>	20.25%	CO		
	Audit: By						Temp:	76 of
		<del></del>	<del></del> -	udit Resu				·
Point			sponse		ual Re		+ Conc Differen	
#		DVM					, 000	
Zero Span	00.0 50.1			<del> </del>			.010	
Comments				<u></u>	L.,,,			
	<del></del>							
Post Run Audit: By: <u>DK</u>								
Post Run	. Audit: E	.У <del>.</del>	<u> </u>	udit Resu		<u> </u>	temb	
Point	Expec	ted Res			ual Res	ponse	+ Conc.	1
#	Meter	DVM	8	Meter	DVM	8	Differen	ce Δ %
Zero	00.0	.000	00.0	00.0	.000	.000	,000	.000
Span	50.1	.501	5.01	50.2	.502	5.020	.010	.200
Comments	:							
+ Conc.	Difference ifferece =	= Act	% - Exp	(Std) % Exp % (pp	m) X 10	00		
LULU O D	TITCIECE -	I I	ull Scal	e Value	<u>,</u>	-		

Span % Difference =  $\frac{\text{Act } \% \text{ (ppm)} - \text{Exp } \% \text{ (ppm)}}{\text{Exp } \% \text{ (ppm)}} \times 100$ 

#### PRE AND POST TEST ZERO/SPAN CHECK WOODSTOVE DATA SHEET #15

Site: <u>EEMC</u>	- West	, Kent,	WA 9803	2 Date:	: 7/1/9:	<u>∃</u> Ana	lyte: SO2	(15-4)
Source:	X H.	T 200	DD	Run #	:			
							ress: <u>2</u> 0	$\bigcap$ ns:
	•						·	
							Date:	•
Span Cyl #	: <u>CC 79</u>	1076	C	onc. <u>1268</u> p	pm SO ₂	Cyl P	ress: <u>50</u>	<u>)()                                   </u>
Certific	ed by:	Liqu	10 AIR			<u>.</u>	Date: 2/2	26/93
Analyzer:	Make:_	Horiba		Model: P	IR-200	0	SN:_403	019
Range: 0	- 2500 p	opm SO ₂	Aı	nalyzer Ou	tput:_	0 - 1	.0	v.
Flow: 1.	5 SCFH		Meas	ured by:	Rotame	ter: :	X Flowmet	er:
EPA Span Va	alue = 2	2500 pp	m SOo			<b>V</b>	•	
Pre Run Aud	lit: By	7 <b>:</b>	<u>OK</u>	Tim	e:	945	Temp:	77 o _F
		-		Audit Resu	lts			
Point		ted Re	sponse	Act	ual Re	sponse	+ Conc.	
#	Meter	DVM	ppm	Meter	1			
Zero	00.0	.000	00.0	<del></del>	<u> </u>		12 951	. 5/8
Span	50.7	.507	1268	50.9	.509	1276. 392	8.392	.662
Comments:								
Post Run Au	dit: B	y:	OK			35	Temp: 30	) o _F
Point	Fynec	ted Res		udit Resu	lts ual Res	nonce	+ Conc.	
#	Meter	DVM	ppm	Meter	DVM	ppm	Difference	<b>₽</b>
Zero	00.0	.000	00.0	00.6	.006	10.	10.434	.417
Span	50.7	.507	1268	50.8	.508	1273. 875	5.875	. 463
Comments: + Conc. Dif		7	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	n (6+d) n				

Span % Difference =  $\frac{\text{Act } \% \text{ (ppm)} - \text{Exp } \% \text{ (ppm)}}{\text{Exp } \% \text{ (ppm)}} \times 100$ 

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100
Full Scale Value

## QUALITY CHECKS DATA SHEET 16

Unit:F	X HT 200	0		Run:	(p 1	Date: 7/1/93
Thermocouple (	`heck:					<del></del>
T/C #1	76.3	°F	T/C #1	3	73 <i>.</i> 5	°F
T/C #2	79,4	°F	T/C #1		73.9	r °F
T/C #3	76.7	°F	T/C #1		76,4	°F
T/C #4	76.6	٥F	T/C #1	6	62.7	^ °F
T/C #5	77.1	°F	T/C #1	7	70,4	°F
T/C #6	78.0	°F	T/C #1	8	78.3	•F
T/C #7	77.6	°F	T/C #1	9	76,7	°F
T/C #8	78,3	°F	T/C #2	0		°F
T/C #9	80.2	°F	T/C #2	1	·	^ •F
T/C #10	78.0	°F	T/C #2	2	-	 °F
T/C #11	71.6	°F	T/C #2	3	73.6	°F
T/C #12	77:0	°F	T/C #2	4	224.4	
Thermocoouple	Readout:					
pretest zero and span chec	k and calibration	<b>^</b> •		st test zero and spa	ın .	% difference
ZERO /O	°F ADJ. TO	<u>0,0</u>		ERO	<u>2 °F                                   </u>	010 /
SPAN /995,8	°F ADJ. TO $Q$	0,000	°F SP	AN <u>2001.</u>	°F <u>ط.</u>	080 -
Thermocouple Re	eadout Pretest Linea	rity Ched	:k		<del></del>	
0 = 0	°F 200 =		_	F 400	)= 398	²,9 °F
600 = 601	<del></del>			F 1000		
· · · · · · · · · · · · · · · · · · ·	<del>8.0</del> °F 1400 =		^ -	F 1600		
	<u>9,9</u> °F 2000 =			F	<u> </u>	<u> </u>
Sample Train Lea	ık Check		Pr	e /	Post .	
-	Train Leak Check		Pr		Post	
	(SO ₂ ) Leak Check		Pr		Post /	*
Darft (Static) Gau					Post	
Scale Check						
Pre	5474 - 537.	4 =	10.0	_		
	552.0 - 547		10.0			
Stack Clea	aned Proir to Test Ru	ın: YES	S	NO _		

CLIENT: FX DROLET

TEST No. :

TIME	METER READING	DELTA H	METER TEMP.	PERCENT CO	PERCENT CO2	SO2 COCENTR.
(MIN.)	(C F)	(IN. H2O)	(DEG. F)	( % ) 	( % )	PPM
0	491.000	0.150	87	0.53	8.20	700
5	492.500	1.190	89	0.60	4.20	250
10	496.830	0.220	92	0.82	9.40	575
15	498.742	0.200	94	1.10	12.80	600
20	500.588	0.200	94	1.22	12.10	600
25	502.434	0.220	94	1.16	13.20	575
30	504.360	0.190	94	1.16	13.40	625
35	506.133	0.220	94	0.88	14.20	575
40	508.059	0.220	94	0.85	13.90	575
45	509.985	0.190	94	1.19	14.10	625
50	511.757	0.200	94	1.10	14.10	600
55	513.603	0.200	95	1.01	13.30	600
60	515.456	0.200	96	0.97	13.30	600
65 70	517.316	0.220	96	0.72	12.80	575
70	519.256	0.240	96	0.49	12.90	550
75 80	521.284	0.220	97	0.66	11.40	575
80	523.231	0.200	97	0.61	11.70	600
85 90	525.097	0.200	97	0.57	12.90	600
90 95	526.963 528.917	0.210	98	0.53	13.80	575
100	530.878	0.210 0.210	99 99	0.32	13.50	<b>57</b> 5
105	532.839	0.210	99	0.23	13.30	575 575
110	534.801	0.210	99	0.31 0.36	12.30 11.20	575 575
115	536.762	0.200	99	0.44	9.30	575 600
120	538.641	0.180	99	0.47	10.00	625
125	540.451	0.180	99	0.44	10.20	625
130	542.261	0.170	99	0.38	10.10	650
.135	544.001	0.160	100	0.40	10.10	650
140	545.748	0.160	100	0.40	10.00	650
145	547.495	0.160	100	0.37	9.10	650
150	549.242	0.160	100	0.43	8.70	650
155	550.988	0.160	100	0.48	8.60	650
160	552.735	0.150	100	0.52	8.60	675
165	554.417	0.150	100	0.59	8.60	675
170	556.099	0.150	100	0.71	8.60	675
175	557.781	0.150	100	0.92	8.30	675
180	559.463	0.150	100	1.02	8.30	675
185	561.146	0.140	100	1.16	8.30	700
190	562.768	0.140	100	1.09	7.40	700
195	564.390	0.140	100	1.16	7.40	700
200	566.012	0.140	100	1.22	7.40	700
205	567.634	0.140	100	1.39	7.20	700
210	569.256	0.130	100	1.52	7.10	725
215	570.822	0.130	100	1.52	7.10	725

			the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			
220	572.389	0.130	100	1.49	7.20	725
225	573.955	0.130	100	1.61	7.00	725
230	575.521	0.120	100	1.28	6.80	750
235	577.035	0.120	100	1.33	6.70	750
240	578.549	0.120	101	1.30	6.80	750
245	580.069	0.120	101	1.44	6.80	775
250	581.540	0.120	101	1.32	6.40	775
255	583.011	0.120	101	1.39	6.30	775
260	584.482	0.120	101	1.52	6.10	775
265	585.953	0.120	101	1.58	6.00	775
270	587.424	0.120	101	1.68	6.80	775
275	588.895	0.120	101	1.73	5.40	775
280	590.366	0.120	101	1.81	5.40	775
285	591.837	0.120	101	1.89	5.20	775
290	593.308	0.120	101	1.96	5.00	775
295	594.779	0.120	101	1.90	5.20	775
300	596.250	0.110	101	1.88	5.20	800
305	597.677	0.110	101	1.77	5.50	800
310	599.105	0.110	101	1.86	5.40	800
315	600.532	0.110	101	1.78	6.30	800
320	601.960	0.110	101	1.76	6.30	800
325	603.387	0.110	101	1.82	6.30	800
330	604.815	0.110	101	2.00	5.10	800
335	606.242	0.110	101	1.99	4.90	800
340	607.670	0.110	102	1.74	4.90	775
345	609.149	0.100	102	1.81	5.10	825
350	610.538	0.090	103	1.74	5.20	850
355	611.891	0.090	103	1.72	5.30	850
360	613.244	0.100	103	1.72	5.50	825
365	614.639	0.090	103	1.64	5.50	850
370	615.992	0.090	103	1.57	5.60	850
375	617.345	0.090	103	1.73	5.40	850
380	618.698	0.090	103	1.82	5.20	850
385	620.051	0.090	103	1.92	5.00	850
390	621.405	0.100	103	2.20	4.60	825
395	622.799	0.110	103	2.26	4.10	800
400	624.237	0.110	103	2.23	4.10	800
405	625.674	0.110	103	1.84	4.30	800
410						

### TABLE 2--RAW DATA

CLIENT : FX DROLET		TEST No.	5		
MODEL: HT2000 **********	*****		0-Jun-93 *****	****	
METER CAL. FACTOR (Y) 1.028	Wt. WOOD BURNED(LB)	)	22.0	Lbs	
BAROMETRIC PRESS.(Pb) 30.06 in Hg	WET, FUEL MOISTURE %	}	18.748	8	
LEAK RATE POST (Lp) 0.008 cfm	Wt. PART. COLLECTED		0.3764	g	
WATER VOL. (V1c) 223.2 Ml	METER VOLUME Vm		134.674	mcf	
TEST TIME (MIN) 405 min	HC MOLE		0 0132	*.	

### TABLE 3 ----FIELD DATA AVERAGES

CLIENT :FX DROLET	TEST No.	5
MODEL: HT2000 *********************		Jun-93 *****
AVG DELTA H 0.16 in H2O	AVG PRCNT CO	1.22 %
AVG METER TEMP. Tm 99 deg F	AVG PRCNT CO2	8.25 %
AVG PPM SO2 702 PPM	AVG BAL CO2/CO	6.76 %

#### TABLE 4 ---- CALCULATIONS

CLIENT: FX DROLET	TEST No. 5
MODEL: HT2000 **********************************	DATE: 30-Jun-93 *************
STD SAMPLE VOL. Vm(std) 131.38 dscf FLOW Qs	
VOL. WATER PARTICUI VAPOR Vw(std) 10.506 scf CONCTRT.	LATE . Cs 0.0029 g/dscf
PRCNT PARTC.EM MSTR Bws 7.40 % RATE E	•
BURN MOLES OF RATE BR 1.20 Kg/Hr PER Lb W	
CO EMISSION PART.EMI RATE 163.86 g/Hr RATE & 136.43 g/Kgdry fuel	CSS. 0.96 g/Kgdry fuel

TABLE 5 ---- PROPORTIONAL RATE VARIATION

CLIENT: FX DROLET

220

1106.8

TEST No.: 5

MODEL: HT2000 DATE: 30-Jun-93

	TIME	PPM	PROPRIN.		PROPRTN	
	INTEVAL	*	RATE VAR.		RATE VAR.	
	Ti	Vm	PR		AVERAGE	
	= <del>===================================</del>	1045 4			100	
	10	1045.4 1075.6	95 97		100	
	10 15	1075.6	97 98			
	20	1091.0				
	20 25	1091.0	99 99			
	30	1091.0	99			
	35 35	1090.9				
			99			
	40	1090.9	99			
	45	1090.9	99			
	50	1090.8	99			
	55	1090.0	99			
	60	1092.1	99			.*
	65	1095.3	99			
	70	1094.9	99			
	75	1093.8	99		•	•
	80	1096.8	99			
	85	1096.8	99			
	90	1095.9	99			*
	95	1097.8	99			
	100	1100.7	100			
•	105	1100.7	100	·	•	
	110	1101.3	100			
	115	1100.7	100			
	120	1100.5	100			
	125	1104.2	100			
	130	1104.2	100			
	135	1103.0	100			•
	140	1106.4	100			
	145	1106.4	100			
	150	1106.4	100			
	155	1105.8	100			
	160	1106.4	100			
	165	1106.2	100			
	170	1106.2	100			
	175	1106.2	100			•
	180	1106.2	100			
	185	1106.8	100			
	190	1106.2	100			
	195	1106.2	100			
	200	1106.2	100			•
	205	1106.2	100			•
	210	1106.2	100			
	215	1106.1	100			

100

225	1106.1	100
230	1106.1	100
235	1106.3	100
240	1105.3	100
245	1108.7	100
250	1108.7	100
255	1108.7	100
260	1108.7	100
265	1108.7	100
270	1108.7	100
275	1108.7	100
280	1108.7	100
285	1108.7	100
290	1108.7	100
295	1108.7	100
300	1108.7	100
305	1110.2	101
310	1111.0	101
315	1110.2	101
320	1111.0	101
325	1110.2	101
330	1111.0	101
335	1110.2	101
340	1110.0	101
345	1112.7	101
350	1111.4	101
355	1114.4	101
360	1114.4	101
365	1115.2	101
370	1114.4	101
375	1114.4	101
380	1114.4	101
385	1114.4	101
390	1115.2	101
395	1114.4	101
400	1114.8	101
405	1114.0	101
410		
415		

Client FX DROLET	E DATA SHEET #1
Client Address 1700 LEON - HARMEL	
QUEBEZ, QUEBEC GIN	LURG CANADA
Client Phone418-527-3060	
Project No Model No #T 2	<b>ン</b> へひ
Run No 5 Date of Test 6/30/93 _ E	st Grams/Hr
Stove Type: Cat Non Cat_X Pellet_	
Data To Be Submitted To: Oregon Colorado	
Burn Category: Low (<0.8 Kg/Hr) Med Hi (: Med Low (0.8 - 1.25 Kg/Hr)   .2012	1.26 - 1.90 Kg/Hr) Max (>1.9 Kg/Hr);
Fuel % Moisture (dry) 23.073 / %(wet) (00.00) (Data Sheet #10)	18,748-
Stack Static Pressure (0.000) (Data Sheet #12)	057 - "4-0
Barometric Pressure(00.00) (Data Sheet #2)	30.06 mg
Temperature (Average Room) Combustion Air (00) (Data Sheet #14)	<u>85 -</u> of
Flue Gas Moisture	7:4047 %
(00.000) (Data Sheet #7)	•
Ambient Moisture(0.00) (Data Sheet #8)	1.4.
Stove Weight	
(000) (Data Sheet #8)	487 1bs
Stove Temperature Change	-123.0 - OF
(000) (Data Sheet #14)	
Particulate Emission (0.0000) (Data Sheet #7)	.0442 gr/dscf
Fuel Higher Heating Value (dry)(0000) (CT&E Sheet)	<u>81085</u> вти/1ь
Fuel Type: Wood: Pellets:	
Total Fuel Consumed During Burn (00.0) (Data Sheet #8)	22.0 / 1bs
Total Particulate Catch(O.0000) (Data Sheet #6)	.3764 g
	223.2 -
H ₂ O Captured (00.0) (Data Sheet #3)	
Ory Gas Meter Volume(00.000) (Data Sheet #2)	134.674 cr
Ory Gas Meter: Y Factor: 1028 Post Test L	eak Rate 1008 CFM

TIME: 405

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1.028

Inject SO2 @ 100 cc/min

Page 1 of 4
Unit: FX HT 2000
Run: 5 Date: 6/30/93.
Operator(s): CO DK

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	7.02	Sampling	Ratio :	16	1	BAROM	ETER:	30.14
IMN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SO2 PPM	ROTO TEMP	PUMP VACC
00	1215	491,000		4.919	15	87	700	87	1.0
05	20	492.500		13,723	1,19	89	250	89	7.0
10	25	496.830	496.830	5.966	, 22	92	575	92	20
	30	498.742	498,742	5.666	120	94	600	94	2.0
20	35	500.588	500,588	5.666	, 20	94	600	94	2.0
25	1240	502.434	502.434	5,913	122	94	575	94	2.0
30	45	504 360	504,360	5.440	.19	94	625	94	2.0
35	50	506,133	506,133	5,913	,22	94	575	94	2.0
40		508.059	508.059	5,913	,22	94	575	94	2-0
45	1300	509,985	509,985	5,440	,19	94	625	94	20
50	05	SII, 757	511,757	5.666	,70	94	600	94	2.0
55	الا	513.603	513,603	5,656	. 20	95	600	95	2.0
ROTO	PRESS:	105	TOTALS :	75,881	3,46	1115	BAROMETER: 3		0.14
60	1315	515,456	515,456	5.656	,20	96	600	96	2.0
65	20	517.316	517.316	5,891	122	96	575	96	20
70	25	519,256	519. 256	6.159	. 24	96	550	96	2.0
75	30	521.284	521,284	5.881	,22	977	575	97	2.0
80	35	523 231	523, Z31	ا <u>ما3 ما.5</u>	.20	97	600	97	2.0
85	-10	525.097	525.097	5.636	.20	97	600	97	2.0
90	ن والم	526.963	526.963	5.870	.21	98	575	98	2.0
95	ارد		528,917	5,860	.21	99	575	99	3.0
100	,	530.878	530.878	5.860	.21	99	575	99	30
105		_	532.839	į.	.21	99	575	qq	3.0
110	<u> </u>	534.801	534.801	5.860	.21	99	575	99	2.5
115	<u> </u>	536.762	536.762	5.616	.20	99	600	90	2.5
				69,785	2.530	1172	MAX VA	CC =	
TOTAL	CU FT		TOTALS:	[ماماما. 145]	5.93/	2287	AV BP:		

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1028

Inject SO2 @ 100 cc/min

Page 3 of 4
Unit: FX HT 2000
Run: 5 Date: 6/30/93
Operator(s): CW. DK

Nozzle: Probe @ 3/8 " od

Initial Volume: __1.500__

ROTO	PRESS:	1.0	Sampling	Ratio :	16	_ : 1	BAROM	ETER:	30.04
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SO2 PPM	ROTO TEMP	PUMP
240	1615	578,549	578.549	4461	.12	101	750	101	2.0
245	20	580.069	580.069	4.317	.12	101	775	101	2.0
250	25	581, 540	581.540	4.317	.12	101	775	101	2.0
255	_ 30	583.011	583.011	4.317	.12	101	775	101	2.0
260	35	584.482	584.482	4.317	. 12	101	775	101	2.0
265	40	585.953	585.953	4.317	.12	101	775	101	2.0
270	45	587, 424	587.424	4.317	.12	101	775	101	2.0
275	50	588,895	588.895	4.317	.12	101	775	101	2.0
280	55	590.366	590.31db	4.317	-12	101	775	101	2.0
285	1700	591.837	591.837	4.317	.12	101	775	101	2.0
290	05	593.308	593,308	4317	.12	101	775	101	2.0
295	10	594,779	594.779	4317	.12	101	775	101	2.0
ROTO	PRESS:	1.0	TOTALS :	51.948	1, 44	1212	BAROME	TER: <u>/</u>	9.99
300	15	596.250	596250	4.175	, []	101	800	101	2.0
305	20	597.677	597.677	4.175	. 11	101	800	101	2.0
310	25	599,105	599.105	4.175	. ] ]	101	800	101	2.0
315	30	600, 532	600.532	4.175	. 11	101	800	101	2.0
320	35	601.960	601960	4.175	. 11	101	800	101	2.0
325	40	603.387	603.387	4.175	,11	101	800	101	2.0
330	45	604,815	604.815	4.175		101	800	101	2.0
335	50	606.242	606.242	4.175	. [[	101	800	101	2.0
340	5 <i>S</i>	607.670		4.302	.11	102	775	1	2.0
345	1800		1,09.149	4.042	.10	102	825		2.0
350	05		610.538	<u> 3916</u>	.09	103	850	103	2.0
355	10	611.891	611.891	3.916	. 09	103	850		20.
			TOTALS:	49 576	1.27	<del></del>	MAX YA	CC =	
TOTAL	CU FT		TOTALS:	101.524	2.71 "	2430	AV BP:		

Meter Box Data Sheet Page # 2

Meter Box 5H Y Factor 1028

Leak Checks: 15.0 " Hg @ .012 cfm

" Hg @ ____cfm

Inject SO2 @ 100 cc/min

Nozzle: Probe @ 3/8 " od

Initial Volume: 1.500

ROTO	PRESS:	1.0	Sampling	Ratio :	<u>lb</u>	_ : 1	BAROM	ETER:_	<u> 29.99</u>		
MN	TIME	METER READING	SAMPLE MDCF	STACK DSCFM	DELTA H	METER TEMP	SO2 PPM	ROTO TEMP	PUMP VACC		
360	1815	613,244	613.244	4.034	.10	103	825	103	2.0		
365	20	614.639	614.639	3.916	.09	103	850	103	2.0		
370	25	615.992	615.992	3.916	09	103	850	103	2.0		
375	30	617.345	617.345	3.916	.09	103	850	103	2.0		
380	35	618.698	88 ع ا عا	3.916	- 09	103	850	103	2.0		
385	40	620.051	620.051	3.916	. 09	103	850	103	2.0		
390	45	621.405	621.405	4.034	.10	103	825	103	2.0		
395	0	622,799	622.799	4.160	., 11	103	800	103	2.0		
400	5 5	624.237	624.237	4160	. 1)	103	800	103	2.0		
405	1900	625.674	625.674	4 160	.11	103	800	103	2.0		
410											
415				40.128	.980	1030	÷82				
ROTO	PRESS:		TOTALS :	405.251	13/60	8144	BAROME	TER:			
420						99					
425						•					
430	·										
435											
440											
445											
450			,								
455											
460											
465											
470											
475											
			TOTALS:			99	MAX VA	7.0			
TOTAL	CU FT	134.674	TOTALS:	4942	.160	559	AV BP:	30	<u>ط0 ، (</u>		

## MOISTURE SHEET Woodstove Data Sheet #3

Decermination		/	•
Initial: Level_	Balance /	, 	T _a y
Final:		Unit:	
IMPINGER #1		Run:	,
Final Weight 748.	grams	-	6-30-93
Initial Weight 568.6	grams	Technician(s):	
Net 179.5			Final: OK
IMPINGER #2	Rrams	Approved By:	
Final Weight 598.4	grams		
Initial Weight 584.8	grams		
Net	grams		
IMPINGER #3	_		
Final Weight 489.2	grams		
Initial Weight 486.	_ grams		
Net 3/1/			
IMPINGER #4 (SILICA GEL)	_ 6.0		
Final Weight 844.1			
Initial Weight 817.	. grams		
	grams	•	
Nec27.0/	grams		
TO	OTAL MASS O	F H2O CAPTURED	223, 2 grams
Scale Check: 295.0g = 295 590.0g = 585.0g = 585	<u>1)</u> g	Front Half Filte	x # 449 F
885.0g = <u>585</u>	<u> </u>	Back Half Filter	#
Notes:			

## WOODSTOVE DATA SHEET #4-1: INITIAL FILTER WEIGHTS (TARE WEIGHTS)

Into Dessicator: Date $\frac{5/27}{9}$ 3 Ti	me1030 By DK	Front Half /	Back Half
Manufacturer: S&S			rade: #25 alass

,		·	<del></del>				3-2 cm	1	_	<u>CD 401</u>	orade.	<u> </u>	1000
F	Filter #	First Wt	Date	Time	Ву	Second Wt		T.4		Third			
	<u>"</u> 441F	16921	10/1	<del>                                     </del>	LIL	.6924	Date 6/2	<del> </del>	By Dk	<del></del>	Date	Time	Ву
	442F			<del></del>	1		1-1/2	1044	1 100	¥			ļ
	4741 143 F	. 10988		1017	Lil	<del>                                     </del>	<del>  - ) -</del>	1046		¥			:
		.6922		1018	1	,6977	/	1048	<del>}/</del>	<u> </u>			
	144 F	7053	10/1	1019	411	7054	<u> </u>	1050	<del> </del>	<u> </u>			
	145 F	.70r4	10/1	1090			<u> </u>	1052	ļ	<u>/</u>			<del></del>
	146F	.6996		1091	111	.6994		1054					
	147 F	,7022	10/1	10 22	LU	.7022		1056		/			
	148F	,7079	4/1		,	.7076	1	1053		/		,	
	149 F	10984	inl	1074	11c	.6982	)	1100					
<u> </u>	50 F	,7079	6/1	1005	LU	.7080	\	1102	1				
L								· · · · · · · · · · · · · · · · · · ·					
14	41 B	,3750	10/1	10216		.3745	4/2	1126	DK	_			
<i>-</i>	42B	.3730	10/1	1077		.3725		1128	7				
4	43B	,3776	10/1	1036		.3771	1	1130		/			
	144B	.3779	6/1			.3774	<del>-/ </del>	1132					
	15B	3738	10/1		LU	.3733		1134	/-				
	46 B	3736	6/1		-	.373)			<del>'</del>				
_	47 B							1136	-{-}				
	48B	,3755	10/1	<del></del>	441	3750		1138	+				
_	49 B	,3-190	(1)			3785		1140					
		3728				3726	1	1142	++				
14	<u>508 </u>	3801	(0/1)	1035	LU.	3796		1144					
L			سلور										

Checked by Sill Nowek Date: 6/2/93 Time 1378

	QA RE	WEIGH		
Filter #	WT	Date	Time	Ву
	·			

VВ	DB	% R H	Date	Time	Ву
50	101	48	[6]:	900	126
62	75	48	10/2	1042	DK

6/11

### WOODSTOVE DATA SHEET #4-2: INITIAL BEAKER WEIGHTS (TARE WEIGHTS)

Into D	essicato	or: Da	ate:	8   م	193	·		T	ime:	13	<u>0</u>	В	у:_	U	<u> </u>	
Beaker #	First Wt	Date	Time	Ву	F	econd t		Date	Time	Ву		ird	Da	te	Time	Ву
401	76.2832	610	1026	OK	96	283	1	10/11_	916	Lu					· .	
402	105.575		1028		105	575	3	6/11	918		/					
403	106.3133		1030	/	101	3135	<u> </u>	leln	920		<u>/</u>					
404	108.2121		1032		109	,212	H	6/11	922		/_		<u>                                     </u>			
405	97.1689		1034	\	97	11084	扗	6/11	924	1	<u>/</u>		<u> </u>			<u>.                                       </u>
							. -			ļ						
406	98.1375	6/10	1036	DK	93	137	4	(e/))	926	Lu	<u>/</u>		<u> </u>			
407	106.4073		1038	$\rightarrow$	100	<u>,4078</u>	1	$\rightarrow$	928	1	<u>/</u>		ļ		,	_
408	95.7319	/	1040		95	<u> 7324</u>	1		930	1/	/_					
409	98.1956	/	1042	/_	98	1953	1	_/_	932	Щ	/_					
410	107.3623	)	1044		107.	362	1	(	934	1	/_					
					0		1									
411	106.4695	6/10	1046	DK/(	106	.4.701	办	(0/1)	936	Lu	<u>/</u>					
412	107.7046		1048	X	107	7044			938	7	/					
413	94.3924		1050		94.	392	2		940		/					
414	107.4818	(	1052	X	107.	4813			942		/	·				
415	98.3546	\	1054	9	98.	3551	1	(	944	Ŀ	/					
								<del></del>								
416	104.5937	6/10	1056	X	104	5935	1	10/11	946	LU		  - 				
417	107.0401	1	1058	1		DHDI			948	_						
418	104.2895		1100	1	104	.2891		/_	950							
419	120.2896		1102		الكال	2894	<u> </u>		952	1						
420	98.8126		1104		98.	8130	1	<u> </u>	954	1						
								<u> </u>	<u> </u>							
421	104.8317	6/10	1106	DIC	104	,832	<u>o</u>	6/11	956	LU						
422	97.1427		1108		97.	1424	Ц		958						<u>.</u>	
423	97.8661		1110	/	97.	8660	$\perp$		1000		/_					
424	106.4696	7	1112		Ide.	469	2		1009					_		
425	100.0065		1114		100	D.DDlol	1		1004		/_					
Checked	By:	RÙ	1/000	ak			D	ate:_	6/11/	193		_ Tim	e:_	/	<u>1/30</u>	
<del></del>	AQ.	REWE	IGH					BALAN	CE RO	OM E	ENVI	RONME	NTA	L	CONDI	CIONS
Besker	# W	T	Date	Ti	lme	Ву		WB	DB	<b>%</b> I		Dat		Ti	me	.By
								58	70	4	8	6/10		102	24	DK

				WO	WOODSTOVE DATA SHEET #4-3:	SHEET	#4-3:	CONS	CONS.AT FINAL WEIGHTS	GHTS			WST5-Form Unit	orm9,	WST5-Form9, $( \bigcirc )$ Rev4/90 Unit $\vdash \times ( \bigcirc )$	<b>%</b>
			į			FINAL	FINAL BEAKER WEIGHTS	R WET	CHTS				Run #	IJ		1
Beaker Into	Into												Date:	Date: 4/30/93	93	
#	Dessic	Date	Time	By	First	Date	Time	Bv	Second	4	Ē	f	i			
=		(   1	0.00	-		- 5	7.40	1	600	חמרה	11me	Ž	Third	Date	Time	By
					27.7.1001	~ s	720	ž	(100.4484)	7110	922	7				
7		7	2	-	2 - 40 - 50 -	_		1	V	1						
2			7 JW JCK	킬	10 1.8065		d8/2	DK.	107,0000,101	7110	700	111				
			-													
113		1	000	:	1 2 2 1 1 1	-	Т									
)			707	3	34,4335	213	434	)     	94,4321	7/6/0726	926	77				
									١							
77		2 5	<	3	L		(									
		1011	205		107,5295710		922	7	- 101.5296/		932	DK				
<u>-</u>		1/1-	1000	>	00 200	-	\$									
		0	000	2	40,5 F16	9	तुः सु	7	(48.3448)		43rl	Ж				
										+		<u> </u>			i	
		_							-	_	_	_				

			Z.	À						
			Time		_					
			Date							
			Ine by Third							
		,	Бу	È	\$			Ĉ	1	
		Ē	11me	1/2 G26 CV	900			1/3   938   OI.		
			nare	2/د	b					
FINAL FILTER WEIGHTS		By Second	00000	( # C/C' )	N 100 100 100 100 100 100 100 100 100 10					
AL FI		Rv	1	THE			· -	<u>₹</u>		
FIN		Time		<i>h</i> 5 <i>b</i>			10	45 6 CK		
i		Date		=			1			
		First		1723 21			101/0 VOI VE/a	21.00		
		By	2	Š		,	2	{		
		Time	1	7		ľ	7701	2		
		Date	<u>e</u>	1.50 1445 UST			ر م/عرب	2		
	Trret Tuco	Dessic Date Time By First	<u>.</u>				<u> </u>			
11.0	ant t	#	<u> </u>			\(\frac{1}{2}\)	イエカ			

ROOM		Date	1,	15	\$ \\ \frac{1}{7}	=======================================	-	
SCALE ROOM	Weighing	Session		,	3 6	7	5	
S					Bv			
FINAL WEIGHTS		. Wt By			WT			
-		Final Wt			Final WT			
QA REWEIGH:		Beaker #	·		Filter #			
φ		Date			Date			

SCALE ROOM ENVIRONMENTAL CONDITIONS	ROOM	ENVIR	CONMEN	TAL C	CONDIT	SNOT		
ghing								
ssion	Date Time	Time	By	WB	DB	%RH	· .	ı
1	1/1	41D	<i>LU</i>	QQ	73	Ch	<del>-</del>	
2	ch	806	0	89	2/2	3/1	- <del></del>	1
3	7/6	77.90b	7	071	(2)	17.7		6
4		930	A	- 0	1	1	<b>-</b>	31
5				,			<u>. 1</u>	

SCALE ROOM ENVIRONMENTAL CONDITIONS						
SCALE ROOM ENVIRONMEN'	9	7	8	6	Comments	

WST7-Form Rev5/90

del A1205 SN 37010004

Scale Sartorius Model A120

Dates: From Collo 193

Through

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

_									<del></del>			_	_						,					 	_						_	_				٠.	_		
	2 вн	р	10	VI.	2	48	48	700	47	47	677	77.0	200	011	-77	7.7	49	Lh	<u></u>	817	6/	7,																	
	Wet Bulb	Ø	200		200	200	22	0 0	57	56	555	58	) ( <b>*</b> )	75)	500		29	00	001	59	47	79	0																
	Dry Bulb	70	80/	7,7	170		0,5		50	68	99	70	77	77	 	1		73	73	70	73	74					`			-									
-	te Tine	000)	199	010	15 200	۲	200	+	┧.	+	-1	기	1760 JG	2		200	Ţ	Ch01 05	+	1	906 0	930													1	1			-
	1	0/6	(0)	1191	9/	-	9	~l~	작		9	9	10	(0)	9			1	7	1/2	//	7	_		_	1	+	-	_					-	+	_	1	1	_
_	Tech		717	Z	77	È	1	12	1	1	Y.	7	ď	7	à	777	2	ş]:		심	717	Ř																	
Blank	Beaker																																						
Blank	Filter																																						
100mg	Weight	2,200	000110	6660.0		0.0998	C 0997	0.1000		000/	2000	40000	00007.0	2550	u	0001 10	0.0909	200	┯	0000	4.027.2	0.1000																	
1.08	Weight	20000	25.55	1	10001	0000	0.9998	1.0000	0000	1.0001	A 0007	A 0000	-1-	10000	4	1.000	1.0001	0000	7,000	1.050.0	77000	1,0001																	
10g	10,0001	1000	2000	0000.01	٦.	10,0002	1 9997	10.0003	10.000	10.0000	9 9997	9.4999	00000	•		200 01	10.0001	10,0000	0000.01	20.00.01	10000	2000.51																	
100g	100.0001	90 000	100 000	10000	25.55	0.50	9,666,66	100.000	100.001	1000.001	99.9996	वित्र विद्युष्ट	9000000	100000	C 747 001	C7301/KI	00.0002	99.9999	100,0003	09,000	100.001															+			

Through 10/9/93

Dates: Prom 3-11-93

WOODSTOVE DATA SHRET #4-4 SCALE QA SHEET

Scale Sartorfus Model A1205 SN 37010004

		% RH	36	32	39	39	-	1	171	7.7	7/7	*5	49	75	18		7/2	昌	714	1/2	717	15	78	10	777	48	410	87	54	100	27	170	120	100	47	47	
		Wet Bulb		52			58	900	57	09	63	09)	55	56	89	09	g	00)	59		امًا	28	58	59	S	58	65	58	41	70	63	58	لام	58		9	
		Ury Sulb	, o	29	72-	(8)		75	r	73	7.7	75	99	, 6°)	75	75	つし	אַר		73	75	21	OL_	71	7	70	77	70	77	77	7,7	70	75	<b>1</b> 0	89	168	89
-	4 1 7 1 4 1 1 0	ارد	2000	4	t	의 의	3117 1330	2	3119 0900	230		a	9050 बिला	0	0211 70	7	7/10 44C		2-10 0400		(J.	2:5 1600	2/14 1000	٥٠ ٢٠	1	2/21 450	411117	2 -  -	740 1430		306 an	1,	+	9/3 956	作が記	10	00.00
		1		Ť		1		1	Ţ	J			1	3/2	**	7		†	VC .	30	1	3/2	144	†	1		1	1		字 4:2 1		1 24	7.2		1 4 1 1	122	9 //:
Rlant	نه ۱																																				
Blank	Filter																																				
100mg	Weight	6660-	0.0997	+ 660°	0. 1000	0.1001	6, 100)	V 0000	N900	0.0999	, 0999	0.0999	1001	0.0999	000/	0.1000	0.0909	.0999	100/1	0 6999	1000	1001		C 000 C	0,0998	<b>6660'</b> 0	0.1001	000 0	0.1000	00010	0,0997	0,1001	0.0998	9	D.0999	0.0999	0.0996
1.08	Weight	90007	7. 4999	2000	0000	1,000 2	7,000/	0.9998	1.0000	1.0000	1,0001	1.0002	1,0001	0.0999	1. 0000	0.9999	1.0000	10001	1.0002	0000	1,0001	1.0002	6.9999	0,9998	0000	0000	•	0.4998	0000-	0.9999	0.0999	1000	1,000	0.9999	0.6799	0,4449	0.9999
108	Weight	1 505 0	10.0000	2.000'0	10.0003	1000.00	(0,00,0)	10.0000	1000 01	1000.01	10,000,01	10,000,2	1 000' 0/	$\sim$	10, 4001	9.9999	10.00.01	10.0002	10.0002	10.0000	10000'01	10.0002	10.000	0,000	10.0002	7000.0	10.0002	03000	70005	Jano C	0000101	- 1	علاد	2000	255.0	100000	7 744 7
100g	We I Bhe	00 9900	1	5000	000	1000.00	(30, 300 t	पुष.वववद	100,0003	100.000	10000	100.000	(000'00)	(00°00)	100,000	27.75	144.44	100.000	7000:00	000,000	100:000	<del>, k</del>	4 4 464 7	1,1,5,5,7,0	14, 444	1000	1000 OC	200	99.000	0000 000	1000000	10000	1000 001	200.00.	000 00	000000	1077777

WOODSTOVE PARTICULATE	CATCH PROCESSING	FX FX	000g TH	
WOODSTOVE DATA			Date: 6/30	193
		Technician(s)		1
	FRONT HALF		DK, W	
FILTER #: 449 F FINAL WT: .7723 g TARE WT: .6982 g NET WT: .0741 g	BEAKER #: 4)) ml: 75 desc: ACETONE	FINAL WY	F: 106.49. F: 106.47. F: 0289	<u>89</u> 9
FILTER #: g FINAL WT: g TARE WT: g	BEAKER #: ml: desc: ACETONE	FINAL WI TARE WI NET WI		g
	TOTAL VOLUME OF . USED IN WASH	ACETONE	<u> </u>	_ ml
	BACK HALF		**************************************	
FILTER #: 4493 FINAL WT: ,4134 g TARE WT: ,3726 g NET WT: ,0408 g	ml: 17() desc: ACETONE	FINAL WT TARE WT NET WT	:107,704	<u>년</u> g
FILTER #: g FINAL WT: g TARE WT: g NET WT: g		TARE WT:	. 0394	_ g
	m1: 200 desc: H20	FINAL WT: TARE WT: NET WT:	<u> </u>	<u> </u>
,	#: 4(5 m1: 200 desc: H20	FINAL WT: TARE WT: NET WT:		_ g _ g
•	BEAKER #: ml: desc:	FINAL WT: TARE WT: NET WT:	.0930	- a - a - a
•	BEAKER #: ml: desc:	FINAL WT: TARE WT: NET WT:		- g - g
	TOTAL VOLUME OF ACUSED IN WASH TOTAL VOLUME OF DIUSED IN EXTRACTION TOTAL VOLUME OF DIWATER DRIED	CHLOROMETHANE	75	ml ml

		WOODSTO	าเมะ	מו אוויכ	י מאָרור	'E	. NG		Un	it:	F)	( H	T 20	00		
				E DATA					Ru				Date:		130	193
	В	LANKS DO	INE :	: <u>  6 15</u>	93		ai denaké		Te	chni	cia	n(s)	· )		I	
	200	ml FISHER C	Tq(	BEAKER ACET	#: ONE #:_9	A 2405	<u></u> <u>59_</u>		TAR	E WT	· = _ 1	08.8°	100Z 198 1004	_ 9′		
	15	<b>S</b> ml DIC FISHER O	HLO IT9	MA LOT	#:_9	1073	2			E WT	=	06.3 0.	054 0006	_ g^ _ g^		
-	200 1 Bonn	mi Dist EAU PEOD	B ILL UCIS	EAKER ED WAT CELTI	#: ER <u>FIED</u>				FINA TAR NE	L WT E WT T WT	=	06.91 06.9 .C	637 635 0002	. g/		
ſ		BEAKE	R	TARES	IN	ם מד	ESSC:	Т	IME:_	090	0_	DAT	E:_lof:	4/9.	3	
İ	BKR #	1ST W	Т	TIME	SND	WT	TIME	:	ЗRD	WT	Τ:	IME	4TH	WT	T:	IME
	A	102.89	97	1102	108.8	998	1044		1							
	B	106.30	56	1104	100.3	3054	1046		1							
	С	106,910	10	11010	106.9	<u>635</u>	1048		/							
	S	CALE ROO	M Q	C : TAI	RES				SCA	ALE !	ROOM	1 QC	: FIN	ALS		
	DATE	TIME	BY		DВ	1/			PATE	TI	1	BY	WB	DI	•	%
	69	1042	DK	560 56	68	47	<u> </u>		114	90		OK LU	58	71		19 16
								_								
												·········				
									_			<del></del>		1	$\pm$	
F			]	BEAKERS	S: FIN	VAL V	VEIGHT	s								
	BKR #	IN DS		TIME	1ST	WT	TIME		SND	WT	TI	ME	3RD (	JT	TI	ME
	A	6/11		1030	108.9			_	108.9	602	91.	2				
	$\mathcal{B}$	6/11		T	_		930	$\rightarrow$	106.3	000	91	4	/			
	<u> </u>	John		1032	106.9	639	933		106,96	237	91	6	<u>./</u>			
	BKR #	4TH W	т	TIME	5TH	ωт	TIME		6TH	WT	ТІ	ME	7TH	ųΤ	TI	ME.
<b>~!</b>				-				+								
-			+					+								

NET PARTICULATE CATCH CALCULATION WOODSTOVE TEST DATA SHEET #6

Unit: FX HT 2000

Run: 5

Date: U/30/93

Technician(s):
WSTAPP1-AppDoc19-page2
Rev 6/90

	_	· · · ·	· ·
Blank Audit: By:	Bill Howak	Da	te: <u>6/15/93</u>
Blank Calculations			
	.0004 g; 20		
Dichloromethane:	.0006 g +7	5 m1 = <u>,00</u> (	00 08 g/ml/
Distillted Water:	<u>.0002</u> 8 ÷ <u>20</u>	0 m1 = .00	00 01 g/m1/
Front Half Catch:			
	h No. of filters	filter	•
Beakers: .0289 Total Catc	g - 75 ( Ml of Acetone I	.00002g) : Blank Value/ ml of Acetone	Net Catch
	Total Fro	ont Half Catch	.1029 g
Back Half Catch:			
Filters: .0408 Total Catc	g - \ No. of filters	Blank Value/ filter	Net Catch
Beakers:			
1. Acetone/Impinge	g - 170 (ml of acetone B	.000002 g) = lank Value/	Net Catch
2. Extract/Impinger , 0394 Total Catch	g - 75 ( ml. of Dichloromethane	.0006 .00008g) = Blank Value/ ml of Dichloro- methane	
3. Water/Impingers: .0930 Total Catch	g - 400 (		.0926 g Net Catch
	Total Bac	k Half Catch	.2735 g

Total Catch % Front Half

" H20 ဝ ရ - dscf

0000.000

131.3780 13.6 (134,674m)(17.64)(1.028 mcf)(30.06 " Hg+ 1) Vm(std)= -

TmA

559 (

- scf 10.5060 0000.00 2) Vw(std) = (.04707)(223,2 ml H20) =

% H20 000.00 - Bws X 100 0740 .0000 10.5060scf.+ 131.3780dscf) (10.5060 scf) 3) ASW=

gr/dscf .0442 0.000.0 (15.43) =131.3780 dscf) (.3764 g.) 4) Cs=

(.3764 9.)

.8495 0000.00 4.942 dscfm)(60)= 000.00 (131.3780 dscf) 5) Estimated g/hr=

00.00 " Hg 000.000 V 0.000 mcf ď ġ ď meter correction factor ( Y factor) of the meter box used for the test total cubic feet pulled on meter box during test average barometric pressure during the test average delta H for the test " Hg mcf " H20

average meter temperature for the test in degrees Absolute total water caught during the test TmA ml H20

total particulate catch for the test average stack flow during the test dscfm

.00000.00 computer printout 여여

00.000 dscf PRTCALC

000.0 ml H20

( 000 TmA

o,

## Miscellaneous Test Data Sheet Page # 8

Unit:	FX HT 2000	R	un: <u>5</u>	Date: <u></u>	0/30/93
Test Cham	ber Air Velocity Sta	rt: 0	Stop:	Avg:	
	Start: WB: 63 Bulb Stop: WB: 63 Relative Humidity 39.	DB: 86	= 52	% RH	1.5 %H2
	Relative Humitalty 39/1	Average	e % Ambient	Moisture	a: 1.4/
Empty Stove	Weight: 487 Weight w/ Stack & Oil	lbs l Seal: Wet:	536.7	Dry:	536.3
Kindling We	eight: Paper:	1bs	3	Wood:	7.6 lbs
Preburn Fue	el Wt: 19,9 +	-		otal: 4	0.[ - ] lbs
Coal Bed We Upper = .25 Always roun Lower = .20 Always roun Maximum Coa Weight Rem	ight: RANGE: 5.5 - 4 x fuel wt d DOWN to nearest tent x fuel wt d UP to nearest tenth  1 Bed oval (( 5.5) Upper	lbs Actual  + 4.4  Lower	SCALE: 54  Coal Bed W  )/2).25 =		
Test Fuel Dimensions 2 x 4	Length in inches	.5 x 5 " space No. pcs	cers ) =  Wt. in 11	<del></del>	/φ pcs of load
4 x 4	17"	5	20.0		100 -
			rest Fuel We	eight:	1bs
Estimated Dr Burn Rate Calculation	ry <u>22.0 - (22.</u> 2.204	0 x .18748	) x <u>405</u> - Time		012 g/Hr
Estimated EN Output in BTU's / Hr	19,140 X — 1		012 / =		s/Hr
NORTIC .		CAT: 63 CAT	: 72 PELL	ET: 78	
	18125				
	97 = 199				

Unit: FX HT 2000 R	un: <u>5</u>	Date: <u>6/3</u>	0/93 Page 9
woods:	TOVE OPERATI	NG DATA	
FIRE STARTED: 0815	PST	PDST	
WARM UP AND PREBURN: PRIMARY up/preburn fuel charges. ther preburn.	/ AIR: set w n set to	ide open for a	all warm- at start of
SECONDARY AIR: NA	CAT BYPAS	s: <u>NA</u>	, ;
CHARCOAL BED PREPARATION: rak up/preburn charge. At 1 1/2 m leveled. In stove	in. Prior to	led prior to e o loading last	ach warm- fuel, raked and
TEST: Door Wide Open during	loading	min 10	sec
PRIMARY AIR: opened full for setting of	first <u>5</u>	•	n set to run
SECONDARY AIR: NA	CAT BYPAS	s: <u>NA</u>	
FAN: ON OFF during warm-up ON OFF first minute Fan speed set at OFF (	ON OFF duri	ng preburn ON OFF bala	ance of test run
WOOD DATA: KINDLING: a mix of	the grades	listed below	
SIZE	MILL	GRADE	SPECIES
PREBURN: 2X4 Mar	<u> He/Tacoma</u>	Std or btr	s. orn D fir
TEST: 2X4 Pac	<u>Panoad</u>	#2 or btr #2 or btr	s. orn D fir s. orn D fir
PELLET FUEL APFI#:		<del></del>	
All grades WCLB rules		٠	
WARM UP INFORMATION: All pre-burn/warm up fuel piec			
1st warm up/preburn fuel charg			** .
2nd warm up/preburn fuel charg	au, 2	lbs ) added a	at <u>1030</u> .
3rd warm up/preburn fuel chargo	e (	lbs ) added a	at •
4th warm up/preburn fuel charge	e ( <u></u>	lbs ) added a	at
Sth warm up/preburn fuel charge	e (	lbs ) added a	it

FUEL MOISTURE WOODSTOVE TEST DATA SHEET #10

Unit: FX HT 2000
Run: 5
Date: 6/30/93

Technician: Cw WST1-Form7-Rev11/89

Room Temperature: 6 or

Correction Factor:

SFACE

Test Load

23,073_°

NOTE: Record readings to the mearest 0.5% moisture
Uncor Values are corrected for temperature: Yes ... No X ...
Time Test Fuel Moisture Readings taken at: 0.30

Calibration Checks: X Y Y 12.0 12.0 22.0 21.8

					<del></del>			****						
P			To		Uncor	ttom	Si		Piece Ave					
			Uncor				Uncor	Cor	Corrected					
-  -1	2×4×8'	IC	12.0	12.9	11.5	12,3	11.5	1z.3	(12.500)					
_2														
_3		1												
4	22/18	P	180	19.6	18.5	20.1	18.0	19.6	19,767-					
5	1)	P	225	124.6	23.0	25.2	230	25,2	25,000 /					
6	1/	P	18.5	120.1	18.0	19.6	18.5	20.1	19.933 -					
7	7)	P	19.5	21.3	20.0	121.8	20,5		21.833-					
8									36.5337					
9														
10	4x4x17"	T	18.0	19.6	18.5	20.1	18.5	20.1	19,933					
11	<i>(</i> /	T	20.0	21.8	20.5	22.4	20.0	2/8	22.000					
12	11	T	210	22.9	220	24.1	22.5	24.6	23.867					
13	/1	丁	220	24.1	22.5	24.6			23,867					
14	и	T		25,7	235	25.7	235		25.700-					
15									115.367)					
16														
17														
18														
19														
20	75×1545"	丁!	21.0	22.9	21.5	33.5	23.0	25.7	24,033=					

% Moisture - Dry Basis:

12.500 2 21.633 - 2

% Moisture - Wet Basis:

11.111-2 17.786 - 2 18.748

Pretest Fuel

To obtain Wet from Dry:  $\frac{100 \times 7 \text{ Dry Rdg.}}{100 + 7 \text{ Dry Rdg.}} = 7 \text{ Moisture, Wet Basis}$ 

Rindling

Acceptable Ranges: 16-20% wer; 19-25% dry
(17.5 - 22.5 on Meter [Uncor reading] at 70°F)

Key for Use: K= Kindling P= Pretest Fuel T= Test Fuel

WOOD DENSITY DETERHINATION WOODSTOVE TEST DATA SHEET	9/70/7
WOODSTOVE IEST DATE SHEET	WST2-form11-Rev 6/
Wood Piece: Nominal Dimension	
Depth (D):	Signe
Width (W):	5 605
Length (1): 8,830 cm	<u>8,425</u> cm
8,920 cm	
X. S/4/1 cm	ength X = 8.871 cm
V	(D X W X L)
	(D X W X L)
MOISTURE: Room Temperature:	Of Correction Factor:
	ected for temperature:YesNo_X
NOTE: Record moisture meter re	
Uncor Cor	
	Avg T Hoisture (Dry) 23.300 7
Top: $\frac{2/5}{23.5}$	Aug Z Moisture (Wet) 18.897 Z
Bottom: 2/5 23.5 Z Side: 2/0 22.9 Z	
	Scale: Leveled In Our Zeroed: In Our
Z3.300 _z	Zeroed: In / Out
Wet Weight: 336.2 g Dry Weig	ht: 302.26
Z Moisture Dried Basis: 10.0953	
[1 - (Dry Wt ; Wer Wt)] X 10	0
Date Ti	ше Тешр
Into Dryer 6/30/93	<u>0930</u>
(Minimum Time in Dryer: 24 h:	rs.) Minimum Dryer Temp 100°C (212°F)
Density = 302.20 g : 708.2	$\frac{OG}{Cm^3} = 471.9 \text{ a.c.}^3$
(dry wt) (volume	2)
Pellet Fuel Moisture Content Dete	rmination
Tare Beaker Wt.	<b>.</b> g
Wet Wt:g	g =g
Gross Wet Wt. Tare Besk	er Wt. Net Wet Wt.
Dry Wt:g †	
Gross Dry Wt. Tare Beak	
Z Moisture Dried Basis: [1 - (Net Dry Wt : Net Wet Wt.)]	7.
The there may we a net weight	• <b>*</b> • • • • • • • • • • • • • • • • • • •

								.,	,									,											_
	7	SO2 PPM	700	250	575	009	009	575	625	575	575	lo 25	89	009	<b>1</b>	009	57.5	550	515	(000)	000)	515	575	575	575	575	1900		
	9  -	STATIC	049	hL0-	<i>aa0-</i>	-010-	J.066	690:	-069	000:	010:	069	-, 010,9	0 lo8	905	890 <u>-</u>	-000	-065	100-	-,06b	1-00-	200	6/10-	60/0'-	4/9/2/-	10101	+9Q'-	-,796	1
	PAGE	STACK	356	ાદળ	443	44S	<b>2</b> hh	1483	483	Sbh	E.bh	489	797	181	5744	-183	57/7	1	435	44	455	465	460	QO)H	452	1Zh	396	5395	11139.
	93 P	CAL WB	118	136	12 d	125	125	129	130	131	132	133	133	133	1	132	130	129	128	128	129	128	128	128	128	125	123		
	130/0	%н20	3.1	2.8	2.8	3.0	3.0	3.4	3.8	4.1	_	<u>S</u>	5.3	7 <u>2</u>	1	4.9	8	<u>1</u> .	4.5	4.1	4.1	3.9	۵,4 ۲	4.1	3.8	37	3.7	-	
	DATE 10	DRY B	98	801	1 S	þΝ	111	122	123	129	126	871	127	१५७		125	122	120	711	15	HI	711	211	101	103	96	ħЬ		
	DA	WET B	18	92	84	85	85	88	91	94	98	86	dd	98		97	96	95	qu	26	92	90	96	89	88	86	85		
	Ŋ	BAL	15.5	ا اه	1.5	= (0	9.9	7.	و =	ا <u>.</u> ا	16.4	118	12.8	13.1		13.7	17.8	21.2	17.3	19,2	22.6	210,D	42.2	579	28.18	31.0	21.2		
	RUN	00	.53	09.	82	01.1	1.22	9	1.16	88.	%. %	1.19	1.10	10.1		76.	72	-ηд	اه	101.	57	(J.)	.32	.23	<u>ئ</u>	36	<u>17</u>		
		^	,053	090.	789	9.	.122	١١١٠	<u>ا ا</u> د	.088	280.	911	011:	101.		7-60.	.072	949.	.066	(0)0	150,	, 553	, 032	.023	150,	036	нh0,		
	000	02	11.2	3.7	10.2	7.0	79	S.	∞ ف	5,9	7.9	5,9	5.9	و۔		4 9	F	20	8.5	7.9	7.0	0.0	40	419	7,4	∞ 5.	9.7		
	I D(	٧.	.452	:551	410	.285	.318	.26d	hLZ:	.239	.252	.237	1337	.268		. Hob	.289	.294	#	.319	,282	743	.260	1,200	,298	1336	1393		
	X	202	8.2	4,2	л' <u>b</u>	12.8	12.1	13.2	13.4	14.2	13.9	<u> </u>	14.1	133		133	12.8	12.9	#: =	7	12.9	13.8	3.5	13,3	2,3	-	6.9		
i	ET FX	۲.	.331	89	.379	514	488	.532	.541	.570	56	ig.	.5lo8	1534	-	.534	516	.518	Q5}.	472	910	525	P. C.	153%	1207	1450	<u>1371</u> p	1	
	MANUFACTURER/MODEL	DROP	E	0	9	8	0.1	0 -	8.	-	σ.	<b>-</b>		$\infty$	-	۲.	0.1	٥	۲.	_	ά	ale	a,	ñ	ñ	ري. ا	ū	1	
r)	ER/MO	FUEL	22.0	21.1	20.5	19.7	18.7	17.7	16.9	15.8	14.9	14.2	13.1	12.3		<u>ا</u> . ه	ગ 0	0.0	9.3	9.7	6,4	20	7	1	6,2	200	ر م		1
541	ACTUR	SCALE	5133	562.पे	561.8	5010	560.0	559.0	558.7	50 557.1	55lo.1	555.5	554.4	553.6		552.9	5519	551.3	550.6	5505	549.7	45549,1	5485	248.0	27.5	27.75	15.4H.C		
1 1 1	MANUF	TIME		\?\ ?\?	2/    }	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(음)	2/ (원)	\25\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				(의)	TOTAL	(A)	\g \}	(X)  2)  2	/% /		λ  <	원 왕	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\langle \lambda \rangle$	튑/			TOTAL	IOIAL

PAGE12

929) 050 675 650 7 CI CI 650 Show the second 000 750 675 510 200 125 725 750 PASO PASO 300 200 SO2 PPM 20 L,055 | -,013 -,055 326-1054 - SP5 1,000 1.058 25-1-153 1,003 000-7,053 ,052 -,052 346 1-,047 -1570 Ch0'-1,045 -, 683 1020 249 3237 85 186 -1048 1.047 1.047 P STATIC 3543 355 338 4152 362 285 376 800 器 323 <u>N</u> 230 295 8 279 33) (S) 8 318 2 B Z STACK DATE (0/30/93 PAGE <u>و</u> <u>=</u> 120 7 120 <u>く</u> 115 10  $\frac{1}{2}$  $\overline{\lambda}$ 1 7 CAL WB 7 三 万 <u>V</u> コ  $\overline{a}$ 3 いい 3 w M m 100 3 30 33 *(U)* ad W 33 30 50 (T 3 w I W رية ا S S 37 w) Ø M 3 %H20 33 0 9 89 8 9 9 3 9 9 80 S S 9 90 92 Ŝ  $\mathcal{S}$ 97 90 9 DRY B  $\bar{\sigma}$ 2 G  $\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline}}}}}}}}}}$ 2 の い N W M Ø 33 a T 90 8  $\frac{\infty}{1}$ 200 70 88 な 9 30 カの <u>5</u> 9 \$ 8 多  $\frac{\omega}{\tau}$ WET B 90 τ 20  $\mathcal{C}$ W B ū 23.2 25,3 6,5 14.6 26.7 24.9 2年10 20,0 <u>∞</u> 3 019 4.0  $\phi_{\mathcal{C}}$ S 1,7,1 C 5.7 7 50 00 BAL BA ত RUN 5.7 .33 77 139 3 3 50 ر م Ž 9  $\dot{\vec{x}}$ (n) 0 C 92 52 手 쿤 0 3 Ē ខ 122 <u>0</u> 乙 052 280 036 1037 <u>で</u>古 8 ትት0' 048 1092 . मुक 128 133 152 <u>X</u> 104 0.7 20 . 5 2 10. 20. 3 > 8 ٥ 9.2 6,3 0,0 1428 1016 3 9 50 70 <u>6</u>,0 ر حر  $\alpha$ <u>6</u>= 10.7 (S) 0.1 アニ 17.4 9 8 2000 1.426 する ,373 430 432 120 T <u>七</u>33 263 ,425_|| 435 , 35. (우) 473 .43c 力しか 2 ge 417 1470 .50D P170 रू र カルカ 7,00 *;* 上 0 8.10 8 6 0 10.2 30 30 9 <u>ق</u> rΩ 7.4 **2** <u>_</u>  $\frac{\infty}{\sqrt{2}}$ ナー 7 <u>_</u> 200 8  $\vec{\Lambda}$ 290 350 1 80 90 3 do 345 286 349 346 128° 774 335 1284 707 333 10h 350 333 1289 797 4 297 300 1201 = > PAGE 12 DATA SHEET MANUFACTURER/MODEL DROP 4 7  $\bigcirc$ Ч 4 4  $\omega$ Q 200 3,6 J. 3 w w 3 20 2.5 7 らば 30 4 ر ان 4.8 4,4 3 いい  $\tilde{\omega}_{|}$ 7 ัก <u>'</u>Ω FUEL 54B.2 5446 513.0 5459 545.7 びるい 5436 S14.8 544.7 SH.2 5410 の主が 1000 SH3, A 546.4 <u>250,3</u> 545.0 5/545 00 CATE I 546 le でおぶ 543.7 5.8% SCALE 27.5 表 <u>_</u> 2 TOTAL TOTAL TOTAL TIME

54

PAGE12

1, O45 - 044 -.043 P. 0.4 25 1-,043 1. 日か 5/70 玉、 770 248 -1043 040 488 -,043 040 75,1 040 1001 40, 1.038 せるこ とられ P 378<u>1878</u> 040° STATIC 140 25co 223 268 なる 243 223 PAGE 3 128 243 243 2870 256 25 247 STACK が 76 25 247 223 741 74 び Ø **€** 60 2 ٥ CAL WB -DATE (0/30/93 けら <u>م</u> 3 0 10 47 7 %H20 5 7 **=** a a 10 9 D D 8  $\mathfrak{S}$ 93 S 9 80 a  $\overset{\mathcal{O}}{a}$ CU S 95 93 95 5 a To वित DRY B 92 <u>.</u>  $\bar{\sigma}$ 7 60 B e O e O Ĉ 9 *0*0 É  $\hat{v}_{o}$ 80  $\mathscr{E}$ L 7 20 30 g O 3 ြ Ö g9  $\hat{w}$  $\mathcal{S}^{2}$ 8 0 뚩 3,0 3.0 3 グン <u>7</u>  $\vec{\omega}$ 9 9 g M 2,5 るろ 7 など グン 35 20 200 4.7 ñ 3 BAL 1.78 ------1.30 52 .86 2.00 199 1.00 200 1,32 1.39 1.60 3 190 17. in Sign <u>a</u> 5 7 <u>~</u> ខ 196 20 00 . , 19ke 199 . 30 52 158 162 700 اليا 7 132 134 . 188 733 89 25 144 <u>@</u> <u>a</u> 174 73 1.546 13.6 56 75.8 13.7 13,3 13,8 1.649||13元|| 77 13.4 35 13.5 .544 13.5 13.1 13.6 7 1,541 13.4 5.513.5 135 15/4, 14.0 12.7 2000 ,553|13,1 엉 500 ,554 250 ,53G SIZ SIZ 27.0 493 いたこ 155T 948 がず 50.5 10 2 5年 <u>}--</u> 6.3 ふん 6,9 ō S 0 らら S 6,9 7,0 S S ユ 5,2 204 5.0 がゴ N 202  $\times$ 1258 1275 208 ,753 242 1209 209 176 .206 1236 ,215 200 3,7% 218 224 220 2007 е 7 209 717 PAGE 12 Com DATA SHEET MANUFACTURER/MODEL DROP Ó Ø Ď Ö 3 4 ā Ø, Q Ġ O 2 <u>ئ</u> 5 FUEL 543.0 **第3**7 543.5 543,4 543.2 542,9 らなら 542.b 90 SYZIS 55 543, 3 525.K 10542.P 542.7 543,3 5426 543,D 子 2827 50 547.3 必免 <u>| Sur, 1</u> SCALE 200 2 TOTAL FOTAL TIME

300

200

800

900

150

SO2 PPM

541

S

75

7.15

PAGE 12

2001-1002

の次

800

800

		7						, .	7	· · · · · · · ·	_					 	 	-	· ·	 		 			<del></del>
t	SOZ PPM	228	88	Pho	900 100	0000	258	825	900	800	200		1.02				\$								
	STATIC	-,038	-,038	850,	038	850'-	-,038	-,038	-,038	7,038	03B		1 1	052			,	•							
PAGE 4		724	224	223	223	223	_	_	222	222	218	2223	270FE	330	==										
19.3 P	Ш밀	0	61/	611	611	611	611	611	37	811	611														
	11	7,0	Ü	15	7.8	7.9	8.6	7.0	51	6.7	7.3												1		
<b>date</b> 6/30	DRY B	175	175	177	I	176	176	176	174	173	211														
ũ	WET B	111	211	711	113	113	113	113	112	112	111														
0,	BAL	3.2	3,4	3,10	3-	2.8	2,6	2.1	<u>۔</u> ق	1.8	2,4														
RUN	03	71.7	1.64	1.57	1.13	1.87	1.92	2,20	2,26	2.23	1.84														
	٧.	721	1104	157	.173	791	.192	(220	226	:223	ā Tā														
2000	02	13.4	13.5	13.4	3,6	13.7	14.0	14.3	14.6	14.8	E-19														
}	٧.	245	545	1972	348	,554	15103	1574	P83.	.697	,599														
FX H	200	5.5	のら	5.6	54	5.2	υ Ω	4,6	4.1	4.1	4.3														
	٧.	122	hZZ'	1320ء	1218	117	,202	187	167	105	-115														
SUL S DATA SHEET MANUFACTURER/MODEL	DROP	- 1		Ø		_	ğ		_	B											-				
3 S.S. DAT	FUEL	ماً،	i,	<u>.</u>	3		હ	7			يط														
5412 racture	SCALE	541.9	341.8	541.0	5417	DIP DIP	4000HIP	541.5	ड्या.प	55591.4	<u>で</u> 成												-		
PAGE	TIME		10/1					烈	(C)	3/ 12/		1		TOTAL									TOTAL	TOTAL	

PAGE 13 SHO.7

·	E 0F	COMMENTS	PRIMARY AIR SET AT:	" b)	SECONDARY AIR SET AT:		7	MI CONFIRMATION			PUMPS ON AT: //25		сиеск иВ/DB: 82/94					425 0		1410 - 9 1159	417.0			בועל ו	0						
	111	STATIC	1095	ררט.	-1075	51.51			100'-			$\sim$	$\neg \tau$	090:	-056			- 052	, A5A		240	5040	8hV -	040							<del> </del>
100	Chloc	AMBIENT	28	$\propto$	82	28	טרן	0.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	8	200	24	83	23			83	82	00	700	27	82	83							
	~#	SEC / CAT	1451	1350	13.16	13.80	717	1 2 5	150	13.CV	0000	2000	2002	1327	1107			1020	995	077		200	869	188				*			
15. 8.C	3   [		021	1020	973	1556	מחח	500	2/0	5 - 5	1021	1037	- -	1045	1051		╫	\$701	040	_	+	+	961	606							
V.	J. Co		707	333	388	381	37.6	2 8 8	T		الا د تار	300	9 7 7	040	343		£ - C	ンサン	34S	349	674		356	359							
RUN	RT STOF	-	9/0	588	573	563	248	245	52 L	10 V	541	543		250	534	1 1	7,03	03/	534	529	522			509							
2000	BACK		9100	25.5	328	329	329	928	326	326	325	325	322	7 10	275		200	244	322	324	323	000	070	573							
十十	LT SIDE	Cas	2		T	516	505	493	484	780	476	474	479	- V	7 20		0110	- J	2 7	475	473	0	5 Q 9 \ 7   =	127							
SHEET $ op  imes$	T0P	77	517	3	6/5/	603	2005	594	542	571	539	517	504				000	1,01	446	408	395	<b>3</b> Q 凡	이트	0/0							
	STACK	7/6	5 6	7	500	503	468	164	トしわ	2 <i>hh</i>	421	101	385	250	0000	1	343	222	000	275	35%	7	) L	2			-				
/MODEL	BURN RATE		61		9,	2	4	$\infty$	+	5	7	6.	_	2	1					-	,2	γ.	-								
MANUFACTURER/MODEL	SCALE UT	8 645	517	1 2	1,100	2,40,2	1.975	545.3	244,6	1,44.1	543.7	543.4	5433	543.1			543.0	2470	7 4 7	241.9	541.7	SEI. 4	7 - 7	-1							
MANŬFĀ	TIME	000	55 155 155		3 V	- k		$\sum_{i}$	13/3	25/25/	130	33/	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	<	18		3/	<u>8</u> /	\{\ \\	<b>\</b> 2	١.,	<u> </u>		1	1		1	1	

----

PAGE	TEMP	PAGE TEMPERATURE	E DATA	SHEET	ت \ ال	- CVV6 +		Ų	1		(		7	0	
					!	-		WON.	DAT	DATE (Ø150/	43	PAGE	٠) ا	OF	
TIME	T0P	LT SIDE	BACK	RT SIDE	BOTTOM	FIREBOX	SEC / CAT	AMBIENT	FURNACE	SAMPLE	IMP OUT	c. GAS	GAS IMP	SO2 IMP	405.6
	312	407	280	413	281	798	159	87	1447	248	33	234	78	37	
(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	300	404	278	410	187	791	744	88	प्रपट	248	233	235	700	3.7	
	300	404	278	405	187	783	732	88	1443	8hZ	34	235	34	3/8	
	300	396	274	402	7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80	276	727	8	1443	248	35	236	34	3/6	
12/ 24/ 24/ 24/ 24/ 24/ 24/ 24/ 24/ 24/ 2	248	16M	712	398	261	769	219	87	1442	248	36	236	40	36	
1 1	298	391	172	398	281	Thele	713	67	7)7/11	248	36	236	34	2/0	
ら (元) (元)	794	383	268	390	28)	751	7607	120	ाम्म ।	842	37	237	30	3/6	
(S) (S)	791	200	2008	386	281	732	589	8	1439	842	3.	237	34	3/0	
		374	265	$\frac{a}{a}$	279	7112	1691	87	1437	347	30	23.6	W	360	
		374	265	376	279	200/2	(461	رم	1435	248	38	238	33	3/6	
\$/\\$ \S\ \S\	281	367	261	369	780	1091	659	120	1437	248	38	23R	u u	1/2	
2	277	361	261	365	278	695	655		1438	270	38	239	N M	78	
TOTAL	3549	4638	3243	4693	336H		11118	<u> </u>	- 44	-  -  -  -  -					
8/8 /2/	277	362	259	361	278	$\vdash$	bho	23	1439	248	300	239	M W	35	-
	273	351	759	356	278	1000	070)	20	1439	248	200	239	w w	35	
$\Lambda$ L $\epsilon$	273	357	255	356	278	685	HOO	67	14391	248	m	239	W.	K	
S/S	117	35	255	356	281	675	656	33 40	1441	248	37	239	30	25	
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	260	347	253	351	279	Color	150	87	7hH1	248	37	239	60	S S	
) [c	242	34	253		279	1667	052	67	1444	248	36	239	33	35	
13	7004	344	748	37/6	277	Colo3	633	0.5	1444	348	36	240	33	35	
<b>/</b>  5	3	339	248	346	277	(003	1029	00,7	1440	248	36	240	W.	50	
\\?\ \?\	70	200	248	77	277	lote	629	27	14410	248	36	240	3	35	
64.	253	333	245	341	275	450	629	87	ከተተተ	248	36	240	(C)	3	
3	253	133 133	245	339	275	840)	622	a a	1442	248	36	240	(f) (f)	N W	
2	203	333	246	339	2.15	(048	1022	81	439	2448	36	240	4	777	
	3150	4139	3013	पाछउ	3329	- 11	7706	1046						)	
TOTAL	10100101	8777	W256	8876	10093	16982	16 123.	2002							

PAGE	TEMP	ERATIE	מדים ה מדים	Supply											
MANUF	MANUFACTURER/MODEL	/MODEL	70	- 11	X	HT 20	2000 RUN	N.	DAT	<b>date</b> (e/30/93	193	PAGE	7	0F 4	
TIME	TOP	LT SIDE	BACK	RT SIDE	воттом	FIREBOX	SEC / CAT	AMBIENT	FURNACE	SAMPLE	IMP OUT	C. GAS	GAS IMP	SOZ IMP	405.6
2/2 /3/		333	245	336	187	514)	629	23	1439	248	36	246	W. 30	35	
\8\ \$\?		333	25	336	2Bb	1039	629	87	1437	248	36	240	ιυ ³ υ	73.5	
2/2 /2/2	-	www.	74	332	29 la	633	670	128	1437	248	36	240	63	35	
-X ź	263	333	244	332	28b		629	86	1437	248	36	235	60	N	
		333	244	725	28 la	[	626	96	1435	248	36	235	33	74	
	╌.	332	244	327	286	625	619	ss S	1434	248	36	235	70 (C)	35	
(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		330	244	325	286	(025	600	178	1434	248	98	235	4	35	
	_	326	244	325	286	420	597	<i>6</i> 3	1430	248	36	235	W)	700	
(R) (R)	_	322	244	325	280	620	597	83	1425	248	36	235	nn	1 m	
150 150 150 150 150 150 150 150 150 150		320	244	318	286	621	597	n æ	1425	248	36	225	23	300	
	2510	3295	7442	3283	2855	6289	1910)	98				3			
	30373	33325	23278	35137	23910	1610 440	71345	1000						. 0.3	
TOTAL	370,		794	you,	767	0 10	0.10	и						10,	
		100	2		47.5	0	Ĉ a	â							
/												<b>+</b> ∇	405.6	START	
/													282.6		
					i								7 801	1	
													הַ הַ הַלְּי		
															:
1															
1															
	·														
TOTAL.															
TOTAL.															
				1											

Site: 1	EEMC - Wes	t, Kent	, WA 980	032 Dat	e: 6/30	<u>93</u> Ana	lyte: _	CO2	(15-1)			
	FX H						<del></del>					
	1 #: <u>T13</u>						ress:	200	<u> </u>			
Cert	ified by:	Lia	UID AIR	·			Date	1.10	103			
Span Cy	1 #: <u>AS</u>	40875		Conc. 12.4	ያ የ ርሀን	Cv. I. B.	<i>Dace</i> . ,	<u> </u>	)/43 \^			
Cert	ified by:	Mp			<u> </u>	. CYI FI			D ps			
Analyze	r: Make:	Horiba		Vodel -			Date: _	1/11/	93			
Range:	r: Make:_	TOTTDA		Model:	PIR-20	00	SN:_	4070	69			
mange:_	0 - 25.0%	CO2		Analyzer C	output:	0 - 1.	0	·				
	1.5 SCFH			sured by:	Rotame	eter: <u>x</u>	Flow	mete	r:			
EPA Spar EPA Cont	n Value = trol Limit	25.0% C $s = + 2$	0 ₂ .5% of 2	25.0% COn	= + 0 4	52ER 60	•					
Pre Run	Audit: B	· ·	DK.	m:	<u>- I U. (</u>	10115			<del>"                                    </del>			
		<i>x</i> •				CPUI	_ Temp: _	/8	o			
Point	Expe	cted Res	ponse	Audit Res	-112 ] Do	Enongo	+ Cor	-	·			
#	Meter	DVM	8	Meter	DVM	\$	Differe	ic.	<b>∆</b> 8			
Zero	00.0	.000	00.0	1 44 4					.116			
Span	50.4	.504	12.6	50.3	.503	12.489	-, 111		-883			
Span 504 12.6 50.3 .503 12.489 - 111 -883 Comments:												
	_											
ļ			<del></del>	·	-		·					
Post Run	Audit: B	y:	<u>BN </u>	Tim	e: <u>/</u> /	715	Temp:	83	o _F			
			7	Audit Resu	_			<del></del>				
Point #		ted Res	ponse	Act	ual Res	ponse	+ Conc					
<u> </u>	Meter	DVM	- 8	Meter	DVM	8	Differe	ice (	1 8			
Zero	00.0	.000	00.0	00.2	1007	1021	1021	10	Y30			
Span	50.4	.504	12.6	90.7	1207	12,588	-1015	T-,	093			
Comments:				·								
+ Conc. D	ifference	= Act 8	- Exp	(Std) %								

Zero % Differece = Act % - Exp (Std) %

Zero % Differece = Act % (ppm) - Exp % (ppm) X 100

Full Scale Value

Span % Difference =  $\frac{\text{Act } \% \text{ (ppm)} - \text{Exp } \% \text{ (ppm)}}{\text{Exp } \% \text{ (ppm)}} \times 100$ 

Site: EE	MC - West	, Kent	, WA 980	32 Dat	e: 6/3	0/93 A	nalyte:	0 ₂ (15-2)
Source: _	FX	HT a	1000	Run	#:	; 5	- <b>-</b>	,
							Press:	2000 ps
Certif	ied by:	Liqu	10 AIR			· -	Date:	6/10/93
Span Cyl	#: <u>AS4</u>	0875		Conc. 12.8	% O₂	Cvl	Press.	<u>SOO</u> ps
Certif	ied by:	Мат	HESON		<del></del>	-1-	Date.	_1/u/93
Analyzer:	Make:	Teledy	ne	Model:	320 Ax		_ Date:	<u> 1/4/93</u> : 37465
Range: 0	- 25.0%	02		— nalyzer 0	utput:	0 -	an:	
Flow: 1	.5 SCFH		Meas	ured by:	Rotame	+0=-	Y 71-	wmeter:v
EPA Span V	Value = 1	ንፍ ብይ ለ	_					wmeter:
Pre Run Au	dit: By	':	DK	Tin	ne: 10	50	Temp:	82 <b>o</b> f
				Audit Resu				
Point #		ted Res	sponse	Act	ual Re	sponse	+ C	onc.
<u> </u>	Meter	T		Meter	DVM	ક	Differ	rence $\Delta$ %
Zero				00.0				
Span	12.8	.512	12.8	12.8	.512	12.696	110	862
Comments:	Teledyne	=#2. <u>Cy</u>	·1 8 E	Exp & A	<u>ct                                    </u>	Adj	to ± 4	<u>~</u>
Post Run Ai	udit: By	7:/	BN	Time	e: <u>/</u> //	715	Temp.:	83 <b>o</b> f
Point	Francis		A	udit Resu				
#	Meter	ed Res	&	Meter	lal Res	ponse	+ Con Differe	
Zero	00.0	.000	00.0	00:1	1006	.107	,/07	1429
pan	12.8	.512	12.8	2.7	,502	12.441	-, 359	
omments:	Teledyne	#2 Cy	<u>8</u> E≥	cp & Ac	t %	Adj t		
					<del></del>			_
Conc. Dif	ference :	= Act %	- Exp (	Std) %	<del></del>			

Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Exp % (ppm) - Exp % (ppm) X 100

Exp % (ppm)

Site: E	EMC - Wes	t, Kent	, WA 980	32 Dat	e:6/30	93 An	alyte:C	D (15-3)
				Run				•
Zero Cy	L #:	<u> 3225</u>	7	Conc. <u>00.0</u>	% CO	Cyl	Press: <u></u>	000 ps
Certi	fied by:	LIOU	10 AIR	·	•-		_ Date: [	110/93
Span Cyl	#: <u>AS 4</u>	10875		Conc. <u>5.01</u>	%_CO	Cyl I	Press: 5	<u>()</u> ps
Certi	fied by:	MA	THESON			<u> </u>	_ Date:	/11/93
Analyzer	: Make:_	Horiba	1	Model:	PIR-20	00	SN: 4	08005
Range:	0 - 10.0%	CO	A	malyzer (	output:	0 - 1	0	v
Flow:	1.5 SCFH	<del></del>	Meas	ured by:	Rotame	eter:	X Flowme	eter:
EPA Span	Value = rol Limit	10.0% C	0 5% of 10	.0% CO =	+ 0 250		- <b></b>	
								23 01
	<del></del>			Audit Res			_ remp	<u> </u>
Point	Ехрес	ted Re	sponse			sponse	+ Conc.	
# [	Meter	DVM	ક	Meter		8		e 🛆 %
Zero	00.0	.000	00.0	00.0	.000	.000	000	.000
Span	50.1	.501	5.01	50.2	.502	5.020	.010	.200
Comments:								
Post Run	Audit: B	Y:	13N_		ne:	915	Temp.: 8	3_ <b>o</b> f
Point				udit Resu				
# -	Meter	ted Res	ponse %	Meter	ual Res	ponse	+ Conc. Difference	Δ %
Zero	00.0	.000	00.0	00,2	1002	/020	,020	,200
Span .	50.1	.501	5.01	49.8	,498	4.98	7,030	-,599
Comments:				,		-		

t Conc. Difference = Act % - Exp (Std) %
Zero % Differece = Act % (ppm) - Exp % (ppm) X 100
Full Scale Value
Span % Difference = Act % (ppm) - Exp % (ppm) X 100

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

Site: <u>EEM</u>	IC - Wes	t, Kent	, WA 980	32 Dat	e: 6/3	0/93 An	alyte:	SO ₂ (15-4)				
Source: _								,				
							Press:	2000 p				
Certif	ied by:	Lio	DID AIR	2		-4 -1 <del>-</del>	D=+0•	6/10/93				
Span Cyl	#:	79/7/2		conc 12/08	C(		_ bace: .	<u>GNA</u>				
								2/26/93				
Analyzer:												
Range: 0	- 2500	ppm SO2	<u> </u>	nalyzer O	utput:	0 - 1	.0					
Flow: 1.												
EPA Span V	l Limit	s = +2.	5% of 25	00 ppm SO	2 = +6	2.5 ppm	502	4. Approx.				
Pre Run Au	dit: B	у:	DK	Ti:	ne: _	1100	Temp:	82 OF				
	_			Audit Res								
Point #	Expe		sponse	Act	ual Re		+ Cone	e.				
/				1	DVM			nce $\Delta$ %				
Zero	00.0	.000	00.0	00.7	1.007		12951	1.518				
Span	50.7	.507	1268	50.8	.508	1273.	5.875	.463				
Comments:												
Post Run Au	ıdit: E	v: /	37)	Tim	e: / ⁶	125	m	83 <b>o</b> f				
		<u> </u>				7.(0	Temp:	<u>85</u> °F				
Point	Expec	ted Res		udit Resu Act		sponse	+ Conc					
#	Meter	DVM	ppm	Meter	DVM	ppm	Differen					
Zero	00.0	.000	00.0	01.7	1017	38.187	38.187	1,5247				
Span	50.7	.507	1268	51.6	1516	1294.009	26,009	2.051				
Comments:	<del></del>	······································			-, 9	<u> </u>		14.501				
.Chuicires:												

Span % Difference = Act % (ppm) - Exp % (ppm) X 100
Exp % (ppm)

Full Scale Value

#### QUALITY CHECKS DATA SHEET 16

Unit: F ×				Run: 5	Date: <u>6-30-9</u> 3
Thermocouple	Check:				
T/C #1	72. 2	٥F	T/C #13	71.8	°F
T/C #2	72.3	٥F	T/C #14	71.6	г °F
T/C #3	72.1	°F	T/C #15	72.7	г °F
T/C #4	73.5	°F	T/C #16	45,3	
T/C #5	73.3	°F	T/C #17	57.5	r °F
T/C #6	74.1	°F	T/C #18	76.4	' °F
T/C #7	73.5	°F	T/C #19	72.4	
T/C #8	73.8	°F	T/C #20	-	•F
T/C #9	74.2	°F	T/C #21	-	°F
T/C #10	69.5	°F	T/C #22		°F
T/C #11	69.8	°F	T/C #23	72.4	°F
T/C #12	73.2	°F	T/C #24	225.0	°F
$ 0 = 0.0 \\ 600 = 601 \\ 1200 = 1198 \\ 1800 = 1799 $	ck and calibration  °F ADJ. TO C  °F ADJ. TO 20  Readout Pretest Linear  °F 200 =  7 800 =  7 1400 =  7 2000 =	= <u>201</u> = <u>801</u> = 139	°F ZERO °F SPAN eck		°F
	Train Leak Check (SO ₂ ) Leak Check		Pre Pre Pre Pre	Post Post Post Post	
Scale Check Pre Post	546.7 - 5 551.1 - 2	536.7 541.1	= 10.0		
Stack Cle	aned Proir to Test Ru	ın: YE	ES NO	<u> X</u>	

# Phillips SCALE COMPANY, INC.

KENT WA.	601 910	Date 1-30-87
At:	S/N	
co. EEMC	Make Weight Trans	Inspected By Kundth Hyechaer

Date 6-20-87 Next Inspection Due

This certifies that the above scale met all State Highway Weighing Requirements when tested on the above date with 275.

Octor's 486

	n som som som som som som som som som som	SCALE CON	1PANY, INC.	
	Certifi	cate of Insp For:	ection	
	Co. <u>EESPO</u> Make <u>Weightrowix</u>		15 Central Ave	
	Inspected By HRT Ho		Date 6-8-9-3	
		pove listed device met all W above date with weights to Load Reading		
	50 Lbs 50 /00 Lbs /00	/50 Lbs /50 200 Lbs 200 250 Lbs 250	350 Lbs 350 450 Lbs 450 500 Lbs 500	
	Next Insp	pection Date <u>12-193</u>		
3 0005	231		. LITHOUN U	. э. м.

::

## QUALITY CONTROL SERVICES

LABORATORY AND METROLOGY EQUIPMENT: SALES AND SERVICE

### REPORT OF SERVICE AND CALIBRATION

CUSTOMER ANGLES, AND. S	UST PERF	MAKE SARTORIUS	LOCATION	
ADDRESS 1318 S. BING	RING UNIT	CMODEL ALZOS	M.ET TOATHOO	Norman
Kent wa 98012	,	s/N 3 7010004	TECHNICIAN D	
This Serv Date 6/16/9		Som 24 12 15 92	<del></del>	
				ie <u>R/_/9)</u>
Function Tested	As Found	Manufacturer's To	olerance A	fter Service
Cornerload	<u> +. 2</u>		·	= 1mg
Optical Range		N/A		
Optical Range w/Tare		N/12		
Linearity or 50-50	± .490g	±.2m		± ,2m
Hysteresis	_ E .1 mg	+ lug		±, lug
Calibration	+ Hy	± 1/m		+,   mg
Individual Wt. Readings	As Found	Manufacturer's Tole	rance After	Service
10 mg	- 1 mg	1_ ±.1~	4100	t ilm
50 mg	+ . Zmz	1 ±. /m		t.lng
<u>log</u> 1.	+, 2·4y	1 1 lan		± . 1 mg
20 L	+,45/	1 2.1m		= oling
100/	+.40	1 +, lan		Ovy
IMPORTANT NOTICE:				

All balances are serviced under lab ambient conditions. Manufacturer's tolerances are for new equipment used under ideal conditions. Your results may reflect the age of the equipment and environmental conditions. 

OTHER INFORMATION AND COMMENTS PERTAINING TO THIS SERVICE AND CALIBRATION:

INFORMATION ON STANDARDS USED IN THIS SERVICE AND CALIBRATION:

One or more of the following standards were used as references for this calibration. Their calibration is traceable to the National Reference Standards maintained by the National Institute of Standards and Technology. Our N.I.S.T. traceable Reference Number is 732/246308.

Rice Lake         1mg - 100g         A45         7/2/92         7/2/93           Rice Lake         1mg - 5kg         7764         1/25/93         1/25/98	<u>Manufacturer</u>	Description	Serial No.	Date of Last Calibr.	No. 1
Rice Lake   1mg - 5kg   7764   1/25/93   1/25/99		1mg - 100g			
7/23/33		1mg - 5kg	7764		
$\frac{1}{100} \frac{1}{100} \frac{1}$	Rice Lake	5g - 2kg			
Rice Lake 1kg - 5kg C4488 7/2/92 7/2/93	Rice Lake		C4488		

rev. 3-30-93

## **QUALITY CONTROL SERVICES**

LABORATORY AND METROLOGY EQUIPMENT: SALES AND SERVICE

## REPORT OF SERVICE AND CALIBRATION

CUSTOMER EW	espar emg. 2kg	ST. PERF. MAI	KE OHAUS	LOCATI	ON
ADDRESS  318	5 S. CENTRAL	MOI CMOI	DEL 64000	CONTAC	
KENTU	UTA 98032				~
			<u>14163</u>	TECHNI	CIAN BOO
This Serv Da	te 6/16/93	Last Serv	Date 12/18/92	Next	Serv Due 12/_/9
Function Tes	ted A	s Found	Manufacturer's T	olerance	After Service
Cornerload	_	±18-	±. 2g		±.1x
Optical Rang	e	w/1+	4		Na
Optical Rang	e w/Tare	NA	NA		NA
Linearity or	50-50	±,2 ₁	£.18		1.4
Hysteresis	ے_	.18-	±.18		* 1
Calibration	Ī	015/+.35	2.0/z/1.1.	×	± .01x/.1x
Individual W	t. Readings	As Found	Manufacturer's Tol	erance	After Service
	×	40 1	+18	<u>-</u>	± 02
	<u> </u>	t 0	4.18		± .04
i Ko	(p   ±	` o 1	± , le		± ,0x
2K		+.15	2.18	.	± .08
4K	ا و	+.35	2.10		1
=======================================			<u>'/)</u>		2,05
of the equipm	are serviced used ent and environ	under ideal onmental cond	cient conditions. conditions. Your litions.	results	may reflect the age
OTHER INFORMA	TION AND COMME	NTS PERTAINI	NG TO THIS SERVICE	AND CAL	
ULDRAT	<del></del>	0 ) =========	DISPLAY FX	アエアゴハ	6
INFORMATION O	N STANDARDS US	ED IN THIS S	ERVICE AND CALTERA	====== TION -	r this calibration.
National Inst Number is 732	itute of Stand	Die to the N	ational Reference hnology. Our N.I.	5+22d-42	
Manufacturer Rice Lake	Description	Serial No.	Date of Last Cal.	br. Ne	xt Calibr. Due
Rice Lake	1mg - 100g 1mg - 5kg	7764	7/2/92		7/2/93
Rice Lake	5g - 2kg	D74	1/25/93		1/25/98
Rice Lake	1kg - 5kg	C4488	7/30/92 7/2/92		7/30/93
			1/2/32		7/2/93

rev. 3-30-93

# Data Sheet #32 Thermocouple Calibration Record

Thermocouples Check against

Reference Thermometer

Ice Water Bath
Boiling Water
Room Temperature

Barometric Pressure 6 | 21/93serial number 9123454  $0^{\circ}C = 33^{\circ}F$   $1/00^{\circ}C = 3/3^{\circ}F$  30.01

TC	Location	Ice Bath Temp	Boiling Water Temp
1	Wet Bulb	32,3	211,9
2	Dry Bulb	32, 2	2/2, /
3	Stack	33,2	श्चा. ।
4	Stove Top	32.1	211.9
5	Left Side	32.1	211.8
6	Back	32,2	21/18
7	Right Side	32.2	211.9
8	Bottom	3ప్ప3	211.9
9	Firebox	32,3	<i>ع</i> اء . <i>ا</i>
10	Secondary/Cat	32,2	212.1
11	Ambient	32.2	212.2
12	Tube Furnace	32.2	212,2
13	Sample Box	32./	211.9
14	Impinger Out	30.1	<i>2</i> 12.0
15	C. Gas Box	35.1	2119
16	C. Gas Out	32.4	211,9
17	SO2 Out	32,4	212.2
18	Upper Ambient	32.1	<i>3</i> 13.1
19			
20			
21			
22			
23	Calibrator	NA	AU
24	Oven	32.3	<i>213,2</i>

# Data Sheet #32 Thermocouple Calibration Record

Thermocouples Check against

Reference Thermometer serial number 9123454

Ice Water Bath
Boiling Water  $\frac{O^{\circ}C = 32^{\circ} F}{100^{\circ}C = 212^{\circ} F}$ 

Boiling Water

Room Temperature

Barometric Pressure  $100^{\circ}C = 212^{\circ}F$  30.05

DATE: 12/31/92

TC	Location	Ice Bath Temp	Boiling Water Temp
1	Wet Bulb	32.1	211.9
2	Dry Bulb	32,1	211,9
3	Stack	32,3	2B.1
4	Stove Top	32,4	<u> </u>
5	Left Side	32.2	212.0
6	Back	32.1	212.1
7	Right Side	32.1	212.1
8	Bottom	32.1	211.9
9	Firebox	<i>32.5</i>	212.2
10	Secondary/Cat	32,4	<i>2</i> 12.2
11	Ambient	32.4	212.1
12	Tube Furnace	32.5	212.2
13	Sample Box	32,5	\$12.2
14	Impinger Out	32.1	<i>ଥା</i> ଥିତ
15	C. Gas Box	32.0	212.0
16	C. Gas Out	32.0	212.0
17	SO2 Out	<i>3</i> 2. <i>1</i>	<i>a1</i> 2.1
18	Upper Ambient	<i>3</i> 3.1	212.1
19			
20			
21			
22			
23	Calibrator	NA	NA
24	Oven	32.1	<i>ટ્યાંગ,</i> 3

#### **Stack Temperature Sensor Calibration Date Sheet**

Date: 6/21/93	Thermocouple Number:	T/C Readout
Ambient Temperature: 72	Barometric Pressure:	30.02
Technician: BU	Reference: Mercury	n glass
<del></del>	FISHER #	<u> 19123454</u>

OMEGA CL-300 Other:

Reference Point No. ^a	Source b	Reference Thermometer	Thermocouple Potentiometer	Difference (%) ^C
		Temperature °F	Temperature °F	
32	Ice Water	32	32.2	-,04
212	Boiling			
	Water	212	212.2	-,03
250	Omega	250	250.3	-,04
300	Omega	300	300.2	-103
400	Omega	400	400.3	- ,03
500	Omega	506	50,3	-,03
600	Omega	600	600,2	-,02
700	Omega	700	700.1	-,01
800	Omega	800	800.1	01
900	Omega	900	900,2	-,01
1000	Omega	1000	1000.1	01
1200	Omega	1200	200.1	01
1400	Omega	1400	1399.9	,01
1600	Omega	1600	1599.9	.00
1800	Omega	1800	1800.1	-,06
2000	Omega	2000	2000.2	01

^a Every 50°F for each reference point

Reference temperature

x100<1.5%

b Type of Calibration System Used c (reference temperature) - (Test thermocouple temperature)

#### **Stack Temperature Sensor Calibration Date Sheet**

Date:/2/31/92	Thermocouple Number: T/C Readout
Ambient Temperature: <u>70</u>	Barometric Pressure: 29, 98
Technician: BU	Reference: Mercury in glass
	<b>FISHER #9123454</b>
	Others OMECA CT 200

Reference Point No. ^a	Source b	Reference Thermometer	Thermocouple Potentiometer	Difference (%)°
T OME I (O.		Temperature	Temperature	(70)
		°F	°F	
32	Ice Water	32	32,2	04
212	Boiling			
	Water	212	211,9	101
250	Omega	250	250,3	04
300	Omega	300	300,/	01
400	Omega	400	400,2	0ユ
500	Omega	500	<i>50</i> 0.3	-,03
600	Omega	600	600.1	-,01
700	Omega	700	699.8	,02
800	Omega	<i>800</i>	799.9	,01
900	Omega	900	900.1	01
1000	Omega	1000	1000.0	.00
1200	Omega	1200	1199.8	,01
1400	Omega	1400	1399,7	,02
1600	Omega	1600	1599.8	,01
1800	Omega	1800	1799.9	,00
2000	Omega	2000	1999.8	10

^aEvery 50°F for each reference point

Reference temperature

x100<1.5%

b Type of Calibration System Used c (reference temperature) - (Test thermocouple temperature)

#### TRACEABILITY DOCUMENTATION

S02 INECTION ROTAMETER, DRY GAS METER AND SLING PSYCHROMETER THERMOTERS IN LAB. CHECKED AGAINST FISHER SN 9123434 (NIST).

DATE: <u>/2/31/92</u>

#### SO2 Injection Rotameter

FISHER SN 9123454 NIST Traceable SO2 Injection TC

٥F

Actual	°C Adjusted	°C = °F	°F	
20	19,91	67.8	68.0	
24	23.92	75.1	75.2	
25	24.92	76.9	27.1	
30	29,93	85.9	86,1	

#### Dry Gas Meter Thermocouples

Actual	°C Adjusted	°C = °F	5H in	5H out	KK
20	19.91	67,8	67.9	67.4	48
24	23,92	75.1	75.2	75,3	75
25	24,92	76.9	76,7	74,8	76
30	29.93	85.9	85,8	<i>8</i> 5,8	86

#### Sling Psychrometer

Actual	°C Adjusted	°C = °F	Wet Bulb	Dry Bulb
20	19.91	67,8	68	68
24	23,92	75. /	75	75
25	24.92	76,9	76	77
30	29,93	85.9	86	86

Conversions =

F=(Cx1.8)+32

C=(F-32)/1.8

Adjusted temperatures derived from an eleven point calibration of the Fisher thermometer.

#### VANEOMETER CALIBRATION

EEMC uses a Dwyer Model #480 Vaneometer to measure test chamber air velocity. The manufacturer's specifications for accuracy are  $\pm 5.0\%$  to 100 FPM and  $\pm 10\%$  from 100 FPM to top of scale. EEMC insures that the instrument is level and clean prior to taking each reading. According to EPA personnel (Westlin, RTP) no further calibration of the instrument is necessary.

#### DRAFT GAUGE CALIBRATION

EEMC uses a Dwyer Model 115-AV 0 - 0.25" inclined water manometer (readi- bility resolution  $\pm 0.001$ " of water) to measure the static pressure in the stack. Once leveled and zeroed as per the manufacturer's written operating instructions, the Dwyer 0 - 0.25" manometer is a primary standard and needs no additional calibration.

The manometer is leveled and zeroed at the start of each test run, checked as necessary during the run to verify that the settings have not changed and again at the end of each test run. The results of each check are recorded on Woodstove Data Sheet #16 in each individual test run.

#### BAROMETER CALIBRATION

EEMC uses a Princo Model 469 NOVA Mercury Barometer to measure Barometric Pressure at the Kent, WA Lab. When installed and maintained as per the manufacturer's written operating instructions, the Princo Model 469 NOVA Mercury Barometer is a primary standard and needs no additional calibration.

#### MOISTURE METER CALIBRATION

The Delmhorst Model RC-lC, SN 16152 Moisture Meter is calibrated each time the meter is turned on using the two (2) calibration settings (Zero and Span). The potentiometers for each calibration point ( $X=Zero,\ Y=Span$ ) are adjusted until the meter is correctly calibrated. Then the operation of the meter is checked in the normal operating range used during testing (11 - 25%) with a Delmhorst Model MCS-l Moisture Content Standard at 12.0% and 22%.

EEMC also has a second Moisture Meter - Delmhorst Model G-30 SN 2477 - to use as a backup and as means of checking the readings on the Model RC-1C.

Post Test Meter Box Audits Woodstove Data Sheet #32 Unit: Fx Drolet HTZ000 Date: 7-2-93

Technician: Cw WST9-Form2, Rev12/88

#### METER BOX CALIBRATION AUDIT

	METER B	OX CALIBRATIO Test Data	N AUDIT	•
Run # 1		4 5 6		9 10
Avg. Δ H (130			17	
Max Vac 10.0		5.0 7.0 2.0	<del></del>	
Avg. Test Serie	зя Д н: <u>105</u>	_in H ₂ U. Test	Series Max Va	c: //.O in Hg
Audit Dry Gas 1	feter: KY	Correc	tion (Y) Facto	Lara
Test Dry Gas Me			tion (Y) Facto	
,	<u> </u>	Audit Data	cion (i) racto	F: 1,025
		Audit #1	Audit #2	Audit #3
BP:		<u>30.05</u>	30.05	30.05
Vac:		)],()		11.0
Audit Meter:	Final Vol	206.450	211.619	216.675
	Initial Vol	200,500	206.450	211.619
	Vol (Vw,ft ³ )	5,950	5.169	5.056
Audit Meter:	Initial	72	7z	72
Temp (OF)(Tw)	Mid	72	_72	72
	Final	72	77	_72
	Avg (of/oA)	72 (532)		) <u>72</u> (532)
L H (in H ₂ 0)	Initial	.155	155	155
	Mid	155	155	<u>. 155</u>
	Final	,155	155	
	Avg	.155	1155	155
ry Gas Meter:	Final Vol	667.400	672,500	677.500
	Initial Vol	661.500	667.400	672. <i>500</i>
	Vol (V _d ,ft ³ )	5.900	5.100	5.000
ry Gas Meter	Initial		<del></del>	
emp (OF):Inlet	Mid			
	Final			<u></u>
	Avg (°F/°A)			-
ry Gas Meter	Initial		<u> 78</u>	<u> 78                                    </u>
emp (°F):Outlet		7/	78	78
	Final	78	78	<u>79</u>
no Danie C	Avg (OF/OA)	<u> </u>	<u> </u>	<u>79</u>
vg Dry Gas	E (OA)	(522)	(150)	<u> </u>
eter Temp (Tm-° Lme (minutes)	r/MA)	26.83	(538)	<u> (538)</u>
LMC (MINUCES)	•	20,02	<u>23</u> , 48	24.00

WST9-Form2, Pg2

$$Y = \frac{(Vw)(MCF)(BP)(Tm)}{(Vd)(BP + \Delta H)(Tw)}$$

Y Factor % Difference = Act - Exp X 100 Exp

NOTE: MCF = Meter Correction (Y) Factor for Dry Gas Meter used as a Transfer Standard

$$\frac{\text{Run 1}}{\text{Y}} = \frac{(5.950)(30.05)(1.028)(537)}{(5.900)(30.05)(1.028)(537)} = \frac{98702.66}{94356.71} = \frac{1.046}{13.6}$$

$$\Delta z = \frac{(1.046 - 1.028)}{1.028} \times 100 = \frac{1.751}{2}$$

$$\frac{\text{Run 2}}{\text{Y}} = \frac{(5.169)(30.05)(1.028)(538)}{(5.100)(30.05)(1.028)(538)} = \frac{85906.57}{81562.58} = \frac{1.053}{13.6}$$

$$\Delta x = (1.053 - 1.028) \times 100 = 2.437$$

$$\frac{\text{Run 3}}{\text{Y}} = \frac{(5.056)(30.05)(1.028)(538)}{(5.000)(30.05)(1.028)(532)} = \frac{84028.56}{79963.32} = \frac{1.051}{13.6}$$

$$\Delta x = (1.051 - 1.079) \times 100 = 2.237$$
TE: The Y Factor Z Difference must be  $\langle \pm 5.0\%$  to be acceptable

Determination of Interpolated Y Factor for Average Certification Test Series Delta H from Dry Gas Meter Calibration Data:

inch 
$$H_2O$$
 Delta  $H = \frac{1.030}{(C)}$  Calculated Calibration Y Factor (from Calibrations)

inch 
$$H_2O$$
 Delta  $H = \frac{1.027}{(D)}$  Calculated Calibration Y Factor (from Calibrations)

$$\frac{12}{(B)} - \frac{1}{(A)} = \frac{10}{(E)}$$

$$\frac{1.027}{(D)} - \frac{1.030}{(C)} = \frac{-.003}{(E)} = \frac{-.0003}{(E)}$$

$$\frac{155}{\text{Avg Delta H}} - \frac{1}{\text{(A)}} = \frac{.055}{.055} \times 100 = \frac{5.5}{.055}$$

Volume Metering System Leak Check: OOOO inch H2O in one minute

BORO	METRIC PRESSURE, Pb = 3	30.10	in Ha.	· · · · · · · · · · · · · · · · · · ·	<del></del>	<del></del>	<del></del>	1985 1
_— 	ifice Manometer tting , AH, in. H, O		.1	.2	.3	.5	.75	1.0
1		Final	<del></del>	111.600	<del> </del>	123.215	<del> </del>	<del> </del>
Gas	Volume Wet Test Meter	Initial	i ———	106.558	1	į .	i	133.843
		Vw, ft ³	5.05%			6.570	123,215	128,750
Gas	Volume Dry Test Meter		740 ,000	245,000		256.500	5:565	267.000
	Vd ft3	Initial	235,000	240,000	245,000	250.000		Z62.000
		W ft3	5,000	5,000	5,000	6,500		5.000
		Initial	70	78	80	84	W	3.00 86
I	WET TEST	Middle	74	79	82	85	86	86
E	METER	End	78	<b>8</b> U	84	86	86	80 80
PE	tw	Average	74 (534)	79 (534)		543)		(546)
R	200	Initial	81	87	91	93	95	97
I T	DRY GAS METER tm	Middle	84	29	9Z	94	96	97
RES		End	87	91	93	95	97	47
5		Average (	84) 544	89 549	92 (552)	(554)	550	(55)
-8	-Time, Minutes		27.67	20.00	16,00	16.00	11.50	9.117
	(Vw) (Pb) (tm)		82821.72 80386,63	83318.55°	83823.68	109 55 7.38	93 133.61	84884.74
) y =		İ	80386,63	31159.13	21630,78	106 75 9,49	40555.91	82373.74
	$Vd (Pb+ \frac{\triangle H}{13.6}) (tw)$		1.030 /	1.027	1.027	= 1:026	1.028	०८०,।
Дне	Pb (tm)	>			1.691			
Ko =	$= \frac{V_W}{B} + \frac{\frac{\Delta H}{13.6}}{t_{B} + 460}$	- ) (28 <b>.</b> 97) н)						
$oldsymbol{\Delta}$ H	ges: = <u>1.028</u> =							

$$p_b + \frac{\triangle H}{43.5} = p_e$$

<sup>13.5

28.97 -</sup> molecular weight of air

y = ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01

H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.

Tolerance 0.15.

DARGUETOTO ORFORNIOS	2000	<del> </del>				· · · · · · · · · · · · · · · · · · ·	
BAROMETRIC PRESSURE, Pb =	<u> 49,48</u>	_in.Hg.	<u> </u>	<u> </u>	<del></del>	<del> </del>	-
Orifice Manageter Setting , AH, in. H. D		.1	2.1	2.1	2.1	75.1	1.0
Gas Volume Wet Test Meter	Final	5.000	5,000	5,000	5.000	5.000	)
Gas Volume Wet Test Meter Vw ft 3		Reset 0	0	0	0	0	/
	Vw, ft ³	5,000	5,000	5,000	5.000	5,000	
Gas Volume Dry Test Meter	Final	560.017	565.109	570.227	1	1	
Vd ft3	Initial	555,000	560.100	565.200	570,300	ł	\
	Vd ft3	5.017	5,009	5,027	5.040	5,005	1
_ WET	Initial	68	68	68	68	68	į
T TEST E METER	Middle	68	68	68	68	68	1
M tw	End	68	68	68	68	68	-
E R	Average	68 - 528	68 - S28	68-528	48-528	68-528	į
A DRY	Initial	68	69	69	69	20	j
R METER L	Middle	69	69	69	69	69	/
E tm	End	69	69	70	69	69	-
	Average	69-529	69 -529	69 - 529	69-529	69 - 529	}
-D-Time, Minutes							į
(Vw) (Pb) (tm)				}			į
$\frac{A}{\text{Vd} \text{ (Pb+} \frac{\Delta \text{ H}}{13.6} \text{) (tw)}}$		1.002	1,00	1,004	1,006	0.999	
$\begin{array}{c} 1 \text{H } = \frac{.0317 \ (\triangle \text{H})}{\text{Pb } \ (\text{tm})} \begin{array}{c} (\text{tw}) \text{D} \\ \hline \text{VH} \end{array}$	ļ			5			
$K_0 = \frac{V_W}{-8} - \sqrt{\frac{(p_b + \frac{\Delta_b H}{13.6})}{t_m + 460}}$	) (28.97) H)						e de management i sub trabana, imperiore
Averages: y =/, OO 2							1

13.6

97 - molecular weight of air
y = ratio of accuracy of wet test meter to dry test meter. Tolerance 0.00

H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

	BAROMETRIC PRESSURE, $Pb = 29.98$ in Hg.									
	Or Se	rifice Manometer etting , AH, in. H ₂ O		2. کو	.2	2.2	5.2	JE . 2	1	0
(	<b>}</b> ─		Final	5,000	5,000	5,000	5,000	5.000	<del> </del>	
	Das	Volume Het Test Meter	Initial	0	0	0	0	0		<del>                                     </del>
			Vw, ft3	5,000	5,000	5.000	5,000	5.000	1	<del>                                     </del>
Ī	Gas	Volume Dry Test Meter	Final	585.641	590.726			606.115	-	
		vd ft3	Initial	580,600	585,700		,	601,100	<del>                                     </del>	
Ĺ			Vd ft3	5,041	5,026	5.036	5,009	5,015		
		WET TEST METER	Initial	68	68	68	68	68	$\top$	1
	T E		Middle	68	68	68.	68	68	i	1
	, A	tw	End	68	68	68	68	68		$\top$
	E		Average	68-528	68-528	68.528	68-528		1	$\top$
	Ä	DRY	Initial	69	69	69	61	69		77
Ì	U R	6AS METER	Middle	70	69	69	ଚ୍ଚ	69		
	Ë	tm	End	69	69	69	69	69		
			Average	69-529	69-529	69-529	69-529	69-529		$\top$
	-0	-Time, Minutes								1
	y =	$\frac{\text{(Vw)} \text{ (Pb)} \text{ (tm)}}{\text{Vd} \text{ (Pb+} \frac{\triangle \text{ H}}{13.6})} \text{ (tw)}$		1,007	1.004	1,006	1,000	1,002		
L		0317 (ΔH) (tw)0					To the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the			
	Ko =	$\frac{V_{W}}{-8} = \sqrt{\frac{(Pb + \frac{\triangle H}{13.6})}{tm + 460}}$	) (28.97) H)							
	y = Y = Ko	1,004				<u>.</u>				

13.5

37 - molecular weight of air
77 - molecular weight of air
78 ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
79 H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
70 Tolerance 0.15.

BAROMETRIC PRESSURE, Pb = 21,92 in. Hg.									
0	rifice Manometer etting , AH, in. H ₂ O		3	3	.3	2.3	J51,3	1.0,	
(``	- Volume Wet Test Meter	Final	5.000	5,000	5,000	5,000	5,000		
w Da:	ร Volume Wet Test Meter Vw ft อื่	Initial	0	0	0	0	0		
		Vw, ft ³	5,000	5,000	5,000	5,000	5,000	1	
Gas	Volume Dry Test Meter	Final	611.283	616.310	621.398	626.515	631.589		
	vd ft3	Initial	606.300	611.300	616,400	621500	624.600		
		Vd ft3	4.983	5.010	4,998	5.015	4.989		
	WET	Initial	68	68	68	68	68		
TE	TEST METER	Middle	68	68	68	68	68		
þ	tw	End	68	68	68	68	68		
ER		Average	68-528			68.528	68-528		
A	עפת	Initial	69	64	64	69	69		
U	DRY GAS METER	Middle	69	69	69	69	69		
ES		End	69	69	69	69	69		
ا ا		Average	69-529	69-529	69-529	69-529	69-529	Ì	
-	-Time, Minutes								
y =	(Vw) (Pb) (tm)  Vd (Pb+ $\frac{\triangle}{13.6}$ ) (tw)		,995	1,001	,998	1,002	,997		
Дне	0317 (AH) (tw)0								
Ко =	$\frac{Vw}{-8} = \frac{\sqrt{pb + \frac{\triangle H}{13.6}}}{tm + 460 \text{ (}}$	) (28. 97) H)							
Avera y • AH Ko	<u> ,999</u>				•				

$$Pb + \frac{\triangle H}{\triangle H} = Pu$$

13.5

13.5

77 - molecular weight of air

73 - ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01

75 - H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.

Tolerance 0.15.

į	BAROMETRIC PRESSURE, Pb = $\frac{29.98}{10.49}$ in Hg.									
	Orifice Manometer									
i	Se	etting, AH, in. H ₂ O	7	1.4	2,4	2.4	\$7,4	25,4	1	ю
(	Gae	. Volume Wet Test Meter	Final	5,000	5,000	5,000	5,000	5.000		
		Volume Wet Test Meter Vw ft 3		0	0	D	0	0		
į			Vw, ft ³	5,000	5.000	5,000	5,000	5,000		
ĺ	Gas	Volume Dry Test Meter	Final	<i>€</i> 37.∞3	642.119	647.198	652312			
		vd ft3	Initial	632.000	637.100	(H2.200	647,300	652,400		
Ĺ			Vd ft3	5,203	5,019	4,998	5.012	5,009		
		WET	Initial	68	68	68	68	68		
	ī	TEST METER	Middle	68	68	68	68	68		
	E WE	tw	End	68	68	68	68	68		
İ	E	•"	Average	68-528	68-528	68.528	68.528			
	Ä	DRY	Initial	69	64	69	69	69		
	U R	J GAS	Middle	69	69	69	69	69		
	Ë	tn	End	69	69	69	69	69		
Ĺ		75	Average	69-5291	69-529	69-529	69-529			
L	-8	-Time, Minutes								
		(Vw) (Pb) (tm)			-					
[ [	y =			1,000	1.003	,999	1001	1001		
Ĺ	ž.	Vd (Pb+ 13.6) (tw)		,,,,,,	7,003		1.001	),00 1		
		.0317 (AH) (tw)0 2			/	-		,		
L	.не=	Pb (tm) VM								
	$Ko = \frac{V_W}{-B} = \frac{\frac{(Pb + \frac{\triangle H}{13.6})(28.97)}{tm + 460 (H)}$									
	<b>7</b> H. =	ges: =								

$$p_b + \frac{\triangle H}{AB/B} = p_{ac}$$

13.6

97 - molecular weight of air

97 - molecular weight of air

18 - ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01

19 - H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.

Tolerance 0.15.

								/4
<u> </u>	OMETRIC PRESSURE, Pb =	27.98	in.Hg.					•
Or Se	rifice Manometer etting , AH, in. H ₂ O		15	2.5	ک, محمر	.5	JF.5	10
) — Eas	· Volume Wet Test Meter	Final	5,000	5,000	5,000	5,000	S, DO	
) bas	: Volume Wet Test Meter Vw ft ១	Initial	0_	0	0	0	0	
		Vw, ft 3	S,000	5,000	5.000	5,000	5,000	
Gas	Volume Dry Test Meter	Final	1063.008	668,110	673,197	678.291	683.395	
 	Vd ft3	Initial	658.000	663.100	668,200	673.300	678.400	
		Vd ft3	5.008	5,010	4,997	4,991	4,995	
WET	i Wet	Initial	69	69	69	69	(6 <b>9</b>	
T E	TEST METER	Middle	69	69	69	69	69	
¥	tw	End	69	69	69	69	69	
R P DRY		Average	69-529	69-529	69-529	69-529	69-529	İ
		Initial	69	69	69	69	69	
		Middle	69	69	69	69	69	
		End	69	69	69	69	69	
		Average	69-529	69-529	69-529	69-529	69-5191	
-0	-Time, Minutes							
y =	$\frac{\text{(Vw)} \text{ (Pb) (tm)}}{\text{Vd (Pb+} \frac{\triangle \text{ H}}{13.6}) \text{ (tw)}}$		/,002	1,003	1,001	,999	1,000	e egyberie en en egyber en en en en en en
Дне-	0317 (△H) (tw)0							
Ko =	$= \frac{V_W}{B} + \frac{\frac{\triangle H}{13.6}}{tm + 460}$	H)			in the state of Company	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		
Δh	iges: = =							

$$Pb + \frac{\triangle H}{42.5} = Pa$$

13.5
97 - molecular weight of air
= ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O. Tolerance 0.15.

BAR	OMETRIC PRESSURE, Pb = 2	29,98	_in.Hg.			· · · · · · · · · · · · · · · · · · ·		
0 5	rifice Manometer etting , AH, in. H ₂ 0		1.75	75,معر	A.75	-£1,75	.75	1/0
	- Volume Wet Test Meter	Final	5,000	5.000	5.000	5.000	5.000	
Ja.	s Volume Wet Test Meter Vw ft 3	Initial	0	0	ð	0	0	
		Vw, ft ³	5,000	5,000	5.000	5,000	5.000	
Gas	Volume Dry Test Meter	Final	689020	694.113	699.199	784.289	709.291	
	vd ft3	Initial	684.000	689.100	694,200	699.300	704,300	
		Vd ft3	5,020	5,013	4,999	4,989	4,991	
	HET	Initial	69	69	69	69	69	
T	TEST METER	Middle	169	69	69	69	69	
M p	tw	End		69	69	69	69	
E		Average	69-529	69-529	69-529	69-529	69-529	/
Ä	DRY	Initial	64	69	64	69	69	/
U R	GAS METER	Middle	169	69	69	69	69	
E	tm	End	09	64	69	69	69	
		Average	69-529	69-529	69-529	69-529	69.529	
1	-Time, Minutes							
	$= \frac{(Vw) (Pb) (tm)}{Vd (Pb+ \frac{\Delta H}{13.6}) (tw)}$		1,006	1,004	1,002	1,000	1,000	
Дн в	Pb (tm)Vw							
Ко	$= \frac{V_W}{0} = \frac{\sqrt{(p_b + \frac{\triangle H}{13.6})}}{\tan + 460 \text{ (}}$	) (28. 97) H)						
ΔH	ages: = <u>/،002</u> =				·			

$$Pb + \frac{\triangle H}{43.5} = Pa$$

97 - molecular weight of air
= ratio of accuracy of wet test meter to dry test meter. Tolerance = 0.01
H = Orifice pressure differential that gives 0.75 cfm of air at 70 F and 29.92 inches of mercury, in H O.
Tolerance 0.15.

Date Wet Test Meter Serial Number AAUSS

Rarge of Wet Test Meter Flow Reat

10.5281 W. H

Volume of Test Flask Vs=

Satisfactory Leak Check?

Amblent Temperature of Equilibrate Liquid in Wet Test Meter and Reservoir

Percent	Error, c	040	1110	0,425	01.0
Flask	VOLUME (VS),	48250	- 1	0.5284	
Total	1 1 1 KITOK, C. L. C. C. C. C. C. C. C. C. C. C. C. C. C.	0.5259		0.546	05249
Initial Volume (V1)	1	0,5259 ( Sirent)		0	0
Final Volume (V£).		0.5259		0.5261	0.5247 0
Manometer Reading, a	шп Н20	0.3	, (	0.5	6.3
Test	Number		· ·	4	£

a - Must be less than 10 mm H20 (0.4 "H20)

Calculations:

b - Vm - Vf - Vi

 $\chi_{1-3} = 0.535$ 

c = % error = 100(vm - vs)/vs =

WET TEST METER CALIBRATION LOG

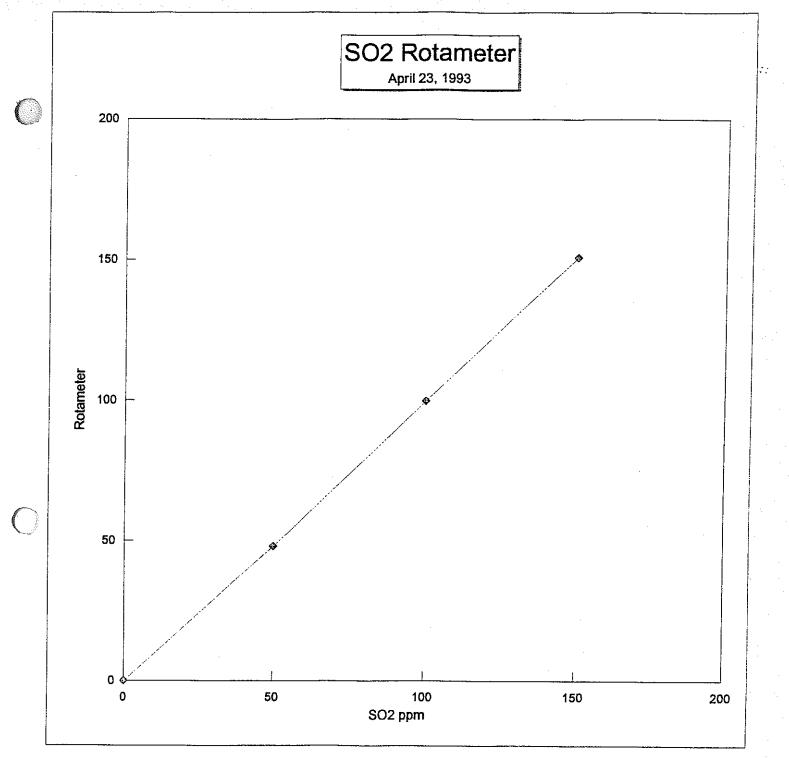
SO2 ROTAMETER CALIBRATION PAGE _/_ OF _Z___

DATE: 4/23/93 BY: BD LAST CAL: 10/24/92 BY: BD

MANUFACTURER: COLE PARMER

BUBBLE TUBE MAKE & ID: SKC 125/250 EEMC #1

5N: <del>EEMS #2</del> 06/645


BAROMETRIC PRESSURE: 30.00 "Hg TEMPERATURE: 70 F CALIBRATION AT: EEMC KENT, WASHINGTON LAB

SPAN #	VOLUME	MIN or SEC	RTMTR	VOLUME cc/min
/	125	18226 18208 18419	50	VOLUME X 60 =
		156,14 156,14		AVERAGE
		155,89 156,30 156,25		125 x 60=
	TOTAL	1249.31		<u> 48.0265</u>
<u> </u>	VERAGE	156.1638		cc/min
2	125	75,30 74,86 74,90	100	VOLUME
		75,46 75,10		AVERAGE
		75, 13 74, 93 75, 15		<u>/25</u> x 60=
	TOTAL	75.11		<u>99, 8535</u>
A	VERAGE			cc/min
3	125	48.96 49.50 49.46	120	VOLUME
		50.01 50.07		AVERAGE X 60 =
		49,63 40,75 50,08		125 x 60=
	TOTAL	397.4600		/50.9586
А	VERAGE	49.6825		cc/min

SETTING	CC/MIN
0	0
50	48.0265
100	99.8535
150	150.9586

SLOPE	=	
Y-INT	=	
r 2	=	
r	=	

ROTAMETER SETTING FOR 100 cc/min : _/OO



#### Regression Output:

Constant	9	-0.99577
Std Err of Y Est		1.302315
R Squared		0.999734
No. of Observations		4
Degrees of Freedom		2
_		

X Coefficient(s) 1.009406 Std Err of Coef. 0.011648

CEM Gas Train Response Time   CLOS   CO2   CO2   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS   CLOS										
COC. COC. COC. CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(%) CORE.(				CE	M Gas Trai	n Response	Time			
1/2   1/3   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4	Elapsed	CO2 Conc. (v.)	CO2 Comc. (v.)	CO2 Conc. (v.)	02 Conc. (v.)	O2 Conc. (v.)	02 Conc. (v.)	00	02	00
1,457   1,453   1,534   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,431   1,4	oos oo	515	7151	PIS,	SOP.	ζψ'	492	780	カぞり	NSP .
103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103   103	15	1467	USh'	,453	,532	1551	9/25'	185	7CF.	157
10   10   10   10   10   10   10   10	30	PC0,	,03م	150,	C8C'	ر %ر	<i>دلال'</i>	,008	7.00	9CO
1000   1001   1001   1831   1832   1003   1001   1001   1001   1001   1001   1001   1001   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000	45	۲۱0'	101	210'	1831	673	80%	olo	6W,	300
1000       1001       1631       1833       1802       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       10000       10000       10000       10000       10000	09	<b>7</b> 00	,003	,003	1831	ςξ3,	,830	,003	600,	8
000       ,000       ,000       ,831       ,833       ,633       ,000       ,000         ,000       ,000       ,831       ,833       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000       ,000	75	0001	102/	100'	.831	,833	1832	OCV.	000	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	000	000′	000/	1831	,833	,832	000/	8	ξ
$     \begin{array}{c cccccccccccccccccccccccccccccccc$	105	000′	000/	000/	1831	,832	,833	000	000	3
1555FH - 35 23 237 236 236 236 236	120	000′	000/	οω′	1831	832	,833	040	3	8
10 210 210 210 210 210 210 210 210 220 235 235 236 236	135						2		2	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	150									
2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10	165									
2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10	180									
1 35 25 25 236 237 236 236 236 1.55kH	Initial Response	6/5	0/2	0/2	0/2	~10	20	012	0/2	015
	95 % Response				436	,	236	~36	n.36	r 36
	Flow	15SFH								1

Homesan

Figure   SO2   SO2   SO2   SO2   SO2   SO2   SO2   SO2   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   SO3   S				F	į	ļ	ļ			
SO2   SO2   SO2   SO2   SO2   SO2   SO3   SO3   SO3   SO3   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come.(v.)   Come	•			ırac	er Gas Ira	ın Kesponsı	e Time			
18   18   18   18   18   18   18   18	Elapsed time	S02 Conc. (v.)	SO2 Conc. (v.)	S02 Conc. (v.)	S02 Conc. (v.)	S02 Conc. (v.)	SO2 Conc. (v.)	S02 Conc. (v.)	S02 Conc. (v.)	SO2 Conc. (v.)
188 194 194 196 196 196 196 196 196 196 196 196 196	00 sec	18°	1881	18'						
2008 2008 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003	15	281'	hb1'	88/						
2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003 2003	30	510'	910'	9/0'						
2003 2003 2003 2004 2004 2005 2005 2005 2005 2005 2005	45	800/	800′	, 009						
2003 2003 2003 2003 2003 2003 2003 2003	09	∠ω'	500′	,806						
2003 2004 2004 2005 2005 2007 2007 2007 2008 2008 2008 2008 2008	75	500/	803,	780,						
200, 600, 600, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 1002, 100	90	5003	,00 3	ζω,		,				
2 38 2 38 6 7 1/2/2 1/58274 238 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	105	400/	48/	ر غ						
2 38 2 38 2 38 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,538 1,5	120	ر ش	48	۲۵,						
2 38 238 238 1.55STH	135									
2 38 238 28 1/2// 2/58544 288 288 288 288 288 288 288 288 288 2	150						2-			
2 38 2 28 1 21/ 2 38 2 38 12 38 15 55 1/ 2 5 5 5 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	165									
2 38 2 38 2 38 1.55STH	180									
2.38 2.38 12.38 1,5sxx	Initial Response	1/2	6//	1/5	,					
/,5Scf.#	95 % Response		638	æ 38						
	Flow rate			1	5					
	ommen	:S:		*						

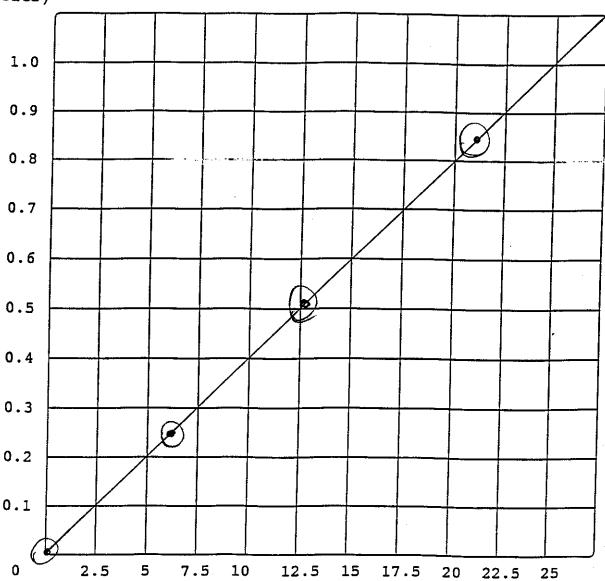
٠.

## Orsat Analysis Data Sheet

Date: <u>5/28/93</u>

Gas	1	2	3	AVE	CONC	TANK
	•	<u> </u>				ID
CO	8.4	8.5	8,5	8,47	8,50	LAUID AR
CO2	21.2	21.1	21.1	21.13	21,25	CC6084100
O2	21,2	21.2	21.1	21.17	21.24	11/19/90
CO	2.4	2.5	2.5	2,47	2.49	LIQUID AIR
CO2	6.2	6.3	6.2	6,23	6.25	T201070
O2	6.3	6.3	6,2	6.27	6.25	11/19/90
CO	0	٥	0	0	0	LIQUID AIR
CO2	0	٥	0	0	0	T132257
O2	٥	0	٥	٥	0	12/7/92
CO	4,9	5,1	5,0	5,00	5,01	MATHESON
CO2	12,5	12,6	12,6	12.56	12.6	AS40875
O2	12.7	12,7	2.8	12.73	12.8	1/11/93
CO	٥	٥	0	0	0	LIQUIO AIR
CO2	0	0	0	0		T188 172
O2	٥	0	٥	0	_	1/28/93
CO						<u> </u>
CO2				-		
O2						
CO						
CO2						
O2						
CO						
CO2						
O2						

#### EEMC


## CO2 ANALYZER MULTIPOINT CALIBRATION REPORT FORM

Site	: EEI	nc	KE	UT, W	<u>A</u> 1	Date:_(	1/16/0	93						
Anal	yzer: M	ake:_	HORLE	<u>sa</u>	Mo	odel:_	PIR 20	00	SN	407060	7			
Cali	bration	by:_	D.	Lung	man	<u>.</u>			<u></u>					
Cal	Cal Gas Flow: 1.5 SCFH Measured by: Rotameter: X Mass Flowmeter: BP: 30 00 Instrument ID: PRINCO Instrument ID: TR													
Anal	Analyzer last calibrated: 6/11/93 By: D. Kungman													
1.	Cylinders:  1. # <u>T/37257</u> Concentration: <u>00.0</u> % CO2 Cyl. Press.: <u>2000</u> PSI Certified by: <u>L/0010 Air</u> Date: <u>6/10/93</u>													
2.	# <u>AS4097</u> Certifie	5 Co	ncentr : <u>M</u>	ation_ ATHESC	12.L	<u>o</u> 8	CO2 Cy	l. Pre Date:_	ss.: !/11/	500 93	_PSI			
3.	2. #AS40975 Concentration 12.6 % CO2 Cyl. Press.: 500 PSI Certified by: MATHESON Date: 1/11/93  3. #CCLOSHICConcentration 21.25 % CO2 Cyl. Press.: 1100 PSI Certified by: LIQUID AIR Date: 11/19/90													
4. #	# <u>T201070</u> Concentration <u>6.25</u> % CO2 Cyl. Press.: <u>1300</u> PSI Certified by: <u>LIQUID AIR</u> Date 11/19/90													
F	Analyzer: Calibrated Range: O-25.0 % Output: O-1.0 V. Flow: 1.5 ScFH Measured by: Rotameter: X Mass Flowmeter:													
					Calib	ration	Result	ts						
Point	Cyl.	8	Expe	cted	Acti	ual	Ac	ij.	ક	Potenti	ometer			
#	#	CO2	Meter	DVM	Meter	DVM	Meter	DVM	Dif.	Unadj.	Adj.			
1	1	0.00	00.0	.000	00.00	.000				7.79				
2	2	12.6	50.4	.504	49.6	.496	50.4	.504		2.02	2 35			
3	3	21.25	85.0	. 850	85.6	. 850		_						
4	4	6.25	25.0	.250	25.3	. 253								
5	1	۵۵.۵	00.0	.000	0.00	.000					<del></del>			
men	ts:	5=	124	14										

#### Linear Regression Results:

Y = MX + B Slope (M) = 0.0402265 Y Intercept (B) = -0.0000704 Correlation Coefficient (r) = 0.9999849  $r^2 = 0.9999699$ 

Analyzer Output (volts)

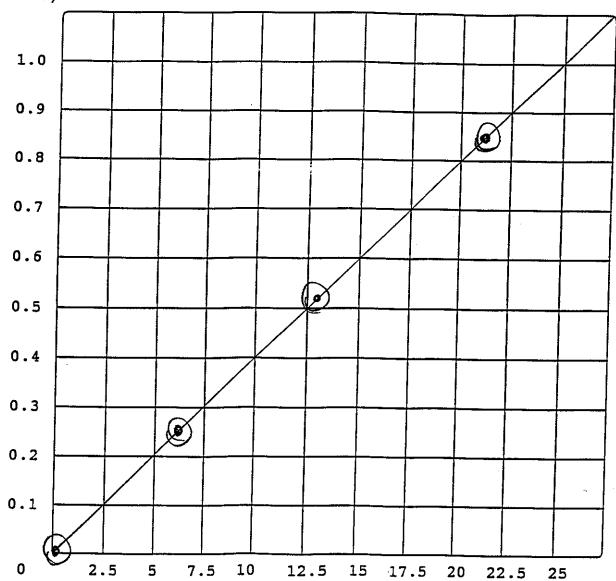


Span Gas Concentration (% CO2)

EPA Span Value =  $\pm 1.2.0\%$  of 25% CO2 =  $\pm 1.2.0\%$  Cal Volts = Cal Volt Conc - Std Conc =  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$  .  $\pm 1.2.0\%$ 

Γ	7 [	7 [		1	<del>-</del>	<u> </u>		Ī	T	1	T	Γ	7	T	T	1	T	T		T	T		I	
	940				c	<u> </u>						<u> </u>	╢.	_	_	_		$\perp$	_	$\perp$		POST		
MAN	25.0				-	,																PRE		
KINGMAN	0 - 2				0																	POST		
INDY	0				0																	PRE		
NOWAK/CINDY			11.	- 430	0 0	911-							12.514	12.6	-1.86				•			Post	FX Deor	ET_
NOW	GE	S S	1/4	104.	5 0	-016							12.5(3	12.1.	- 291				1			F 6	HT 20	00
BILL	RANGE	R GAS	198	_		780			,				12.588	12.6								POST.	Fy	ET
	407069	CYLINDER	6/30		0	911							12.489	12.6	-883				1			<b>#</b> 5		00
OPERATORS	4	}   I	6/3	_	70	P80.							12.464	12.6	-1.091					,		1504 4	FX Deor	ET
OPE	-2000	FIEC	0/9		0	-116							12.538	12. b	-488				1			뿙식	HT20	
	PIR-	CERTIFIED	86/2	_	Ti"	180.							12.543	12.6	:291				1			53	FX Deol	£Τ
	HORIBA	WITH	86/9	$\overline{}$		9 :- :							12.538	12.6	884-				1			<b>≝</b> 3	HT20	
	НОН		6/24	<del>                                     </del>		٠١٥ ل			•				12.538	12.6	- 488				1			152	FX Deole	Τ.
MA.		SPANS	50	+	+	-116				•			12.513	12.6	- 291				1			<u>#</u> 2	HT200	00
KENT	<u>o</u>	AND	6/23			.183			4				12.439	12.6	-1.278					<b>&gt;</b>		POST	DEOLE	T
	INSTRUMENT/SERIAL NO	ZERO	6/23			21,	C\$	(1)	16.	20			2.538	ما. 12	884-	CE	- Fil	G	/ HV	= (		# 1	HT2000	5
LOCATION	UMENT/S	!	71/9	ļ	0	.123	1 - 1				-11		12.446 12.538	12.6		1 ~ 1;						Post	HEATILAT	11
roc	INSTR		81/9		o	.024			•				12.421	12.6	-1.42b		_			丌		# I	5-12I	- II
		ЕТНОВ	11/9	.031	0	.123					$\top$		2.570	12.6	- 7237				/				HEATILAT	roe
EESPC	202	REFERENCE MATERIAL OR METHOD	11/9	200.	0	. 024	1		1	1		1	12.545 12.570	12.6	<u>- 43</u>				1			<u>#</u> 5	5-12	
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	ซี	MATERI	II I				7		0	— <u>l</u>	7				-	<u></u>	<u>'</u>	, 0	·	-2				
TE [	L S	RENCE	DATE 1993	ONSE	UAL	TENCE			0	'	ı		SPONSE	IVAL	RENCE			Z				RUN NUMBER	E-!	
SITE	GAS	REFE	DA	ZERO RESPONSE	ZERO ACTUAL	% DIFFERENCE			ZERO				SPAN RESPONSE	SPAN ACTUAL	DIFFERENCE			SPAN				RON J	TINO	
				ZER	7E	*							<u>هٔ</u>	<u>v</u>	×									

#### EEMC


# O2 ANALYZER MULTIPOINT CALIBRATION REPORT FORM

	: <u>EE1</u>								<del></del>					
Anal	yzer: M	ake:	Telec	lyne	М	odel:_	320	Д.	sn	: 37400	· · · · · · · · · · · · · · · · · · ·			
Cali	bration	by:		<u>Ó.K.</u>	nçmi	<u>an</u>	······································							
Cal	Cal Gas Flow: 1.5 SCFH Measured by: Rotameter: X Mass Flowmeter:  BP: 30.00 Instrument ID: PRINCO  Temp: 48 Instrument ID: TR													
										nan				
Cvli	Analyzer last calibrated: 6/11/93 By: D. Kugman  Cylinders:  1. #1/32257 Concentration: 00.0 % 02 Cyl. Press.: 2000 PSI Certified by: LIQUID AIR Date: 6/10/93													
2.	#AS4087 Certific	5 Co	oncentr	ation MATHE	12.5 SON	8	02 Cy1	. Pres	15.:	500 11/93	PSI			
3. #	CCCL084 Certifie	∐ <u>(</u> ()Co ed by	ncentr	ation_ U001D	21.24 AIR	8	02 Cyl	. Pres Date:_	s.:	1100	PSI			
	3. # <u>CCCL084 CCConcentration 21.24</u> * 02 Cyl. Press.: 1100 psi Certified by: Liquid Air Date: 11/19/90  4. # <u>T201070</u> Concentration 6.25 * 02 Cyl. Press.: 1300 psi Certified by: Liquid Air Date 11/9/90													
A F	nalyzer low:	: c /5 5	alibra CFH	ted Ra Me	nge: <u>C</u> asured	)- <b>25.0</b> by: R	otamet	Outpu	t: <u>O</u>	-/-O s Flowmete	V.			
							Resul		<del>-</del>					
Point	Cyl.	ક્ર	Expe	cted	Acti	ual	Ac	dj.	æ	Potenti	ometer			
#	#	02	Meter	DVM	Meter	DVM	Meter	DVM	Dif.	Unadj.	Adj.			
1	1	0.00	00.0	.000	0.00	.000	_				_			
2	2	12.8	12.8	.512	12.8	.513	12.8	.512						
3	3	21.24	21.2	. 850	21.2	.857				_	_			
4	4	6.25	6.3	.250	6.4	. 258								
5	1	۵.۵	00.0	.000	00.0	.000								
mment	·s: .5	=	12.39	71						<del></del>				

### Linear Regression Results:

Y = MX + B Slope (M) = 0.0402097Y Intercept (B) = 0.0017375Correlation Coefficient (r) = 0.9999395 $r^2 = 0.9998790$ 

Analyzer Output (volts)

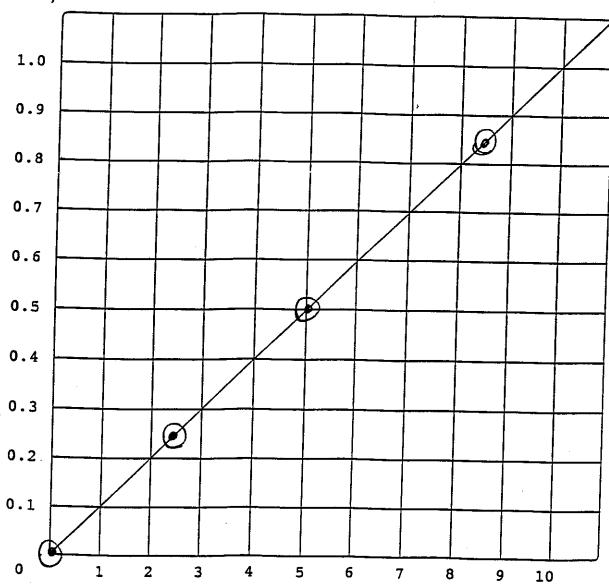


Span Gas Concentration (% O2)

EPA Span Value =  $\pm 1/2.0\%$  of 25% 02 =  $\pm 1/2.5\%$  Cal Volts = Cal Volt Conc - Std Conc =  $\pm 1/2.5\%$  . 857 =  $\pm 1/2.4\%$  . 857 =  $\pm 1/2.4\%$  . 858 =  $\pm 1/2.4\%$  . 871 -  $\pm 1/2.4\%$  . 258 =  $\pm 1/2.4\%$  . 259 =  $\pm 1/2.4\%$  . 2500 = 3.200

					0																	POST		
MAN	25.0%				0																	PRE		
KINGMAN	0 - 2				0																	POST		
ENDY	0.				0																	PRE		
NOWAK/CINDY			1	057	0	.236			1				12.715	2 8	777				1			Post	ρ	FX Dedlet
	RANGE	Ŋ	1/1	.003	0	180							12,739	17.8	173				1			J. E	0	HT 2000
BILL	RAI	R GAS	1/30	107	0	424			4				12,441		-2.80₫							POST	5	FX Deolet
	īU	CYLINDER	6/30	1	0	870:			1				12.690	12.8	~_	-11			1			PRE C	5	HT 2000
OPERATORS	37465	1 1	129	633	0	.130							S 648	12.8	1.250					•		POST	j l	FX Deolet
OPI	20A	CERTIFIED	P(39		0	-00.8							2.75	12.8	, ,				$ \langle$			PRE	١	HT 2000
	E.	CERT	6/28	182	0	.727			$\langle$				12.646	12.8	-1.250				l '			PST C	3   1	FX DEOLET
	TELEDYNE	MILH	85/7	110:	0	-,068							21.71	12.8	-1667							<b>≝</b> 3		T 2000
	TE	SPANS V	ابدام	710:	0	:068							12.839	12.8	304			1				<u>§</u> 2	ا ا	X DROLET
, WA		1 1	hela	.057	0	.230			4				2,540 12.988	8.21				1				<u>#</u> 2	۲	IT 2000
KENT	오	O AND	6/23	.057	0	.230						-	_	12.8	-1.250					7		POST	F	EX
Ш	INSTRUMENT/SERIAL NO	ZERO	6/23	-642	0	891 <del>-</del>				• ]			12.665	12.8	-1 00g				,			뿚 )		HT 2000
LOCATION	RUMENT/		81/9	710.	0	.310			1				12.151	12.8	: 382				/			POST	ì	eatilator Insert
100	INST		8 e	.102	0	.409	PE	`A	A	Α-	εΩ		12.801	12.8	.005	ع	C <b>A</b> Y	16	ea	TE 10		ا <u>ب</u>	3	5-12
		1ETHOD	21/9	.028	0	Ξ			X				12.726 12.751 12.801	12.8	-382							<u>5</u> 5	Hf	EATILATOR
EESPC	02	IAL OR	<u>۱۲۱/م</u>	710.	0	.310			1				12.726	12.8	-57b							5	9	5-12
<u> </u>		E MATER!	li i				2	-	0	<del>,</del>	- 2					c	· -	0	7	-2				
SITE	GAS	REFERENCE MATERIAL OR METHOD	DATE 1993	RESPONSE	ZERO ACTUAL	DIFFERENCE			ZERO				SPAN RESPONSE	SPAN ACTUAL	DIFFERENCE			SPAN			Countries	RUN NUMBER	UNIT	
				ZERO	ZER	۵ ×			_				SPA	SPA	°.		<del></del>					j		

#### EEMC


## CO ANALYZER MULTIPOINT CALIBRATION REPORT FORM

Site	: EEN	1_	K	ENT,	WA	Date:_	4/21/	93						
Anal	yzer: M	ake:	HORI	3A	М	odel:_	PIRA	000	sn	: <u>408005</u>	•			
	bration				•									
	Cal Gas Flow: 1.5 ScFH Measured by: Rotameter: X Mass Flowmeter:  BP: 30.00 Instrument ID: PRINCO Temp: 68 Instrument ID: TR  Analyzer last calibrated: U   1   93 By: D. Kingman													
Anal	yzer la	st ca	alibrat	ced:	١١ عا	193	Ву	<u>'</u> :	J. King	man	·			
Cylin 1.	nders: # <u>   322</u>     Certifie	57 Co	oncenti	ration:	00.0 AIR		CO CY	L. Pres Date:	ss.: 2	93	_PSI			
2.	AS4087 ertifie	5 Co	ncentr	ation_ <u>MATI</u>	5.01 IESON		co cyl	. Pres Date:_	ss.:	500 1/11/93	_PSI			
3.	CCCL084 ertifie	<u> </u> (∆)Ca ed by	ncentr	ation_	8.50 A QUU	) &	CO Cyl	. Pres Date:_	s.:	1100	PSI			
4. #	3. # <u>OCCLOSULO</u> Concentration 8.50 % CO Cyl. Press.: 1100 PSI Certified by: LIGUID AIR Date: 11/19/90  4. # <u>T201070</u> Concentration 2.49 % CO Cyl. Press.: 1300 PSI Certified by: LIGUID AIR Date 11/19/90													
A	nalyzer low:	: c 1,5 5	alibra XFH	ted Ra Me	nge: <u>C</u> asured	)-10.0 by: R	% otamet	Outpu er: <u>X</u>	t: O	- 1.0 s Flowmete	v.			
<del></del>		<del>,</del>		-	Calib	ration	Resul	ts						
Point	Cyl.	8	Expe	cted	Acti	ual	A	ij.	8	Potenti	ometer			
#	#	CO	Meter	DVM	Meter	MVG	Meter	DVM	Dif.	Unadj.	Adj.			
1	1	00.0	00.0	.000	00.0	.000				3.00				
2	2	5.01	50.1	. 501	49.7	.497	50.1	.501		2.75	2.98			
3	3	8.50	85.0	. 850	85.0	.850	-				_			
4	4	2.49	24.9	.249	24.9	.249		_			<u></u>			
5	1	0.00	0.00	.000	0.00 §	,000				-				
ment	:s: .5	5 = .	5.00	0										

### Linear Regression Results:

Y = MX + B Slope (M) = 0.1000000Y Intercept (B) = 0.0000000Correlation Coefficient (r) = 1.0000000 $r^2 = -1.0000000$ 

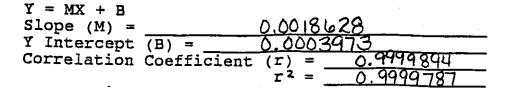
Analyzer Output (volts)



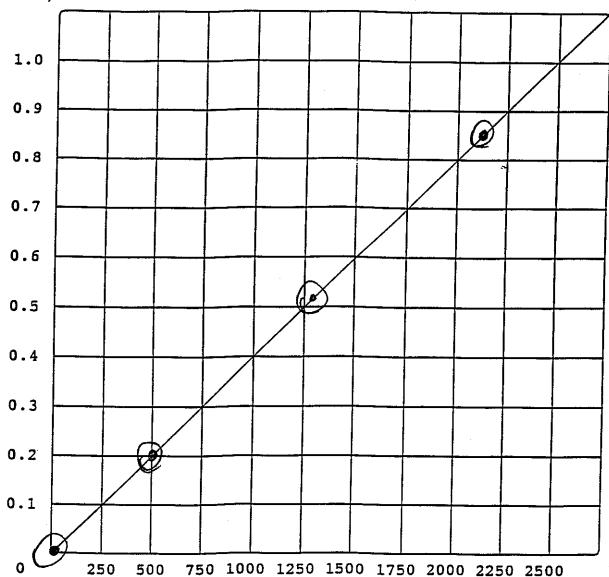
Span: Gas Concentration (% CO)

EPA Span Value =  $\pm 1/2.0\%$  of 10% CO =  $\pm 1/2.0\%$  Cal Volts = Cal Volt Conc - Std Conc =  $\pm 1/2.0\%$  . 850 = 8.500 - 8.50= .000 = .000

	1 <del></del>		-				71		-	<del></del>	T	1	<del>-,-</del>	Ţ	-	- 11	- <u>I</u>	T-	-1	7	_	7/	· ·
	940				0												$oldsymbol{\perp}$					POST	
MAN	10.0				0																	PRE	,
KINGMAN	0 - 1				0																	POST	
INDY	0				0																	PRE	
NOWAK/CINDY			1/2	000	0	000							5.020	10.00	007.			•				Post	FX Deonet
1 1	GE	'	12.	900	0	000.							5.020		2002							# L	HT2000
BILL	RANGE	R GAS	130	020	0	200			1				4.98	5.01					>			Post (	Ev
نــــا	408005	CYLINDER	1/30	000	0	000.							5.020	5.01	2002			1				PRE C	HT 2000
OPERATORS	4	]	66/29	1	0	001.							5,000			# 			>			Post 7	r- v
ado	-2000	CERTIFIED	PC/29	1	0	900			,				5,020	5.01	7			4				<b>#4</b>	
	PIR-	CERT	80/9		0	907							5.030	5.01	+-			1				£3	DEOLET
	HORIBA	WITH	8C/9	Γ'	0	000.			7				5.020	5.01	$\overline{}$			1				<b>₽</b> 3	нтаооо
	HOH		he/a		0	00h.			4				5.090	5,01	1.547		1					152	FX DeoLET
M.	L	SPANS	40/24		0	000.							5,17	5.01	3,194	K				·		<b>2</b>	HT2000
KENT	ş	O AND	6/23	_	0	001.							966.4	5.01	- 399				7			POST	FX DeoLET
	INSTRUMENT/SERIAL NO	ZERO	6/23				وو	ca:	JF	0 0	TEI		5.020	5,01	.200		CA:	. (+)	רם,	ഹ		PRE	HT2000
LOCATION	RUMENT/!		81/9		0	.021							5.026	5.01	326							POST	HEATHLATTOE /MSERT
roc	INST		81/g		0	120.			1				5.04b	5.01	125			(	į			PRE	5-12
		(ETHOD	11/2	.002	0	.021			-				5.01b	5.01	121							P857	HEATILATOR
EESPC	8	IAL OR I	<u> </u>	200.	0	.021			-				5.02b	5.01	.32b			1				₂ 5	5-12
된		: MATER.	# I				2	<del></del> 1	0	-	, ,	li				2	; <del>,-</del>	, 0	H	-2	li		
SITE	GAS [	REFERENCE MATERIAL OR METHOD	DATE1993	ZERO RESPONSE	ZERO ACTUAL	% DIFFERENCE	·		ZERO				SPAN RESPONSE	SPAN ACTUAL	DIFFERENCE			SPAN				COMMENTS RUN NUMBER	UNIT
				ZERO	ZER	0 %	_						SPA	SPA	Q %								


X

#### EEMC


## SO2 ANALYZER MULTIPOINT CALIBRATION REPORT FORM

Site	: <u>EE1</u>	nc		KENT,	WA	Date:	10/21	193			•			
									SN	: 403019				
Cali	bration	by:		) King	mar				<del></del>					
				v		d by: Instr	Rotame ument	ter:_x	Ma LINCO	ss Flowmet	er:			
Anal	yzer la	st c	alibra	ted:	6/11/9	3	By		N 1/					
Culii	dere.									2000 193	PSI			
2. #	ECC 790	710 <b>c</b> a	oncenti	carion	12108	MOG	S02 Ct	2] Dw.		500  21.  93				
3. # C	2065 ertifie	Co	ncentr	ation_	2208	PPM	SO2 Cy	l. Pre Date:_	ess.:	1800	_psi			
4. # C	Certified by: LIGUID AIR Date: 1/28/93  4. #CO7188 Concentration 497 PPM SO2 Cyl. Press.: 1800 PSI Certified by: 1/28/93  Certified by: 1/28/93													
A F	nalyzer low: <u>l</u>	: c	alibra SCFH	ted Ra Me	nge: <u>O-</u> asured	- <b>9500</b> by: R	PPM otamet	Outpu er: <u>X</u>	t: <u> </u>	-1.0 s Flowmete	V.			
					Calib	ration	Resul	ts	:					
Point	Cyl.	PPM	Expe	cted	Act	ual	A	ij.	8	Potenti	ometer			
#	#	S02	Meter	DVM	Meter	DVM	Meter	DVM	Dif.	Unadj.	Adj.			
1	1	00.0	00.0	.000	0.00	.000	_			1.80				
2	2	1268	50.7	.507	50.7	.507				6 95				
3	3	2208	88.3	.883	87.8	.878		-						
4	4	497	19.9	.199	20.1	.201					-			
5	1	80.8	00.0	.000	00.0	,000	_	_		_				
Clent	s: .	5 =	1253	3. 740	)			<u>_</u> _	<del></del>					

### Linear Regression Results:

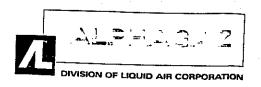


Analyzer Output (volts)



Span Gas Concentration (PPM SO2)

EPA Span Value = 
$$\pm 1.0\%$$
 of 2500 PPM SO2 =  $\pm 1.50$  PPM Cal Volts = Cal Volt Conc - Std Conc =  $\pm 1.50$  Conc Diff =  $\pm 1.0\%$  . 878 = 2195. 866 - 2208 = 12.134 = -.550


#### ANALYSIS OF CALIBRATION GAS MIXTURES

TEST DATE:(	SOURCE اداراً	tested: <u>S02</u>
REFERENCE M	ETHOD USED: <u>EPA</u> M	6
<b>SPECIES</b>	CALIBRATION GAS MIX	VENDOR TANK ID
<u>^</u>	SAMPLE #1 /292	<u>CC 79076</u>
Soa 🗀	SAMPLE #2 /354	VENDOR TANK VALUE
	SAMPLE #3 /251	1268
	AVERAGE /299	
<b>SPECIES</b>	<b>CALIBRATION GAS MIX</b>	VENDOR TANK ID
	SAMPLE#1 <u> </u>	<u> 2065</u>
<u> 502</u>	SAMPLE #2 2180 SAMPLE #3 2227	VENDOR TANK VALUE
	SAMPLE #3 <u> </u>	<u> გაიც</u>
	AVERAGE 2213	
<b>SPECIES</b>	<b>CALIBRATION GAS MIX</b>	
	SAMPLE #1 52	<u>CC 97188</u>
<u> 502</u>	SAMPLE #2 <u>518</u>	<b>VENDOR TANK VALUE</b>
	SAMPLE #3 482	497
	AVERAGE <u>507</u>	
<b>SPECIES</b>	CALIBRATION GAS MIX	VENDOR TANK ID
	SAMPLE #1	
	SAMPLE #2	VENDOR TANK VALUE
	SAMPLE #3	
	AVERAGE	
<b>SPECIES</b>	<b>CALIBRATION GAS MIX</b>	VENDOR TANK ID
	SAMPLE #1	
	SAMPLE #2	<b>VENDOR TANK VALUE</b>
	SAMPLE #3	;
	AVERAGE	

Triplicate analyses of the gas mixtures shall be performed within 30 days prior to use, using EPA Method #6. Each test must be within 20% of the three test mean.

#### **SO2 TANK CALCULATIONS**

Date: 6/21/93 Tank ID: CC79076____ Test #1 1268 ppm Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{Tm}$  $Vm(std) = \frac{(\frac{1.55 \text{ cf}}{15.64(\frac{1.028 \text{ mcf}}{10.028 \text{ mcf}})(\frac{30.10 \text{ Hg}}{10.028 \text{ Hg}} + \frac{\Delta H}{13.6})}{(\frac{530 \text{ Tm}}{10.028 \text{ mcf}})} = \frac{1.596 \text{ dscf}}{1.596 \text{ dscf}}$ Concentration SO2 - ppm v/v dry ml Ba +++ = 480Normality (N) = 0.0101ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29*10^{-6})(10^{6})}{(10^{6})}$ Vm(std)  $ppm \ v/v \ dry = \frac{(-1/80)(32)(-0.010)(32)(-0.010)(13.29*10^{-6})(10^{6})}{-1.596} = -1.292 - ppm$ Test #2 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{Tm}$  $Vm(std) = \frac{(-1.5 - ef)17.64(-1.028 - mef)(-30.10 - Hg) + ---.02 - \Delta H}{(-532 - Tm)} dsef$ Concentration SO2 - ppm v/v dry ml Ba +++ = 4/85Normality (N) = 0.0/0/ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29*10^{-6})(10^{6})}{12.29*10^{-6}}$ Vm(std) $ppm v/v dry = \frac{(-485)(32)(-0.0101)(13.29*10^{-6})(10^{6})}{1.539} = 1354 ppm$ Test #3 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{Tm}$  $Vm(std) = \frac{(\frac{1.6}{10.00} cf)17.64(\frac{1.028}{10.00} mcf)(\frac{30.10}{10.00} Hg + \frac{1.024}{10.00} - \frac{\Delta H}{10.00})}{(\frac{532}{10.00} Tm)} = \frac{1.642}{10.00} dscf$ Concentration SO2 - ppm v/v dry Normality (N) = 0.0/01ml Ba ++ = 478 ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29*10^{-6})(10^{6})}{(10^{6})^{-6}}$ Vm(std) $ppm v/v dry = \frac{(-478)(32)(-0.0/0)}{(-642)}(13.29*10^{-6})(10^{6}) = -1251 ppm$ 



15-Feb-93 PACIFIC RIM OXYGEN

P.O. NO.: 17047 TUKWILA, WA

CERTIFICATION OF CYLINDER # CC-79076

COMPONENT:

MEAN CONCENTRATION:

SULFUR DIOXIDE NITROGEN

1268 +/- 19 ppm BALANCE

Cylinder pressure: Expiration date:

2000 psi 17-Aug-94

This mixture was prepared and analyzed following EPA Revised Traceability Protocol No.1, Section 3.0.4, per Procedure G1. The concentration of the Sulfur Dioxide was determined by direct comparison with NBS SRM 1662a, Sample No.:93-9-D, S/N FF-28200, 1013 +/- 10 ppm Sulfur Dioxide in Nitrogen, dated March 19, 1991. The analysis was performed on Horiba Gas Emission Analyzer System, Model No. CMA-331A, and S/N 244/701/826. The last multipoint calibration was done on January 11, 1993.

Authorized signature

#### **SO2 TANK CALCULATIONS**

Date: <u>6/21/93</u> Tank ID: 2065 Test #1 2208 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{Tm}$  $\frac{(\frac{1.55}{5.5})17.64(\frac{1.008}{5.00})mcf(\frac{30.10}{13.6})Hg + \frac{0.000}{13.6}}{(\frac{533}{5.00})Tm} = \frac{1.588}{13.6} dscf$ Concentration SO2 - ppm v/v dry Normality (N) = O O O Oppm v/v dry = O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Oml Ba ++= 825  $ppm v/v dry = \frac{(825)(32)(0.0/0)}{1.588} = \frac{2231}{ppm}$ Test #2 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{T_{co}}$  $\frac{(\frac{1.5}{10.00})(\frac{30.12}{10.00})(\frac{30.12}{10.00})}{(\frac{533}{10.00})} = \frac{\Delta H}{13.6}$ Concentration SO2 - ppm v/v dry ml Ba ++= 780Normality (N) = 0.0101Normality (N) =  $\frac{(mlBa + +)(32)(N)(13.29*10^{-6})(10^{6})}{Vm(std)}$ ppm v/v dry =  $\frac{(780)(32)(0.0101)}{(13.29*10^{-6})(10^{6})} = 2.180$  ppm Test #3 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{Tm}$  $Vm(std) = \frac{(\frac{1/6}{1000} cf)17.64(\frac{1/008}{1000} mcf)(\frac{30.10}{1000} Hg + \frac{1000}{1000} \Delta H)}{(\frac{533}{1000} Tm)} = \frac{1.640}{1000} dscf$ Concentration SO2 - ppm v/v dry ml Ba ++ = 850 Normality (N) = 0.0/0ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29*10^{-6})(10^{6})}{(13.29*10^{-6})(10^{6})}$ Vm(std) $ppm v/v dry = \frac{(-850)(32)(-0.0/01)(13.29*10^{-6})(10^{6})}{1/640} = 2227 ppm$ 



DATE:

March 3, 1990

EXPIRATION DATE: September 3. idea

CUSTOMER: A L Compressed Gas

P. O. NUMBER:

202

#### CERTIFICATION OF CYLINDER AL 2065, PRESSURE 1990 psig

- 1. These gases were analyzed and certified according to EPA protocol =1.
- Thermo-Electron Model 43a Analyzer using EPA method EQSA 0486 060 was 2. used for the analysis. The date of the analyzer's last audit was 12/5/1989.
- National Institute of Standards and Technology's standard reference material 1664a which is 2339. ppm in sulfur dioxide in cylinder FF18327, which expires 12/27/91 was used as the reference.
- Brooks flow controllers, model 5850 which was calibrated 3/5/90 was used to dilute the sample into the range of the analyzer.

2/27/91 Blank SRM AL2065	0.000 1.086 1.033	0.000 1.087 1.028	0.000 1.088 1.028	Indicated	SO2	2212 ppm
3/9/91 Blank SRM AL2065	0.000 1.164 1.093	0.000 1.051 1.094	0.000 1.054 1.091	Indicated	SO2	2204 ppm

DATA

Average 2208. ppm Sulfur Dioxide In NITROGEN balance

Julion Oler Analyst



EPA PROTO	COL NO.1 W	ORK SHEET	COMPONENT	SULFUR DIC	OXIDE	304-1317
NBS SRM 1	662a	FF-28200	93-9-D	1013 -	+/- 10 ppm	SO2 in N2
	TRIAD #1	TRIAD #2	TRIAD #3	TRIAD #4	TRIAD #5	TRIAD #6
DATE	02/05/93	02/05/93	02/05/93	02/15/93	02/15/93	02/15/93
UNITS	VDC X10	VDC X10	VDC X10	VDC X10	VDC X10	VDC X10
FF-28200	1013	1013	1013	1012	1012	1012
ZERO	0	0	0	0	0	0
CC-79076	1267	1267	1267	1267	1267	1267
ASSAYS:	1267.00	1267.00	1267.00	1268.25	1268.25	1268.25
	VALID	VALID	VALID	VALID	VALID	VALID
	TRIADS 1,	2,3 MEAN:	1267.0	TRIADS 4,	5,6 MEAN:	1268.3
	•	•		CONCENTRAT	Mqq NI NO	1268

PPM x PPM VARIABILITY VDC X10

0.0005

0.8724 0.8724

0.0005 LINEARITY: 0.0100

348.94

TOLERANCE SQRT SUM : 19 ppm

#### **SO2 TANK CALCULATIONS**

Date:  $\frac{5/28/93}{}$ Tank ID: <u>CC 97/88</u> = 497 Test #1 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{T_{res}}$  $\frac{(-1/60 - cf)17.64(-1/0)8 - mcf)(-30/0 - Hg + -0.03 - \Delta H)}{(-532 - Tm)}$ Concentration SO2 - ppm v/v dry Normality (N) = 0.0/01ml Ba ++= /85ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29 * 10^{-6})(10^{6})}{Vm(std)}$  $ppm \ v/v \ dry = \frac{(-/85)(32)(0.0/01)(13.29*10^{-6})(10^{6})}{1.642} = \frac{484}{ppm}$ Test #2 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{T_{res}}$  $Vm(std) = \frac{(\frac{1.55}{50})17.64(\frac{1.028}{10.028} mcf)(\frac{30.10}{10.00} Hg + \frac{0.033}{10.00} \Delta H}{(\frac{532}{10.00} Tm)} dscf$ Concentration SO2 - ppm v/v dry Normality (N) = 0.0/01ml Ba ++= 187ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29 * 10^{-6})(10^{6})}{(10^{6})^{10}}$  $ppm \ v/v \ dry = \frac{(-187)(32)(-0.010)}{(.540)}(13.29*10^{-6})(10^{6}) = -55 - ppm$ Test #3 Gas Volume - Dry Standard Conditions  $Vm(std) = \frac{VmKY * (Pb + \frac{\Delta H}{13.6})}{Tm}$  $Vm(std) = \frac{(\frac{1/58}{13.6} - cf)17.64(\frac{1/028}{1028} - mcf)(\frac{30.10}{1028} + \frac{13.6}{13.6} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} - \frac{13.6}{1028} -$ Concentration SO2 - ppm v/v dry Normality (N) = O(0)/O/ml Ba ++= /90ppm v/v dry =  $\frac{(mlBa + +)(32)(N)(13.29 * 10^{-6})(10^{6})}{(10^{6})^{13}}$  $ppm v/v dry = \frac{(-190)(32)(0.00)(13.29*10^{-6})(10^{6})}{(100)(13.29*10^{-6})(10^{6})} = \frac{50.3}{ppm}$ 



EPA PROT	OCOL	NO.1 [	)A	TA SHEET	(	COMPONENT	: 9	SULFUR DI	(0)	KIDE	(	0-600 ppm	1
NBS SRM	1661	<b>a</b>	F	FF28536	(	74-36-E		485	+,	/- 5 ppm	(	502 in N2	
	:TR	IAD #1	;	TRIAD #2	1	TRIAD #3	17	TRIAD #4	+	FRIAD #5	; '	TRIAD #6	;
DATE	107	/19/91	; (	07/19/91	; (	07/19/91	10	08/08/91	10	08/08/91	; (	08/08/91	- ;
UNITS	VI	OC X10	1	VDC X10	ł	VDC X10	!	VDC X10	;	VDC X10	ł	VDC X10	1
FF-28536	;	8.83	;	8.82	:	8.82	;	8.80	;	8.82	-	8.83	;
ZERO	1	0.00	1	0.00	;	0.00	ļ	0.00	1	0.00	1	0.00	1
CC-97188	: :	9.03	;	9.05	;	9.07	1	9.02	1	9.04	1	9.03	-

```
EPA PROTOCOL NO.1 DATA SHEET
                           COMPONENT: SULFUR DIOXIDE
                                                       0-600 ppm
                                         485 +/- 5 ppm
NBS SRM 1661a
                  FF28536
                           94-36-E
                                                       S02 in N2
        TRIAD #1 TRIAD #2 TRIAD #3 TRIAD #4 TRIAD #5 TRIAD #6
        UNITS : VDC X10 : VDC X10 : VDC X10 : VDC X10 : VDC X10 ; VDC X10
                               8.82 |
                                        8.80 :
                                                 8.82
                                                           8.83
FF~28536
            8.83 |
                      8.82
                      0.00
                               0.00 |
                                        0.00 |
                                                 0.00 1
                                                           0.00
ZERO
            0.00 |
                               9.07 :
CC-97188
                      9.05
                                        9.02 |
                                                 9.04 1
                                                           9.03
            9.03 |
                             498.75
                                      497.13
                                                         495.99
ASSAYS:
           495.99 ;
                    497.65
                          497.10
                                    :VALID
                                             IVALID
                                                      :VALID
        :VALID
                 :VALID
                           !VALID
                              497.5
         TRIADS 1,2,3 MEAN:
                                    TRIADS 4,5,6 MEAN:
                                                          496.7
                                   CONCENTRATION IN ppm:
                                                            497
                  SULFUR DIOXIDE
```

PPM x PPM VARIABILITY VDC 0.0885 ZERO: 0.0005 SRM : 0.0300 318.6225 0.3540 SRMd : 0.0010 0.3540 MIXd: 0.0010 LINEARITY : 35.4025 0.0100 SQRT SUM : TOLERANCE 19 ppm

#### **EXAMPLE CALIBRATION/DATA FLOW**

All individual test run raw data sheets are organized in a manner that would allow a data reviewer to follow the data as it is being calculated in a step by step fashion. In many cases, the equations used to calculate a specific required data are given on the raw data sheets themselves.

For example, the particulate emission rate in g/dscf is calculated on Data Sheet #7. However, the data used to derive this data begins on Data Sheet #2(Meterbox Data Sheet) where the meter volume (cubic feet), average meter temperature (°F), average  $\Delta$  H (in.H₂O), and average Barometric pressure (in. Hg) are recorded and averaged. Each of the averages for these parameters are used in equation 1 on P. 7 where the volume (MCF) is converted to dscf.

The moisture catch sheet (p. 3) total (g. H₂O) is transferred to P. 7 and the percent stack moisture is calculated in equations 2 and 3.

The gross and net gravimetric (g) particulate catches are determined and calculated on PP. 4-6. Pages 4-1, 4-2 and 4-3 show the initial (tare) constant weights for filters (p. 4-1) and beakers (p. 4-2) and the final constant weights (p. 4-3) for those filters and beakers used for each run. Final and tare weight data is transferred to P. 5-1 (front half catch) and P. 5-2 (back half catch) and the gross gravimetric (g) catch for each filter and beaker is calculated. On P. 5-3 the gravimetric catch for each blank is calculated. The gross gravimetric catch for each filter and beaker is transferred to P. 6 and the net gravimetric catch (g) is calculated, as well as front half and back half catch totals. The net gravimetric catch (g) is transferred to P. 7 and the grain loading/dscf is calculated in equation 4.

Some data sheet specific information is listed below on a page by page basis.

P. 8 The % ambient moisture is determined by interpolating from psychrometric charts which are contained in the State of Oregon Department of Environmental Quality's "Standard Method for Measuring the Emissions and Efficiencies of Woodstoves".

The % relative humidity is determined from the wet bulb/dry bulb temperature readings using the tables found in Section 3.1.2.4 of the State of Montana Air Quality Bureau's Quality Assurance Manual.

- P. 10 The uncorrected moisture meter readings are corrected for pin insulation and may or may not be corrected for ambient (wood) temperatures. All corrections are based upon the correction equations or tables supplied by the moisture meter manufacturer. (These are standard, known corrections.)
- P. 11 The moisture meter readings are corrected as discussed above.
- P. 12 The gas concentrations shown for each gas monitored (CO₂, O₂, CO and SO₂) are determined by converting the analyzer's voltage output recorded on P. 12 to the concentration shown using the analyzer's current calibration curve. The SO₂ concentration is determined using the manufacturer's calibration curve and the current calibration curve.

The cal. W/B (calculated wet bulb) temperature is obtained by first determining the % moisture in the extracted flue gas stream using the temperature data from thermocouples 1 (Wet Bulb) and 2 (Dry Bulb). Then based upon the stack temperature (thermocouple 3) and the % moisture in the extracted gas stream, a calculated wet bulb temperature is determined. All data is derived from the psychrometric tables found in the State of Oregon's "Standard Method for Measuring the Emissions and Efficiencies of Woodstoves".

The following pages contain the equations used to generate the data on Tables 3-5 on the computer printouts:

Dry Gas Volume (standard):

$$V_{m(std)} = \frac{V_m * 17.65 * mcf * \left(P_{bar} + \frac{\Delta H}{13.6}\right)}{T_m}$$

Volume of Water:

$$V_{w(std)} = (0.04707)(ml H_2O)$$

Moisture Content:

$$B_{ws} = \left(\frac{V_w}{V_w + V_m(std)}\right) * 100$$

Dry Burn Rate:

Br = 
$$\left(\frac{\text{Wwt - (Wwt * \% H_2O)}}{2.2046}\right) * \frac{60}{\theta}$$

Carbon Balance (N_t):

$$Nt = \frac{K_3Nc}{(YCO_2 + YCO + YHC)}$$

Stack Flow Rate (Q_{sd}):

$$Q_{sd} = K_4 N_t Br$$

Particulate Concentration (C_S):

$$C_s = \frac{M_n}{V_{m(std)}}$$

Particulate Emission Rate (E):

$$E = C_sQ_{sd}$$

Proportional Rate Variation (Pr):

$$Pr = \left(\frac{\theta S_i * V_{mi(std)}}{10 \sum_{i=1}^{n} \left[S_i * V_{mi(std)}\right]}\right) * 100$$

Where:

Br = dry wood burn rate, kg/hr.

 $B_{WS} = Water vapor in the gas stream, proportion by volume.$ 

c_s = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscm (g/dscf).

E = Particulate Emission Rate, g/hr.

- $\Delta H = Average pressure differential across the orifice meter (see Figure 5-2), mm H₂0 (in. H₂0).$
- $K_3 = 1.0 \text{ lb/lb (english)}$ 1000 g/kg (metric)
- K₄ = 0.02406 dsm³/g-mole(metric) 384.8 dscf/lb-mole (english)
- $m_n =$  Total amount of particulate matter collected, mg.
- mcf = Dry gas meter correction factor.
- $N_c =$ Gram atoms of carbon/gram of dry fuel (lb/lb), equal to 0.0425.
- $N_t = Total dry moles of exhaust gas/Kg of dry wood burned.$
- $P_r$  = Percent of proportional sampling rate.
- Pbar = Barometric pressure at the sampling site, mm Hg (in. Hg).
- $Q_{sd} = Total gas flow rate, dscf/hr.$
- $S_i$  = Concentration measured at the  $SO_2$  analyzer for the "ith" 5 minute interval, ppm.
- $S_1$  = Concentration measured at the  $SO_2$  analyzer fot the first 5 minute interval ppm
- $T_m =$  Absolute average DGM temperature (see Figure 5-2), °K (°R).
- $T_{std}$  = Standard absolute temperature, 293 °K (528 °R).
- $V_m = V_{\text{olume}}$  Volume of gas sample as measured by dry gas meter, dcm (dcf).
- $V_{m(std)}$  = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscm (dscf).
- $V_{W(std)}$  = Volume of water vapor in the gas sample, corrected to standard conditions, scm (scf).
- $W_{wt} = Wet wood weight.$
- Y = Dry gas meter calibration factor.

Y = Dry gas meter calibration factor.

 $Y_{CO}$  = Measured mole fraction of CO (dry).

 $Y_{CO2}$  = Measured mole fraction of  $CO_2$  (dry).

Y_{HC} = Assumed mole fraction of HC (dry); =0.0088 for catalytic woodheaters =0.0132 for noncalytic woodheaters =0.0080 for pellet fired woodheaters

 $\theta =$  Total sampling time, min.

13.6 = Specific gravity of mercury.

60 = Sec/min.

100 = Conversion to percent.

#### M5H PARTICULATE SAMPLING TRAIN

#### 1. Probe

3/8" seamless SS-20" long. Outlet end of probe is attached to a SS outlet fitting with a Sweglock SS union. The probe is unheated except for the portion that is in the stack and the heated filter box. The probe is sealed to the stack with a washer.

#### 2. Filter Holder

A 3" or 4" standard M5 filter holder. A SS filter support with gasket.

#### 3. Filters

3" or 4" fiber glass (#25 glass) manufactured by Schleicher and Schuell.

#### 4. Front Half Filter Heater

A box containing a fan for air circulation and a cone heater. The temperature in the box is monitored with a type K thermocouple and adjusted with a voltage regulator to maintain a temperature below 248 °F.

#### 5. Desiccant

Indicating silica gel, 6-20 mesh. The silica gel is changed as needed.

#### 6. Filter (Back Half) Holder

Same as front half 3" or 4" filter.

#### 7. Impinger Gas

Type K thermocouple threaded into the exit "arm" of the impinger. Ice is added to the cooler whenever necessary to maintain an exit gas temperature less than 68 °F.

#### 8. Meterbox

RAC Stack Sampler modified by EESPC

Ranges: 0-1.0" inclined water manometer

0-10.0" vertical water manometer

Accuracy: Dry gas Meter 0-999.999 cu ft ±1.0%

Temperatures are monitored using two type K thermocouples.

#### SAMPLING PROCEDURES AND INSTALLATION DESCRIPTION

This section is broken into two major parts. The first contains a brief description of the sampling and procedures used by EESPC when performing a test using EPA Methods 28, 28A and 5H. The second section contains a complete listing of all equipment in each of the major sampling trains and a diagram of each major train.

EESPC uses EPA M5H for the particulate sampling procedure and collects the required data so that efficiency of a unit can be calculated using the Oregon Method.

#### TEST FACILITY AND WOOD HEATER EQUIPMENT LIST

#### 1. Flue Pipe

The diameter of the 24 gauge black steel flue pipe used for each stove varies with the size of the stove's flue collar, e.g., 6" flue pipe is used with a 6" flue collar. The joint at the flue collar is sealed with mortar. The pipe is attached to the stove at the flue collar with three sheet metal screws. All sampling ports are sized for the sampling probes and sealed using washers.

#### 2. Insulated Flue Pipe

The diameter of the insulated flue pipe matches the diameter of the flue collar on the stove. The 6", 7" and 8" pipe meet the requirements of UL 103 HT. The SO₂ injection loop port is sealed with high temperature silicone sealant.

### 3. <u>Liquid Seal</u>

The liquid (oil) seal used by EESPC varies in size with the flue pipe. The seals are made of 12 gauge steel. The liquid sealant is mineral oil. The cooler consists of 3/8" copper tubing which is coiled in the bottom of the lower half of the seal. Ambient air is pumped through this line when necessary to cool the seal.

#### 4. <u>Supports</u>

The lower half of the seal and the 24 gauge steel black flue pipe is supported by the stove. The upper half of the seal and the insulated flue pipe are hung from wooden supports.

#### 5. Platform Scale

Platform (30" X 30" deck)

Manufacturer:

Weightronics

Model:platform:

DS-014/SN 4479

readout: W1-110/SN 016409

Type: .

Electronic

Range:

0-1000 lb.

Capacity:

1000 lb.

Resolution:

 $\pm 0.1$  lb.

Accuracy:

 $\pm 0.1\%$ 

#### 6. Fuel Balance Scale

EESPC uses the platform scale listed above to weigh the fuel charges.

#### 7. Fuel Storage Area

EESPC stores the fuel in a humidity and temperature regulated room.

#### 8. Moisture Meter

EESPC has two moisture meters which it uses to determine wood moisture levels.

#### The primary meter is:

Manufacturer:

Delmhorst Instrument Co.

Model:

RC-1C/SN 16152 with 26-E probe and #496 insulated pins.

Type:

Electrical Resistance

Resolution:

 $\pm 0.1\%$  moisture

Ranges:

6-11%, 11-25%, 25-80%

Accuracy:

Moisture

ContentAccuracy |

6-12%

 $\pm 0.5\%$ 

12-20%

 $\pm 1.0\%$ 

20%-saturation point  $\pm 2.0\%$ 

Type of Calibration: The RC-1C is equipped with two potentiometers (Zero and Span) which are checked and adjusted on a daily basis. The unit is also checked with a calibration block.

Electrode and Pin Type: 26-E probe and #496 insulated pins

#### The backup moisture meter:

Manufacturer:

Delmhorst Instrument Co.

Model:

G-30SN/2477 with 26-E probe and #496 insulated pins

Type:

Electrical Resistance

Resolution:

 $\pm 0.1\%$  moisture

Accuracy:

Moisture

Content Accuracy

6-12%

+0.5%

12-20%

 $\pm 1.0\%$ 

20%-saturation point  $\pm 2.0\%$ 

Type of Calibration: Calibration is accomplished with an internal calibration point and a potentiometer. The calibration can also be checked against a calibration block.

Description of Operation: The pins are pounded into the wood to be sampled. The meter reading is recorded on Data Sheet #10 (Wood Moisture) or Data Sheet #11 (Density Determination). This is the uncorrected reading which is then corrected for pin insulation and, as needed, temperature using the correction tables for each parameter supplied by the manufacturer.

#### 9. <u>Temperature Monitors</u>

The temperatures are monitored with Type K thermocouples. Each thermocouple's calibration is checked prior to use.

The thermocouple readout is an Omega Model 410B-K/SN 05/4475, with a range of -58 °F to 1999 °F (type K) and an accuracy of  $\pm 0.9$  °C, which can be read at  $\pm 0.1$  °F. EESPC reads and rounds to 1.0 °F. The single channel readout is interfaced with a manually operated selector switch that allows 24 channels to be monitored with the same readout. The thermocouples are attached to the test unit with sheet metal screws. The thermocouples monitoring internal stove temperature are sealed at the point of entry with sealant.

#### 10. Draft Gauge

Manufacturer:

Dwyer

Model:

Type:

Inclined Water Manometer

Range:

0-0.25" water

Resolution:

0.001" water

Accuracy:

 $\pm 0.001$ " water (readability)

#### 11. Anemometer

Manufacturer:

Dwyer

Model:

480 Vaneometer/SN S 222 D

Range:

0-400 FPM

Accuracy:

 $\pm$ 5% of full scale from 0-1 FPM

#### 12. Humidity Gauge

Manufacturer:

Bacharach

Model:

SAC

Type:

Sling Psychrometer

Range:

Wet Bulb:30-110 °F

Dry Bulb:

30-110 °F

Resolution:

 $\pm 1$  °F

Accuracy:

±1°F

#### 13. Barometer

Manufacturer:

Princo Instruments, Inc.

Model:

**NOVA 469** 

Type:

Mercury Barometer

Range:

20-32" Hg

Resolution:

0.01" Hg

Accuracy:

±0.01" when calibrated and installed as per the

manufacturer's written operating instructions.

Equation 6.3.1a of the "Standard Methods for Measuring the Emissions and Efficiencies of Residential Wood Stoves" and equation #1 are programmed into a Hewlett Packard 15C calculator which first calculates stack gas flow rate and then the  $\Delta H$ . The stack gas flow rate and  $\Delta H$  are both recorded on Data sheet #2. The  $\Delta H$  is used to set the flow rate through the dry gas meter at 5 minute intervals during the test.

In order to successfully maintain the correct sampling ratio, the following data is recorded on Data Sheet #2 (Meter Box Data Sheet): temperature (°F) at the  $SO_2$  injection rotameter (Tr), pressure (inches  $H_2O$ ) at the  $SO_2$  injection rotameter (Pr),  $SO_2$  injection rate (cc/min), barometric pressure (BP) (inches  $H_2O$ ), stack gas  $SO_2$  concentration (ppm  $SO_2$ ), sampling ratio (Sr), and the average dry gas meter temperature (°F). This data is entered into the HP15C, which is used to first calculate a stack gas flow rate (dscf) and then a  $\Delta H$  for every sampling interval. The flow rate through the dry gas meter is adjusted and maintained by maintaining the appropriate  $\Delta H$ .

#### **CEM MONITORS**

#### 1. <u>Calibration Gases</u>

EESPC uses vendor certified (±2.0%) calibration gases for each CEM. The concentrations purchased coincide with ranges specified in M5H. Upon receipt of the cylinder, the concentrations are verified with Method 3 (ORSAT) analysis.

#### 2. Flow Regulators

EESPC uses a variety of standard gas flow regulators to meter the flow of calibration gases from the cylinders.

#### 3. Point of Injection

Calibration gases are injected directly into the end of the probe. The line carrying the calibration gases from the cylinders is connected to the probe with a short piece of rubber tubing.

#### 4. Sample Gas Conditioning System

The combustion gas is conditioned with a train that is a duplicate of a M5H train. It contains the following components:

SS probe

Glass 4" M5H filter and holder in a heated box

4 1000 ml glass impingers

Glass 4" M5H filter and holder

Indicating silica gel

Type K thermocouple to monitor exit gas temperature

Thomas pump

#### 5. Filters

The filters used are the same as EPA M5H filters.

#### Manifold and Exhaust

The gas stream is delivered to each analyzer through a manifold and flowmeter with the excess gases being routed to an exhaust.

#### 7. CO Analyzer

Horiba PIR 2000/SN 408005

Nondispersive infrared (NDIR)

The gas stream flow is controlled by a SS flowmeter downstream of the analyzer. The calibrated range used is 0-10.0% by volume. The resolution is 0.01% CO. The manufacturer's specification given for linearity is  $\pm 1.0\%$ .

#### 8. <u>CO₂ Analyzer</u>

Horiba PIR 2000/SN 407069

The CO₂ analyzer is also a NDIR and is operated in exactly the same manner as the CO analyzer. The range of the CO₂ analyzer is 0-25.0% CO₂.

#### COMBUSTION GAS ANALYZER TRAIN OPERATING INSTRUCTIONS

#### A. Pretest Preparation, Checks and Audit Procedures

- 1. Clean the probe with acetone and a brush. Seal the end of the probe for a leak check.
- 2. Remove the filter holder from the sample box and change the filter.

- 3. Empty water from all the impingers in the train. Clean all impingers and fill the first 2 with 100 ml of water.
- 4. Remove the second filter holder from the train and change the filter.
- 5. Visually check the indicating silica gel in the fourth impinger. If it is visibly impacted by water, replace the silica gel with dry silica gel.
- 6. Turn on the pump and perform a leak check on the entire train. This is done by placing the exhaust line in water. A successful leak check is accomplished when no bubbles are detected.
- 7. Slowly release the plug from the probe to prevent any back flushing.
- 8. Turn off the pump.
- 9. Turn on the heat in the sample box. Adjust Variac voltage controller so that temperature in the sample box does not exceed 248 °F.
- 10. Open the bypass valve on the pump.
- 11. Connect the probe to the zero/span gas delivery line.
- 12. Turn on the zero gas and adjust the flow rate to 1.5 SCFH.
- 13. Wait until the zero gas has completely flushed the train and a stable reading is obtained.
- 14. Record the zero gas readings of the DVM on Data Sheets #15.
- 15. Turn off the zero gas at the cylinder.
- 16. Disconnect the zero/span gas delivery line from the zero gas cylinder.
- 17. Connect the zero/span gas delivery line to the span gas source for each analyzer.
- 18. Turn on the span gas and adjust the flow rate to 1.5 SCFH. Wait until a stable reading is obtained on each analyzer. Repeat until all three analyzers are spanned properly.
- 19. Record the span gas readings of the DVM. Record the analyzer's output and all other pertinent information Data Sheets #15.
- 20. Turn off the span gas at the cylinder.
- 21. Disconnect the probe from the zero/span gas delivery line.
- 22. Insert the probe in the stack.
- 23. Close the bypass valve on the pumps.
- 24. Approximately 15-20 minutes before the actual start of the test, turn on the pump and adjust the flow through each analyzer until the flow rate is 1.5 SCFH.

#### B. Operation During Testing

- 1. Monitor the flow rate to the analyzers periodically to maintain a flow rate of 1.5 SCFH. Make any necessary adjustments.
- 2. Record data as follows:
  - a. At the start of each 5 minute data cycle, record the scale weight, wet bulb/dry bulb, stack gas temperature and static pressure on Data Sheet #12 (Gas Data).
  - b. Record the combustion gas ( $CO_2$ ,  $O_2$  and CO) analyzer data and the  $SO_2$  analyzer data on Data Sheet #12.
  - c. Record the remainder of the temperature data.

#### C. Post Test Checks and Audit Procedures

- 1. Remove the probe from the stack. (Be careful when handling the probe as it can be quite hot.)
- 2. Seal the end of the probe.
- 3. Perform a leak check on the entire train.
- 4. Slowly release the plug from the end of the probe to prevent any back flushing.
- 5. Turn off the pump.
- 6. Open the bypass valve on the pump.
- 7. Connect the probe to the zero/span gas delivery line.
- 8. Turn on the zero gas and adjust the flow rate through each analyzer to 1.5 SCFH.
- 9. Wait until the zero gas has completely flushed the train and a stable reading is obtained from each analyzer.
- 10. Record the zero gas reading. Record each analyzer's output and all other pertinent information on Data Sheets #15.
- 11. Turn off the zero gas at the cylinder.
- 12. Disconnect the zero/span gas delivery line from the zero gas cylinder.
- 13. Connect the zero/span gas delivery line to the span gas source for each analyzer.
- 14. Turn on the span gas and adjust until the flow rate through each analyzer to 1.5 SCFH. Wait until the span gas has completely flushed the train and a stable reading is obtained on each analyzer.
- 15. Record the span gas reading. Record each analyzer's output and all other pertinent information on Data Sheets #15.
- 16. Turn off the span gas at the cylinder.

17. Disconnect the probe from the zero/span gas delivery line.

#### D. <u>Determination of the Combustion Gas Train's Response Time</u>

- The response time of the combustion gas analyzer train is to be determined using the following procedures. It is best to determine the combustion gas analyzer train response time during the "charcoal phase" of a test burn so that CO levels are relatively stable.
  - a. Leak check the combustion gas (CEM) analyzer train.
  - b. Zero the CO analyzer using ambient air.
  - c. Calibrate the CO analyzer.
  - d. Insert the probe for the combustion gas analyzer train in the stack.
  - e. Sample flue gas until a stable reading is obtained.
  - f. Remove the probe from the stack, note the exact CO concentration as measured on the DVM and start a stop watch at the exact time of removal.
  - g. Observe the stop watch and DVM. Record the length of time to initial response, i.e., when the CO levels begin to decline.
  - h. Continue observing the stop watch and DVM. Record the time when the analyzer's output equals zero (0.000 v).
  - i. Repeat steps d-h 2 or 3 times to verify results.

#### E. Calibration and Audit Procedures for the Combustion Gas Analyzers

- 1. Calibrate by presenting zero and span gases to each analyzer at the probe and through the entire sampling train. (See Sections 6.7.2 and 6.9 [M5H].) Record the responses on the appropriate calibration forms.
- 2. Immediately prior to and after each test run, present the zero and span gases to the analyzers through the entire sampling train as is discussed in section C. Record each analyzer's response on Data Sheets #15.
- 3. Calculate the ± concentration difference and the actual percent difference as follows using the zero and span gas values obtained in #2 above. All calculations are to be based upon the actual gas concentrations involved.

 $\pm$ Concentration Difference = Actual Conc (%) - Std Conc (%)

Zero % Difference =  $\frac{\text{Act Conc (\% or ppm) - Std Conc (\% or ppm)}}{\text{Full Scale Value (\% or ppm)}}*100$ 

## Span Act % Difference = $\frac{\text{Act Response (\% or ppm) - Exp Response (\% or ppm)}}{\text{Expected Response (\% or ppm)}}*100$

Then refer to Section 4.2 and 4.3 (M5H) to determine whether the audits are acceptable or not.

#### TRACER GAS (SO₂) EQUIPMENT

#### 1. SO₂ Injection Probe

A circular SS loop about 4" in diameter is positioned in the center of the stack. The loop extends outside the stack and is connected to the line leading from the  $SO_2$  injection rotameter with Sweglock fittings. The loop is inserted in the stack at  $9.5 \pm 0.5$  ft above the top of the scale.

#### 2. Rotameter

A rotameter that has been calibrated with a bubble tube. The rotameter is all glass, stainless steel and Teflon. The rotameter has a flow control mechanism which is set to the calibrated flow.

#### 3. <u>Temperature</u>

The temperature at the injection rotameter is measured with a type K thermocouple.

#### 4. Injection Gas

Pure SO₂, 99.999% pure, released from the cylinder through a SS regulator and shut off valve.

#### Calibration Gases

EESPC uses vendor certified calibration gases with traceability established in accordance with EPA Protocol #1 as specified in Section 3.3.1 and verified using EPA Method 6.

#### 6. Sample Probe

3/8" SS tubing inserted at  $13.5 \pm 0.5$  feet above the platform scale. No obstructions are in the stack between the injection and sample probes.

#### 7. Combustor

Lindberg tube furnace, Model 55035/SN 800125, range 0-2000 °F. The temperature in the tube furnace is monitored with a type K thermocouple and controlled with a Variac voltage regulator. Power adjustments are made as necessary to maintain temperature at  $1425 \degree F \pm 25 \degree F$ .

#### 8. Sample Condenser

The sample condenser consists of 3 modified M5 impingers immersed in a freezer.

A filter assembly

The exit gas temperature is monitored with a type K thermocouple.

#### 9. Filter

A standard EPA M5H 3" or 4" filter.

#### 10. SO₂ Analyzer

Horiba, PIR 2000/SN 403019

Nondispersive infrared (NDIR)

The analyzer is operated as per the manufacturer's instructions at a flow rate of 1.5 SCFH. The calibration range is 0-2500 ppm  $SO_2$  at a resolution of  $\pm 25.0$  ppm. The manufacturer's specification for linearity is  $\pm 1.0\%$ . The voltage response is displayed on a DVM which is converted to ppm using the manufacturer's calibration curves.

#### 11. Flow Control

Flow through the tracer gas sampling train is controlled by a SS flowmeter.

#### TRACER GAS TRAIN OPERATING INSTRUCTIONS

#### A. Pretest Preparation and Checks and Audit Procedures

- 1. Clean the probe with a brush. After cleaning, seal the end of the probe.

  Note: Do Not Use Acetone Or Other Organic Solvents To Clean The

  Probe Immediately Prior To Running A Test Or Conducting A Leak

  Check.
- 2. Turn on the tube furnace in order to insure that the unit is at the correct operating temperature (1425 °F) at the start of the test.
- 3. Remove all water and clean the impingers.
- 4. Change the filter.
- 5. Turn on the pump.
- 6. Perform a leak check on the entire tracer gas train. This is done by placing the SO₂ exhaust line in water. A successful leak check is accomplished when no bubbles are detected.
- 7. Slowly remove the plug from the end of the probe to prevent any back flushing.
- 8. Turn off the pump.
- 9. Bypass the pump.

- 10. Connect the probe to the zero/span delivery gas line.
- 11. Connect the zero/span gas delivery line to the zero gas cylinder and turn on the zero gas and adjust the flow until the flow rate through the SO₂ analyzer is 1.5 SCFH.
- 12. Wait until the zero gas has completely flushed the train.
- 13. Record the zero gas reading. Record the SO₂ analyzer's DVM output on Data Sheets #15.
- 14. Turn off zero gas at the cylinder.
- 15. Disconnect the zero/span gas delivery line from the zero gas cylinder.
- 16. Connect the zero/span gas delivery line to the span gas cylinder.
- 17. Turn on the span gas and adjust the flow until the flow rate through the SO₂ analyzer is 1.5 SCFH. Wait until the span gas has completely flushed the train and a stable reading is obtained on the analyzer.
- 18. Record the span gas reading. Record the analyzer's output and all other pertinent information on Data Sheets #15.
- 19. Turn off the span gas at the cylinder.
- 20. Disconnect the zero/span gas delivery line from the probe.
- 21. Insert the probe in the stack.
- 22. Close the bypass on the pump.
- 23. Approximately 15 to 20 minutes before the actual start of the test, turn on the SO₂ injection train and the pump for the tracer gas train.

### B. Operation

- 1. Turn on the tube furnace to insure furnace is at approximately 1425 °F when the test begins.
- 2. Approximately 15-20 minutes before the actual start of the test, turn on the cylinder of pure SO₂.
- 3. Using the rotameter's current calibration, adjust the SO₂ flow rate to the calibrated level.
- 4. Turn on the pump in the tracer gas train. Adjust the flow rate through the SO₂ analyzer so that it remains at 1.5 SCFH.
- 5. Monitor the SO₂ concentrations in the stack and stack gas flow rates in order to establish a sampling ratio for the test and a correct ΔH at the start of the test.
- 6. At the start of the test and every 5 minutes thereafter, record the SO₂ analyzer output in volts and the stack gas SO₂ concentration in order to

calculate the stack gas flow rate and determine the correct  $\Delta H$  for the meter box.

Also monitor and record the temperature at the Rotameter (Tr), pressure at the Rotameter (Pr), barometric pressure (BP) SO₂ injection rate (cc/min) and static pressure on Data Sheets #2 and #12.

### C. Post Test Checks and Audit (Zero/Span) Procedures

- 1. Remove the probe from the stack. (Be careful when removing the probe from the stack as it can be quite hot.)
- 2. Plug the end of the probe.
- 3. Perform a leak check.
- 4. Slowly remove the plug from the end of the probe to prevent any back flushing.
- 5. Turn off the pump.
- 6. Bypass the pump.
- 7. Connect the probe to the zero/span gas delivery line.
- 8. Connect the zero/span gas delivery line to the zero gas cylinder. Turn on and adjust until the flow rate through the SO₂ analyzer is 1.5 SCFH.
- 9. Wait until the zero gas has completely flushed the train.
- Record the zero gas reading. Record the SO₂ analyzer's DVM output on Data Sheet #15.
- 11. Turn off zero gas at the cylinder.
- 12. Disconnect the zero/span gas delivery line from the zero gas cylinder.
- 13. Connect the zero/span gas delivery line to the span gas cylinder.
- 14. Turn on the span gas and adjust the flow until the flow rate through the SO₂ analyzer is 1.5 SCFH. Wait until the span gas has completely flushed the train and a stable reading is obtained.
- 15. Record the span gas reading. Record the analyzer's output and all other pertinent information on Data Sheet #15.
- 16. Turn off the span gas at the cylinder.
- 17. Disconnect the zero/span gas delivery line from the probe.

## D. <u>Determination of Tracer Gas Train's Response Time</u>

- 1. Zero and calibrate the  $SO_2$  analyzer.
- 2. Prepare and leak check the tracer gas train as per A above.
- 3. Insert the probe in the stack which contains flue gas and SO₂ concentrations in the ranges normally encountered during wood stove testing.

- 4. Sample flue gas with SO₂ concentrations until a stable reading is obtained. It is best to determine the tracer gas train's response time during the "charcoal phase" of a test burn so that the SO₂ concentrations are as stable as possible.
- 5. Remove the probe from the stack, noting the exact SO₂ concentration as measured by the DVM and starting a stop watch at the exact time of removal.
- 6. Observe the stop watch and DVM. Record the length of time to the initial response, i.e., when the SO₂ levels begin to decline.
- 7. Continue observing the stop watch and DVM. Record the time when the SO₂ analyzer's output equals zero (0.000 v.).
- 8. Repeat steps 3-7 two or three times to verify results.

### E. Calibration and Audit Procedure's for the Tracer Gas (SO₂) Analyzer

- Calibrate by presenting zero and span gases to the analyzer at the probe and through the entire sampling train. Record the responses on the appropriate calibration form.
- 2. Immediately prior to and after each test run, present the zero and span gases to the analyzer through the entire sampling train as is discussed in Sections A and C. Record the analyzer's response on Data Sheet #15.
- 3. Calculate the ± concentration differences and actual percent difference as follows using values obtained in #2 above as the expected response. All calculations are to be based upon the actual gas concentration involved.

 $\pm$ Concentration Difference = Actual Conc (%) - Std Conc (%)

Zero % Difference = 
$$\frac{\text{Act Conc (\% or ppm) - Std Conc (\% or ppm)}}{\text{Full Scale Value (\% or ppm)}} *100$$

Span Act % Difference = 
$$\frac{\text{Act Response (\% or ppm)} - \text{Exp Response (\% or ppm)}}{\text{Expected Response (\% or ppm)}}*100$$

Then refer to Section 4.2 and 4.3 (M5H) to determine whether the audits are acceptable or not.

#### TEMPERATURE SENSING OPERATING INSTRUCTIONS

- A. Operate the thermocouple readout selector switch and record the temperature for each thermocouple. All the temperature in the test facility should be approximately the same. Repair as necessary.
- B. Check the operation and output of the thermocouple readout using the Omega NBS Traceable Thermocouple Simulator. The simulator is hooked up to thermocouple readout #23. Check the readout over its full range at 200 °F intervals. Record the data on Data Sheet #16.
- C. One hour before the actual test start record stove temperatures (thermocouple readout #s 4, 5, 6, 7 and 8), firebox (readout #9), post catalytic combustor or secondary burn chamber (readout #10), and room temperature (readout #11). Record the temperatures every 5 minutes until the start of the test on Data Sheet #13 (Preburn).
- D. During the test record the temperatures every 5 minutes for each of the thermocouples on Data Sheets #12 and 14.

#### **FUEL PREPARATION**

- A. No more than 4 hours prior to use, obtain 3 moisture readings from each piece of wood. Record all moisture readings on Data Sheet #10.
- B. Obtain kindling by finely splitting pieces that otherwise cannot be used as test fuel. Weigh the kindling and record the weight on Data Sheet #8.
- C. Obtain the pretest fuel by using 2 x 4's. The length of the pretest fuel can be no less than 1/3 the length of the test fuel. Weigh the pretest fuel prior to its being loaded in the stove. Record weights on Data Sheets #8 and #9.
- D. Obtain the test fuel by cutting dimensional lumber (either 2 x 4's or 4 x 4's) so that the length is 5/6's the length of the longest usable dimension of the firebox. Use the mix of 2 x 4's and 4 x 4's specified in Section 4.3 M28. The test fuel shall be essentially free of knots, sap seams or rotten areas.
- E. The spacers shall measure 1 x 5 x 1" (nominally). The spacers shall be free of knots, sap seams or rotten areas. Nail the spacers to the 2 x 4's and 4 x 4's as described in the regulations.
- F. Take a photograph of the assembled fuel charge at a 90° angle from the photograph that will be take when the fuel charge is loaded in the stove.

#### WOOD DENSITY DETERMINATION

- A. When cutting the test fuel, cut a representative piece of 2 x 4 or 4 x 4 that is approximately 3 to 5-inches in length.
- B. Take a moisture reading from the top, bottom and side of the piece. Record readings on Data Sheet #11. Determine the % moisture on a wet and dry basis.
- C. Weight the piece on a balance.
- D. Take measurements of width, depth and length at the four corners with a micrometer. Determine the volume of the piece. (Length x width x depth = Volume in cubic centimeters)
- E. Dry the piece in an oven at 95-100 °C for a minimum of 24 hours.
- F. Reweigh the piece on the balance.
- G. Calculate % moisture on a dried basis.

% moisture (dry basis) = 
$$1 - \frac{\text{dried weight}}{\text{wet weight}} *100$$

H. Calculate the density.

Density 
$$(g/cc) = \frac{\text{dried weight } (g)}{\text{volume } (cc)}$$

#### BTU'S/LB DETEMINATION

- A. When cutting the test fuel (only the test fuel, not the kindling, pretest fuel or spacers), collect a sawdust sample. Place in a clearly marked plastic bag.
- B. Forward sample to a commercial laboratory for BTU contents analysis.

#### STOVE PREPARATION

- A. Clean the stove.
- B. Weigh the stove, record the weight on Data Sheet #8.
- C. Add approximately 0.3 lb. of wadded newspaper to the stove. Record weight of newspaper on Data Sheet #8. Add 4-8 lb. of kindling to the stove, and record the weight of the kindling on Data Sheet #8.
- D. Light the paper and kindling, leaving the stove's air draft control(s) wide open and the door cracked until well ignited.
- E. Close door.

- F. When between 50% 75% of the weight of the kindling has been burned add the first pretest fuel charge.
- G. Continue to add pretest fuel until the stove has thoroughly warmed up. As necessary, rake the coal bed prior to adding additional pretest fuel charges.
- H. Remove all material from the firebox after two or more hours of burning on high.

  Obtain the dry empty stove weight and record on Data Sheet #8.
- I. Set the stove's air draft control(s) at the desired setting a minimum of 1 hour before the test run is to begin.
- J. As necessary set the heat exchange blower(s) at the specified setting a minimum of one hour before the test is to begin.
- K. Record the stove surface temperatures, firebox and post catalytic or secondary burn temperatures and scale weigh for a minimum of one hour before the test run begins. As necessary add fuel, rake the coal bed, level the coal bed and/or remove coals during the first 45 minutes of the hour immediately preceding the start of the test. Record all information concerning raking, fuel additions, etc. on Data Sheet #13.
- L. If necessary, sometime during the last 15 minutes before the start of the test, open the door and brake up all large pieces and then rake and level the pretest fuel in the stove. At this time, level the coal bed as necessary to accommodate loading the fuel charge into the stove. Close the door. Total time door can be open during the last 15 minutes is 1 minute. No further manipulation of the stove is allowed during the 15 minutes immediately preceding the start of the test.
- M. When the weight of the coal bed equals 20-25% of the weight of the test fuel charge, load the test fuel. Take a photograph of the fuel load in the stove immediately after loading the fuel. Leave the door open as per the manufacturer's instruction, but no longer than 5 minutes.
- N. Document all stove operating data from ignition through loading and test start up on Data Sheet #9.

## Wood Heater Efficiency Summary

## Laboratory/Wood Heater Information

Stove Manufacturer:

F.X. DROLET

Model Identification:

HT-2000

Stove Type> 1=cat,

2=noncat, 3=pellet:

2

Laboratory Name:

**EESPC** 

Laboratory Contact:

Bill Nowak

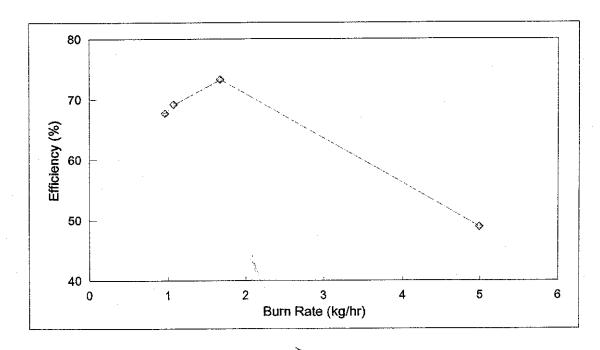
Telephone no.:

206-859-8318

Test Dates:

6/23-7/1/93

**Test Methods Used** 


Method 28/Other:

28A

Sampling Method:

5H

	Run no.	Burn Rate (kg/hr)	Overall Efficiency (%)	Heat Output (Btu/hr)	Wtd Avg Ovr Eff % 68.2	
~	1	0.96	67.7	12460		
	2	1.07	69.2	14014		
	4	1.67	73.3	23330	en en en en en en en en en en en en en e	
	6	4.99	48.9	46625	•	





#### RESULTS OF EFFICIENCY TESTING ON THE FX DROLET WOOD STOVE

RUN NUMBER 1 PROJECT NUMBER

SERIAL NUMBER C1103

DATE OF TEST: 6/23/93

STOVE MODEL: HT 2000

#### AVERAGE EFFICIENCIES

#### **EMISSIONS**

#### TEST DATA

BURN RATE======>>	2.60	(lb/hr-wet)	ĺ
BURN RATE==========>>	0.96	(kg/hr-dry)	ŀ
BURN RATE====================================	1.18	(kg/hr-wet)	l
FUEL MOISTURE ========>>	18.66	(% Wet basis)	
HEAT OUTPUT========>	12460.42	(Btu/hr)	ļ
FUEL HIGHER HEATING VALUE=========>	8694.00	(Btu/lb-dry)	
AVERAGE STACK FLOW RATE=========>		(DSCF/minute w/HC)	1
AIR TO FUEL RATIO=======>>	13.22	(lb-air/lb-fuel)	
AVERAGE EXCESS AIR==========>	106.54	(% Stoichiometric)	
AVERAGE STACK TEMPERATURE=======>>	235.79	(Degrees F)	
AVERAGE STACK MOISTURE ======>>	8.85	(% volume-wet w/HC)	
AVERAGE CO2=======>>	7.14	(% volume-dry w/HC)	
AVERAGE 02=======>>	11.85	(% volume-dry w/HC)	
AVERAGE CO==========>>	1.97	(% volume-dry w/HC)	
		- /	

^{-&}gt; 101 15:43:32 67.4176 07-08-1993 OVERALL EFFICIENCY WITHOUT STOVE TEMPERATURE CHANGE= 67.1 %

## TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 1

DATE: 6/23/93

		1	Dry and	d HC fre	e			
PT	TIME	WT. FUEL	%CO2		%CO	WT BLB		
****	****	*****	*****	******	*****	*****	*****	*****
1	0	21.70	11.00	8.60	1.23	129.0	375.0	900.0
2	5	20.60	6.00	14.30	0.44	135.0	553.0	300.0
3	10	20.00	7.50	11.90	1.04	132.0	320.0	850.0
4	15	19.50	8.30	11.20	1.02	131.0	294.0	750.0
5	20	18.70	9.80	10.00	1.24	132.0	287.0	725.0
6	25	18.10	12.00	8.30	0.92	133.0	313.0	725.0
7	30	17.50	7.50	11.60	1.33	133.0	301.0	750.0
8	35	16.90	9.40	10.30	1.28	133.0	301.0	750.0
9	40	16.20	10.10	9.80	1.17	133.0	. 300.0	775.0
10	45	15.40	10.80	9.20	0.99	133.0	301.0	750.0
11	50	14.80	11.60	8.80	0.72	131.0	309.0	725.0
12	55	14.30	11.20	9.00	0.75	131.0	309.0	725.0
13	60	13.70	11.10	9.10	0.77	131.0	307.0	750.0
14	65	13.10	12.50	8.10	0.58	132.0	321.0	725.0
15	70	12.60	11.90	8.70	0.62	131.0	315.0	725.0
16	75 20	12.20	11.20	9.20	0.53	130.0	308.0	725.0
17	80	11.60	11.90	8.30	0.95	130.0	311.0 304.0	775.0
18	85	11.00	11.20	9.00	0.88	129.0	308.0	750.0 775.0
<u>9</u>	90	10.40	11.70	8.50 7.60	0.91 0.82	128.0	321.0	775.0
20	95	9.90	12.60		0.82	130.0 126.0	308.0	750.0
21	100	9.40	11.80	8.50 9.20	0.49	126.0	303.0	775.0
22	105	9.10	11.30	9.20	0.72	125.0	292.0	800.0
23	110	8.70	10.70	8.80	0.76	123.0	289.0	775.0
24	115	8.30	11.20 11.30	8.70	0.78	121.0	286.0	800.0
25	120	7.80	10.90	9.10	0.73	120.0	283.0	800.0
26	125	7.50 7.30	9.80	10.30	0.63	118.0	271.0	800.0
27	130	7.00	9.70	10.30	0.64	118.0	268.0	800.0
28	135 140	6.70	8.60	10.30	0.76	117.0	260.0	825.0
29	145	6.40	8.20	12.00	2.65	114.0	236.0	875.0
30 31	150	6.20	7.70	11.70	2.65	111.0	228.0	950.0
32	155	6.00	6.70	11.80	2.75	110.0	222.0	%1025.0
33	160	5.80		11.80		109.0	218.0	975.0
34	165	5.60	6.30	13.10	1.55	108.0	209.0	950.0
35	170	5.50	6.40	13.00	1.52	108.0	204.0	950.0
36	175	5.30	6.90	12.90	2.33	106.0	198.0	%1025.0
37	180	5.10	6.10	12.60	2.07	106.0	198.0	%1025.0
38	185	5.00	6.40	12.60	1.99	105.0	198.0	%1025.0
39	190	4.90	5.30	13.00	2.08	105.0	197.0	<b>%1050.0</b>
40	195	4.80	5.70	12.80	2.08	104.0	196.0	%1125.0
41	200	4.70	5.50	13.00	2.30	103.0	197.0	%1100.0
42	205	4.60	5.20	13.30	2.26	102.0	191.0	%1050.0
43	210	4.50	4.90	13.60	2.38	102.0	183.0	%1075.0
4	215	4.40	5.00	13.20	2.62	102.0	182.0	<b>%1125.0</b>
45	220	4.40	4.90	13.30	2.72	102.0	181.0	%1125.0
46	225	4.30	4.80	13.30	2.77	102.0	180.0	%1125.0
47	230	4.20	4.80	13.40	2.71	102.0	181.0	%1125.0
48	235	4.10	4.80	13.50	2.72	102.0	180.0	%1125 <b>.</b> 0
49	240	4.10	4.80	13.40	2.72	102.0	178.0	%1125.0

50 245 4.00 4.60 13.60 2.67 102.0 178.0 %1125.0

# TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 1 DATE: 6/23/93

				d HC fre				
PT	TIME	WT. FUEL	%CO2	%O2	%CO	WT BLB	DRY BLB	TRACER
****	*****	******	******	*****	*****	*****	*****	*****
51	250	3.90	5.00	13.40	2.45	102.0	177.0	%1125.0
51 52	255 255	3.80	4.90	13.40	2.65	102.0	176.0	%1125.0 %1125.0
53	260	3.80	4.50	13.40	2.60	102.0	177.0	%1120.0
54	265	3.70	4.50	13.80	2.51	100.0	168.0	%1100.0
55	270	3.70	4.70	13.50	2.68	100.0	166.0	%1200.0
56	275	3.60	4.70	13.70	2.67	99.0	168.0	%1200.0
57	280	3.50	4.70	13.60	2.87	99.0	169.0	%1200.0
58	285	3.40	4.60	13.40	3.37	101.0	172.0	%1200.0
59	290	3.30	4.70	13.30	3.50	101.0	171.0	%1200.0
60	295	3.30	4.70	13.10	3.64	101.0	172.0	%1200.0
61	300	3.20	4.70	13.10	3.62	101.0	173.0	%1175.0
62	305	3.10	4.80	13.10	3.60	101.0	173.0	<b>%1175.0</b>
63	310	3.00	4.70	13.10	3.59	101.0	173.0	%1175 <b>.</b> 0
64	315	2.90	4.70	13.10	3.57	101.0	173.0	%1150.0
65	320	2.80	4.80	13.00	3.65	101.0	173.0	%1150.0
66	325	2.80	4.90	12.90	3.68	101.0	173.0	%1150.0
67	330	2.70	4.70	13.10	3.72	101.0	173.0	%1150.0
<b>√</b> 58	335	2.60	4.70	13.10	3.77	101.0	174.0	%1150.0°
( 9	340	2.50	4.80	13.10	3.80	101.0	174.0	<b>%1175.</b> 0
70	345	2.40	4.80	13.00	3.83	101.0	175.0	<b>%1175.</b> 0
71	350	2.30	4.90	13.00	3.80	101.0	174.0	<b>%1200.0</b>
72	355	2.20	4.90	13.00	3.82	101.0	175.0	%1200.0
73	360	2.10	4.80	13.10	3.69	101.0	175.0	<b>%1200.0</b>
74	365	2.10	4.80	13.00	3.73	101.0	175.0	<b>%1200.0</b>
75	370	2.00	4.80	13.00	3.71	101.0	174.0	<b>%1200.0</b>
76	375	1.90	4.90	13.00	3.76	101.0	175.0	%1200.0
77	380	1.80	4.90	13.00	3.68	101.0	175.0	% <b>1175.</b> 0
78	385	1.70	4.90	13.00	3.65	101.0	175.0	%1150.0
79	390	1.60	4.90	13.00	3.68	101.0	175.0	%1150.0
80	395	1.50	4.90	13.10	3.61	101.0	174.0	%1150.0
81	400	1.40	4.80	13.20	3.55	101.0	175.0	%1150.0 %1125.0
82	405	1.40	4.80	13.30 13.30	3.50 3.48	101.0	175.0 174.0	%1125.0 %1150.0
83	410	1.30	4.80 4.70	13.40	3.49	101.0 101.0	174.0	%1150.0 %1150.0
84 85	415 420	1.20 1.10	4.80	13.10	1.51	101.0	174.0	%1150.0 %1150.0
86	425	1.00	6.30	13.10	1.42	101.0	174.0	%1150.0 %1150.0
87	430	1.00	6.10	13.10	1.57	101.0	175.0	%1150.0
88	435	0.90	6.00	13.20	1.54	101.0	174.0	%1175.0
89	440	0.80	5.90	13.30	1.56	101.0	174.0	%1175.0
90	445	0.70	5.90	13.20	1.55	101.0	174.0	%1150.0
91	450	0.70	5.80	13.40	1.49	101.0	174.0	%1150.0
92	455	0.60	5.70	13.50	1.68	101.0	173.0	%1175.0
93	460	0.50	5.50	13.60	1.68	101.0	175.0	%1150.0
<b>1</b>	465	0.40	5.50	13.40	1.78	101.0	175.0	%1175.0
5	470	0.40	5.60	13.50	1.70	101.0	174.0	%1200.0
96	475	0.30	4.80	14.20	2.15	99.0	174.0	%1200.0
97	480	0.20	4.60	14.40	1.95	99.0	175.0	<b>%1175.</b> 0
98	485	0.20	4.60	14.50	1.80	99.0	173.0	<b>%1175.0</b>
99	490	0.10	4.70	14.40	1.79	99.0	172.0	% <b>1175.</b> 0
								•

100 495 0.10 4.70 14.50 1.69 99.0 171.0 %1175.0

 $\bigcap$ 

PAGE 3

## TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 1

DATE: 6/23/93

PT ****	TIME *****	WT. FUEL ******	%CO2	HC fre %02 *****	%CO	WT BLB *****	DRY BLB	TRACER
101	500	0.00	4.30	14.80	1.95	99.0	171.0	%1175 <b>.</b> 0

## TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET

RUN NUMBER: 1

DATE: 6/23/93

PT	FLOW RATE	DRY BURN RATE	STACK MOISTURE	STACK TEMP
	(DSCFM w/HC)	(LB/HOUR-CALCULATED)		(F)
****	: * * * * * * * * * * * * * * * * * * *	*******	*****	*****
	6 50	2 15	10 21	275 0
1	6.58	3.15	10.31	375.0
2	19.75	4.96	6.13	553.0
3	6.97	2.17	15.31	320.0
4	7.90	2.75	15.87	294.0
5	8.17	3.59	16.96	287.0
6	8.17	4.33	16.42	313.0
7	7.90	2.51	17.02	301.0
8	7.90	3.33	17.02	301.0
9	7.64	3.45	17.07	300.0
10	7.90	3.73	17.02	301.0
11	8.17	4.12	15.11	309.0
12	8.17	3.93	15.11	309.0
13	7.90	3.78	15.21	307.0
14	8.17	4.41	15.26	321.0
15	8.17	4.24	14.81	315.0
16	8.17	3.88	14.43	308.0
17	7.64	4.00	14.28	311.0
<u>~8</u>	7.90	3.87	13.91	304.0
(5	7.64	3.92	13.01	308.0
20	7.64	4.15	13.77	321.0
21	7.90	3.89	11.64	308.0
22	7.64	3.80	11.90	303.0
23	7.41	3.36	11.81	292.0
24	7.64	3.61	10.69	289.0
25	7.41	3.52	9.63	286.0
25 26	7.41	3.36	9.19	283.0
	7.41	3.05	8.69	271.0
27		2.99	8.84	268.0
28	7.41	2.35	8.72	260.0
29	7.18	3.31	8.43	
30	6.77		7.39	236.0
31	6.24	2.69		228.0
32	5.78	2.06	7.25	222.0
33	6.08	2.07	7.02	218.0
34	6.24	1.86	7.06	209.0
35	6.24	1.87	7.33	204.0
36	5.78	2.29	6.81	198.0
37	5.78	1.69	6.81	198.0
38	5.78	1.82	6.40	198.0
39	5.64	1.36	6.45	197.0
40	5.27	1.41	6.11	196.0
41	5.39	1.48	5.66	197.0
42	5.64	1.46	5.61	191.0
43	5.51	1.41	6.05	183.0
	5.27	1.38	6.10	182.0
( <u>1</u>	5.27	1.39	6.16	181.0
46	5.27	1.36	6.21	180.0
47	5.27	1.37	6.16	181.0
48	5.27	1.40	6.21	180.0
49	5.27	1.37	6.32	178.0
	<del>-</del>			

50 5.27 1.31 6.32 178.0

# TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET

RUN NUMBER: 1

DATE: 6/23/93

(BSCFM w/HC) (LB/HOUR-CALCULATED) (&VOLUME-w/HC) (F)  ***********************************	PT	FLOW RATE	DRY BURN RATE	STACK MOISTURE	STACK TEMP
52         5.27         1.39         6.43         176.0           53         5.39         1.22         6.38         177.0           54         5.39         1.28         6.14         168.0           55         4.94         1.25         6.25         166.0           56         4.94         1.30         5.78         168.0           57         4.94         1.43         5.73         169.0           59         4.94         1.49         6.33         171.0           60         4.94         1.49         6.33         177.0           61         5.04         1.52         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.61         6.22         173.0           68         5.15         1.61         6.22         173.0 </td <td>****</td> <td>•</td> <td></td> <td></td> <td></td>	****	•			
52         5.27         1.39         6.43         176.0           53         5.39         1.22         6.38         177.0           54         5.39         1.28         6.14         168.0           55         4.94         1.25         6.25         166.0           56         4.94         1.30         5.78         168.0           57         4.94         1.43         5.73         169.0           59         4.94         1.49         6.33         171.0           60         4.94         1.49         6.33         177.0           61         5.04         1.52         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.61         6.22         173.0           68         5.15         1.61         6.22         173.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
53         5.39         1.28         6.38         177.0           54         5.39         1.28         6.14         168.0           55         4.94         1.25         6.25         166.0           56         4.94         1.30         5.78         168.0           57         4.94         1.34         5.73         169.0           58         4.94         1.49         6.28         172.0           60         4.94         1.49         6.28         172.0           61         5.04         1.52         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.61         6.22         173.0           67         5.15         1.61         6.22         173.0           68         5.15         1.61         6.17         174.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
54         5.39         1.28         6.14         168.0           55         4.94         1.30         5.78         168.0           57         4.94         1.30         5.78         168.0           58         4.94         1.43         5.73         169.0           59         4.94         1.49         6.33         171.0           60         4.94         1.49         6.33         171.0           61         5.04         1.52         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.53         6.22         173.0           66         5.15         1.51         6.22         173.0           67         5.15         1.53         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.63         6.17         174.0           70         5.04         1.61         6.17         174.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
55         4.94         1.25         6.25         166.0           56         4.94         1.30         5.78         168.0           57         4.94         1.34         5.73         169.0           58         4.94         1.49         6.28         172.0           60         4.94         1.49         6.28         172.0           61         5.04         1.52         6.22         173.0           62         5.04         1.51         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.60         6.17         174.0           68         5.15         1.61         6.17         174.0           67         5.15         1.63         6.17         174.0           70         5.04         1.63         6.17         174.0           70         5.04         1.61         6.17         174.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
56         4.94         1.34         5.78         168.0           57         4.94         1.34         5.73         169.0           58         4.94         1.43         6.28         172.0           59         4.94         1.49         6.33         171.0           60         4.94         1.49         6.28         172.0           61         5.04         1.55         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.58         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.59         6.22         173.0           67         5.15         1.60         6.17         174.0           68         5.15         1.60         6.17         174.0           70         5.04         1.61         6.17         174.0           70         5.04         1.61         6.11         175.0           71         4.94         1.62         6.11         175.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
57         4.94         1.34         5.73         169.0           58         4.94         1.43         6.28         172.0           59         4.94         1.49         6.33         171.0           60         4.94         1.49         6.28         172.0           61         5.04         1.56         6.22         173.0           62         5.04         1.51         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.60         6.17         174.0           68         5.15         1.60         6.17         174.0           60         5.15         1.60         6.17         174.0           60         5.15         1.60         6.17         174.0           70         5.04         1.61         6.11         175.0           72         4.94         1.62         6.11         175.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
58         4.94         1.49         6.28         172.0           59         4.94         1.49         6.28         172.0           61         5.04         1.52         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.61         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.60         6.17         174.0           70         5.04         1.61         6.17         174.0           70         5.04         1.61         6.17         174.0           71         4.94         1.61         6.11         175.0           72         4.94         1.62         6.11         175.0           73         4.94         1.54         6.11         175.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
59         4.94         1.49         6.38         172.0           60         4.94         1.49         6.28         172.0           61         5.04         1.52         6.22         173.0           62         5.04         1.56         6.22         173.0           63         5.04         1.51         6.22         173.0           64         5.15         1.53         6.22         173.0           65         5.15         1.58         6.22         173.0           66         5.15         1.61         6.22         173.0           67         5.15         1.60         6.17         174.0           68         5.15         1.60         6.17         174.0           69         5.04         1.63         6.17         174.0           70         5.04         1.61         6.17         174.0           70         5.04         1.61         6.17         174.0           72         4.94         1.62         6.11         175.0           73         4.94         1.54         6.11         175.0           74         4.94         1.54         6.11         175.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
60					
61 5.04 1.52 6.22 173.0 62 5.04 1.56 6.22 173.0 63 5.04 1.51 6.22 173.0 64 5.15 1.53 6.22 173.0 64 5.15 1.53 6.22 173.0 66 5.15 1.55 1.58 6.22 173.0 66 5.15 1.61 6.22 173.0 66 5.15 1.61 6.22 173.0 67 5.15 1.61 6.22 173.0 67 5.15 1.60 6.17 174.0 69 6.15 1.60 6.17 174.0 69 6.10 1.63 6.17 174.0 70 5.04 1.61 6.11 175.0 71 174.0 72 1.64 1.65 6.11 175.0 73 1.69 1.69 1.60 6.11 175.0 73 1.69 1.69 1.54 6.11 175.0 74 1.69 1.54 6.11 175.0 75 1.59 1.59 6.21 1.59 6.21 1.59 6.21 1.59 6.21 1.50 6.21 1.55 6.11 175.0 75 1.94 1.60 6.11 175.0 75 1.94 1.60 6.11 175.0 77 5.04 1.60 6.11 175.0 77 5.04 1.60 6.11 175.0 78 5.15 1.60 6.11 175.0 79 5.15 1.64 6.11 175.0 6.11 175.0 79 5.15 1.64 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.60 6.11 175.0 82 5.27 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.60 6.11 175.0 84 5.15 1.58 6.17 174.0 85 5.15 1.60 6.17 174.0 88 5.15 1.50 1.60 6.17 174.0 89 5.04 1.39 6.17 174.0 89 5.04 1.39 6.17 174.0 89 5.04 1.39 6.17 174.0 89 5.04 1.38 6.22 173.0 93 5.15 1.36 6.17 174.0 89 5.04 1.38 6.22 173.0 93 5.15 1.38 6.22 173.0 93 5.15 1.38 6.22 173.0 93 5.15 1.38 6.22 173.0 93 5.15 1.38 6.17 174.0 96 4.94 1.38 6.22 173.0 97 5.04 1.30 6.11 175.0 96 4.94 1.31 6.17 174.0 97 5.04 1.30 6.11 175.0 97 5.04 1.30 6.11 175.0 97 5.04 1.30 6.11 175.0 99 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.39 5.04 1.39 5.04 1.39 5.04 1.39 6.17 174.0 97 5.04 1.39 5.04 1.39 5.04 1.39 5.04 1.30 6.11 175.0 97 5.04 1.30 6.11 175.0 97 5.04 1.30 6.11 175.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 175.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 175.0 97 5.04 1.31 6.17 174.0 97 5.04 1.31 6.17 174.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0					
62 5.04 1.56 6.22 173.0 63 5.04 1.51 6.22 173.0 64 5.15 1.58 6.22 173.0 65 5.15 1.58 6.22 173.0 66 5.15 1.61 6.22 173.0 67 5.15 1.60 6.22 173.0 67 5.15 1.60 6.17 174.0 67 5.04 1.61 6.11 175.0 70 5.04 1.61 6.11 175.0 71 4.94 1.62 6.11 175.0 72 4.94 1.62 6.11 175.0 73 4.94 1.55 6.11 175.0 74 4.94 1.54 6.11 175.0 75 4.94 1.60 6.11 175.0 76 4.94 1.60 6.11 175.0 77 5.04 1.60 6.11 175.0 78 5.15 1.60 6.11 175.0 80 5.15 1.60 6.11 175.0 81 5.15 1.63 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.64 6.11 175.0 80 5.15 1.64 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.60 6.11 175.0 84 5.15 1.60 6.11 175.0 85 5.15 1.60 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.60 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.60 6.11 175.0 84 5.15 1.60 6.11 175.0 85 5.15 1.60 6.11 175.0 86 6.17 174.0 87 5.15 1.60 6.17 174.0 88 5.15 1.60 6.17 174.0 89 5.15 1.46 6.17 174.0 80 5.15 1.60 6.17 174.0 81 5.15 1.38 6.17 174.0 82 5.27 1.64 6.11 175.0 83 5.15 1.38 6.17 174.0 84 5.15 1.38 6.17 174.0 87 5.15 1.38 6.17 174.0 89 5.04 1.39 6.17 174.0 90 5.15 1.38 6.17 174.0 91 5.15 1.36 6.17 174.0 92 5.04 1.39 6.17 174.0 93 5.15 1.34 6.17 174.0 94 4.94 1.31 6.17 174.0 95 4.94 1.31 6.17 174.0 96 4.94 1.31 6.17 174.0 97 5.04 1.30 6.11 175.0 98 5.04 1.19 5.40 175.0				6.28	172.0
63 5.04 1.51 6.22 173.0 64 5.15 1.53 6.22 173.0 65 5.15 1.58 6.22 173.0 66 5.15 1.61 6.22 173.0 67 5.15 1.61 6.22 173.0 8 5.15 1.60 6.17 174.0 9 5.04 1.63 6.17 174.0 70 5.04 1.61 6.11 175.0 71 4.94 1.61 6.17 174.0 72 4.94 1.62 6.11 175.0 73 4.94 1.55 6.11 175.0 74 4.94 1.54 6.11 175.0 75 4.94 1.56 6.11 175.0 77 5.04 1.60 6.11 175.0 78 5.15 1.60 6.11 175.0 78 5.15 1.60 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.64 6.11 175.0 84 5.15 1.66 6.11 175.0 85 5.15 1.64 6.11 175.0 86 5.15 1.64 6.11 175.0 87 5.15 1.64 6.11 175.0 88 5.15 1.64 6.11 175.0 89 5.15 1.64 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.60 6.11 175.0 84 5.15 1.60 6.11 175.0 85 5.15 1.60 6.11 175.0 86 5.15 1.60 6.11 175.0 87 5.15 1.60 6.17 174.0 88 5.15 1.60 6.17 174.0 89 5.15 1.38 6.17 174.0 89 5.15 1.38 6.17 174.0 89 5.04 1.39 6.17 174.0 90 5.15 1.38 6.17 174.0 91 5.15 1.38 6.17 174.0 91 5.15 1.38 6.17 174.0 91 5.15 1.38 6.17 174.0 91 5.15 1.38 6.17 174.0 91 5.15 1.38 6.17 174.0 91 5.15 1.34 6.11 175.0 93 5.15 1.34 6.11 175.0 94 4.94 1.31 6.17 174.0 97 5.04 1.39 6.17 174.0 98 5.04 1.39 6.17 174.0 97 5.04 1.39 6.17 174.0 98 5.04 1.39 6.17 174.0 97 5.04 1.39 6.17 174.0 98 5.04 1.39 6.17 174.0		5.04		6.22	173.0
64 5.15 1.53 6.22 173.0 65 5.15 1.58 6.22 173.0 66 5.15 1.61 6.22 173.0 67 5.15 1.59 6.22 173.0 8 5.15 1.60 6.17 174.0 70 5.04 1.63 6.17 174.0 71 4.94 1.61 6.11 175.0 72 4.94 1.62 6.11 175.0 73 4.94 1.55 6.11 175.0 74 4.94 1.55 6.11 175.0 75 4.94 1.56 6.11 175.0 76 4.94 1.60 6.11 175.0 77 5.04 1.60 6.11 175.0 78 5.15 1.63 6.11 175.0 78 5.15 1.63 6.11 175.0 78 5.15 1.64 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.60 6.11 175.0 84 5.15 1.58 6.17 174.0 85 5.15 1.64 6.17 174.0 86 5.15 1.64 6.11 175.0 87 5.15 1.64 6.11 175.0 88 5.15 1.60 6.11 175.0 80 5.15 1.64 6.17 174.0 81 5.15 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.60 6.11 175.0 84 5.15 1.60 6.17 174.0 85 5.15 1.60 6.17 174.0 86 5.15 1.46 6.17 174.0 87 5.15 1.38 6.17 174.0 89 5.04 1.39 6.17 174.0 90 5.15 1.38 6.17 174.0 90 5.15 1.38 6.17 174.0 91 5.15 1.38 6.17 174.0 92 5.04 1.39 6.17 174.0 93 5.15 1.38 6.17 174.0 90 5.15 1.38 6.17 174.0 91 5.15 1.36 6.17 174.0 92 5.04 1.39 6.17 174.0 93 5.15 1.34 6.11 175.0 94 95 5.04 1.39 6.17 174.0 96 4.94 1.31 6.17 174.0 97 5.04 1.30 6.11 175.0 98 5.04 1.19 5.40 175.0	62	5.04		6.22	173.0
65 5.15 1.58 6.22 173.0 66 5.15 1.61 6.22 173.0 67 5.15 1.59 6.22 173.0 68 5.15 1.60 6.17 174.0 70 5.04 1.63 6.17 174.0 71 4.94 1.61 6.11 175.0 72 4.94 1.62 6.11 175.0 73 4.94 1.55 6.11 175.0 74 4.94 1.55 6.11 175.0 75 4.94 1.56 6.11 175.0 76 4.94 1.56 6.11 175.0 77 5.04 1.60 6.11 175.0 78 5.15 1.60 6.11 175.0 79 5.15 1.63 6.11 175.0 80 5.15 1.64 6.11 175.0 80 5.15 1.64 6.11 175.0 81 5.15 1.64 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.64 6.11 175.0 84 5.15 1.66 6.11 175.0 85 5.15 1.66 6.11 175.0 81 5.15 1.66 6.11 175.0 82 5.27 1.64 6.11 175.0 83 5.15 1.66 6.11 175.0 84 5.15 1.66 6.11 175.0 85 5.15 1.66 6.11 175.0 86 5.15 1.66 6.11 175.0 87 5.15 1.66 6.11 175.0 88 5.05 6.17 174.0 89 5.15 1.66 6.17 174.0 80 5.15 1.66 6.17 174.0 81 5.15 1.38 6.17 174.0 82 5.27 1.64 6.11 175.0 83 5.15 1.45 6.11 175.0 84 5.15 1.38 6.17 174.0 85 5.15 1.38 6.17 174.0 89 5.04 1.39 6.17 174.0 90 5.15 1.38 6.17 174.0 90 5.15 1.38 6.17 174.0 90 5.15 1.38 6.17 174.0 90 5.15 1.38 6.17 174.0 91 5.15 1.36 6.17 174.0 92 5.15 1.38 6.17 174.0 93 5.15 1.34 6.11 175.0 94 4.94 1.31 6.17 174.0 96 4.94 1.31 6.17 174.0 97 5.04 1.39 5.40 175.0 98 5.04 1.19 5.40 175.0	63	5.04	1.51	6.22	173.0
66 5.15 1.59 6.22 173.0  87 5.15 1.59 6.22 173.0  88 5.15 1.60 6.17 174.0  9 5.04 1.63 6.17 174.0  70 5.04 1.61 6.11 175.0  71 4.94 1.61 6.17 174.0  72 4.94 1.62 6.11 175.0  73 4.94 1.55 6.11 175.0  75 4.94 1.55 6.11 175.0  75 4.94 1.56 6.11 175.0  76 4.94 1.60 6.11 175.0  77 5.04 1.60 6.11 175.0  78 5.15 1.60 6.11 175.0  88 5.15 1.63 6.11 175.0  88 5.15 1.64 6.11 175.0  80 5.15 1.64 6.11 175.0  81 5.15 1.64 6.11 175.0  82 5.27 1.64 6.11 175.0  83 5.15 1.60 6.11 175.0  84 5.15 1.60 6.11 175.0  85 5.15 1.66 6.11 175.0  86 5.15 1.66 6.17 174.0  87 5.15 1.68 6.17 174.0  88 5.15 1.58 6.17 174.0  89 5.15 1.46 6.17 174.0  80 5.15 1.58 6.17 174.0  81 5.15 1.58 6.17 174.0  82 5.27 1.64 6.17 174.0  83 5.15 1.58 6.17 174.0  84 5.15 1.38 6.17 174.0  85 5.15 0.81 6.17 174.0  87 5.15 1.46 6.17 174.0  89 5.04 1.39 6.17 174.0  90 5.15 1.38 6.17 174.0  91 5.15 1.38 6.17 174.0  92 5.04 1.39 6.17 174.0  93 5.15 1.34 6.11 175.0  93 5.15 1.34 6.11 175.0  93 5.15 1.34 6.11 175.0  94 9.131 6.17 174.0  96 4.94 1.31 6.17 174.0  97 5.04 1.39 6.17 174.0  96 4.94 1.28 5.45 174.0  97 5.04 1.19 5.40 175.0  98 5.04 1.19 5.40 175.0	64	5.15	1.53	6.22	173.0
67       5.15       1.59       6.22       173.0         8       5.15       1.60       6.17       174.0         70       5.04       1.63       6.17       174.0         70       5.04       1.61       6.11       175.0         71       4.94       1.61       6.17       174.0         72       4.94       1.62       6.11       175.0         73       4.94       1.55       6.11       175.0         74       4.94       1.54       6.11       175.0         75       4.94       1.60       6.11       175.0         76       4.94       1.60       6.11       175.0         77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         80       5.15       1.64       6.11       175.0         81       5.15       1.64       6.17       174.0         82       5.27       1.64       6.11       175.0         83       5.15       1.58       6.17       174.0         84       5.15       1.58       6.17       174.0         85	65	5.15	1.58	6.22	173.0
67       5.15       1.59       6.22       173.0         8       5.15       1.60       6.17       174.0         9       5.04       1.63       6.17       174.0         70       5.04       1.61       6.11       175.0         71       4.94       1.61       6.17       174.0         72       4.94       1.62       6.11       175.0         73       4.94       1.55       6.11       175.0         74       4.94       1.54       6.11       175.0         75       4.94       1.60       6.11       175.0         76       4.94       1.60       6.11       175.0         77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.64       6.17       174.0         82       5.27       1.64       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86	66	5.15	1.61	6.22	173.0
8         5.15         1.60         6.17         174.0           70         5.04         1.61         6.17         174.0           71         4.94         1.61         6.11         175.0           71         4.94         1.62         6.11         175.0           72         4.94         1.55         6.11         175.0           73         4.94         1.54         6.11         175.0           74         4.94         1.54         6.11         175.0           75         4.94         1.60         6.11         175.0           76         4.94         1.60         6.11         175.0           77         5.04         1.60         6.11         175.0           78         5.15         1.64         6.11         175.0           80         5.15         1.64         6.11         175.0           81         5.15         1.64         6.11         175.0           82         5.27         1.64         6.11         175.0           83         5.15         1.60         6.17         174.0           84         5.15         1.58         6.17         174.0 <td>67</td> <td>5.15</td> <td>1.59</td> <td></td> <td>173.0</td>	67	5.15	1.59		173.0
5.04         1.63         6.17         174.0           70         5.04         1.61         6.17         175.0           71         4.94         1.61         6.17         174.0           72         4.94         1.62         6.11         175.0           73         4.94         1.55         6.11         175.0           74         4.94         1.54         6.17         174.0           76         4.94         1.60         6.11         175.0           77         5.04         1.60         6.11         175.0           78         5.15         1.63         6.11         175.0           79         5.15         1.64         6.11         175.0           80         5.15         1.64         6.11         175.0           81         5.15         1.60         6.11         175.0           82         5.27         1.64         6.11         175.0           83         5.15         1.64         6.11         175.0           84         5.15         1.58         6.17         174.0           85         5.15         0.81         6.17         174.0	<b>√</b> 58				
70         5.04         1.61         6.11         175.0           71         4.94         1.61         6.17         174.0           72         4.94         1.62         6.11         175.0           73         4.94         1.55         6.11         175.0           74         4.94         1.54         6.11         175.0           75         4.94         1.54         6.17         174.0           76         4.94         1.60         6.11         175.0           77         5.04         1.60         6.11         175.0           78         5.15         1.63         6.11         175.0           78         5.15         1.64         6.11         175.0           79         5.15         1.64         6.11         175.0           80         5.15         1.64         6.11         175.0           81         5.15         1.60         6.11         175.0           82         5.27         1.64         6.11         175.0           84         5.15         1.58         6.17         174.0           85         5.15         0.81         6.17         174.0 </td <td>( )</td> <td></td> <td></td> <td></td> <td></td>	( )				
71       4.94       1.61       6.17       1.74.0         72       4.94       1.62       6.11       1.75.0         73       4.94       1.55       6.11       1.75.0         74       4.94       1.54       6.11       1.75.0         75       4.94       1.60       6.11       1.75.0         76       4.94       1.60       6.11       1.75.0         77       5.04       1.60       6.11       1.75.0         78       5.15       1.63       6.11       1.75.0         79       5.15       1.64       6.11       1.75.0         80       5.15       1.64       6.11       1.75.0         81       5.15       1.64       6.11       1.75.0         82       5.27       1.64       6.11       1.75.0         84       5.15       1.60       6.11       1.75.0         84       5.15       1.58       6.17       1.74.0         85       5.15       0.81       6.17       1.74.0         85       5.15       0.81       6.17       1.74.0         86       5.15       1.46       6.17       1.74.0	70				
72       4.94       1.62       6.11       1.75.0         73       4.94       1.55       6.11       1.75.0         74       4.94       1.54       6.11       1.75.0         75       4.94       1.60       6.11       1.75.0         76       4.94       1.60       6.11       1.75.0         76       4.94       1.60       6.11       1.75.0         78       5.15       1.63       6.11       1.75.0         78       5.15       1.63       6.11       1.75.0         79       5.15       1.64       6.11       1.75.0         80       5.15       1.64       6.17       1.74.0         81       5.15       1.60       6.11       1.75.0         81       5.15       1.60       6.17       1.74.0         84       5.15       1.58       6.17       1.74.0         85       5.15       0.81       6.17       1.74.0         87       5.15       1.46       6.17       1.74.0         88       5.04       1.39       6.17       1.74.0         89       5.04       1.38       6.17       1.74.0					
73       4.94       1.55       6.11       175.0         74       4.94       1.54       6.11       175.0         75       4.94       1.54       6.17       174.0         76       4.94       1.60       6.11       175.0         77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         84       5.15       1.58       6.17       174.0         85       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         90       5.15       1.38       6.17       174.0         92					
74       4.94       1.54       6.17       174.0         75       4.94       1.54       6.17       174.0         76       4.94       1.60       6.11       175.0         77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         84       5.15       1.58       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         90       5.15       1.36       6.17       174.0         91       5.15       1.36       6.17       174.0         92					
75       4.94       1.54       6.17       174.0         76       4.94       1.60       6.11       175.0         77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         84       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.38       6.17       174.0         92       5.04       1.38       6.22       173.0         93					
76       4.94       1.60       6.11       175.0         77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.17       174.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         91       5.15       1.38       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         96					
77       5.04       1.60       6.11       175.0         78       5.15       1.63       6.11       175.0         79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         96					
78       5.15       1.63       6.11       175.0         79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.38       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         96       4.94       1.31       6.17       174.0         96					
79       5.15       1.64       6.11       175.0         80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         91       5.15       1.38       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         96       4.94       1.31       6.17       174.0         97       5.04       1.19       5.40       175.0         98					
80       5.15       1.64       6.17       174.0         81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         96       4.94       1.28       5.45       174.0         96       4.94       1.28       5.45       174.0         98       5.04       1.16       5.51       173.0					
81       5.15       1.60       6.11       175.0         82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         96       4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         98       5.04       1.16       5.51       173.0					
82       5.27       1.64       6.11       175.0         83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         94       1.30       6.11       175.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
83       5.15       1.60       6.17       174.0         84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
84       5.15       1.58       6.17       174.0         85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         5       4.94       1.31       6.17       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
85       5.15       0.81       6.17       174.0         86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         5       4.94       1.31       6.17       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
86       5.15       1.46       6.17       174.0         87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         5       4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
87       5.15       1.45       6.11       175.0         88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         93       5.15       1.34       6.11       175.0         93       4.94       1.30       6.11       175.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
88       5.04       1.39       6.17       174.0         89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         5       4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
89       5.04       1.37       6.17       174.0         90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         3       4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
90       5.15       1.38       6.17       174.0         91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         3       4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
91       5.15       1.36       6.17       174.0         92       5.04       1.38       6.22       173.0         93       5.15       1.34       6.11       175.0         5.04       1.30       6.11       175.0         4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
92     5.04     1.38     6.22     173.0       93     5.15     1.34     6.11     175.0       1     5.04     1.30     6.11     175.0       5     4.94     1.31     6.17     174.0       96     4.94     1.28     5.45     174.0       97     5.04     1.19     5.40     175.0       98     5.04     1.16     5.51     173.0					
93       5.15       1.34       6.11       175.0         1       5.04       1.30       6.11       175.0         3       4.94       1.31       6.17       174.0         96       4.94       1.28       5.45       174.0         97       5.04       1.19       5.40       175.0         98       5.04       1.16       5.51       173.0					
5.04     1.30     6.11     175.0       4.94     1.31     6.17     174.0       96     4.94     1.28     5.45     174.0       97     5.04     1.19     5.40     175.0       98     5.04     1.16     5.51     173.0					
3     4.94     1.31     6.17     174.0       96     4.94     1.28     5.45     174.0       97     5.04     1.19     5.40     175.0       98     5.04     1.16     5.51     173.0	93				
96     4.94     1.28     5.45     174.0       97     5.04     1.19     5.40     175.0       98     5.04     1.16     5.51     173.0	( !				
97     5.04     1.19     5.40     175.0       98     5.04     1.16     5.51     173.0					
98 5.04 1.16 5.51 173.0					
					· · · · · · · · · · · · · · · · · · ·
99 5.04 1.18 5.56 172.0					
	99	5.04	1.18	2.56	1/2.0

100 5.04 1.17 5.62 171.0

PAGE 3

## TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET

RUN NUMBER: 1

DATE: 6/23/93

101

5.04

1.16

5.62

171.0



### COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (708) 953-9300

Member of the SGS Group (Société Générale de Surveillance)

July 8, 1993

ENERGY & ENVIRONMENTAL SYSTEMS PERFORMANCE CORP. 1315 S. Central Ave., Unit C Kent, WA 98032 PLEASE ADDRESS ALL CORRESPONDENCE TO: 609 CHARLES ST., BILLINGS, MT 59102 TELEPHONE: (406) 252-5818 FAX: (406) 252-5818

Sample identification by EESPC

FX Drolet HT2000 Run 1

Kind of sample Wood reported to us

Sample taken at -----

Sample taken by -----

Date sampled June 23, 1993

Date received July 6, 1993

Analysis Report No. 51-44236

#### SHORT PROXIMATE ANALYSIS

	As Received	<u>Dry Basis</u>		
% Moisture	8.44	xxxxx		
% Ash	0.12	0.13		
Btu/lb	7960	8694	MAF	8705
& Sulfur	vvvv	YYYYY		

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Manager, Billings Laboratory

#### TABLE 1

RESULTS OF EFFICIENCY TESTING ON THE FX DROLET WOOD STOVE

RUN NUMBER 2 PROJECT NUMBER SERIAL NUMBER C1103

DATE OF TEST: 6/25/93

STOVE MODEL: HT2000

#### AVERAGE EFFICIENCIES

#### **EMISSIONS**

#### TEST DATA

Ī			
	BURN RATE==========>	2.89 (lb/hr-wet)	
	BURN RATE==========>>	1.07 (kg/hr-dry)	
	BURN RATE=========>	1.31 (kg/hr-wet)	
	FUEL MOISTURE =========>>	18.49 (% Wet basis)	
	HEAT OUTPUT=========>	14013.72 (Btu/hr)	
	FUEL HIGHER HEATING VALUE=========>	8616.00 (Btu/lb-dry)	
	AVERAGE STACK FLOW RATE>	6.44 (DSCF/minute w/HC)	
	AIR TO FUEL RATIO=========>	12.56 (lb-air/lb-fuel)	
ł	AVERAGE EXCESS AIR========>	114.66 (% Stoichiometric)	
	AVERAGE STACK TEMPERATURE=======>	252.74 (Degrees F)	
	AVERAGE STACK MOISTURE ========>	8.16 (% volume-wet w/HC)	
	AVERAGE CO2==========>>	7.92 (% volume-dry w/HC)	
	AVERAGE 02====================================	11.74 (% volume-dry w/HC)	
	AVERAGE CO===========>>	1.21 (% volume-dry w/HC)	

-> 95 69.49331 07-09-1993 OVERALL EFFICIENCY WITHOUT STOVE TEMPERATURE CHANGE= 68.8 %

#### TABLE 2A TEST DATA LISTING

CLIENT: FX DROLET

RUN NUMBER: 2

DATE OF TEST: 6/25/93

PROJECT NUMBER:

FUEL MOISTURE: 22.687

BAROMETRIC PRESSURE (in Hg): 30.33

STOVE WEIGHT (lbs): 487

CHANGE IN STOVE TEMPERATURE(F): -60

FUEL COMPOSITION: %C= 51 %H 7.3

METHOD 5 RESULTS: % MOISTURE= 8.2279

MODEL NUMBER: HT2000

STACK STATIC PRESSURE(in Hg):-.0022065

ROOM TEMPERATURE (F): 79

AMBIENT MOISTURE CONTENT (%): 1.3

FUEL HHV (BTU/lb): 8616

%O= 41

GRAIN LOADING (gr/scf)= .1519

### TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 2

DATE: 6/25/93

PT	TIME	WT. FUEL	%CO2	l HC fre %O2	%CO	WT BLB	DRY BLB	TRACER
***	*****	*****	*****	*****	*****	*****	*******	*****
1	0	22.60	12.30	7.20	0.88	130.0	378.0	875.0
2	5	22.00	5.20	14.80	0.38	131.0	489.0	325.0
3	10	21.50	5.30	14.40	0.85	130.0	308.0	850.0
4	15	21.00	7.50	12.70	0.67	130.0	299.0	700.0
5	20	20.50	7.20	13.30	0.64	126.0	279.0	700.0
6	25	19.80	10.30	10.50	0.83	130.0	308.0	625.0
7	30	19.30	6.60	13.80	1.22	127.0	272.0	725.0
8	35	18.70	8.20	10.10	.1.43	129.0	294.0	775.0
9	40	18.10	8.80	11.30	1.15	130.0	290.0	750.0
10	45	17.50	9.20	11.10	1.00	130.0	298.0	700.0
11	50	16.80	11.60	9.30	0.94	131.0	335.0	650.0
12	55	16.20	10.30	10.20	0.96	131.0	329.0	650.0
13	60	15.50	10.60	9.80	1.18	130.0	328.0	675.0
14	65	14.90	11.40	9.30	0.98	130.0	336.0	650.0
15	70	14.30	11.90	8.80	0.84	130.0	341.0	650.0
16	75	13.70	12.10	8.70	0.62	130.0	348.0	625.0
17	80	13.10	12.30	8.50	0.60	130.0	348.0	650.0
18	85	12.50	12.50	8.10	0.71	130.0	347.0	650.0
	90	11.90	12.70	8.10	0.69	130.0	342.0	675.0
20	95	11.30	13.20	7.70	0.47	130.0	351.0	675.0
21	100	10.70	12.40	8.50 8.70	0.47 0.62	129.0 128.0	344.0 338.0	675.0 675.0
22	105	10.20	11.70	10.90	1.14	126.0	318.0	725.0
23	110	9.80 9.50	10.10 8.00	12.00	1.71	120.0	277.0	825.0
24	115 120	9.10	9.30	11.20	1.33	120.0	275.0	800.0
25 26	125	9.10 8.70	7.50	12.40	1.79	119.0	266.0	875.0
27 27	130	8.30	8.80	10.90	0.93	119.0	274.0	800.0
28	135	8.00	9.60	10.70	0.67	119.0	277.0	725.0
29	140	7.70	9.30	10.90	0.74	119.0	274.0	725.0
30	145	7.40	9.00	11.20	0.83	119.0	263.0	750.0
31	150	7.10	9.20	10.60	0.78	118.0	263.0	775.0
32	155	6.80	9.90	9.80	0.71	117.0	272.0	775.0
33	160	6.50	7.80	10.70	1.07	116.0	264.0	825.0
34	165	6.30	8.20	11.60	1.04	115.0	260.0	825.0
35	170	6.10	8.30	11.30	0.99	115.0	252.0	775.0
36	175	5.90	8.50	11.40	1.10	112.0	245.0	775.0
37	180		9.10	10.80	1.04	112.0	244.0	800.0
38	185	5.40	9.20	10.90	1.11	112.0	244.0	800.0
39	190	5.20	8.60	11.30	1.23	110.0	240.0	825.0
40	195	5.10	7.70	12.00	1.35	110.0	235.0	
41	200	4.90	7.30	12.10	1.42	109.0	225.0	
42	205	4.80	7.30	12.20	1.34	109.0	219.0	850.0
43	210	4.70	7.70	11.70	1.40	108.0	217.0	875.0
	215	4.60	7.30	12.10	1.54	108.0	217.0 217.0	850.0 850.0
	220	4.50	7.30 7.30	12.00 12.00	1.51 1.51	108.0 108.0	217.0	850.0
46	225	4.40 4.30	7.30 6.90	12.50		108.0	216.0	
47 48	230 235		7.00	12.30		108.0	211.0	850.0
48 49	240	4.10	7.10	12.20	1.28	108.0	203.0	850.0
47	240	** • T O	, . 10	20	1.20	200.0		

50 245 4.00 7.30 12.20 1.29 108.0 205.0 875.0

# TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 2 DATE: 6/25/93

			Dry and				DD11 D7 0	<b>TD</b> 3 <b>CT</b> 3
PT	TIME	WT. FUEL	%CO2	%O2	%CO	WT BLB	DRY BLB	TRACER
****	*****	*****	*****	****	****	******	*****	****
51	250	3.90	7.30	12.20	1.34	108.0	205.0	900.0
52	255	3.80	6.70	12.70	1.67	108.0	206.0	900.0
53	260	3.70	6.70	12.70	1.57	108.0	207.0	875.0
54	265	3.60	6.80	12.60	1.57	108.0	207.0	900.0
55	270	3.50	6.50	12.90	1.54	108.0	204.0	850.0
56	275	3.40	6.50	12.90	1.61	107.0	200.0	850.0
57	280	3.30	6.50	12.70	1.79	105.0	199.0	900.0
58	285	3.20	6.60	12.70	1.83	105.0	199.0	900.0
59	290	3.20	6.60	12.70	1.83	107.0	201.0	900.0
60	295	3.10	6.40	12.90	1.90	106.0	203.0	875.0
61	300	3.00	5.90	13.30	1.88	106.0	202.0	875.0
62	<b>30</b> 5	2.90	6.10	13.30	1.81	105.0	200.0	900.0
63	310	2.80	5.80	13.50	1.73	105.0	196.0	850.0
64	315	2.70	5.70	13.30	1.71	104.0	192.0	850.0
65	320	2.70	6.30	13.00	1.71	104.0	190.0	900.0
66	325	2.60	6.30	13.10	1.70	104.0	192.0	925.0
67	330	2.50	6.30	13.30	1.62	104.0	194.0	900.0
~58	335	2.40	6.30	13.10	1.65	104.0	195.0	900.0
	340	2.30	6.40	13.00	1.65	104.0	198.0	900.0
70	345	2.20	6.50	13.00	1.59	104.0	198.0	900.0
71	350	2.10	6.50	13.10	1.51	104.0	201.0	875.0
72	355	2.10	6.20	13.40	1.45	105.0	197.0	850.0
73	360	2.00	6.30	13.20	1.39	105.0	193.0	875.0
74	365	1.90	7.00	12.70	1.29	104.0	192.0	925.0
75	370	1.80	7.10	12.60	1.20	105.0	196.0	925.0
76	375	1.70	7.10	12.60	1.23	105.0	197.0	900.0
73 77	380	1.60	7.10	12.60	1.21	105.0	199.0	900.0
78	385	1.50	7.10	12.70	1.21	105.0	200.0	900.0
79	390	1.40	7.10	12.70	1.20	105.0	203.0	900.0
80	395	1.30	6.70	13.10	1.17	105.0	202.0	850.0
81	400	1.20	6.60	13.10	1.23	106.0	198.0	850.0
82	405	1.10	6.90	12.70	1.32	105.0	196.0	875.0
83	410	1.00	6.80	13.00	1.39	104.0	196.0	875.0
84	415	0.90	6.60	13.00	1.45	105.0	199.0	875.0
85	420	0.90	6.70	13.00	1.49	105.0	202.0	850.0
86	425	0.80	6.60	13.00	1.53	105.0	203.0	850.0
87	430	0.70	6.20	13.40	1.50	105.0	204.0	850.0
88	435	0.60	6.20	13.30	1.53	104.0	198.0	825.0
89	440	0.50	6.10	13.40	1.52	104.0	197.0	850.0
90	445	0.40	6.40	13.10	1.62	104.0	195.0	900.0
91	450	0.30	6.30	13.10	1.68	104.0	200.0	900.0
92	455	0.20	6.30	13.30	1.50	104.0	200.0	900.0
93	460	0.20	6.30	13.30	1.51	104.0	200.0	900.0
~~~~	465	0.10	6.10	13.70	1.35	104.0	200.0	900.0
1	470	0.00	6.30	13.50	1.22	104.0	201.0	900.0
	1,0	2.00					- -	

TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET

RUN NUMBER: 2

DATE: 6/25/93

PT	FLOW RATE (DSCFM w/HC)	DRY BURN RATE (LB/HOUR-CALCULATED)	STACK MOISTURE (%VOLUME-w/HC)	STACK TEMP
****	******	*******	******	******
1	5 07	2.95	10.25	378.0
1 2	5.87 15.81	3.14	10.35 5.73	489.0
		1.34	13.73	308.0
3	6.04	2.38		299.0
4 5	7.34 7.34	2.38	14.17 12.50	279.0
		3.92		
6 7	8.22	2.38	13.73	308.0
	7.09	2.09	13.48	272.0
8 9	6.63	2.78	13.73	294.0
	6.85		14.60	290.0
10	7.34	3.09	14.21	298.0
11	7.90	4.28	13.13	335.0
12	7.90	3.74	13.42	329.0
13	7.61	3.77	12.77	328.0
14	7.90	4.17	12.38	336.0
15	7.90	4.25	12.14	341.0
16	8.22	4.40	11.80	348.0
17	7.90	4.29	11.80	348.0
1.8	7.90	4.34	11.85	347.0
	7.61	4.30	12.09	342.0
20	7.61	4.37	11.66	351.0
21	7.61	4.13	11.30	344.0
22	7.61	3.82	10.92	338.0
23	7.09	3.54	10.59	318.0
24	6.23	2.54	9.05	277.0
25	6.42	2.94	9.15	275.0
26	5.87	2.28	9.05	266.0
27	6.42	2.39	8.65	274.0
28	7.09	2.94	8.50	277.0
29	7.09	2.86	8.65	274.0
30	6.85	2.72	9.20	263.0
31	6.63	2.54	8.67	263.0
32	6.63	2.67	7.69	272.0
33	6.23	1.76	7.58	264.0
34	6.23	2.24	7.28	260.0
35	6.63	2.33	7.69	252.0
36	6.63	2.53	6.62	245.0
37	6.42	2.58	6.67	244.0
38	6.42	2.70	6.67	244.0
39	6.23	2.46	5.98	240.0
40	6.04	2.15	6.23	235.0
41	6.04	2.00	6.32	225.0
42	6.04	1.99	6.63	219.0
43	5.87	2.03	6.31	217.0
	6.04	2.05	6.31	217.0
	6.04	2.01	6.31	217.0
46	6.04	2.01	6.20	219.0
47	6.23	1.96	6.36	216.0
48	6.04	1.88	6.62	211.0
49	6.04	1.86	7.03	203.0

0

TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET RUN NUMBER: 2 DATE: 6/25/93

PTFLOW RATE DRY BURN RATE STACK MOISTURE STACK TEMP (LB/HOUR-CALCULATED) (%VOLUME-w/HC) (DSCFM w/HC) (F) 5.71 1.88 51 6.93 205.0 52 5.71 1.85 6.88 206.0 1.86 6.82 53 5.87 207.0 54 5.71 1.83 6.82 207.0 6.98 55 6.04 1.85 204.0 1.88 6.78 56 6.04 200.0 1.79 6.04 199.0 57 5.71 5.71 1.86 6.04 199.0 58 1.86 6.72 59 5.71 201.0 1.89 6.22 203.0 60 5.87 61 5.87 1.73 6.27 202.0 1.76 5.99 62 5.71 200.0 6.04 1.73 6.19 196.0 63 1.60 6.02 192.0 64 6.04 1.74 6.12 5.71 190.0 65 66 5.55 1.72 6.02 192.0 1.79 5.92 194.0 67 5.71 1.74 5.86 5,8 5.71 195.0 1.77 5.71 198.0 5.71 70 1.79 5.71 198.0 5.71 71 5.87 1.84 5.55 201.0 1.79 6.14 197.0 72 6.04 73 5.87 1.71 6.35 193.0 1.80 6.02 192.0 5.55 74 1.78 6.19 75 5.55 196.0 5.71 1.85 6.14 197.0 76 6.04 77 5.71 1.84 199.0 5.99 1.86 78 5.71 200.0 79 5.71 1.86 5.83 203.0 5.88 80 6.04 1.86 202.0 1.83 6.04 6.48 198.0 81 1.86 6.19 196.0 82 5.87 5.81 1.92 196.0 5.87 83 84 5.87 1.84 6.04 199.0 1.96 85 6.04 5.88 202.0 1.93 5.83 203.0 86 6.04 5.78 1.82 6.04 204.0 87 1.85 5.71 198.0 88 6.23 1.77 5.76 89 6.04 197.0 90 5.71 1.78 5.86 195.0 1.76 5.60 200.0 91 5.71 1.74 5.60 200.0 92 5.71 1.74 5.60 200.0 93 5.71 1.69 5.60 200.0 5.71 5.71 1.68 5.55 201.0

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (708) 953-9300

Member of the SGS Group (Société Générale de Surveillance)

July 8, 1993

ENERGY & ENVIRONMENTAL SYSTEMS PERFORMANCE CORP. 1315 S. Central Ave., Unit C Kent, WA 98032 PLEASE ADDRESS ALL CORRESPONDENCE TO: 609 CHARLES ST., BILLINGS, MT 59102 TELEPHONE: (406) 252-5818 FAX: (406) 252-5818

Sample identification by EESPC

FX Drolet HT2000 Run 2

Kind of sample Wood reported to us

Sample taken at -----

Sample taken by -----

Date sampled June 24, 1993

Date received July 6, 1993

Analysis Report No. 51-44237

SHORT PROXIMATE ANALYSIS

	As Received	Dry Basis		
% Moisture	8.61	xxxxx		٠
% Ash	0.06	0.07		
Btu/lb	7874	8616	MAF	8622
% Sulfur	XXXXX	XXXXX		

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Manager, Billings Laboratory

RESULTS OF EFFICIENCY TESTING ON THE FX DROLET WOOD STOVE

RUN NUMBER 4 PROJECT NUMBER SERIAL NUMBER C1103

DATE OF TEST: 6/29/93 STOVE 1

STOVE MODEL: HT2000

AVERAGE EFFICIENCIES

EMISSIONS

TEST DATA

-		
	BURN RATE========>>	4.55 (lb/hr-wet)
	BURN RATE=======>>	1.67 (kg/hr-dry)
	BURN RATE	2.06 (kg/hr-wet)
	FUEL MOISTURE =========>>	18.96 (% Wet basis)
	HEAT OUTPUT==================================	23330.00 (Btu/hr)
	FUEL HIGHER HEATING VALUE==========>	8637.00 (Btu/lb-dry)
	AVERAGE STACK FLOW RATE=========>	10.44 (DSCF/minute w/HC)
	AIR TO FUEL RATIO===========>>	13.11 (lb-air/lb-fuel)
	AVERAGE EXCESS AIR=========>>	102.99 (% Stoichiometric)
	AVERAGE STACK TEMPERATURE=======>	369.62 (Degrees F)
	AVERAGE STACK MOISTURE ========>	5.43 (% volume-wet w/HC)
	AVERAGE CO2========>	8.34 (% volume-dry w/HC)
	AVERAGE 02========>>	11.37 (% volume-dry w/HC)
	AVERAGE CO>	0.83 (% volume-dry w/HC)
1		- , ,

-> 58 73.17082 OVERALL EFFICIENCY WITHOUT STOVE TEMPERATURE CHANGE= 73.0 %

TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 4

DATE: 6/29/93

			Dry and	HC fre	e			
\mathbf{PT}	TIME	WT. FUEL	%CO2	%O2	%CO	WT BLB	DRY BLB	TRACER
****	*****	*****	*****	*****	*****	*****	******	*****
1	0	21.60	6.40	13.40	0.77		360.0	600.0
2	5	21.10	0.92	19.30	0.35	119.0	388.0	300.0
3	10	20.70	2.20	18.10	0.59	110.0	294.0	550.0
4	15	20.10	3.60	14.70	0.60	115.0	339.0	525.0
5	20	19.30	8.30	11.00	0.51	126.0	447.0	450.0
6	25	18.50	8.00	12.20	0.85	122.0		475.0
7	30	17.70	9.60	10.60	0.84	125.0		475.0
8	35	16.80	10.30	10.00	0.76	129.0		450.0
9	40	15.90		9.70	1.08	130.0		475.0
10	45	15.10	11.30	8.90	1.07	130.0	467.0	500.0
11	50	14.10	12.30	8.10	0.87	131.0	473.0	500.0
12	55	13.20	12.80	7.70	0.76	131.0	491.0	500.0
13	60	12.30	13.10	7.60	0.30	131.0	500.0	475.0
14	65	11.50	12.30	8.20	0.28	131.0	491.0	475.0
15	70	10.60	13.30	7.30	0.30	132.0	504.0	475.0
16	75	10.00	13.30	7.20	0.30	132.0	505.0	500.0
17	80	9.20	13.40	7.20	0.27	131.0	501.0	475.0
8	85	8.50	13.50	7.20	0.19	131.0	493.0	475.0
8 9	90	7.70	13.80	6.70	0.24	131.0	494.0	475.0
20	95	7.10	14.40	6.20	0.24	131.0	496.0	500.0
21	100	6.40	14.20	6.60	0.18	131.0	496.0	475.0
22	105	5.80	12.00	8.30	0.20	128.0	455.0	475.0
23	110	5.40	10.70	9.20	0.24	125.0	424.0	475.0
24	115	5.00	10.40	9.50	0.23	122.0	409.0	500.0
25	120	4.70	10.40	9.40	0.29	121.0	392.0	500.0
26	125	4.30	10.70	9.20	0.33	121.0	387.0	500.0
27	130	4.00	10.60	9.10	0.33	121.0	381.0	500.0
28	135	3.80	9.90	10.90	0.25	120.0	365.0	525.0
29	140	3.60	7.70	11.80	0.69	118.0	341.0	550.0
30	145	3.40	7.80	11.60	0.73	117.0	333.0	550.0
31	150	3.30	7.50	12.00	0.72	117.0	324.0	525 . 0
32	155	3.20	7.60	11.90	0.65	112.0	319.0	525.0
33	160	3.00	7.50	12.00			316.0	525.0
34	165	2.90	7.30	12.20	0.74	112.0	312.0	525.0
35	170	2.70	6.90	12.70	0.91	111.0	308.0	525.0
36	175	2.60	6.70	12.70	1.00	110.0	305.0	525.0
37	180	2.50	6.60	12.80	1.12	111.0	305.0	525.0
38	185	2.40	6.60	12.80	1.19	110.0	305.0	525.0
39	190	2.30	6.60	12.80	1.21	110.0	308.0	525.0
40	195	2.10	6.50	12.80	1.29	110.0	311.0	525.0
41	200	2.00	6.50	12.90	1.30	111.0	304.0	525.0
42	205	1.90	6.20	13.00	1.53	110.0	294.0	525.0
43	210	1.80	6.20	13.00	1.50	111.0	294.0	525.0
4	215	1.70	6.30	13.00	1.50	110.0	285.0	525.0
45	220	1.50	6.30	12.90	1.51	110.0	292.0	525.0
46	225	1.40	6.00	13.40	1.41	111.0	293.0	525.0
47	230	1.20	5.90	13.30	1.38	110.0	287.0	525.0
48	235	1.10	6.00	13.20	1.41	110.0	284.0	525.0
49	240	1.00	6.10	13.20	1.42	111.0	280.0	525.0

50 245 0.90 6.10 13.20 1.49 111.0 280.0 525.0

TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 4

DATE: 6/29/93

PT	TIME	WT. FUEL	Dry and %CO2	HC fre %O2	e %CO	WT BLB	DRY BLB	TRACER
****	*****	*****	*****	*****	*****	*****	*****	******
51	250	0.80	6.30	13.00	1.33	111.0	286.0	550.0
52	255	0.60	6.00	13.60	1.23	111.0	296.0	525.0
53	260	0.50	5.70	13.70	1.29	110.0	287.0	525.0
54	265	0.40	5.40	13.80	1.37	110.0	280.0	525.0
55	270	0.30	5.50	13.80	1.41	109.0	273.0	550.0
56	275	0.20	6.50	13.70	1.44	109.0	275.0	550.0
57	280	0.10	5.40	13.90	1.45	110.0	282.0	550.0
58	285	0.00	5.40	13.90	1.43	110.0	287.0	550.0

TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET

RUN NUMBER: 4

DATE: 6/29/93

1 8.78 2.34 5.52 360.0 2 17.57 0.50 3.78 388.0 3 9.58 1.00 4.08 294.0 4 10.04 0.59 4.19 339.0 5 11.71 3.54 5.48 447.0 6 11.09 3.97 5.08 402.0 7 11.09 4.68 7.27 404.0 10.04 5.57 7.79 404.0 10.0 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 14 11.09 5.63 7.21 491.0 15 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 16 10.54 5.79 7.32 505.0 15 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 16 10.54 5.79 7.32 505.0 17 11.09 6.10 6.68 500.0 15 11.09 6.10 6.68 500.0 15 11.09 6.10 6.68 500.0 15 11.09 6.10 6.68 500.0 15 11.09 6.10 6.68 500.0 15 11.09 6.10 6.69 500.0 15 11.09 6.10 6.10 6.62 501.0 15 11.09 6.10 6.10 6.62 501.0 15 11.09 6.10 6.10 6.20 7.09 493.0 15 11.09 6.20 7.09 493.0 15 11.09 6.20 7.09 493.0 16 11.09 6.20 7.09 493.0 17 11.09 6.20 7.09 493.0 17 11.09 6.20 7.09 493.0 18 11.09 6.20 7.09 493.0 19.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 6.55 6.91 496.0 22 11.09 6.55 6.91 496.0 22 11.09 6.55 6.91 496.0 22 11.09 6.55 6.91 496.0 25 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 32.0 25 10.54 4.20 4.65 409.0 32.0 35 10.54 4.20 4.65 309.0 310.0 31 10.04 2.95 6.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 5.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 5.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 5.28 4.28 4.08 312.0 34 1.004 2.95 5.28 4.08 3.19 3.00 3.10 3.00 3.11.0 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.88 3.19 3.00 3.00 3.10 3.00 4.2.80 3.10 3.00 3.11 3.00 4.2.80 3.10 3.00 3.11 3.00 4.2.80 3.10 3.00 3.11 3.00 4.	PT	FLOW RATE (DSCFM w/HC)	DRY BURN RATE (LB/HOUR-CALCULATED)	STACK MOISTURE (%VOLUME-w/HC)	STACK TEMP
2 17.57 0.50 3.78 388.0 0 4 10.04 0.59 4.19 339.0 5 11.71 3.54 5.48 447.0 6 11.09 3.97 5.08 402.0 7 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 9 11.09 5.27 7.90 464.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.10 6.68 500.0 14 11.09 6.10 6.68 500.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 17 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 5.33 6.68 455.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 26 10.54 4.20 4.66 392.0 27 10.54 4.20 4.65 409.0 28 10.54 4.20 4.65 409.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 31 10.04 2.29 5.03 3.39 3.05.0 31 10.04 2.95 5.02 316.0 31 10.04 2.88 3.99 3.75 308.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 305.0 32 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 305.0 32 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.89 3.75 308.0 31 10.04 2.89 3.75 308.0 31 10.04 2.87 4.21 2.22.0 46 10.04 2.87 4.21 2.22.0 47 10.04 2.87 4.21 2.22.0	****				
2 17.57 0.50 3.78 388.0 0 4 10.04 0.59 4.19 339.0 5 11.71 3.54 5.48 447.0 6 11.09 3.97 5.08 402.0 7 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 9 11.09 5.27 7.90 464.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.10 6.68 500.0 14 11.09 6.10 6.68 500.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 17 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 5.33 6.68 455.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 26 10.54 4.20 4.66 392.0 27 10.54 4.20 4.65 409.0 28 10.54 4.20 4.65 409.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 31 10.04 2.29 5.03 3.39 3.05.0 31 10.04 2.95 5.02 316.0 31 10.04 2.88 3.99 3.75 308.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 305.0 32 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 305.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 305.0 32 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.89 3.75 308.0 31 10.04 2.89 3.75 308.0 31 10.04 2.87 4.21 2.22.0 46 10.04 2.87 4.21 2.22.0 47 10.04 2.87 4.21 2.22.0	_				
3 9.58 1.00 4.08 294.0 5 11.71 3.54 5.48 447.0 6 11.09 3.97 5.08 402.0 7 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 10 10.54 5.34 7.72 467.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 6.10 6.68 500.0 15 11.09 6.14 7.38 504.0 15 11.09 6.14 7.38 504.0 17 11.09 6.27 7.03 494.0 1 11.09 6.27 7.03 494.0 20 10.54 6.26 6.91 496.0 <td></td> <td></td> <td></td> <td></td> <td></td>					
4 10.04 0.59 4.19 339.0 5 11.71 3.54 5.48 447.0 6 11.09 3.97 5.08 402.0 7 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 9 11.09 5.27 7.90 464.0 10 10.54 5.72 8.28 473.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 17 11.09 6.20 7.03 494.0 16 10.54 5.79 7.32 505.0 17 11.09 6.27 7.03 494.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 <t< td=""><td></td><td></td><td>· ·</td><td></td><td></td></t<>			· ·		
5 11.71 3.54 5.48 447.0 6 11.09 3.97 5.08 402.0 7 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.27 7.03 494.0 11.109 6.57 7.03 494.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0					
6 11.09 3.97 5.08 402.0 8 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 9 11.09 5.27 7.90 464.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 17 11.09 6.20 7.09 493.0 11.09 6.20 7.09 493.0 11.09 6.21 11.09 6.55 6.91 496.0 12 11.09 6.55 6.91 496.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 5.33 6.68 455.0 12 11.09 6.27 7.09 6.27 7.09 6.28 6.28 6.29 6.29 6.28 6.29 6.29 6.29 6.29 6.29 6.29 6.29 6.29					
7 11.09 4.68 7.27 404.0 8 11.71 5.27 8.21 444.0 9 11.09 5.27 7.90 464.0 10 10.54 5.34 7.72 467.0 11 10.54 5.79 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 6.14 7.38 504.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.27 7.03 494.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.	5				
8 11.71 5.27 7.90 464.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.14 7.38 504.0 17 11.09 6.27 7.32 505.0 17 11.09 6.27 7.03 494.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 49.0 25 10.54 4.20 4.96 392.0 26 10.54 4.26 5.64 381.0					
9 11.09 5.27 7.90 464.0 10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.27 7.09 493.0 11.09 6.27 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 26 10.54 4.20 4.65 409.0 27 10.54 4.20 4.65 409.0 28 10.54 4.20 4.96 392.0 29 9.58 2.88 6.02 341.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 5.02 316.0 34 10.04 2.95 5.02 316.0 35 10.04 2.95 5.02 316.0 36 10.04 2.88 4.08 312.0 37 10.04 2.88 4.08 312.0 38 10.04 2.88 3.75 308.0 39 10.04 2.88 3.75 308.0 39 10.04 2.88 3.75 308.0 39 10.04 2.88 3.75 308.0 39 10.04 2.88 3.99 3.75 308.0 39 10.04 2.88 3.99 3.75 308.0 39 10.04 2.88 3.19 308.0 30 4.01 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 30 4.01 2.84 4.08 2.94 3.06 3.00 311.0 31 10.04 2.88 3.19 308.0 39 10.04 2.88 3.19 308.0 30 10.04 2.88 3.19 308.0 30 10.04 2.88 3.19 308.0 31 10.04 2.88 4.08 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 4.08 3.19 308.0 31 10.04 2.88 3.19 308.0 31 10.04 2.88 3.19 308.0 32 10.04 2.88 3.19 308.0 33 10.04 2.88 4.08 2.94.0 42 10.04 2.88 4.64 2.94.0 43 10.04 2.88 4.64 2.94.0 44 10.04 2.88 4.64 2.94.0 45 10.04 2.88 4.64 2.94.0 46 10.04 2.87 4.72 2.87.0 47 10.04 2.87 4.72 2.87.0			·		
10 10.54 5.34 7.72 467.0 11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 26 10.54 4.21 5.27 387.0 27 10.54 4.26 5.64 381.0					
11 10.54 5.72 8.28 473.0 12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.27 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.26 5.64 381.0 27 10.54 4.26 5.64 381.0 29 9.58 2.88 6.02 341.0					
12 10.54 5.90 7.21 491.0 13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.20 7.09 493.0 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 4.57 6.06 424.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.96 392.0 25 10.54 4.20 4.96 392.0 26 10.54 4.20 4.96 392.0 27 10.54 4.21 5.27 387.0 29 9.58 2.88 6.02 341.0 30 9.58 2.88 6.02 341.0 30					· ·
13 11.09 6.10 6.68 500.0 14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.20 7.09 493.0 2 11.09 6.27 7.03 494.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.65 409.0 26 10.54 4.20 4.96 392.0 26 10.54 4.26 5.64 381.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 5.22 316.0					
14 11.09 5.63 7.21 491.0 15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 21 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.20 4.96 392.0 26 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.94 3.63 319.0					
15 11.09 6.14 7.38 504.0 16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 494.0 21 11.09 6.55 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.20 4.96 392.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.98 3.85 333.0 31 10.04 2.95 5.02 316					
16 10.54 5.79 7.32 505.0 17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 21 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.21 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0					
17 11.09 6.17 6.62 501.0 18 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 21 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.21 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.95 6.41 324.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0					
18 11.09 6.20 7.09 493.0 20 10.54 6.26 6.91 494.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.95 6.41 324.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0					
11.09 6.27 7.03 494.0 20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 33.0 31 10.04 2.95 6.41 324.0 32 10.04 2.95 5.02 316.0 33 10.04 2.95 5.02 316.0 34 10.04 2.89 3.75 308.0 35 10.04 2.89 3.75 308.0 36					
20 10.54 6.26 6.91 496.0 21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.89 3.75 308.0 35 10.04 2.89 3.75 308.0 37 10.04 2.81 3.94 305.0	1-8				
21 11.09 6.55 6.91 496.0 22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.88 6.02 341.0 31 10.04 2.95 5.85 333.0 31 10.04 2.94 3.63 319.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.89 3.75 308.0 35 10.04 2.89 3.75 308.0 36 10.04 2.81 3.94 305.0					
22 11.09 5.33 6.68 455.0 23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.95 6.41 324.0 32 10.04 2.95 5.02 316.0 34 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0					
23 11.09 4.57 6.06 424.0 24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.81 3.94 305.0 37 10.04 2.81 3.94 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0					
24 10.54 4.20 4.65 409.0 25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.81 3.94 305.0 37 10.04 2.81 3.94 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.84 3.00 311.0					
25 10.54 4.20 4.96 392.0 26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.84 3.00 311.0 40 10.04 2.84 3.00 311.0 41 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0					
26 10.54 4.41 5.27 387.0 27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.81 3.94 305.0 37 10.04 2.86 3.38 305.0 39 10.04 2.86 3.38 305.0 39 10.04 2.84 3.00 311.0 41 10.04 2.84 3.00 311.0 42 10.04 2.82 4.64 294.0 43 10.04 2.82 4.64 294.0					
27 10.54 4.26 5.64 381.0 28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.89 3.75 308.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 46 10.04 2.87 4.21 292.0					
28 10.04 4.23 5.91 365.0 29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.87 4.21 292.0 46 10.04 2.87 4.21 292.0					
29 9.58 2.88 6.02 341.0 30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.81 3.94 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.82 4.64 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.87 4.21 292.0 46 10.04 2.87 4.21 293.0					· · · · · · · · · · · · · · · · · · ·
30 9.58 2.90 5.85 333.0 31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.84 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.87 4.21 292.0 46 10.04 2.87 4.21 292.0 46 10.04 2.61 4.52 287.0					
31 10.04 2.95 6.41 324.0 32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.84 3.00 311.0 42 10.04 2.84 4.01 304.0 42 10.04 2.82 4.64 294.0 43 10.04 2.82 4.64 294.0 10.04 2.87 4.21 292.0 46 10.04 2.87 4.21 292.0 47 10.04 2.61 4.52 287.0 48					
32 10.04 2.94 3.63 319.0 33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 10.04 2.81 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
33 10.04 2.95 5.02 316.0 34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.87 4.21 292.0 46 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
34 10.04 2.88 4.08 312.0 35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.87 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0				3.63	
35 10.04 2.89 3.75 308.0 36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.82 4.64 294.0 30 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
36 10.04 2.77 3.38 305.0 37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
37 10.04 2.81 3.94 305.0 38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.87 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
38 10.04 2.86 3.38 305.0 39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 43 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
39 10.04 2.88 3.19 308.0 40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
40 10.04 2.84 3.00 311.0 41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
41 10.04 2.90 4.01 304.0 42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
42 10.04 2.84 4.08 294.0 43 10.04 2.82 4.64 294.0 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
43 10.04 2.82 4.64 294.0 10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
10.04 2.91 4.65 285.0 10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
10.04 2.87 4.21 292.0 46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0	43				
46 10.04 2.77 4.70 293.0 47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0					
47 10.04 2.61 4.52 287.0 48 10.04 2.67 4.72 284.0	گے				·
48 10.04 2.67 4.72 284.0				·	
49 10.04 2.77 5.53 280.0					
	49	10.04	2.77	5.53	280.0

50 10.04 2.82 5.53

280.0

TABLE 3 CHO BALANCED TEST DATA

CLIENT: FX DROLET

RUN NUMBER: 4 DATE: 6/29/93

PT	FLOW RATE (DSCFM w/HC)	DRY BURN RATE (LB/HOUR-CALCULATED)	STACK MOISTURE (%VOLUME-w/HC)	STACK TEMP (F)
****	******	*******	*******	*****
51	9.58	2.66	5.15	286.0
52	10.04	2.74	4.51	296.0
53	10.04	2.56	4.52	287.0
54	10.04	2.39	4.97	280.0
55	9.58	2.40	4.87	273.0
56	9.58	3.23	4.74	275.0
57	9.58	2.39	4.84	282.0
58	9.58	2.37	4.52	287.0

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (708) 953-9300

Member of the SGS Group (Société Générale de Surveillance)

July 8, 1993

ENERGY & ENVIRONMENTAL SYSTEMS PERFORMANCE CORP. 1315 S. Central Ave., Unit C Kent, WA 98032 PLEASE ADDRESS ALL CORRESPONDENCE TO: 609 CHARLES ST., BILLINGS, MT 59102 TELEPHONE: (406) 252-5818 FAX: (406) 252-5818

Sample identification by EESPC

FX Drolet HT2000 Run 4

Kind of sample Wood reported to us

Sample taken at -----

Sample taken by ----

Date sampled June 29, 1993

Date received July 6, 1993

Analysis Report No. 51-44239

SHORT PROXIMATE ANALYSIS

	As Received	<u>Dry Basis</u>		
% Moisture	9.72	xxxxx		
% Ash	0.04	0.04		
Btu/lb	7797	8637	MAF	8640
% Sulfur	XXXXX	XXXXX		

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Manager Fillings Laborator

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

RESULTS OF EFFICIENCY TESTING ON THE FX DROLET WOOD STOVE

RUN NUMBER 6 PROJECT NUMBER SERIAL NUMBER C1103

DATE OF TEST: 7/1/93

STOVE MODEL: HT2000

AVERAGE EFFICIENCIES

EMISSIONS

TEST DATA

-			
	BURN RATE=======>>	13.45	(lb/hr-wet)
	BURN RATE====================================	4.99	(kg/hr-dry)
	BURN RATE====================================	6.10	(kg/hr-wet)
	FUEL MOISTURE ========>	18.16	(% Wet basis)
	HEAT OUTPUT=========>	46624.77	(Btu/hr)
	FUEL HIGHER HEATING VALUE=========>	8663.00	(Btu/lb-dry)
ĺ	AVERAGE STACK FLOW RATE==========>	40.77	(DSCF/minute w/HC)
	AIR TO FUEL RATIO===========>	17.29	(lb-air/lb-fuel)
	AVERAGE EXCESS AIR========>	152.82	(% Stoichiometric)
	AVERAGE STACK TEMPERATURE========>>	778.09	(Degrees F)
	AVERAGE STACK MOISTURE ========>	8.58	(% volume-wet w/HC)
	AVERAGE CO2=======>>	7.17	(% volume-dry w/HC)
	AVERAGE 02=======>>	12.94	(% volume-dry w/HC)
	AVERAGE CO=========>	0.13	(% volume-dry w/HC)

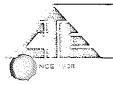
-> 20 48.1992 OVERALL EFFICIENCY WITHOUT STOVE TEMPERATURE CHANGE= 47.9 %

TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 6

DATE: 7/1/93


		1	Dry and	HC fre				
PT	TIME	WT. FUEL	%CO2	% O2	%CO	WT BLB	DRY BLB	TRACER
****	*****	*****	*******	*****	*****	******	*****	*****
1	0	21.30	5.50	14.40	0.11	138.0	604.0	250.0
2	5	19.40	10.60	10.40	0.14	153.0	941.0	250.0
3	10	16.90	9.60	10.80	0.12	156.0	960.0	250.0
4	15	15.00	9.80	10.60	0.11	157.0	958.0	250.0
5	20	13.20	10.10	10.00	0.15	157.0	970.0	250.0
6	25	11.20	10.90	9.00	0.10	157.0	983.0	250.0
7	30	9.60	8.50	11.70	0.05	152.0	862.0	250.0
8	35	8.20	7.80	12.40	0.05	150.0	831.0	250.0
9	40	7.10	7.30	12.80	0.05	148.0	805.0	250.0
10	45	6.00	7.00	13.10	0.05	148.0	788.0	250.0
11	50	5.10	6.80	13.20	0.06	147.0	784.0	250.0
12	55	4.20	7.00	13.00	0.04	147.0	779.0	250.0
13	60	3.40	6.70	13.40	0.05	144.0	750.0	250.0
14	65	2.80	6.80	13.20	0.06	143.0	749.0	250.0
15	70	2.20	6.40	13.60	0.07	142.0	724.0	250.0
16	75	1.70	5.60	14.40	0.10	139.0	678.0	250.0
17	80	1.20	4.70	15.50	0.20	138.0	639.0	250.0
18	85	0.70	4.50	15.50	0.31	136.0	613.0	250.0
	90	0.30	4.50	15.60	0.38	135.0	598.0	225.0
20	95	0.00	4.30	15.70	0.41	135.0	587.0	225.0

CLIENT: FX DROLET

RUN NUMBER: 6

DATE: 7/1/93

PT	FLOW RATE	DRY BURN RATE	STACK MOISTURE	STACK TEMP
****	(DSCFM w/HC)	(LB/HOUR-CALCULATED)	(%VOLUME-w/HC)	(F)
1	40.32	7.53	7.88	604.0
2	40.32	18.21	8.19	941.0
3	40.32	15.39	12.71	960.0
4	40.32	15.70	14.72	958.0
5	40.32	15.74	14.10	970.0
6	40.32	16.54	13.43	983.0
7	40.32	12.99	10.67	862.0
8	40.32	11.82	8.95	831.0
9	40.32	10.78	9.21	805.0
10	40.32	10.28	10.14	788.0
11	40.32	9.78	8.94	784.0
12	40.32	10.05	9.22	779.0
13	40.32	9.78	6.77	750.0
14	40.32	9.78	5.52	749.0
15	40.32	9.13	5.67	724.0
16	40.32	7.87	4.69	678.0
17	40.32	7.06	5.82	639.0
_18	40.32	6.63	5.13	613.0
9	44.80	7.82	4.95	598.0
<u>~</u> 20	44.80	7.32	5.61	587.0

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (708) 953-9300

Member of the SGS Group (Société Générale de Surveillance)

July 15, 1993

ENERGY & ENVIRONMENTAL SYSTEMS PERFORMANCE CORP. 1315 S. Central Ave., Unit C Kent, WA 98032 PLEASE ADDRESS ALL CORRESPONDENCE TO: 609 CHARLES ST., BILLINGS, MT 59102 TELEPHONE: (406) 252-5818 FAX: (406) 252-5818

Sample identification by EESPC

FX FT 2000 Run 6

Kind of sample Wood reported to us

Sample taken at -----

Sample taken by -----

Date sampled July 1, 1993

Date received July 13, 1993

Analysis Report No. 51-44274

SHORT PROXIMATE ANALYSIS

	As Received	<u>Dry Basis</u>		
% Moisture	8.50	xxxxx		
% Ash	XXXXX	XXXXX		
Btu/lb	7927	8663	MAF	XXXXX
& Sulfur	XXXXX	XXXXX		

Respectfully submitted.
COMMERCIAL TESTING RINGINEERING CO.

Manager, Hillings Laboratory

TABLE 1

RESULTS OF EFFICIENCY TESTING ON THE FX DROLET WOOD STOVE

RUN NUMBER 3 PROJECT NUMBER

SERIAL NUMBER C1103

DATE OF TEST: 6/28/93

STOVE MODEL: HT2000

AVERAGE EFFICIENCIES

EMISSIONS

TEST DATA

7			
	BURN RATE=======>>	11.95	(lb/hr-wet)
	BURN RATE=========>>	4.32	(kg/hr-dry)
	BURN RATE=========>>	5.42	(kg/hr-wet)
	FUEL MOISTURE ========>	20.22	(% Wet basis)
	HEAT OUTPUT=========>	47006.57	(Btu/hr)
	FUEL HIGHER HEATING VALUE========>>	8624.00	(Btu/lb-dry)
	AVERAGE STACK FLOW RATE=======>>	35.22	(DSCF/minute w/HC)
	AIR TO FUEL RATIO==========>		(lb-air/lb-fuel)
	AVERAGE EXCESS AIR========>	134.21	(% Stoichiometric)
	AVERAGE STACK TEMPERATURE========>>	764.81	(Degrees F)
	AVERAGE STACK MOISTURE =========>	7.90	(% volume-wet w/HC)
	AVERAGE CO2=========>>		(% volume-dry w/HC)
	AVERAGE 02=========>>	12.44	(% volume-dry w/HC)
	AVERAGE CO=========>	0.17	(% volume-dry w/HC)

-> 23 54.09755 OVERALL EFFICIENCY WITHOUT STOVE TEMPERATURE CHANGE= 55.8 %

CLIENT: FX DROLET

RUN NUMBER: 3

DATE: 6/28/93

PT	FLOW RATE	DRY BURN RATE	STACK MOISTURE	STACK TEMP
	(DSCFM w/HC)	(LB/HOUR-CALCULATED)	(%VOLUME-w/HC)	(F)
****	******	******	*******	*****
1	39.28	18.58	3.66	775.0
2	35.71	12.92	6.15	954.0
3	35.71	15.58	8.07	999.0
4	35.71	13.08	10.42	922.0
5	35.71	12.81	11.62	913.0
6	35.71	11.65	11.33	888.0
7	35.71	11.77	10.61	867.0
8	35.71	10.46	9.08	828.0
9	35.71	9.99	7.42	816.0
10	35.71	9.82	7.42	816.0
11	35.71	10.21	6.87	820.0
12	35.71	10.28	4.33	815.0
13	35.71	10.19	5.34	785.0
14	35.71	8.70	5.35	763.0
15	35.71	8.97	6.33	756.0
16	35.71	8.25	6.58	733.0
17	35.71	6.10	6.61	654.0
18	35.71	5.45	8.95	602.0
	32.73	5.05	7.47	595.0
20	32.73	4.85	8.70	570.0
21	32.73	4.93	8.09	558.0
22	32.73	4.70	10.90	539.0
23	32.73	4.84	11.35	536.0

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (708) 953-9300

Member of the SGS Group (Société Générale de Surveillance)

July 8, 1993

ENERGY & ENVIRONMENTAL SYSTEMS PERFORMANCE CORP. 1315 S. Central Ave., Unit C Kent, WA 98032 PLEASE ADDRESS ALL CORRESPONDENCE TO: 609 CHARLES ST., BILLINGS, MT 59102 TELEPHONE: (406) 252-5818 FAX: (406) 252-5818

Sample identification by EESPC

FX Drolet HT2000 Run 3

Kind of sample Wood reported to us

Sample taken at -----

Sample taken by ---

Date sampled June 28, 1993

Date received July 6, 1993

Analysis Report No. 51-44238

SHORT PROXIMATE ANALYSIS

	As Received	Dry Basis		
% Moisture	8.65	xxxxx		
% Ash	0.07	0.08		
Btu/lb	7878	8624	MAF	8631
% Sulfur	xxxxx	xxxxx		

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Wanager, Billings Laborator

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

RESULTS OF EFFICIENCY TESTING ON THE FX DROLET WOOD STOVE

RUN NUMBER 5 PROJECT NUMBER

SERIAL NUMBER C1103

DATE OF TEST: 6/30/93

STOVE MODEL: HT2000

AVERAGE EFFICIENCIES

The state of the s

EMISSIONS

TEST DATA

74.15474 16:13:49
OVERALL EFFICIENCY WITHOUT STOVE TEMPERATURE CHANGE 74.6 %

TABLE 2A TEST DATA LISTING

CLIENT: FX DROLET

RUN NUMBER: 5 DATE OF TEST: 6/30/93

PROJECT NUMBER:

FUEL MOISTURE: 23.073

BAROMETRIC PRESSURE (in Hg): 30.06

STOVE WEIGHT (lbs): 487

CHANGE IN STOVE TEMPERATURE(F): -123

FUEL COMPOSITION: %C= 51 %H 7.3

METHOD 5 RESULTS: % MOISTURE= 7.4047

MODEL NUMBER: HT2000

STACK STATIC PRESSURE(in Hg):-.0038246

ROOM TEMPERATURE (F): 85

AMBIENT MOISTURE CONTENT (%): 1.4

FUEL HHV (BTU/lb): 8685

%O= 41

GRAIN LOADING (gr/scf) = .0442

50 245

2.10

6.80

12.20

1.44

113.0

272.0

775.0

TABLE 2B FIELD DATA

CLIENT: FX DROLET

RUN NUMBER: 5 DATE: 6/30/93

			Dry and	d HC fre	e l			
PT	TIME	WT. FUEL	%CO2	%O2	% ຕ ດ່	WT BLB	DRY BLB	TRACER
****	******	*****	*****	*****	*****	*****	*****	************
51	250	2.00	6.40	12.70	1.32	113.0	272.0	775.0
52	255	2.00	6.30	12.70	1.39	112.0	268.0	775.0
53	260	1.90	6.10	12.80	1.52	112.0	264.0	775.0
54	265	1.90	6.00	12.90	1.58	112.0	264.0	775.0
55	270	1.80	6.80	13.00	1.68	112.0	261.0	775.0
56	275	1.70	5.40	13.40	1.73	108.0	258.0	775.0
57	280	1.70	5.40	13.40	1.81	111.0	256.0	775.0
58	285	1.60	5.20	13.50	1.89	111.0	256.0	775.0
59	290	1.50	5.00	13.70	1.96	110.0	251.0	
60	295	1.50	5.20	13.50	1.90	110.0	251.0	775.0 775.0
61	300	1.50	5.20	13.50	1.88	111.0	248.0	800.0
62	305	1.40	5.50	13.30	1.77	110.0	248.0	
63	310	1.30	5.40	13.50	1.86	111.0	247.0	800.0 800.0
64	315	1.30	6.30	13.50	1.78	111.0	247.0	
65	320	1.20	6.30	13.50	1.76	110.0	247.0	800.0
66	325	1.20	6.30	13.50	1.82	109.0	243.0	800.0
67	330	1.10	5.10	13.80	2.00	109.0	243.0	800.0
68	335	1.00	4.90	13.70	1.99	110.0	241.0	800.0
	340	0.90	4.90	14.00	1.74	110.0	241.0	800.0
ን ህ	345	0.80	5.10	13.70	1.81	108.0	223.0	775.0
71	350	0.80	5.20	13.70	1.74	110.0	223.0	825.0
72	355	0.70	5.30	13.60	1.72	112.0	223.0	850.0
73	360	0.60	5.50	13.40	1.72	116.0	224.0	850.0
74	365	0.50	5.50	13.50	1.64	119.0	224.0	825.0
75	370	0.50	5.60	13.40	1.57	119.0	223.0	850.0
76	375	0.40	5.40	13.60	1.73	119.0		850.0
77	380	0.30	5.20	13.70	1.82	119.0	223.0	850.0
78	385	0.30	5.00	14.00	1.92	119.0	223.0	850.0
79	390	0.20	4.60	14.30	2.20		222.0	850.0
80	395	0.10	4.10	14.60	2.26	119.0	222.0	825.0
81	400	0.10	4.10	14.80	2.23	118.0	222.0	800.0
82	405	0.00	4.30	14.90		118.0	222.0	800.0
	100	0.00	4.30	T4.30	1.84	117.0	218.0	800.0

CLIENT: FX DROLET

RUN NUMBER: 5 DATE: 6/30/93

PT	FLOW RATE (DSCFM w/HC)	DRY BURN RATE (LB/HOUR-CALCULATED)	STACK MOISTURE (%VOLUME-w/HC)	STACK TEMP
****	*********	********	*************	(F) *******
1	0.00	0.00	5.16	356.0
2	0.00	0.00	4.07	631.0
3	0.00	0.00	4.18	443.0
4	0.00	0.00	4.87	445.0
5	0.00	0.00	4.74	447.0
6	0.00	0.00	5.97	483.0
7	0.00	0.00	6.88	483.0
8	0.00	0.00	7.08	495.0
9	0.00	0.00	8.15	493.0
10	0.00	0.00	9.35	489.0
11	0.00	0.00	9.17	492.0
12	0.00	0.00	9.47	487.0
13	0.00	0.00	8.74	483.0
14	0.00	0.00	7.72	469.0
15	0.00	0.00	7.96	450.0
16	0.00	0.00	7.99	435.0
17	0.00	0.00	7.15	449.0
18	0.00	0.00	7.66	455.0
	0.00	0.00	6.18	465.0
20	0.00	0.00	6.48	460.0
21	0.00	0.00	6.48	460.0
22	0.00	0.00	6.96	452.0
23	0.00	0.00	6.34	421.0
24	0.00	0.00	6.30	396.0
25 26	0.00	0.00	8.00	381.0
26 27	0.00	0.00	5.31	376.0
28	0.00	0.00	5.43	374.0
29	0.00	0.00	5.47	362.0
30	0.00	0.00	5.22	355.0
31	0.00	0.00	5.85	345.0
32	0.00	0.00	5.62	338.0
33	0.00	0.00	6.06	331.0
34	0.00	0.00	5.08	326.0
35	0.00	0.00	5.91	323.0
36	0.00	0.00	5.91	323.0
37	0.00	0.00	5.59	318.0
38	0.00 0.00	0.00	5.71	316.0
39	0.00	0.00	5.71	316.0
40	0.00	0.00	6.47	304.0
41	0.00	0.00	6.17	299.0
42	0.00	0.00	6.17	299.0
43	0.00	0.00	6.42	295.0
	0.00	0.00	6.67	291.0
	0.00	0.00	6.67	291.0
46	0.00	0.00	7.55	287.0
47	0.00	0.00	7.06	285.0
48	0.00	0.00	6.12	281.0
49	0.00	0.00 0.00	6.24	279.0
		0.00	7.69	275.0

CLIENT: FX DROLET

RUN NUMBER: 5

DATE: 6/30/93

PT	FLOW RATE (DSCFM w/HC)	DRY BURN RATE (LB/HOUR-CALCULATED)	STACK MOISTURE	STACK TEMP
****	********	(LB/HOOK-CALCULATED)	(%VOLUME-w/HC)	(F)
			*************	******
51	0.00	0.00		
52	0.00	0.00	7.28	272.0
53	0.00	0.00	6.94	268.0
54	0.00	0.00	7.20	264.0
55	0.00		7.20	264.0
56	0.00	0.00	7.39	261.0
57	0.00	0.00	5.37	258.0
58		0.00	7.14	256.0
59	0.00	0.00	7.14	256.0
	0.00	0.00	6.90	251.0
60	0.00	0.00	6.90	251.0
61	0.00	0.00	7.65	248.0
62	0.00	0.00	7.09	248.0
63	0.00	0.00	7.71	247.0
64	0.00	0.00	7.71	247.0
65	0.00	0.00	7.41	243.0
66	0.00	0.00	6.86	243.0
67	0.00	0.00	6.86	
68	0.00	0.00	7.54	243.0
	0.00	0.00	7.54	241.0
70	0.00	0.00	7.62	241.0
71	0.00	0.00	8.69	223.0
72	0.00	0.00	9.81	223.0
73	0.00	0.00	12.16	223.0
74	0.00	0.00		224.0
75	0.00	0.00	14.11	224.0
76	0.00	0.00	14.17	223.0
77	0.00	0.00	14.17	223.0
78	0.00	0.00	14.17	223.0
79	0.00	0.00	14.23	222.0
80	0.00	0.00	14.23	222.0
81	0.00	0.00	13.57	222.0
82	0.00		13.57	222.0
	0.00	0.00	13.17	218.0

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (708) 953-9300

Member of the SGS Group (Société Générale de Surveillance)

July 8, 1993

ENERGY & ENVIRONMENTAL SYSTEMS PERFORMANCE CORP. 1315 S. Central Ave., Unit C Kent, WA 98032 PLEASE ADDRESS ALL CORRESPONDENCE TO: 609 CHARLES ST., BILLINGS, MT 59102 TELEPHONE: (406) 252-5818 FAX: (406) 252-5818

Sample identification by EESPC

FX Drolet HT2000 Run 5

Kind of sample Wood reported to us

Sample taken at -----

Sample taken by

Date sampled June 30, 1993

Date received July 6, 1993

Analysis Report No. 51-44240

SHORT PROXIMATE ANALYSIS

	As Received	Dry Basis		
% Moisture	10.03	xxxxx		
% Ash	0.04	0.05		
Btu/lb	7814	8685	MAF	8689
% Sulfur	XXXXX	XXXXX		

Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO.

Manager, Billings Laboratory

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES