

TEST REPORT

SCOPE: EMISSIONS AND OUTPUT

FUEL: EPA TEST FUEL (CRIBS)

TEST STANDARD: EPA

MODEL: EASTWOOD 1800 WOOD STOVE

Notice to reader: Our Eastwood 1800 wood stove was tested as part of our Century firebox. Therefore, the Century is referenced throughout the attached test report.

Certification Test Report CFM – Vermont Castings

Freestanding Wood Stove Model: Century

Report Number 259-S-12-3

OMNI-Test Laboratories, Inc. Product Testing & Certification

Mailing: Post Office Box 743
Street: 5465 SW Western A

5465 SW Western Avenue • Suite G Beaverton, Oregon 97075 USA

Phone: Fax: (503) 643-3788 (503) 643-3799

Certification Test Report

CFM – Vermont Castings Freestanding Wood Stove Model: Century

Prepared for:

CFM - Vermont Castings

62 Vermont Castings Road

Bethel, VT 05032

Prepared by:

OMNI-Test Laboratories Inc.

5465 SW Western Avenue, Suite G

Beaverton, OR 97005

(503) 643-3788

Test Period:

July 31, 2006 through August 3, 2006

Report Date:

August 2006

Project Number:

259-S-12-3

All data and information contained in this report are confidential and proprietary to CFM — Vermont Castings. Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from CFM — Vermont Castings and OMNI-Test Laboratories Inc. No use of the OMNI-Test Laboratories Inc. name, logo, or registered mark (O-TL) is permitted, except as expressly authorized by OMNI-Test Laboratories Inc. in writing.

AUTHORIZED SIGNATORIES

This report has been reviewed and approved by the following authorized signatories:

Richard Sparwasser, Vice President OMNI-Test Laboratories Inc.

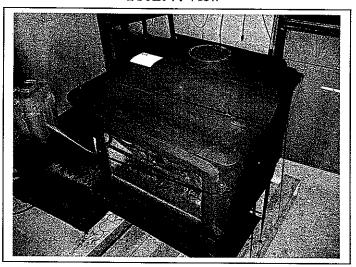
John Voorhees, Technical Services Director OMNI-Test Laboratories Inc.

Ken Morgan, Emissions Test Technician OMNI-Test Laboratories Inc.

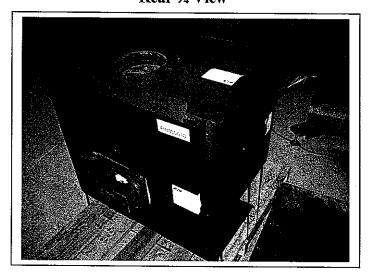
TABLE OF CONTENTS

	PREFACE	(3 pages)
1.	FUEL PHOTOGRAPHS/APPLIANCE DESCRIPTION/DRAWINGS	,
	Fuel Photographs	1_2
	Appliance Description	
	Manufacturer Design Drawings (K List)	1-7
2.		
۷.	QUALITY ASSURANCE/QUALITY CONTROL	2-1 (63 pages)
	Sample Analysis	2-3
	Calibrations – Method 28 and 5G.	2-17.
	Example Calculations	2-54
3.	MANUFACTURER OWNER'S MANUAL	3-1 (17 pages)
4.	TEST DATA BY RUN	4-1 (47 pages)
	Run 1	4-3
	Run 2	
	Run 3	
	Run 4	4-30
	Run 5	4-39
5.	SAMPLING PROCEDURES AND TEST RESULTS	5_1 (8 pages)
.	Introduction	5-1 (8 pages)
	Summary Tables	
	Table 1.1 - Particulate Emissions Results	
	Table 1.2 - Test Facility Conditions	
	Table 1.3.1 - Fuel Measurements and Crib Descriptions - Pretest	5-4
	Table 1.3.2 - Fuel Measurements and Crib Descriptions - Test	5-4
	Table 1.4 - Dilution Tunnel Gas Measurements and Sampling Data	5-5
	Table 1.5 - Heater Operation	5-5
	Table 1.6 - Pretest Configurations	5-6
	Table 1.7 - Run Data	5-6
	Table 1.8 - Test Configurations	5-7
	Test Results and Discussion.	5-8

Section 1

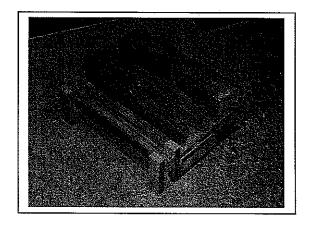

Fuel Photographs/Appliance Description/Drawings

CFM – Vermont Castings

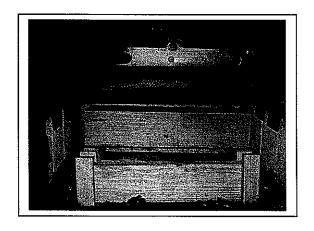

Century

Test Dates: July 31, 2006 through August 3, 2006

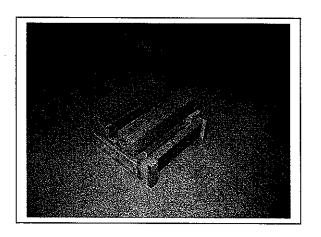
Front 3/4 View

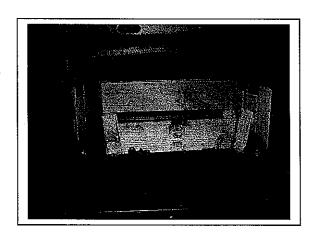


Rear ¾ View

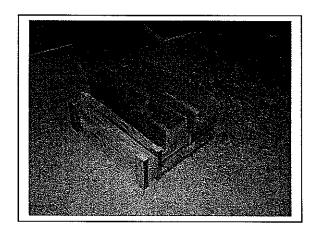


CFM – Vermont Castings Century

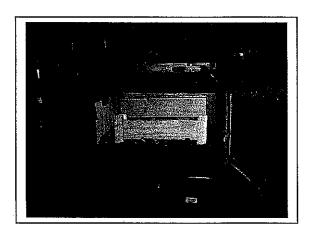

Run 1 - Fuel


Run 1 - Newly Loaded Stove

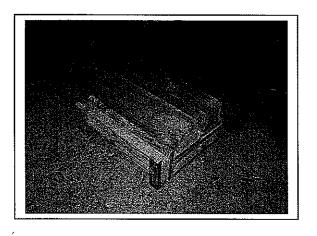
Run 2 - Fuel

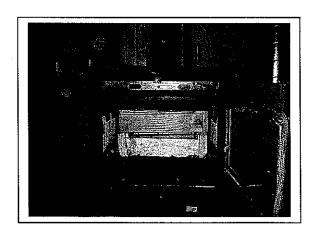


Run 2 - Newly Loaded Stove

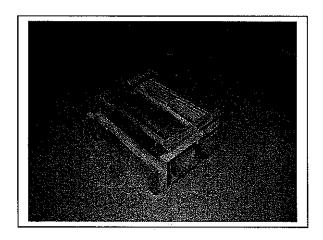


CFM – Vermont Castings Century

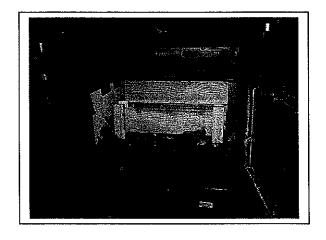

Run 3 - Fuel


Run 3 - Newly Loaded Stove

Run 4 - Fuel



Run 4 - Newly Loaded Stove



CFM – Vermont CastingsCentury

Run 5 - Fuel

Run 5 - Newly Loaded Stove

WOOD HEATER DESCRIPTION

Manufacturer: CFM – Vermont Castings

Model: Century

Type: Freestanding, radiant-type room heater

WOOD HEATER INFORMATION

Materials of Construction: The unit is constructed primarily of mild steel. The firebox is lined with firebrick that measures 21" by 9" by 16-7/8".

Air Introduction System: Air enters the firebox through an opening located at the front of the appliance above the fuel-loading door and below the door via an adjustable intake. Secondary air enters the appliance through the back and is channeled internally to both sides of the firebox supplying four 3/4" diameter tubes.

Combustion Control Mechanisms: The combustion air inlet is controlled by a handle located below the fuel-loading door in the center of the appliance.

Combustor: N/A.

Internal Baffles: A flame deflector baffle is mounted in the upper portion of the firebox. The flame path is forced to the front of the firebox where it travels up through the opening between the baffle and primary air inlet.

Other Features: Optional blower accessory.

Flue Outlet: The 6" diameter flue outlet is located at the top of the unit.

WOOD HEATER OPERATING INSTRUCTIONS

Specific written instructions: See Section 1 of this report. All markings and instruction materials were reviewed for content prior to printing.

Stove Centfiber 3

Vol= 2.14 cu. ft.
Load Weight 6.36 kg
Wood Length 16 in

7/31/06

1/31/00				•
	Low	Med. Low	Med. High	High
Control Setting	Closed	3/8" open	3/4"open	wide
Kindling	9. lb 4.08 kg	9, _{lb} 4.08 kg	প. _{lb} 4.০৪ kg	ে
Pre-burn Load Size <u>8</u> in (2x4)	77.6 lb 7.71 kg	/6.60 lb 7.53 kg	ル・40 1b ク・44 kg	19.10 _{Ib} 8.21 ^{kg}
Pre-Shutdown instructions	Burn on 1tign Intill Shur down	11	N	START I ha pre-burn as soon at Longed
Shutdown Weight	10. 1b 4.54 kg	10.5 1b 4.76 kg	13.° lb 5.9° kg	ASAP lb kg
Post-Shutdown Instructions	NO-STIR Intill COAL bed is Packed			14
Loading Temp deg F	340°-	Fan on Low 340°- Fan-07f 370°-	FAM-01-High 370°-400°	FAN-on-High 520° —
Results	Be89	Br 99	BR 1.46	Be- 3.25
	€1A &84	PAM-07 BA:- 1,14 CPA:- 3,24	₹P43.0≥	CPA 3.86
		Fan-099	~	

on all burns, Except for confirmation test, for is turned on after first 30 min's into test.

Received From Manufacturer.

1/2 / May-

Section 2

Quality Assurance/Quality Control

in the second se	Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032
	QUALITY ASSURANCE/QUALITY CONTROL
	OMNI follows the guidelines of ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories," and the quality assurance/quality control (QA/QC) procedures found in OMNI's Quality Assurance Manual.
and the second s	OMNI's scope of accreditation includes, but is not limited to, the following:
The state of the s	ANSI (American National Standards Institute) for certification of product to safety standards.
· ·	 To perform product safety testing by the International Approval Service (formerly ICBO ES) under accreditation as a testing laboratory designated TL-130. To perform product safety testing as a "Certification Organization" by the Standards
	 Council of Canada (SCC). Serving as a testing laboratory for the certification of wood heaters by the U.S. Environmental Protection Agency.
	This report is issued within the scope of <i>OMNP</i> 's accreditation. Accreditation certificates are available upon request.
•	

Sample Analysis Analysis Worksheets

Tared Filter and Beaker Data Solvent Blank Data

OMNI-T	est	Laboratories,	Inc.
Dogwarian	OP		

Weight (grams)	by: <i>Kr Morg</i> eter ID:#: OMN	340 NI - 291 D.72 mg)	Temp. (F)	Init
Weight (grams)	eighing Reco Audit (grams) /.০০53 0.0999 99.9992	2.5	Temp. (F) 74	12
Weight (grams)	eighing Reco Audit (grams) /.০০53 0.0999 99.9992	2.5	Temp. (F) 74	14
Weight (grams)	Audit (grams) /.0083 0.0999 99.9992	R/H %	(F) 74	14
(grams) .1416 .1416	(grams) /.00 3 0.0999 99.9992	2.5	(F) 74	14
,1416	99,9992			
	99,9992	10	84	/
			,	
			,	
	 		1	1
.1227	1.0003	2,5	74	
1226	99,999Z 1,000Z	10	84	,
_				
83.3566	1.0003	2.5	74	
83,3564	99,9992	10	84	/4
			·	
	83.3566	83.3566 4.0003 .0999 .0999 .09992	3 83.3566 1.0003 2.5 .0979 3 83,3564 99,9992 1,0002 10	83.3566 1.0003 2.5 74 .0979 10 84 .0002 10 84

OMNI-Test	Laboratories,	l'nυ.
Reguerton OR	·	

Project #: <u>259-S-12-3</u> T Date: <u>7-31-06</u> Sample Train #: <u>TRA</u>	racking #: <u>86</u> Te	st Crew: _ 	K. Morgan	···· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	Run #:	1	
Relance ID #: OMNI	00033	I rair	n assembled b	y: <u>K. 71101</u> tor ID #: ONIN	GAN		
Balance ID #: OMNI - Audit weight ID #: OMN	00023 l = 00131	(Rab	mo/riygio me ance audit mfr	retrib#. <u>OMN</u>	72 ma)	**	
		(50		. o.a. 000 ± 0	. 12 1119)		
			We	eighing Reco	rd	, ·	
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	Init
Front Filter	8-02-06	07:00	.1238	1,0003	2,5	74	/
Lab ID# <u>D367</u> ID# <u>TRAIN~ Z</u>	8-02-06	17:30	1/237	99.9992	10	84	1
Tare wt <i>,//35</i>	-						
D/T in desiccator		<u> </u>					<u> </u>
7-31-06 19:40							<u> </u>
Preliminary wt.:							
Rear Filter	8-02-06	92:00	.1197	1,0003	2,5	74	6
Lab ID # <u>D365</u> ID # <u>TRAN-Z</u>	8-02-06	17:30	,1197	1,0002	10	84	
Tare wt	-				•		
D/T in desiccator:				,			
7-31-06 19:40	-						├
Preliminary wt.:				·			
Probe	8-02-06	07:00	86.7882	1.0003	2.5	74	1
Lab ID # TRAIN-2				0,0009			╄
Probe # 3 Tare wt. 86.7878 Cleaned by: //	8-02-06	17:30	86,7879	1.0002	10	84	
D/T in desiccator:	•					And the second second	
7-31-06 / /9: 40 Preliminary wt.:	-						
86 ,7891	•						
		<u> </u>					

Page 1 of 1 0 F 2 - 6 3

OMNI-Test Laboratories, h...
Beaverton, OR

Dilution Tunnel (Method 5G) Analysis Worksheet

king#:	861 Test Crew	v: K. Morgan		Run #:	2
		rain assembled by	r. <u>K. W</u>		
23 00131		hermo/Hygro mete Balance audit mfr.			
		Wei	iahina Red	ord	· · · · · · · · · · · · · · · · · · ·
	•	Wei	ighing Red	ord	
Date	Time	Weight	ighing Red Audit (grams)	R/H %	

•		• .	We	eighing Reco	ord		
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	Initials
Front Filter	8-02-06	17:30	.1405	99,9992 1.0002	10	84	K
Lab ID #	8-03-06	08:15	.1404	99,9994 1,0002	4	74	K -
D/T in desiccator							
Preliminary wt.:							
Rear Filter	8-02-06	17:30	,1242	99.9992	10	84	K
Lab ID # TRAW-1 ID # D362	8-03-06	08:12	.1242	99.9994 1.000Z	4	74	16 -
Tare wt							
D/T in desiccator:							
Preliminary wt.:							
Probe Lab ID# TKAW-I	8-02-06	17:30	79,0682	99.9992	10	84	K
Probe# 4 Tare wt. 79.0673 Cleaned by: //	8-03-06	08:15	79.0684	99.9994 1.0002	4	74	/K -
D/T in desiccator:							X
Preliminary wt.: 19. 0700							·
					İ		-

Technician signature: 1/1. Morg. Date: 8-03-06

15.8

2 - 6 Page 1 of 1 2 - 6 0 F 2 - 6 3

OMNI-Test Laboratories,	ĥ.,
Beaverton, OR	

Model: <u>Century</u> Project #: <u>259-S-12-3</u> Tra Date: <u>08-01-06</u>	acking #: <u>86</u> Te	<u>61</u> st Crew:	K. MORGA	N	Run #:	2_	
Sample Train #: TRAW-Balance ID #: OMNI - 0 Audit weight ID #: OMNI -	<u>0023</u>	Ther	mo/Hygro me	oy: <i>K. More i</i> eter ID #: OMN	[] -		
		11 Hart	W	eighing Reco	ord		
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	lt
Front Filter	8-02-06	17:30	.1264	99,999Z 1,000Z	10	84	
Lab ID # TRAIN - 2 ID # D 363	8-03-06	08:15	.1264	99.9994 1.000Z	4	74	
Tare wt							
D/T in desiccator							
Preliminary wt.:							
Rear Filter	8-02-06	17:30	.1182	99,9992	10	84	1
Lab ID # TRAW-2 ID # D 361 Torough 1176	8-03-06	08:15	.//81	99.9994 1.000Z	4	74	
Tare wt						- 11-1	_
8-01-06 (5:00							
Preliminary wt.:							
Probe Lab ID # TRAIN-2	8-02-06	17:30	76,8075	99,9992	10	84	
Probe # 6 Tare wt. 76,8065	8-63-06	08:15	76.8074	99.9994	4	74	
Cleaned by: // D/T in desiccator: _8-01-06 /5:00							
Prèliminary wt.: 76 • 8099							

Control No. L-SFZ-0003(Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 4272005

MNI-Test Lat	oratories, lh
Warfon OP	-

a de la companya della companya de la companya della companya dell	Client: <u>CFM Vermont Cas</u> Model: Century	tings						
	Project #: 250_9_12_3 Tro	ecking #- 86	1	*	¥ *,			
	Date: <u>08-02-06</u> Sample Train #: <u>TRAIN</u> Balance ID #: <u>OMNI -</u> 0	oning #. <u>oc</u> Te	<u>≀⊥</u> st Crew: ⊸	K. MorgAN		Run #:	3	
	Sample Train #: TRAIN	-1	Trair	assembled l	y. K. Mor	GAK		
	Balance ID #: OMNI - 0	0023	Ther	mo/Hygro me	ter ID #: OMN	[] -		_ - '
	Audit weight ID #: OMNI	- 00131	(Bala	ance audit mf	r. std: 500 ± 0).72 mg)		
				W	eighing Reco	ord		
	Train Part			101111			1 _	[
		Date	Time	Weight	Audit	R/H %	Temp.	Initials
				(grams)	(grams)		(F)	
	Front Filter	8-03-06	10.00	sadd.	99,9996	,1:		.,
		80200	19:25	.1344	.1001	4	83	1/4
٠.	Lab ID# TRAIN-1	2 4/26	09:55	171/5	99,9995			
	ID# D 360	8-04-06	07175	.1345	12000	8	75	K
_	Tare wt			,				<u> </u>
(g)		1						
うー	D/T in desiccator	-						
رط	8-62-06 17:00							
	Preliminary wt.:							
	,/350							
	Rear Filter	<u> </u>		·				<u> </u>
	Rear Filler	8-03-06	19:25	,/296	99.9996	4	83	14
					.1001			
	Lab ID#TRAIN-I	8-04-06	09155	.1296	99,9995	8	75	14
)	ID# 10 359				,2000			<i>L</i>
	Tare wt							
	programme and the second							
	D/T in desiccator:	1			· l		1	
	8-02-06 17:00							
	Droliminan						-	
	Preliminary wt.:		-					
	,4139							
	Probe	8-03-06			99.9996			.,
		8-03-00	19:25	76,0144	.1001	4	83	1/
	Lab ID# TRAIN-1					·,		
	Probe #	8-04-06	09:55	76.0147	99,9995	<i>1</i> 1		.,
,	Tare wt. 76,0138		67137	16,0171	.2000	8	. 75	1/2
	Cleaned by:				.232			
5	D/T in desiccator:							
5 D	8-02-06 17:00							
	Preliminary wt.:				 		·	<u> </u>
	76.0159							
				•				
							1	1.
]						ľ
·							-	
			<u> </u>					
زبجره	Technician signa	ature:	Ih.	1. Mog.	Data:	8-04	/-03	

OMNI-Test Laboratories,	h
Beaverton, OR	

Dilution Tunnel (Method 5G) Analysis Worksheet

Model: <u>Century</u> Project #: <u>259-S-12-3</u> Tracking #: 861			
Date: 08-02-06 Tes	Crew: K. Morgan	Run #:	3
Sample Train #: TRAIN-Z	Train assembled by: Kr	MOTGAN	
Balance ID #: OMNI - 00023	Thermo/Hygro meter ID #		
Audit weight ID #: OMNI - 00131	(Balance audit mfr. std: 5		<u>-</u>

			We	eighing Reco	ord	÷	
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	Initials
Front Filter	K-02-06 8-03-06	19:25	.1211	99,9996	4	83	14
Lab ID# <i>TRAIN-2</i> ID# <u>D358</u>	8-04-06	09:55	.1212	99,9995 ,2000	8	75	14
Tare wt					·		
D/T in desiccator 8-02-06 /7:00		-					
Preliminary wt.:							
Rear Filter	8-03-06 8-03-06	19:25	.1280	99.9996	:4	83	12
Lab ID # TRAW-Z ID # D 357	8-04-06	09:55	.1281	99.9995 ,200	8	75	/L ~
Tare wt							
D/T in desiccator: 8-02-06 17:00							
Preliminary wt.:							
Probe Lab ID # TRAIN- Z-	8-02-06 8-03-06	19:25	76.2572	99.9996 .1001	4	83	14
Probe # <u>E</u> Tare wt. <u>76,1570</u> Cleaned by:	8-0406	09:55	76,2574	99.9995	8	75	K
D/T in desiccator: 8-02-06 /7:0d							
Preliminary wt.: 76, 2593							
				·			

6.0

Technician signature: 1/2 f. Morg. Date: 8-04-06

	3
OMNI-Test Laboratories, I	h
Regulation OR	

Dilution Tunnel (Method 5G) Analysis Worksheet

Sample Train #: TRAIN	Te	est Crew: Tra	K. Moke A J in assembled	hv. 4 Mar	Run #:	4	
Balance ID #: OMNI - Audit weight ID #: OMN	00023	The	ermo/Hygro me lance audit mf	eter ID #: OMI	VI -		
			W	eighing Rec	ord		
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	. In
Front Filter	8-406	19:55	.1184	99.9997	4	85	1
Lab ID # <u>Train-I</u> ID # <u>D 356</u> Tare wt !!!!	8-05-06	07;00	,1184	99.9996 .2000	5	80	,
D/T in desiccator	-						
४-०3-०८ <i>।५</i> :।७ Preliminary wt.:	-	·					
	8.04.06	19:55	1,70	99,9997			
Lab ID# TRAW-1	8.05-06	07:00	.1178	12001	<u>4</u>	85	ļ .
ID# <u>D354</u> Tare wt			• • • • •	.2000		70	
D/T in desiccator:							
Preliminary wt.:							
Probe	8-04-06	19:55	80.6633	99.9997	4	85	,
Lab ID # TRAIN - 1 Probe # 5 Tare wt80.6627	8-05-06	07:00	80,6630	99,9996	5-	80	
Cleaned by: 14 D/T in desiccator: 45:10		<u> </u>			-		
Preliminary wt.: 80,6671							

		<i>[</i>				٠		
renda .	OMNI-Test Laboratories Beaverton, OR	s, h.			(•
Christian (Nove et al.	Diluti Client: CFM Vermont Cast		nel (Me	thod 5G) A	Analysis W	/orkshe	et	
To Australia Confederal	Model: Century Project #: 259-S-12-3 Tra Date: 8-03-06 Sample Train #: TRAIN	cking #: <u>86</u> Te:	st Crew: _ Trair	K. Morgan	y: K. Mo,	Run #:	4	
in the state of th	Balance ID #: OMNI - 00 Audit weight ID #: OMNI -	JUZJ		mon lygio me	CELID #. OIVII	11 -		
A CONTRACTOR OF THE PROPERTY O				We	eighing Reco	ord	 	
Secretaria de la constanta de	Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	Initials
W. T.	Front Filter	8.04.06	19:55	.1320	99,9997	4	85	1K
85	Lab ID # TRAIN-Z ID # D 3 \$ 5 Tare wt/240	8-05-06	07:00	./320	99,9996	5	80	12 -
8.0)	D/T in desiccator							
density of the second	Preliminary wt.:							
	Rear Filter	08-04-06	19:55	.1/38	99.9997	4	85	14
]_07	Lab ID # <u>TRAW-2</u> ID # <u>D 317</u> Tare wt//33	08-05-06	07:00	,1138	99.9996	5	80	14
0.5	D/T in desiccator: _8-03-06 15:10							
4000	Preliminary wt.:							
	Probe	08-04-06	19:55	76.9134	99.9997	4	85	J.L
	Lab ID # TRAW-2 Probe # 8 Tare wt. 76,9125	8-05-06	07:00	76,9131	99.9996	5	80	14 =
1,to	Cleaned by:/k D/T in desiccator: _8.03-06			· .				
,	Preliminary wt.:			-				

8-03-06 Technician signature: Date: _

OMNI-Test Laboratories,	ık
Reaverton OR	

Project #: <u>259-S-12-3</u> T Date: <u>8-03-66</u>	racking #: <u>86</u> Te	<u>§1</u> st Crew: _	K. Morgan	12. 144.	Run #:	. 5	
Date: 8-03-06 Sample Train #: TRAI Balance ID #: OMNI - Audit weight ID #: OMN	00023 I – 00131	Trail Thei (Bala	n assembled to mo/Hygro me ance audit mfi	oy: <u> 15. Mas</u> ster ID #: <u>OMN</u> r. std: 500 ± 0	رمرور NI - D.72 mg)		
·			We	eighing Reco	ord		
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	lı
Front Filter	8-64-06	19:55	.1260	99.9997	4	85	
Lab ID # <u>TRAW-1</u> ID # <u>D 318</u> Tare wt. <u>1237</u>	8-05-06	07:00	,1200	99,9996	5	80	
D/T in desiccator /८ <u>8-03-06</u> 24:50 19:50							
Preliminary wt.:							
Rear Filter	8-04-06	19:55	,11/8	99.9997	4	85	
Lab ID # <u>Trann-I</u> ID # <u>D 325</u> Tare wt. <u>,III5</u>	8-05-06	07:00	.1118	99.9996	5	80	
D/T in desiccator: //							
8-03-06 20:50 19:50 Preliminary wt.: .2095	_						
Probe	8-04-06	19:55	91. 5345	99,9997	4	85	
Lab ID # Translation Translation H Tare wt. 91.5343 Cleaned by: /4	8-05-06	07:00	91.5342	99.9996	5	80	
D/T in desiccator:	2						
Preliminary wt.: 19:50 91, 5348	-						
						·	

OMNI-Test Laboratories,	1
Beaverton, OR	

Project #: <u>259-S-12-3</u> Tr Date: <u>\$-03-06</u> Sample Train #: <u>TRAW</u> .	Te	st Crew: _	K. Wagan	1 4 44	Run #:	5						
Balance ID #: OMNI -				by: <i>K. Morg</i> eter ID #: OMN		<u> </u>						
Audit weight ID #: OMNI		(Bala	ance audit mi	fr. std: 500 ± 0	0.72 mg)							
	Weighing Record											
Train Part	Date	Time	Weight (grams)	Audit (grams)	R/H %	Temp. (F)	ı					
Front Filter	8-04-06	19:55	.1238	99.9997	4	85						
Lab ID # <u>-+eaw-2</u> ID # <u>D 319</u> Tare wt	8-05-06	07:00	.1236	99.9996	5	80						
D/T in desiccator <u>8-03-06</u> /9:50												
Preliminary wt.: ./246												
Rear Filter	8-04-06	19;55	.1304	99,9997	4	85						
Lab ID # <u>TRAIN-Z</u> ID # <u>D 326</u>	8-5-06	07:00	.1285	99.9996	5	80						
Tare wt		-TRANSported			in doment = .1788/12	or 8-07-00	6					
D/T in desiccator: 	8.8.06	07:15	,1282	.5001	8	74						
Preliminary wt.:	08-08-06	14:10	.1284	.500 1	12	75-	1					
Probe	8-04-06	19:55	92.5716	99.9997	4	85						
Lab ID # TRAIN-2 Probe # K Tare wt. 92.57/8	8-05-06	07:00	92,5712	99,9996	5	80						
Cleaned by: // D/T in desiccator: _8-03-06					,		-					
Preliminary wt.: 92, 5724		•										
							+					

									id.		10000 10000 10000 10000 10000 10000 10000 10000			2000 - 20									
						Run Train	1	4 2	4 1	3 2	3 2	3 1	3 1	2 2	2 1	2 2	2 1	1 2	111	7 2	<u> </u>		
		Tares				Project No.	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-5-12-3	259-S-12-3	259-S-12-3	259-5-12-3	259-S-12-3	259-S-12-3		
		AE Glass 47 mm Filter Tares	ooratories, Inc			Appliance	Century	Century	Century	Century	Century	Century	Century	Century	Century	Century	Century	Century	Century	Century	Century		
Imber OMNI-00131	metalloniete/mygroniete iromunder	AE Glass 47	UMINI-TEST LABORATORIES, INC			Manufacturer	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic		
Balance ID Number Audit Weight ID Number Thermonder IL Manner			0	0		0	0	0	0	0	0 [0	0	0	0	0	0				l		
PATE CONTRACTOR			0	0	<u> </u>	0	0	0		0 0		0		0	0		0	0 0]] 0	0			
26-Jul-06	7/28/2006	9:15 AM	20	74 8888	Morgan	0.5001	0.1173 X	0.124 X	0.1111 X	0.1271 X	0.1166 X	0.1288 X	0.1299 X	0.1178 X	0.124 X	0.1163 X	0.1259 X	0.1191 X	0.1221 X	0.1135 X	0.1277 X		
Desiccator Pesiccator Morgan	7/27/2006	8:00 AM	20	73	Morgan	0.5001	0.1176	0.1242	0.1111	0.1272	0.1166	0.1288	0.13	0.1178	0.124	0.1165	0.126;	0.1192	0.1222	0.1136	0.1279		
Date Placed in Desiccator Time Placed in Desiccator Technician		Tme:	RH %;	47 mm T(E):	Filters Tech.:	ID Number Audit:	D354	D355	D356	D357	D358	D359	D360	D361	D362	D363	D364	D365	D366		D368		

.

			Run Train	4 2	******	5 2	5 1	5 2
Secretary of the secret	ares		Project No.	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3	259-S-12-3
Alaman and a second a second and a second and a second and a second and a second an	AE Glass 47 mm Filter Tares OMNI-Test Laboratories, Inc		ance	Century	Century	Century	ury	ury
OMNI-00023 OMNI-00131 ID Number	AE Glass 47 mm Filte OMNI-Test Laboratories, Inc		Appliance	200 C		200		ic Century
nber meter II	AE GIA		Manufacturer	CFM Majestic	CFM Majestic	CFM Majestic	CFM Majestic	
Balance ID Number Audit Weight ID Number Thermometer/Hygiomete	0	0	0	0	0	0	0	0
6-Apr-06	0	0	0	0			0	
06-Apr-06	4/8/2006 7:02 PM 15	75 and Morgan	0.5001	0.1133 X	0.1237 X	0.1212 X	0.1115 X	0.1272 X
	4/7/2006 12:02 PM 12	72 72 Morgan	0.5001	0.1134	0.124	0.1214	0.1117	0.1273
Date Placed in Desiccator Time Placed in Desiccator Technician Morgan	Date: Time: R.H %:	47 mm T(E): Ellers Tech:	er Audit:	D317	D318	D319	D325	D326

					Probe Tare Weights	ights					
Probe #	Into Desiccator Date/Time	7/28/06	7/29	7/30	7/31	90-lo-8	00:LO *	90-10-8	8-3-06	8-3-06	
-	7:00Am		9:30 AM	12:35 PM	02:20	08:00					
7	83	3,3564	83.3551	37.58.68	83,3562		Run TI				
က											
4	1/	79.0683	79.0670	19.0683	79,0674	79.0673		RUNZ,TI	٠.		
ιΩ							*	5299'08	80.6622 -	- Run 4, TI	(
9	IJ	76.8072	76.806G	46.80₹૯	16,8069	- 5908-91	1	Run 2, 72			<u>,</u>
7							,	1 2 0			
8	11	76.9126	76.9120	76.97	76,9122	(*KRALTHI	Rallin	76,9125 -	- Run 4,72	
6											
0 /	11	12.0141	76.0136	76.0139	-8510,37			Run 3 TI			
œ	11	1881.7881	86.7813	क्ष.भग्न	86.7878 -		Run 1,72		86,14		
ပ								-			
Δ								-			
ш	М	76.2642	76,2569	76.2574	16.2566	-0152'91	-	Run 3,72			
ᇿ							¥	72,3748	72.3749	,	
9											
Ŧ	Long Frobe	91.5343	91.5337	91.5340						91,5343	- Ruw 5, T!
	11	84.5672	84.5666	84.5668	84.5666 -						(
7			18,2702	78. X.38	18,2628	78.2626 -					
ᅩ	Long Purbe	92.5918	92.510	93.5715		*				92.57/8	- Runs, TZ
_										-	
Σ	Taryy and a second	-						76.8574			
>	1)	16.8649	76.8574	76.8579	76.8576 -	1	Burt T2	RYD 1	76.8576		
	-		,				•				
		-				*.					

C C C

vicaseenziearu.

Calibrations

Method 28 and 5G

Method 28 and 5G:

ID#	Lab Name/Purpose	Log Name	Attachment Type
1	Calibrator Dry Gas Meter	Standard Test Meter - Rockwell Int'l	Calibration Log
33	Manometer	Microtector – Dwyer	Manual
120	TC Simulator	Thermocouple Calibrator	Calibration Log
132	10 lb Weight	Weight Standard, 10 lb	Calibration Log
265	Vaneometer	Vaneometer, Air Velocity Meter – Dwyer	Calibration Log
283	F-Class Audit Weights	Metric Calibrated Weight Set	Calibration Log
306	Stopwatch	Stopwatch - Sportline	Calibration Log
CFM 010	Dry Gas Meter	Dry Gas Meter - American Meter Co.	Post-Test Calibration Log
CFM 020	Dry Gas Meter	Dry Gas Meter – American Meter Co.	Post-Test Calibration Log
CFM 030	Platform Scale	Pre-Post 10.0 Audit	Test Data Sheet
CFM 040	Analytical Balance	Analytical Balance - Mettler Instrument	Calibration Log
CFM 050	Barometer	Mercury Barometer – Princo	Manual Cover
CFM 060	Moisture Meter	Moisture Meter – Delmhorst	Manual
CFM 070	Draft Gauge	Magnehelic Draft Gauge – Dwyer	Calibration Log
CFM 080	Thermometer	Temperature Monitor – Omega	Calibration Log
TM-19	Tape Measure	Tape Measure – 12' Stanley Powerlock	Calibration Log

Standard Gas Test Meter Calibration vs. Bubble Flowmeter

Date: 4/26/06 Calibrated by: Standard Test Meter S/N: K. Morgan OMNI 00001 Bubble Flow Meter S/N: OMNI 00134 Barometric Pressure: 30.04 "Hg

Average Y Factor:

0.9828

(Volume: 1.000 liters = 0.035336 ft3, NIST traceable)
Signature/Date: /h/Morg 4-26-06

Flow Rate #4

20.35 21.223 64 64 4	23.306 23.964 66 67 3	23.964 24.645 66 67
21.223 64 64 4	23.964 66 67 3	24.645 66 67
21.223 64 64 4	23.964 66 67 3	24.645 66 67
64 64 4	66 67 3	. 66 67
64 4	67 3	. 66 67
4	3	67
		.3
0		
~	0	10
0.2182	0.2193	0.2151
9.9	9.78	9.78
9.9	· 9.75	9.78
9.84	9.81	9.9
9.87	9.75	9.71
9.9	9.81	9.9
64	66	66
64	67	67
1	1	1
0.2145	0.2168	0.2160
0.9822	0.9875	1.0037
	9.9 9.84 9.87 9.9 64 64 1 0.2145	9.9 9.78 9.9 9.75 9.84 9.81 9.87 9.75 9.9 9.81 64 66 64 67 1 1 0.2145 0.2168

Flow Rate #2						
dH(pressure across mete	dH(pressure across meter, "H2O): 0.4					
	Run #1	Run #2	Run #3			
Standard Test Meter						
Initial Volume (ft3):	26.071	26.071	26.753			
Final Volume (ft3):	26.753	26.753	27.686			
Initial Temperature (oF):	67	67	68			
Final Temperature (oF):	67	67	68			
Elapsed Time (minutes):	3	3	4			
(seconds):	0	0	, Ó.			
Flow rate, Q (cfm):	0.2273	0.2273	0.2333			
Bubble Flowmeter						
Time 1:	9.35	9.34	9.35			
Time 2:	9.31	9.34	9.34			
Time 3:	9.3	9.31	9.4			
Time 4:	9.31	9.25	9.21			
Time 5:	9.35	9.35	9.28			
Initial Temperature (oF):	67	67	67			
Final Temperature (oF):	67	67	67			
Vacuum ("H20):	1	1	1			
Flow rate, Q (cfm):	0.2274	0.2275	0.2276			
Y factor:	0.9994	1.0000	0.9767			
Deviation of	Y factor is	acceptable				

Flow Rate #3					
dH(pressure across met	er, "H2O):	0.55			
	Run #1	Run #2	Run #3		
Standard Test Meter					
Initial Volume (ft3):	28.7	29.837	30.967		
Final Volume (ft3):	29.837	30.967	32.095		
Initial Temperature (oF):	67	68	68		
Final Temperature (oF):	68	68	68		
Elapsed Time (minutes):	4	4	4		
(seconds):	0	0	0		
Flow rate, Q (cfm):	0.2843	0.2825	0.2820		
Bubble Flowmeter		***************************************			
Time 1:	7.71	7.78	7.59		
Time 2:	7.68	7.62	7.68		
Time 3:	7.65	7.65	7.65		
Time 4:	7.65	7.62	7.68		
Time 5:	7.71	7.68	7.59		
Initial Temperature (oF):	67	68	68		
Final Temperature (oF):	68	68	68		
Vacuum ("H20):	1	1	1		
Flow rate, Q (cfm):	0.2761	0.2764	0.2776		
Y factor:	0.9704	0.9776	0.9835		
Deviation of	Y factor is a	cceptable			

dH(pressure across met	er, "H2O):	0.75	
	Run #1	Run #2	Run #3
Standard Test Meter			
Initial Volume (ft3):	32.502	33.512	35.521
Final Volume (ft3):	33.512	35.521	36.529
Initial Temperature (oF):	68	67	68
Final Temperature (oF):	68	67	68
Elapsed Time (minutes):	3	6	3
(seconds):	0	0	. 0
Flow rate, Q (cfm):	0.3367	0.3348	0.3360
Bubble Flowmeter			
Time 1:	6.46	6.46	6.5
Time 2:	6.4	6.5	6.5
Time 3:	6.46	6.59	6.55
Time 4:	6.44	6.5	6.43
Time 5:	6.46	6.5	6.53
Initial Temperature (oF):	68	67	67
Final Temperature (oF):	68	67	67
Vacuum ("H20):	1	1	1
Flow rate, Q (cfm):	0.3290	0.3257	0.3261
Y factor:	0.9764	0.9718	0.9715
Deviation of	f Y factor is	acceptable	

Standard Gas Test Meter Calibration vs. Bubble Flowmeter

Date:	4/26/06	Average Y Factor: 0,9828
Calibrated by:	K. Morgan	
Standard Test Meter S/N:	OMNI 00001	
Bubble Flow Meter S/N:	OMNI 00134	(Volume: 1.000 liters = 0.035336 ft3, NIST traceable)
Barometric Pressure:	30.04 "Hg	Signature/Date: 14 1. Moren 4-26-06
		

Flow Rate #5						
dH(pressure across meter, "H2O): 1						
-	Run #1	Run #2	Run #3			
Standard Test Meter						
Initial Volume (ft3):	37.003	38.262	39.95			
Final Volume (ft3):	38.262	39.95	41.207			
Initial Temperature (oF):	67	66	67			
Final Temperature (oF):	67	66	67			
Elapsed Time (minutes):	3	4	3			
(seconds):	0	0	0			
Flow rate, Q (cfm):	0.4197	0.4220	0.4190			
Bubble Flowmeter						
Time 1:	5.24	5.08	5.08			
Time 2:	5.18	5.14	5.08			
Time 3:	5.06	5.3	5.2			
Time 4:	5.18	5.12	5.1			
Time 5:	5.12	5.14	5.12			
Initial Temperature (oF):	67	66	67			
Final Temperature (oF):	66	66	67			
Vacuum ("H20):	1	1	1			
Flow rate, Q (cfm):	0.4112	0.4112	0.4144			
Y factor:	0.9799	0.9736	0.9882			
Deviation of	Y factor is a	acceptable				

Acceptance criteria, Method 5 section 16.1.1.5

- The difference between the maximum and minimum values at each flow rate should be no greater than 0.030.
- The meter coefficients (Y) should be between 0.95 and 1.05.

MICROTECTOR®

Bulletin D-57

Anintenance Instructions Operating a

or. Vacuum Measurement Negative Pressure

side gage connection (5) and proceed as described under Positive Pressure the gage. Connect the source of Measurement Section above. Remember that the pressure measured in this way is vacuum or negative pressure to the right negative.

Differential Pressure Measurement

pressure to the left connection (2) and the Differential pressures may be measured by connecting the higher (more positive) lower pressure to the right connection (5).

Storage

build-up of oxides, etc., on the point. Keep the unit covered and in an area free of Turn meler circuit switch to "off" position and withdraw the point well clear of fluid clockwise) when gage is not in use. This will conserve the batteries and minimize turning Micrometer counterstrong solvent fumes. ф ф

Maintenance

(with the circuit on and point in fluid), the When the meter reading becomes reduced or the pointer movement gets sluggish following should be done:

- clean the tlp lightly using fine crocus cloth, Wipe off all grit and dirt with a reassemble and recheck Remove the point (by unscrewing) and meter operation. clean rag,
- 2. If the meter operation continues to be once a year to avoid deterioration of battery and damage to gage. Leakproof sluggish, replace the size AA, 112 volt battery, (Replace the battery at least alkaline battery is recommended.)

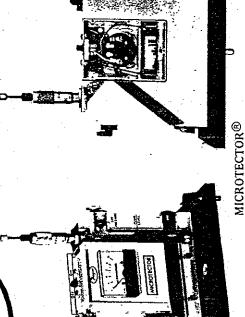
To replace the battery, remove center screw (10) located in the back of the

Copyright 1985, Dwyer Instruments, Inc.

electronic enclosure, Cover (9) will come battery out and push a new battery into the off exposing the battery. Pull the old erminal to the right (to the end marked battery holder with the positive (center) with a + on the holder).

requires replacement; empty old fluid from gage; flush out with clear water and A126 Fluorescein Green Color Concentrate gage fluids as proper gage operation depends on use of the specified gage fluid replace with distilled water and Dwyer mixed 3/4 oz. concentrate to each quart of water. (CAUTION: Do not substitute other if the fluid becomes contaminated and to provide proper surface tension, wetting ability and electrolyte capability with unity specific gravity.)

soaps, special solvent, degreasers, aromatic hydro-carbons, etc. Such I the gage bore is very dirty, a mild soap solution may be used to aid in cleaning (CAUTION: Do not clean with liquid cleaners and solvents frequently contain related compounds which will permanently damage the gage, and prevent proper prior to flushing with clear water, chlorine, fluorine, acetone and operation.


be made to operate properly by cleaning If meter becomes inoperative and cannot point tip or replacing battery, return the entire gage to Dwyer Instruments, Inc., or service.

"The Low Pressure People Dwyer Instruments, Inc. A Product From Microlector

Form No. 38-440190-00 Litho in U.S.A. 1/85

MICROTECTOR®

Operating and Maintenance Instructions

Specifications and Features*

Time Proven Hook Gage Manometer Combined with Modern Electronics For Easier, Faster, More Accurate Precision Measurements.

Accurate and Repeatable to \pm .00025 inches water column.

Non Toxic and Inexpensive Gage Fluid Consists of Distilled Water Mixed with a Pressure Range 0-2" w.c. Positive, Negative or Differential Pressures.

Convenient, Portable, Light Weight, and Self-Contained, the Unit Requires No Small amount of Fluorescein Green Color Concentrate.

A.C. Detector Current Eliminates Point Plating, Fouling and Erosion. External Power Connections and is Operated by a 112 Volt Penlight Cell.

Micrometer Complies with Federal Specification GGG-C-105A and is Traceable to a Master at the National Bureau of Standards.

Three Point Mounting with Dual Leveling Adjustment and Circular Level Vial

Durablock 9 Precision Machined Acrylic Plastic Gage Body. Assure Rapid Set Up.

Sensitive 0-50 Microamp D.C. Meter Acts as Detector and Also Indicates Battery and

Heavy One Half Inch Thick Steel Base Plate Provides Steady Mounting. Probe Condition.

Top Quality Glass Epoxy Circuit Board and Solid State-Integrated Circuit

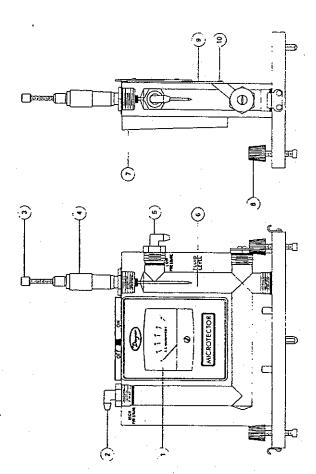
Rugged Sheet Steel Cover and Carrying Case Protects the Entire Unit When Not In Electronic Enclosure of Tough Molded Styrene Acrylonitrile Provides Maximum Protection to Components Yet Allows Easy Access to Battery Compartment. Electronics.

Accessories Included are (2) 3 Foot Lengths Tygon Tubing, (2) 1/8" Pipe Thread

Adapters and 3/4 oz. bottle of Fluorscein Green Color Concentrate with Wetting Agent. Maximum Pressure 100 PSIG (With optional Pipe Thread Connections). Parent No. 3,726,142

Telephone 219/872-8141

DWYER INSTRUMENTS, INC.


The state of the s

. MICHIGAN CITY, INDIANA 48380, U.S.A.

P. O. BOX 373

P.O. Box 373 Michigan City/Indiana 46360 U.S.A. Phone: 219/872-9141 DWYER INSTRUMENTS, INC.

2 0 0 F 2 6 3

MICROTECTOR® GAGE

The Dwyer Microtector*combines the time proven principles of the Hook Gage Precision Pressure Measurement

ype manometer and modern solid state integrated circuit electronics. It provides an inexpensive means of achieving accuracy and repeatability within ± .00025 inches water column throughout its 0 to 2 inches w.c. range. It is truly a new standard in precision pressure measuring de

Principles of Operation

A pressure to be measured is applied to the manometer fluid which is displaced in equal to 12 the applied pressure, A instant of contact is detected by Current for this circuit is supplied by a 11/2 penlight cell feeding two semiconductor amplifiers which act as a freemicrometer mounted point is then lowered each leg of the manometer by an amount until contacts the manometer gage fluid. completion of a low power A.C. circuit. running multivibrator operating at volt l be

frequency of approximately two kilohertz,

Completion of the A.C. circuit activates a indication on a sensitive (0 to 50 bridge rectifier which provides the signal microamps) D.C. microammeter,

stops lowering the point and reads the micrometer which indicates one half the divisions, (each being .000125" w.c.) betal accuracy of .00025 can easily be achieved. The micrometer complies with On indication of contact the operator applied pressure. By interpolating eight ween .001 micrometer graduations, a to-Federal Specification GGG-C-105A and is traceable to a master at the National Bureau of Standards.

Locating and Opening

clear acrylic block, (CAUTION: Do not nandle gage by grasping meter-electronic Stand the Microtector" and case on a firm up. If it is necessary to move the gage without case, handle only the base plate or lat level surface. Remove the cover by releasing the latches and lifting straight package housing Item 7 on drawing,)

the bubble in the spirit level is centered in Level the gage by adjusting the two front (2 and 5). Back off the sure that the point is not immersed in the should now coincide with the mark on the or minus approximately 1/32 inch (6). If the level of of Dwyer green concentrate. (See maintenance instruction for proportions.) Microtector, & The gage is now ready to be leveling screws (Item 8 on drawing) until the small circle. After leveling the gage, Micrometer (4), if necessary, to make gage fluid. The fluid level in the gage fluid is too high, fluid can be removed with an eye dropper pipette or carefully poured out of the right connection (5). If the level valve tube connector (2), and add distilled the rapid shut off connectors and with them in the open position, relevel the is too low, remove the top left rapid shut off water pre-mixed with the proper amount After correcting the fluid level, reinstall open both rapid shut off valve hand bore plus connectors right zeroed.

Furn the Micrometer barrel (4) until its lower end just coincides with the zero mark on the internal vertical scale and the vertical line on the internal scale. Note scale is graduated in one thousandths from the top of gage to the "on" position. While with the gage level), raise or lower the zero on the barrel scale coincídes with the 025" from 0 to 1.00 inch and the barrel holding the barrel at the zero position (and point by turning the top knuried knob (3) that the internal scale is graduated every " Turn the meter circuit switch at until the point is above, but near the fluid. 0 to .025.

barrel (4) and lower the point slowly by turning the top knurled knob (3). As the knob is turned, the point will contact the Check to be sure that the meter (1) registers zero. Watch the meter, hold the making contact, turn the point out of the Buid and the meter pointer will move from fluid by turning the Micrometer barrel counter-clockwise to a reading of .010 or more. Again watch the meter and, this time, lower the point by turning the where the meter pointer begins to move up scale is the zero position. This position zero to some upscale position. After Micrometer barrel. The point position

and adjusting the point until the zero position gage is now zeroed and should not be barrel steady. Repeat lowering the point, zero reading the Micrometer. Adjust the point relation to the Micrometer barrel turning the top knob while holding and zero reading exactly coincide. watching the meter for contact, should correspond to moved.

reading can be used wherein, instead of then subtracted from the final reading. Comparable results can be obtained with An alternate method of zeroing and the gage completely, a 29" correction reading is taken and recoreither method. zeroing

Positive Pressure Measurement

can be measured. Positive pressure should pressure of 2.0" water column maximum be applied to the top left connection (2) with the Micrometer zeroed as described above. This will permit simple direct With the fluid at its proper level, reading to be taken.

indicating meter point has moved upscale w.c. The degree of uncertainty for the operator and instrument is indicated by applied at the top left connection, the fluid the point in the right bore. Note the Turn the Micrometer counter-clockwise down until its point just touches the fluid surface causing movement of the meter pointer. Withdraw the point and repeat these readings multiplied by two is the reading x 2 = pressure applied in inches After an unknown pressure has been level will drop in the left bore and rise over until the point leaves the fluid as indicated Micrometer reading where the meter pointer movement begins. The average of because the point is immersed in the fluid by the meter pointer dropping to zero or scale. Then slowly turn the Microma. the difference in these readings.) times noting each pressure applied to the several

indicate inaccurate readings. Should this happen the zero-set and pressure measurement procedure should be When the readings are complete the pressure should be removed and the zero-Any change in the zero position will setting of the Microtector® rechecked. repeated.

Gero the gage, Connect the source of side gagesiconnection (5) and proceed as described ander Positive Pressure Measurement Section above. Remember that the pressure measured in this way is acuum Measurement Negative Pressure

electronic enclosure, Cover (9) will come off exposing the battery. Pull the old battery out and push a new battery into the battery holder with the positive (center) terminal to the right (to the end

raye.4

la i ananí trucí

If the fluid becomes contaminated and from gage; flush out with clear water and requires replacement; empty old fluid replace with distilled water and Dwyer A126 Fluorescein Green Color Concentrate mixed 3/4 oz. concentrate to each substitute other gage fluids as proper gage quart of water. (CAUTION: Do not

marked with a + on the holder).

pressures may be measured pressure to like left connection (2) and the lower pressure to the right connection by connecting the higher (more positive) Differential Pressure Measurement Differential icg ut

operation depends on use of the specified gage fluid to provide proper surface tension, wetting ability and electrolyte

> Turn meter circuit swarca ... had withdraw "hook" point well clear of figuid (by turning Micrometer minimize build up of oxides, etc., on the counter-clockwise) when gage is not in use. This will conserve the batteries and "hook," Keep the unit covered and in an Storage

CAUTION; Do not clean with liquid

to flushing with clear

soaps, special solvents, degreasers, aro-

if the gage bore is very dirty, a mild soap solution may be used to aid in cleaning

capability with unity specific gravity.)

area flee offstrong solvent fumes,

matic hydro-carbons, etc. Such cleaners and solvents frequently contain chlorine, fluorine, acetone and related compounds which will permanently damage the gage, "hook" tip or replacing battery, return If meter becomes inoperative and cannot be made to operate properly by cleaning and prevent proper operation.) or the pointer movement gets sluggish When the meter reading becomes reduced (with circuit; on and "hook" point in

Maintenance

he entire gage to Dwyer Instruments, nc., for service.

Remove the hook point (by unscrew-

fluid), the following should be done:

ing) and clean the tip lightly using fine cropus cloth. Wipe off all grit and diff with a clean rag, reassemble and If the meter operation continues to be sluggish, replace the size AA, 1% volt balkery. (Replace the battery at least once a year to avoid deterioration of battery and damage to gage. Leakproof alkaline battery is recom-

recheck meter operation.

Dwyer Instruments, Inc. A Product From

"Microtector" ®

"The Low Pressure People"

the! battery, remove center located in the back of the

screw (10) To replace

3

1970, Dwyer Instruments, Inc. ®

Copyright

38-440190-00

Cammana C

Operating and Maintenance Instructions

MICK CTC

Time Proven Hook Gage Manometer Combined with Modern Electronics For Easier, Faster, more Accurate Precision Pressure Measurements.

Specifications and Features*

MICROTECTOR®

Accurate and Acpostable to 1000023 inches water column (.000009 P.S.E.) Non Toxic and Inexpensive Gage Fluid Consists of Distilled Water Mixed with a Pressure Range 0-2" w.c. Positive, Negative or Differential Pressures. Small Amount of Dwyer Color and Wetting Agent Concentrate.

Convenient, Portable, Light Weight, and Self-Contained, the Unit Requires No A.C. Detector Current Eliminates Hook Plating, Fouling and Erosion, External Power Connections and is Operated by a 11/4 Volt Penlight Cell.

Micrometer Complies with Federal Specification GGG-C-105A and is Traceable to a Master at the National Bureau of Standards.

Three Point Mounting with Dual Leveling Adjustment and Circular Level Durablock® Precision Machined Acrylic Plastic Gage Body. Assure Rapid Set Up.

Sensitive 0-50 Microamp D.C. Meter Acts as Detector and Also Indicates Battery and Hook Probe Condition.

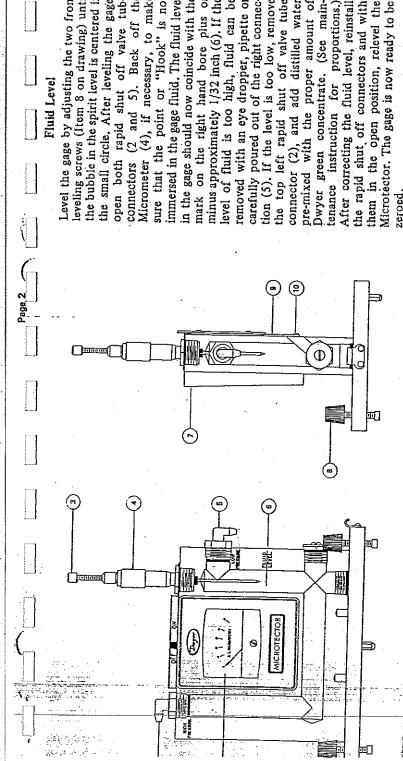
Top Quality Glass Epoxy Circuit Board and Solid State-Integrated Circuit Heavy One Half Inch Thick Steel Base Plate Provides Steady Mounting. Electronics.

Electronic Enclosure of Tough Molded Styrene Acrylonitrile Provides Maximum

Protection to Components Yet Allows Easy Access to Battery Compartment

Rugged Sheet Steel Cover and Carrying Case Protects the Entire Unit When Not in Accessories Included are (2) 3 Foot Lengths Tygon Tubing, (2) 1/8" Pipe Thread Adapters and 3/4 oz. bottle of Fluorscein Green Color Concentrate with Wetling Agent.

DWYER II


P.O. Box 323 Michigan City 19//872-9141

Direct Chicoo Line Area 312 // 733 7883 mms

Phone: Area 2

DWYER INSTRUMENTS INC.

Telephone 219/872-9141

MICROTECTOR® GAGE

The Dwyer Microtector combines the lime proveitibringiples of the Hook Gage type manometer and modern solid state integrated circuit electronics. It provides in inexpensive aneans of achieving accuracy and repeatability within ± .00025 nches water column throughout its 0 to linches W.c. range. It is truly a new tandard in precision pressure measuring Precision Pressure Measurement levices.

A pressure to be measured is applied to Principles of Operation

achieved. The micrometer complies with Federal Specification GGG-C-105A and is traceable to a master at the National Bureau of Standards. tronic package drawing.) he manometer fluid which is displaced in equal to 1/2 the applied pressure. A miantil it confacts the manometer gage y a 14 yolf Renlight cell feeding two semi-conductor amplifiers which act as a free-running multivibrator operating at a frequency of approximately two kiloeach leg of the manometer by an amount rometer mounted hook is then lowered Juid. The instant of contact is detected sircuit. Current for this circuit is supplied 3y completion of a low power A.C.

hertz. Completion of the A.C. circuit activates a bridge rectifier which provides the signal for indication on a sensitive (0 On indication of contact the operator stops lowering the hook and reads the micrometer which indicates one half the to 50 microamps) D.C. microammeter.

scale is graduated in one thousandths

raise or lower the "hook" by turning the

zero position (and with the gage level)

applied pressure. By reading the micrometer to the closest .000125 inches a total

accuracy of .00025 inches w.c. is easily

top knurled knob (3) until the "hook" or

point is above, but near the fluid.

registers zero. Watch the meter, hold the

barrel (4) and lower the hook slowly by

Check to be sure that the meter (1)

turning the top knurled knob (3). As the

knob is turned, the point of the "hook" will contact the fluid and the meter

pointer will move from zero to some

upscale position. After making contact,

turn the hook out of the fluid by turning the Micrometer barrel counter-clockwise

to a reading of .010 or more. Again watch the meter and, this time, lower the hook by turning the Micrometer barrel. The

lower end just coincides with the zero mark on the internal vertical scale and the zero on the barrel scale coincides with the vertical line on the internal scale. Note that the internal scale is graduated every .025" from 0 to 1.00 inch and the barrel from 0 to .025." Turn the meter circuit switch at the top of gage to the "on" position. While holding the barrel at the

> up. If it is necessary to move the gage without case, handle only the base plate or clear acrylic block. (CAUTION: Do Stand the Microtector and case on a firm slat level surface. Remove the cover by releasing the latches and lifting straight not handle gage by grasping meter-elechousing Item 7 on Locating and Opening

Fluid Level

begins to move up scale is the zero position. This position should correspond Adjust the hook in relation to the Mi-

to the zero reading on the Micrometer.

"hook" position where the meter pointer

lowering the hook, watching the meter

for contact, and adjusting the hook until

the zero position and zero reading exactly

coincide. The gage is now zeroed and

should not be moved,

An alternate method of zeroing and

rection reading is taken and recorded then subtracted from the final reading

Comparable results can be obtained (

either method.

Positive Pressure Measurement

zeroing the gage completely, a zero cor-

reading can be used wherein, instead of

crometer barrel by turning the top knob while holding the barrel steady, Repeal

A Bulletin 0.57

0.03

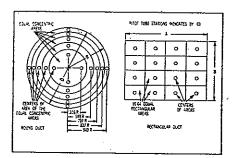
Level the gage by adjusting the two front open both rapid shut off valve tube the bubble in the spirit level is centered in Micrometer (4), if necessary, to make eveling screws (Item 8 on drawing) until the smail circle. After leveling the gage, connectors (2

and 5). Back off the level of fluid is too high, fluid can be sure that the point or "Hook" is not immersed in the gage fluid. The fluid level in the gage should now coincide with the minus approximately 1/32 inch (6), If the tion (5). If the level is too low, remove mark on the right hand bore plus or removed with an eye dropper, pipette or carefully poured out of the right connecthe top left rapid shut off valve tube pre-mixed with the proper amount of connector (2), and add distilled water Dwyer green concentrate. (See main-

With the fluid at its proper level, a pressure of 2.0" water column maximum can be measured. Positive pressure should with the Micrometer zeroed as described be applied to the top left connection (2) above. This will permit simple direct readings to be taken, Microtector. The gage is now ready to be the rapid shut off connectors and with them in the open position, relevel the Turn the Micrometer barrel (4) until its After correcting the fluid level, reinstall

bore. Note the indicating meter pointer has moved upscale because the "hook" is applied at the top left connection, the After an unknown pressure has been fluid level will drop in the left bore and rise over the "hook" point in the right mmersed in the fluid. Turn the Micrometer counter-clockwise until the "hook" ouches the fluid surface causing movement of the meter pointer. Withdraw the lime the Micrometer reading where the wo is the pressure applied to the gage. scale. Then slowly turn the Micrometer hook and repeat several times noting each average of these readings multiplied by (Avg. reading x 2 = pressure applied in point leaves the fluid as indicated by meter pointer dropping to zero on down until its point or "hook" meter pointer movement begins. inches w.c.)

sure should be removed and the zero-setting of the Microtector® rechecked. Any When the readings are complete the preschange in the zero position will indicate inaccurate readings. Should this happen the zero-set and pressure measurement procedure should be repeated.


AIR VELOCITIES WITH THE DWYER PITOT TUBE

AIR VELOCITY

The total pressure of an air stream flowing in a duct is the sum of the static or bursting pressure exerted upon the sidewalls of the duct and the impact or velocity pressure of the moving air. Through the use of a pitot tube connected differentially to a manameter, the velocity pressure alone is indicated and the corresponding air velocity determined.

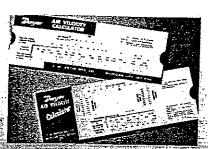
For accuracy of plus or minus 2%, as in laboratory applications, extreme care is required and the following precautions should be observed:

- 1. Duct diameter 4" or greater.
- 2. Make an accurate traverse per sketch at right, calculate the velocities and average the readings.
- Provide smooth, straight duct sections a minimum of 8½ diameters in length upstream and 1½ diameters downstream from the pitot tube.
- 4. Provide an egg crate type straightener upstream from the pitot tube.

In making an air velocity check select a location as suggested above, connect tubing leads from both pitot tube connections to the manometer and insert in the duct with the tip directed into the air stream. If the manometer shows a minus indication reverse the tubes. With a direct reading manometer, air velocities will now be shown in feet per minute. In other types, the manometer will read velocity pressure in inches of water and the corresponding velocity will be found from the curves in this bulletin. If circumstances do not permit an accurate traverse, center the pitot tube in the duct, determine the center velocity and multiply by a factor of .9 for the approximate average velocity. Field tests run in this manner should be accurate within plus or minus 5%.

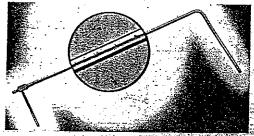
The velocity indicated is for dry air at 70°F., 29.9" Barometric Pressure and a resulting density of .075#/cu. ft. For air at a temperature other than 70°F. refer to the curves in this bulletin. For other variations from these conditions, corrections may be based upon the following data:

Air Velocity = 1096.2
$$\sqrt{\frac{PV}{D}}$$


where Pv=velocity pressure in inches of water
D=Air density in #/cu. ft.

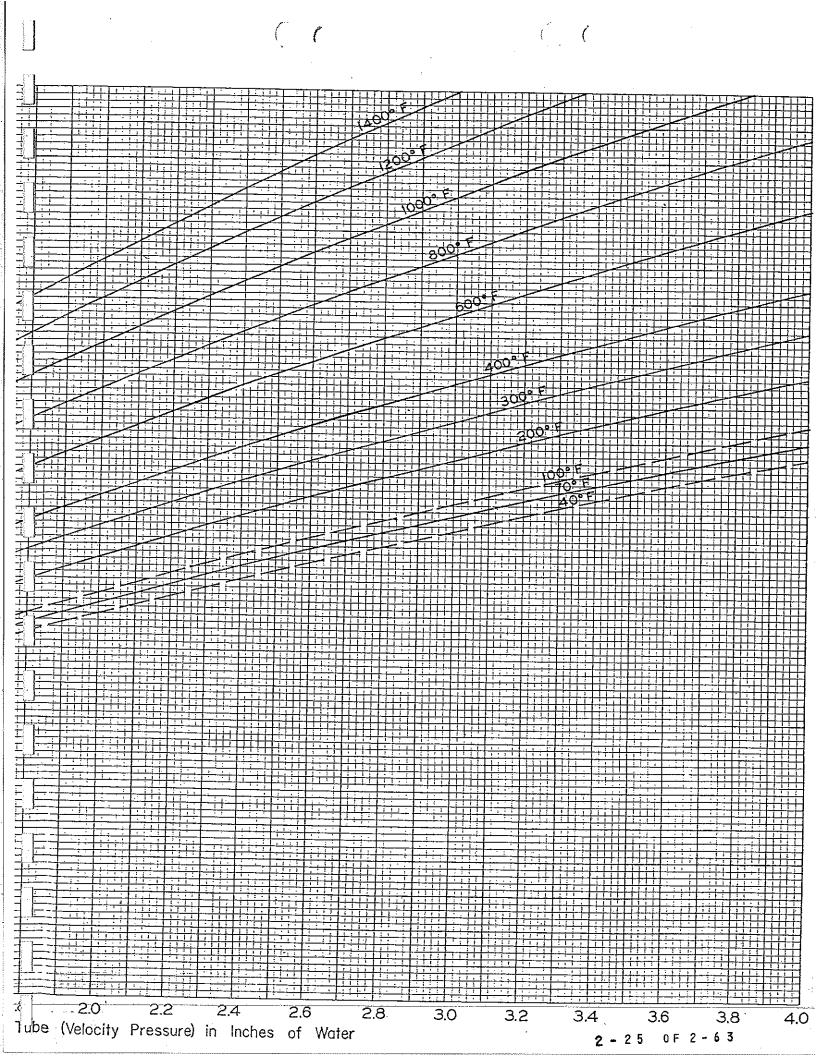
Air Density = 1.325 x
$$\frac{P_B}{T}$$

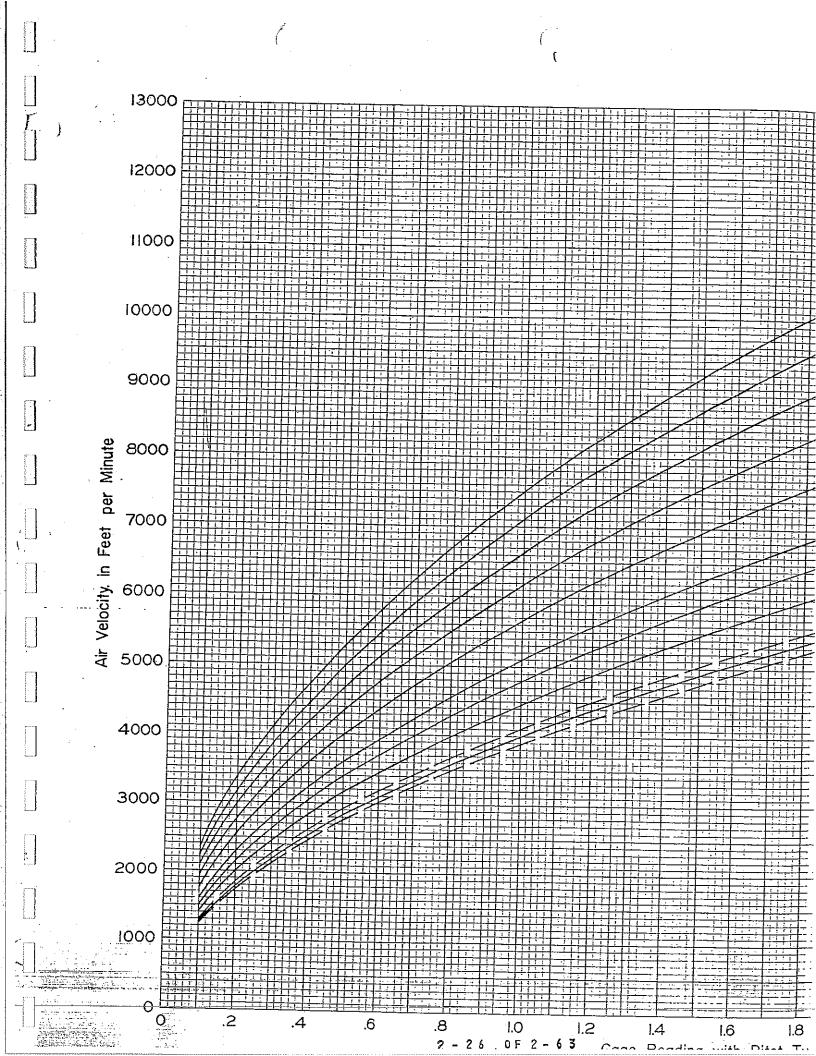
where PB = Barometric Pressure in inches of mercury

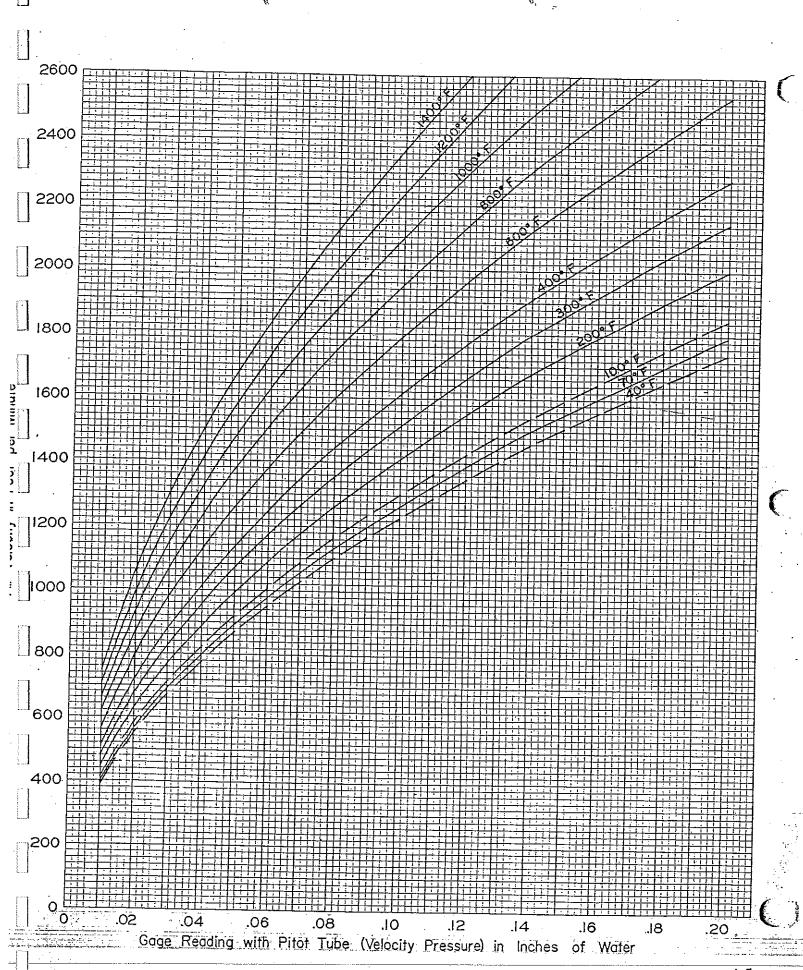

T=Absolute Temperature (indicated temperature °F plus 460)

Flow in cu. ft. per min. = Duct area in square feet x air velocity in ft. per min.

AIR VELOCITY CALCULATOR


Computes velocity based on air density corrected for conditions of temperature and pressure. Eliminates tedious calculations. Ranges from .01 to 10" water corresponding to 400 to 20,000 FPM. Furnished with each pitot tube.




STAINLESS STEEL PITOT TUBES

Test confirmed unity coefficient and lifetime construction of No. 304 stainless steel. Inch. graduations show depth of insertion for traversing Complies with AMCA and ASHRAE specifications. Sizes 12" to 60 "long. Hand or fixed mounting

COPYDICHT TOOK DWVED INCTONICHTONIC

OMNI Environmental Servi	Inc
OMNI-Test Laboratories, Inc.	
Beaverton, OR Phone (503) 643-3788	

Thermometer Calibrator Calibration

Model NoCL300 - 2100F	Calibration Date 8-24-65 Calibrated By B Daus
Serial No. 612	OMNI Tracking No
Standard Calibrator	Acceptability Criteria ± 5%
Model No. 47 C4 300	Maximum Deviation2.0%
Serial No. 506	Acceptance
OMNI Tracking No. //7 Calibration Date of 22 09	Readout Tracking No. //2

Scale Value °F	Standard Reading °F	Calibrator Reading °F	Reading Deviation °F
Right Scale	Column A	Column B	Column C
100	101	104	3
300	304	307	.3
500	502	506	4
700	701	704	3
900	902	904	2.
1100	1104	1105	1
1300	1303	1304	1
1500	1500	1500	Ø
1700	1695	- 1695	Ø
1900	1892	1892	Ø
2100			
Left Scale	Column A	Column B	Column C
. 0	001	000	,
200	203	202	1
400	401	400	i
600	603	602	1
800	803	801	2
1000	1003	1002	
1200	1202	1201	ı
1400	1399	1398	ı
1600	1597	1596	ı
1800	1794	1793	l
2000	1987	1987	Ø

Next Calibration Due 8-24-06

Technician signature: B Date: 8-24-05

Control No. C-SFC-0002-{CL300-2100-F Thermometer Calibrator Calibration Data Sheet).doc, Effective date: 08/07/00

Page 1 of 1

Certificate of Calibration

Certificate # 232180

Page#1 of1

Order Date: 28Sep2001

56

For: OMNI-TEST LABORATORIES
Department: NO

PO#: OTL-01-137

JJ Calibrations, Inc.

Instrument Identification

Property #: 27502

Serial #: 27502

Make: UNKNOWN

User:

Model: 10lb

Noum: 101b WEIGHT

Accuracy: ASTM E617

Certification Information

As Found: Within Tolerance

Cal Date: 03Oct2001

As Left: Within Tolerance

Seals: N/A

Environment: 21°C 44% RH

*Due Date: 03Oct2002

Adjustments: None Procedure: CP 16 Repairs: None

...

Technician: 49

Remarks

*Any number of factors may cause this item to drift out of calibration before the recommended due date has expired.

Standards Used

ID#

Manufacturer

Model#

Nomenclature

Due Date

Trace ID

550

AND

HP-30K

30k GRAM BALANCE

06Feb2002

210998

JJ Calibrations, Inc., certifies that this instrument has been compared in accordance with the above referenced procedure using standards with accuracies traceable to the National Institute of Standards and Technology, derived from accepted values of physical constants, derived from ratio measurements, or compared to consensus standards. The results contained herein relate only to the item calibrated. This certificate is in compliance with the applicable requirements of, MIL-STD-45662A and ISO-9002.

A Test Accuracy Ratio (TAR) of at least 4:1, if achievable, is maintained unless otherwise stated.

Tom Moody

Manager

This certificate shall not be reproduced except in full, without the written approval of JJ Calibrations, Inc.

Quality Assurance

Issued 04Oct2001

Rev# 11

CALIBRATION RECORD

Vaneometer Air Velocity Meter – OMNI-00032 265 ak-

		CALIBRATION/SERVICE RECORD	
DATE	BY	RESULTS	DATE OF NEXT CALIBRATION
10-18-02	Jared S	Installed new vane from factory	4-18-03
4-15-03	K	Installed new vane from factory	10-15-03
10-26-03	BQ	Installed new vane from factory	4-26-04
4-26-04	30	Installed new vane from factory	18-26-04
11-4-04	30	Installed new vane from factory	5-4-05
5-3-05	BD	Installed new vane from factory	
11-3-05	BR	Installed new vane from factory	11-3-05
6-1-06	375	Installed new vane from factory	5-3-6 12-1-06
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	
		Installed new vane from factory	

Traceable Certificate

201 Wolf Drive P.O. Box 87 Thorofare, NJ 08086-0087 Phone: 856-686-1600 Fax: 856-686-1601 www.troemner.com e-mail: troemner@troemner.com

Page 1 of 2 Pages

Weight

Serial Number 47883 Order Number VERBAL Certificate # 251432

Date of Calibration

15-MAY-2003

OMNI-TEST

5465 S.W. Western Ave

Suite G

Aluminum

Stainless Steel

Stainless Steel

Beaverton, OR 97005

Description of Weights: TW-2000-01T, Metric Set

Material Assumed Density at 20°C

2.7 g/cm3

7.95 g/cm3·

7.85g/cm3

Range

1mg-100mg 200mg-500mg

1g-2kg

Tested with Reference Standards Traceable to the National Institute of Standards & Technology through NIST Test Number 822/265036-01.

We certify that the weights listed are calibrated to NIST 105-1 Class F tolerances.

The calibration of these weights is based on apparent mass vs material of density 8.0g/cm3.

Nominal	<u>.</u>	Serial				Tolera	nce	Uncerta	inty
Mass Val	ue	Number		Correctio	n *	(+ or -		(+ or -	•
2 kg		*** · · ·		-30.0015	mg 20	0.000	mg	1.6515	mg
1 kg			4	29.9907	mg 10	0.000	mg	0.6760	mg
500 g				17.7906	mg 7	0.000	mg	0.3713	mg
200 g			4	20.1298	mg 4	0.000	mg	0.1777	mg
200 g	*		4	15.6792	mg 4	0.000	mg	0.1776	mig
100 g				-2.0865	mg 2	0.000	mg	0.0706	mg
50 g				-1.1076		.0.000	mg	0.0381	mg
20 g				+0.8379	mg	4.000	mg	0.0244	mgr
20 g	*	•	•	+0.9829	_	4.000	mg	0.0244	mgr
10 g				-0.3028	mg	2.000	mg	0.0157	_
5 g				-0.0103	mg	1.500	mg	0.0105	mc
2 g		-		-0.1317		1.100	ma	0.0102	mcr
2 g	*			+0.3444	mg	1.100	mg	0.0102	mg
1 g	·			+0.3348	mg	0.900		0.0102	mg
500 mg				+0.3975	mg	0.720		0.0024	_
200 mg				-0.0286	mg	0.540	mg	0.0024	mgr
200 mg	*			+0.0494	mg .	0.540	mg	0.0024	mq
100 mg				+0.0245	mg	0.430	•	0.0024	mg
50 mg	•			+0.0284		0.350	mg	0.0024	mg
20 mg				+0.0713		0.260		0.0024	ma
20 mg	*			-0.0317	ma	0.260	_	0.0024	_
10 mg				+0.0516	-	0.210	-	0.0024	_
5 mg				+0.0310	_	0.170	-	0.0024	_

^{*} Denotes weight is marked with a dot

Traceable Certificate

201 Wolf Drive• P.O. Box 87• Thorofare, NJ 08086-0087• Phone: 856-686-1600• Fax: 856-686-1601• www.troemner.com• e-mail: troemner@troemner.com

Page 2 of 2 Pages

Weight

Order Number Certificate #

VERBAL 251432

Date of Calibration

15-MAY-2003

Suite G Beaverton, OR 97005

5465 S.W. Western Ave

OMNI-TEST

Nominal Mass Value Serial Number

Correction *

Tolerance (+ or -)

Uncertainty (+ or -)

2 mg * 1 mg

-0.0292 mg +0.0260 mg 0.120 mg 0.100 mg 0.0024 mg 0.0003 mg

Robert Thompson, Approved Signatory

^{*} Correction is defined as the difference between the mass value of a weight and its nominal value. A positive correction indicates that the mass value is greater than the nominal value by the amount of the correction.

OMNI Environmental, Inc.
OMNI-Test Laboratories, Inc.
Beaverton, OR (503) 643-3788

NIST Stopwatch Calibration, Time Proficiency Testing Procedure and Data Sheet

Date: 1 /27 66 User/Technician: Jared Sotenson Pass Fail
NIST traceable stop watch OMNI Tracking Number: 60292 Last Cal: 31-Jan Z005
Stopwatch to be tested for time proficiency OMNI Tracking Number:
1. Start the NIST traceable stopwatch; at a predetermined time (i.e., 1.00 minutes), the technician shall start the watch being tested. When 15.00 seconds have passed (i.e., the NIST traceable stopwatch reads 1 minute, 15 seconds), the technician shall stop the watch being tested. Record the target time interval (i.e., 15.00 seconds). Repeat this step twice and record the data.
Repeat step #1 for each of the following target time intervals: 30.00 seconds, 10.00 minutes, and 30 minutes.
3. If the delta between the target time and measured time is less than 5% of the target time interval or 2.00 seconds (whichever is less), then the technician has demonstrated proficiency with the specific instrument utilized in the proficiency test. The proficiency is valid for a period of twelve months.
4. Archive the proficiency test data and information, including the effective date and expiration date of the proficiency, in the equipment record for the instrument involved.
Target time: 15.00 seconds #1 Measured time: 15.09 #2 Measured time: 15.00 #3 Measured time: 15.02 Target time: 30.00 seconds #1 Measured time: 30.02 #2 Measured time: 30.05 #3 Measured time: 29.94 Target time: 10.00 minutes #1 Measured time: 10:20.03 #2 Measured time: 10:00.26#3 Measured time: 9:59.17 Target time: 30.00 minutes #1 Measured time: 30:00.0 #2 Measured time: 30:00.00#3 Measured time: 30:0
Technician Signature: Date:

Thermal Metering System Calibration Y and dH@

Manufacturer: American Meter Company

Model: DTM-200A

Serial Number: 40893722

OMNI Tracking No.: CFM 010

Average Orifice Meter dH@ 0.000	Average Gas Meter y Factor 0.987
Calibration Date:	08/11/06
Calibrated by:	Ken Morgan
Calibration Frequency:	Six Month
Next Calibration Due:	02/09/07
Instrument Range:	1.000 cfm
Standard Temp.:	68 oF
Standard Press.:	29.92 "Hg
Barometric Press.:	30 "Hg
Signature/Date:	1h 1. Morg 8-11-06

Previous Calibration Comparision

Date	10/2/05	10/2/05 Acceptable	
dH@ Value	N/A	Deviation (5%)	Deviation
y Factor	0.997	0.04985	0.010
Acceptance	Acce	~~~	

Current Calibration

Acceptable y Deviation		0.020	
Maximum y Deviation		0.006	
Acceptable dH@ Deviation		0.200	
Maximum dH(@ Deviation	0.000	
Acceptance	Acceptable		

Reference Standard *				
Standard	Model	Standard Test	Meter	
Calibrator	S/N	141		
	Calib. Date	19-Jun-06		
	Calib. Value	0.9980	y factor (ref)	

Calibration Parameters	Run 1	Run 2	Run 3
Vacuum ("Hg)	1.00	1.00	1.00
dH ("H2O)	0.00	0.00	0.00
Initial Reference Meter	36.392	41.537	48.303
Final Reference Meter	41.85	48.013	54.502
Initial DGM	852.824	859.055	865.903
Final DGM	858.358	865.62	872.13
Temp. Ref. Meter (°F), Tr	69.0	71.0	72.0
Temperature DGM (°F), Td	69.0	71.0	72.0
Time (Minutes)	50.0	46.5	18.0
Net Volume Ref. Meter, Vr	5.458	6.476	6.199
Net Volume DGM, Vd	5.534	6.565	6.227
Gas Meter y Factor =	0.984	0.984	0.994
Gas Meter y Factor Deviation (from avg.)	0.003	0.003	0.006
Orifice dH@	0.00	0.00	0.00
Orifice dH@ Deviation (from avg.)	0.000	0.000	0.000

- 1. Deviation = |Average value for all runs current run value|
- 2. $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3. $dH@ = 0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

^{*} Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Thermal Metering System Calibration Y and dH@

 Manufacturer:
 American Meter Company

 Model:
 DTM-200A

 Serial Number:
 04D893722

 OMNI Tracking No.:
 CFM 010

Calibration Frequency: Post-Series

Next Calibration Due: 02/02/07

Instrument Range: 1.000 cfm

Standard Temp.: 68 oF
Standard Press.: 29.92 "Hg

Barometric Press.: 29.47 "Hg

Signature/Date: 1h fe Morga 8-7-06

Previous Calibration Comparision

Date	10/2/2005	Acceptable	
dH@ Value	0	Deviation (5%)	Deviation
y Factor	0.997	0.04985	0.036
Acceptance	Acce		

Current Calibration

Acceptable y Deviation		0.020
Maximum y Deviation		0.003
Acceptable dH@ Deviation		0.200
Maximum dH@ Deviation		0.000
Acceptance	Acceptable	

Reference Standard *				
Standard	Model	Standard Test	Meter	
Calibrator	ator S/N 1			
	Calib. Date	26-Apr-06	,	
	Calib. Value	0.9828	y factor (ref)	

Calibration Parameters	Run 1	Run 2	Run 3
Vacuum ("Hg)	1.00	1.00	1.00
dH ("H2O)	0.00	0.00	0.00
Initial Reference Meter	154.682	159.61	164.807
Final Reference Meter	159.61	164.807	170.266
Initial DGM	789.832	794.87	800.183
Final DGM	794.87	800.183	805.792
Temp. Ref. Meter (°F), Tr	77.0	78.0	78.0
Temperature DGM (°F), Td	77.0	79.0	79.0
Time (Minutes)	33.0	35.0	36.0
Net Volume Ref. Meter, Vr	4.928	5.197	5.459
Net Volume DGM, Vd	5.038	5.313	5.609
Gas Meter y Factor ≠	0.961	0.963	0.958
Gas Meter y Factor Deviation (from avg.)	0.000	0.002	0.003
Orifice dH@	0.00	0.00	0.00
Orifice dH@ Deviation (from avg.)	0.000	0.000	0.000

- 1. Deviation = |Average value for all runs current run value|
- 2. $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3. $dH@=0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

^{*} Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Thermal Metering System Calibration Y and dH@

Manufacturer: American Meter Company Model: DTM-200A Serial Number: 04D893721 OMNI Tracking No.: CFM 020

Average Orifice Meter dH@	Average Gas Meter y Facto	
0.000	0.992	╛
Calibration Date:	08/11/06	_
Calibrated by:	Ken Morgan	_
Calibration Frequency:	Six Month	
Next Calibration Due:	02/09/07	
Instrument Range:	1.000 cfm	_
Standard Temp.:	68_oF	
Standard Press.:	29.92 "Hg	
Barometric Press.:		
Signature/Date:	1h 1. Morga 8-11-06	2

Previous Calibration Comparision				
Date	10/2/05	Acceptable		
dH@ Value	N/A	Deviation		
y Factor	1.005	0.013		
Acceptance	Acc	eptable		

Current Cambration				
Acceptable y Deviation		0.020		
Maximum y Deviation		0.010		
Acceptable dH@ Deviation		0.200		
Maximum dH@ Deviation		0.000		
Acceptance	Acceptable			

Reference Standard *				
Standard	Model	Standard Test I	Meter	
Calibrator	Calibrator S/N			
	Calib. Date	19-Jun-06		
Calib. Value 0.9980 y factor (ref				

Calibration Parameters	Run 1	Run 2	Run 3
Vacuum ("Hg)	1.00	1.00	1.00
dH ("H2O)	0.00	0.00	0.00
Initial Reference Meter	55.514	61.005	66.834
Final Reference Meter	60.74	66.314	72.326
Initial DGM	573.007	578.478	584.372
Final DGM	578.21	583.852	589.949
Temp. Ref. Meter (°F), Tr	73.0	74.0	74.0
Temperature DGM (°F), Td	73.0	75.0	76.0
Time (Minutes)	15.0	52.0	42.0
Net Volume Ref. Meter, Vr	5.226	5.309	5.492
Net Volume DGM, Vd	5.203	5.374	5.577
Gas Meter y Factor =	1.002	0.988	0.986
Gas Meter y Factor Deviation (from avg.)	0.010	0.004	0.006
Orifice dH@	0.00	0.60	0.00
Orifice dH@ Deviation (from avg.)	0.000	0.000	0.000

- 1. Deviation = [Average value for all runs current run value]
- 2. $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3. $dH@=0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$
- * Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Thermal Metering System Calibration Y and dH@

 Manufacturer:
 American Meter Company

 Model:
 DTM-200A

 Serial Number:
 04D893722

 OMNI Tracking No.:
 CFM 020

Average Orifice Meter dH@ 0.000		Average Gas Meter y Factor 0.976
Calibration Date:	08/04/	06
Calibrated by:	Ken Morgan	
Calibration Frequency:	Post-Se	ries
Next Calibration Due:	02/02/07	
Instrument Range:	1.000	cfm
Standard Temp.:	. 68	oF
Standard Press.:	29.92	."Hg
Barometric Press.:	29.47	"Hg
Signature/Date:	16 1. Morga	8-7-06

Previous Calibration Comparision

Date	10/2/2005	Acceptable	
dH@ Value	0	Deviation (5%)	Deviation
y Factor	1.005	0.05025	0.029
Acceptance	Acc	eptable	<u>_</u>

Current Calibration

Acceptable y Deviation		0.020
Maximum y Deviation		0.002
Acceptable dH@ Deviation		0.200
Maximum dH@ Deviation		0.000
Acceptance	Acceptable	

Reference Standard *				
Standard	Model	Standard Test	Meter	
Calibrator	S/N	1		
}	Calib. Date	26-Apr-06	•	
	Calib. Value	0.9828	y factor (ref)	

Calibration Parameters	Run 1	Run 2	Run 3
Vacuum ("Hg)	1.00	1.00	1.00
dH ("H2O)	0.00	0.00	0.00
Initial Reference Meter	170.366	176.238	181.896
Final Reference Meter	176.238	181.896	187.24
Initial DGM	509.5	515.4	521.128
Final DGM	515.4	521.128	526.55
Temp. Ref. Meter (°F), Tr	81.0	80.0	80.0
Temperature DGM (°F), Td	81.0	83.0	83.0
Time (Minutes)	34.0	37.0	35.0
Net Volume Ref. Meter, Vr	5.872	5.658	5.344
Net Volume DGM, Vd	5.9	5.728	5.422
Gas Meter y Factor =	0.978	0.976	0.974
Gas Meter y Factor Deviation (from avg.)	0.002	0.000	0.002
Orifice dH@	0.00	0.00	0.00
Orifice dH@ Deviation (from avg.)	0.000	0.000	0.000

- 1. Deviation = Average value for all runs current run value
- 2. $y = [Vr \times (y \text{ factor (ref)}) \times (Pb) \times (Td + 460) / [Vd \times (Pb + (dH / 13.6)) \times (Tr + 460]]$
- 3. $dH@=0.0317 \times dH / (Pb (Td + 460)) \times [(Tr + 460) \times time) / Vr]^2$

^{*} Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Analytical Balance Calibration

Mettler AE 100 serial # 11665
Mettler Instrument Corporation
Princetown-Hightstown Road

Box 71

Hightstown, NJ 08520 mettler AE 100

Filter + Probe Scale

Date: 07/29/06

Time: 10:45 Am

Calibrated By: <u>كالمالية</u> .

Next Calibration Due: <u>02/29/6</u>つ

Barometric Pressure: 29.246 in. Hg

Weigh Room Temperature: _ つし 。 °F

Weigh Room Rel. Humidity: 15 %

Calibration Weight *	Measured Weight	Difference
,0200	.0200	,00
, O 500	.0500	,00
.1.000	1.000	,00
.2000	, 2000	. ලට
.5000	5000	, 00
0.0000	10.0000	.00
50.000	50.0000	. රට

* Calibration Weights:

NBS Class S Troemner Inc. 6825 Greenway Ave. Philadelphia, PA 19142

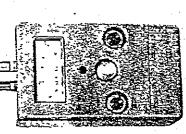
453 National Weather Service Type OMNI 00209

Instruction Booklet

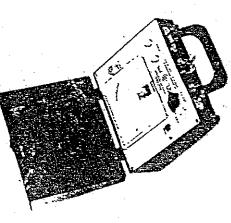
for use with

PRINCO

Fortin type mercurial


Barometers

Manufactured by


PRINCO INSTRUMENTS, INC. 1020 Industrial Blvd. Southampton, Pa. 18966-4095 U.S.A

> Phone: 215 355-1500 Fax: 215 355-7766

MOISTURE DETECTORS FOR WOOD

DELINHORST INSTRUMENT COMPAN

5074-578

DELMHORST INSTRUMENT COMPANY BOONTON, N. J. 07005

NDEX

Accuracy 3
Species Correction 5
Temperature Correction
Selection of Electrodes 6
Effects of Preservatives 7
Testing Plywood7
Calibration Moisture Standards 8
Tests on Lumber with Wet Surface 8
Decay of Wood 9
Readings Above Fibre Saturation Point 9
Testing Wood Flooring 9
Maintenance10
Effect of High Relative Humidity10
Comments on Possible Malfunctions11
Electrodes12
Batteries13

MOISTURE DETECTORS HOW TO MAKE THE BEST USE OF THEM

The Moisture Detector models of the RC, G-2 and J Series (Pocket Tester) are portable, battery powered instruments designed to measure the moisture content in wood. Meters are calibrated so that wood moisture content is read directly on the meter dial. The standard calibration is made on Douglas Fir at a temperature of 700F, Contact between meter and wood is made by means of an Electrode. Electrode(s) should be selected primarily on the basis of wood thickness to be tested.

ACCURACY OF MOISTURE DETECTORS

Moisture Detectors will give most satisfactory service if properly kept, and used in accordance with operating instructions.

The Delmhorst Moisture Meters utilize the principle that resistance in wood, A "resistance" moisture content and electric resistance in wood as a function of the moisture content. In order to measure the electric resistance of a board we drive two pins into the wood (or 2 sets of pins in the case of multiple-pins electrode), and have a current flow between them. The higher the moisture content, the lower the resistance. The meter "reads" moisture in that area of the board which is in contact with the electrode pins, and it tends to read the highest moisture content in that area.

Significant differences in moisture content may exist in the same board, especially during drying. Such differences largely depend on the species of the wood and on the range of moisture present in it.

Generally, the lower the moisture content the more uniform is the moisture distribution; the higher the moisture content, greater are the variations in moisture from one point to the other. When the oven test is used for determining the moisture content of a board,

the result is the average moisture content of the sample tested, which may or may not be equal to the average moisture content of the rest of the board, because of the differences that frequently occur, especially during the drying process.

On the other hand, if measurements are made with a moisture meter on the same sample, various tests may yield different readings and

2 - 4 1 OF 2 - 6

even an average of these readings may not agree with the average obtained in the oven test,

Moisture meter readings and oven tests are in closest agreement if moisture content in a board has a very uniform distribution. Since it is well known that distribution of moisture content becomes more uniform at lower moisture range, meter readings may be expected to fall within the following tolerances:

0.5% on range of 5 – 12% 1.0% " 12 – 20% 2.0% " 20 – Saturation point.

AVERAGE MOISTURE CONTENT

When wood is in the process of drying and all of it has been dried below the fibre saturation point, the fibres located at 1/5th of the thickness from the surface have the same moisture content as the average of the section. Therefore, driving the contact pins of the electrode to a depth of 1/5th of the thickness of the wood will indicate a moisture content close to the average of the section.

Tests should be made at least one-foot from the end and 1 inch from the edge and at three diagonal points across the width of the board. The average of the various readings should be the correct answer.

As it has been stated before, the average moisture content as determined by an oven test and the average moisture content as measured by the moisture meter may not agree, unless the wood is well seasoned and has a uniform moisture distribution,

The question often asked is "which one of the two is the more reliable method for accurate measurements"? The two methods are not actually exclusive of each other. Oven tests, properly run by expert personnel with efficient and accurate equipment, are very accurate, but their results can be safely applied only to the specific sample(s) tested. Furthermore, the oven method is not practical if a considerable number of tests are to be made — it is time consuming and is a "destructive" test (in order to obtain a sample, a board has to be cut).

Electric meters' tests are also very accurate, if we consider the molsture content in the area which is in contact with the electrode pins. In addition many "non-destructive" tests can be made in a very short time so that not only an "average" moisture content can be determined, but also variations of moisture are detected.

When measuring moisture content it is not only important to measure the average but also the range of moisture content. A few high moisture content pieces may have only a small effect on the average moisture content but will result in rejections when associated with wood having a lower average moisture content. Both determinations and their accuracy, must be considered in relation to the ultimate use of the wood. For example, wood to be used indoors will generally attain its equilibium moisture content between 4 and 10% with a usual average of 6 to 7% in most parts of the U.S.A. The amount of variation that can be tolerated depends on the product to be manufactured from it.

Lumber used in the production of fine furniture must not only be dried to an average of 6 to 7% but there must be little difference (usually less than 2%) among the pieces, and between the shell and

The meter is calibrated for use with a 4-pin electrode. When using an electrode with two insulated pins slightly lower readings are obtained. A correction of .5% to 1.5% should be added, according to the range of moisture content (See pg. 12).

EFFECT OF WOOD SPECIES ON METER READINGS

Different species of wood have different electrical properties and, as a result read differently for the same moisture content. The Moisture Detector is calibrated so as to read the moisture content of Douglas fir directly. See species corrections table, for other species of wood. The correction below 10% for many species, is so small that it can be disregarded and the meter read directly.

EFFECTS OF TEMPERATURE

As the temperature of wood increases, the electrical resistance decreases and vice-versa. The rate of change is not constant and, for accurate correction factor the temperature correction tables must be consulted. In the range 7 to 12%, the correction is approximately 1% for every 20°, which is subtracted from the meter reading if the temperature of the wood is higher than 70°F, and added if it is lower than 70°F. Most accurate tests are made when the temperature of the wood is approximately the same as the surroundings as it is difficult to measure the temperature of wood whose temperature is changing; as for example, wood just removed from a dry kiln and tested outside.

NUMBER OF MEASUREMENTS

Whatever the method used in measuring moisture content of lumber they are all intended to provide the most accurate information regarding the moisture condition of an entire board. Such accuracy does not only depend on the accuracy of the procedure or of the equipment used, but also on how. 'representative" the samples are in relation to the load. Theoretically, if one can be certain that all the boards, of a load have the same moisture content, and that the moisture distribution is quite uniform in each board, one meter reading only, or 1 only oven test should be sufficient.

Such "ideal" condition does not occur very frequently. On the contrary, variations do occur in almost every board. If the lumber is properly seasoned the variations are contained within "safe" limits. However, it should be clear that the greater the number of tests the more accurate the final-determination.

The end use of the lumber should indicate how accurate an evaluation of the moisture content is required. For critical use, 5% of even 10% of the load should be tested. It is advisable that a large percentage of pieces be tested when starting to test for moisture. If it is apparent that the lumber is well dried, because of the small difference between readings, the number of tests can be reduced. However, it is important that some tests be made on boards that come from all parts of a load.

SELECTION OF THE ELECTRODE

A standard 4 pin Electrode (Delmhorst Type 4-E) having a 5/16" phenetration can be used on most lumber up to 1%" thick. Satisfactory tests can be made with the 4-E Electrode even on wood 2" thick provided the lumber has a low moisture content, normally associated with uniform moisture distribution. Thicker lumber should be tested with electrodes having deeper penetration, such as the Delmhorst Type 26-E and 18-E.

The 26-E has a penetration of 1", the 18-E a penetration of 3". The contact pins of these electrodes are insulated except for approximately 1/8" at their points so that they measure only the moisture of the wood in contact with the uncoated points. These electrodes are generally used for making shell and core tests without cutting the sample.

2

Thin weed, such as veneer, is tested by using contact pins with very shallow penetration, such as Belmhorst Type 16-E,

)

When making tests, contact pins should be driven into sound wood, if poor centact is made the moisture content will be underestimated. Unceated pins should be driven into the wood to their full length, coated pins to the desired depth.

GRAIN DIRECTION

As the resistance of wood is greater across the grain than with the grain, the electrode should be applied so that current flows parallel to the grain. The effect due to the current flowing across the grain is very small when the moisture content is less than 10% and can be disregarded. At 20% the meter will read about 2% lower when the electrode is placed so that the current flows across the grain.

EFFEOTS OF PRESERVATIVES

Organio treatments, such as oreosote and pentachloraphenol, have little effect on the accuracy of moisture meter readings. On the other hand, inorganic salts such as the chloride and fire retardant compounds electrolize rapidly and affect the readings by indicating a higher meisture content than is actually present.

TESTING PLYWOOD

Most of the animal and vegetable glues have no effect on moisture meter readings. Therefore, when the contact plus penetrate a glue line, if it is dry the moisture content of the wood is accurately measured. In fact, the moisture meter is frequently used to determine when a glue joint is dry.

Many of the resin glues do affect the meter readings because they have a lower electrical resistance than the wood. The effect will be greater at a high moisture content than at a low moisture content.

The moliture meter can be used to show whether or not the glue affects the accuracy of the meter. Drive the contact pins through not more than one half the thickness of the first ply and read the meter.

Then, drive the pine so that they just pass through the first flue line. It there is no appreciable increase in moisture meter reading as the plus make contact with the glue line, the glue may be considered to have no effect and the readings will be correct. The pins should then be driven to their full length and the moisture content read on the meter.

DECAY OF WOOD

When wood has a moisture content in excess of 20% and is exposed to air it will support fungus growth, cause of decay and rot. The Delmhorst Moisture Detector is very useful in determining whether or not a wood structure or part thereof is subject to decay while it is still in good condition. For instance, a joint between two wood still in good condition. For instance, a joint between two wood periods of time, thus causing decay. The Delmhorst Moisture Detector will reveal this condition and show that treated wood should be used or some metal protection or waterproofing be provided to prevent the retention of water in joints of this nature.

READINGS ABOVE FIBER SATURATION POINT

The meter scale features readings above 30%, (fiber saturation point). They are marked in green to indicate that the lumber still has free water, and should not be taken as an accurate, quantitative measurement of the moisture content. They lag far behind the actual moisture content and should only be used for the following purposes:

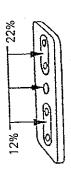
- 1. to indicate that the wood still has free water,
- to allow dry kiln operators to make "Hot" board readings as the boards are removed from the kiln, when the temperature effect causes the meter readings to rise.

A reading of 40% on a board with a temperature of 1600F, indicates that, after the appropriate temperature correction is applied, the actual moisture content is 24%, which is a reliable indication, since the moisture content is below fiber saturation point.

TESTING WOOD FLOORING AND SUB-FLOORING

Moisture detectors are indispensable for the proper installation of wood flooring. For best results wood should have, at the time of installation, a moisture content close to the average between the high and low moisture content value it will attain in use. If wood is too wet when it is put in place, it will eventually dry to a moisture content in equilibrium with the environment conditions of prevailing relative humidity. The drying will obviously result in shrinkage, and cracks will develop.

On the other hand, if flooring with a very low moisture content were laid in an area when high relative humidity prevails, it will pick up


CALIBRATION MOISTURE STANDARDS

Moisture Detectors are accurately calibrated at the factory and they generally hold the calibration indefinitely, if there is doubt as to the accuracy of the Moisture Detector, the calibration is easily checked by use of the Moisture Content Standards which are available for 12% and 22% moisture content.

HOW TO USE MOISTURE STANDARDS

The Moisture Meter (with the electrode not connected to it) should be adjusted in accordance with the operating instructions. After the electrode is connected to the Detector, there should be no appreciable change in the meter reading.

The electrode pins are then applied against the plates on the face of the standard; one pin to the center point, the other pin to one of the plates. The mater is considered to be in calibration if the reading is within one half of 1 percent of the standard (12% or 22%).

TESTS ON LUMBER THAT IS WET ON THE SURFACE

Lumber exposed to rain, fog or high relative humidity, is likely to have a higher surface moisture than the core. When the surface moisture is only a very thin film, it will dissipate quickly, without affecting the soundness of the lumber.

However, if it must be tested when surface moisture is present, insulated pins should be used (Electrode 26E with #496 pins).

looring as follows (based on information shown in Ferest Products The recommended moisture content for wood Laboratory Bulletin No. 1855 entitied "Moisture Content of Wood moisture and swell,

Indiv, Pieces 9:12% 6:0% 5.6% Average 8% 10% 7% Damp Bouthern Goastal States Remainder of the United States Dry Southwestern States IR Use'') r

When flooring is installed on concrete slabs, it is important that the concrete be thoroughly dry at the time of installation, if it is not, the floor will pick up moisture from the slab and, even though it had the recommended moisture content at the time of installation, will absorb the moisture which will result in "sampression set" which Will be followed by shrinkage when the wood finally dries to the normal moisture content.

MAINTENANCE OF MOISTURE DETECTOR

Your Delmhorst Moisture Detector is a fine quality precision instrument. Given reasonably good care it will last indefinitely with only an occasional replacement of batteries.

When it is necessary to replace the batteries, the screws holding tha n more recent models, the battery compartment is easily accessible through its own door or cover, thus eliminating the need to remove banel in the case must be removed in order to remove the panel the panel.

THE EFFECT OF HIGH RELATIVE HUMIDITY

mbisture may set on some of the components or on parts of the electrode, creating an electrical leakage. This will cause the meter to "read" as soon as it is turned on. In such sreas, the instrument should be stored in a dry office or warehouse, when not in use, if a dry office is not available, it may be stored in a small closed cabinat, heated with a 40-watt bulb. This will raise the temperature molisture by condensation will collect on the meter or on the electrode and it will affect the meter readings when the instrument is If a moisture detector is used in areas of high relative humidity. sufficiently to lower the level of humidity in the cabinet, Normally, prought from a cool storage area into a warm, humid environment. For this reason, operating a moisture meter inside a kijn is a practice to be discouraged.

Following are some comments concerning the possible malfunctions:

- The meter cannot be adjusted.
- The meter pointer moves to the right as soon as the meter is In such case, the batteries are usually weak or they are not making good contacts with battery terminals in the holders
 - lurned on, even though the electrode is not in contact with This is due to a current leakage, generally caused by dirt or any material,

moisture between the two poles of the electrode. The

electrode insulation should be cleaned.

- The meter gives no readings after the pins are driven into the wood and the meter is turned on. က
- This is normally due to a broken wire in the electrode cable, he Moisture Detector and its electrode are in good working order if, upon placing the fingers across the contact plns, the meter reads between 20 and 30. If it had been possible to adjust the meter according to instructions, a failure to obtain a reading when touching the contact pins would indicate that he trouble is in the electrode and not in the instrument..
- vacuum tube is to be replaced, the instrument should be 5 Whenever it appears necessary that a panel meter returned to the factory for repair, 4
- Such Models as the J-1, J-2, and RC-1C and RC-2, feature printed circuits on boards which can be easily unplugged and for repair, replacement factory returned to the ecalibration. ιĊ

USING THE MOISTURE METER ON MATERIAL OTHER THAN WOOD

application to indicate the moisture content of material other than wood. In such cases, after an initial evaluation, a callbration should be developed for the material in question. Ask for Bulletin It is possible that the moisture detectors may find a useful "Procedure for Moisture Meter Calibration", PIB #87.

TYPE 26E ELECTRODE

The 26E electrode is an original Delmhorst design for non-destructive shell and core tests,

- detection of moisture gradient,

testing lumber with wet surface.

The contact pins of this electrode are insulated except for the tip so that the depth at which measurements are taken is clearly identified.

Readings taken with the 26E electrode are slightly lower than those taken with the 4-pin (4E) electrode which is used in the basic calibration of the instrument,

20.2 20,50 26 the meter readings should be corrected according. When using the 26E Electrode with insulated pins, to the following table:

			Σ	eter	Meter Reading	ng	60.	7 7	20.21 60,30
7	8	10		14	12 14 16 18	18	20	22	24
			ပိ	rrect	Correct Reading	ing			
7,3	8.4	10.6	7.3 8.4 10.6 12.8 14.9 17.0 19.2 21.4 23.7 26.0	14.9	17.0	19,2	21.4	23.7	26.0
i	-					:			

The above correction should be disregarded when the insulation of the pins has worn off, or the uninsulated pins (A-111) are used.

TYPE 4E – To test boards, $\frac{1}{2}$ " to 1 $\frac{1}{2}$ " thick, Pins penetration is 5/16". A hammer extractor for driving and extracting pins from lumber is available as optional equipment. Weight 2½ lbs. TYPE 4E-H - Hammer style version of the 4E. To be used on softwoods only. Excellent for measuring moisture content on "dry chain". Weight 1½ lbs. TYPE 18E - Similar to the 26E electrode. Pins penetration up to 3%". Weight 2% lbs.

2

penetration is 1/8". Electrode can be used for checking veneer m.c. at end of dryer, at time of gluing and for incoming inspection. Weight ½ lb. TYPE 15E - Eight-pin electrode for veneer, Pins

DELMHORST MOISTURE DETECTOR'S BATTERIES USED IN VARIOUS

INSTRU- MENT	NO. BAT	BATTERY TYPES	
RC-1	m 4	1.5V "D" Flashlight Eveready 22.5V Burgess K-15 or Eveready	#950
RC-1B with	Serial Nos. 1 4	RC-1B with Serial Nos, up to #6444 1,5V "D" Flashlight Eveready 4 22.5V Burgess Y-15 or Eveready	#950 #505
RC-1B with Serial Nos.	Serial Nos.	6445 to 1.5V 22.5V	#E-91 #505
RC-1B with Serial Nos.	Serial Nos.	6700 & up. 1.5V Alk. Energizer Eveready 22.5V Burgess Y-15 or Eveready	#E-91 #505
RC-1C	3	9V Eveready	#216
RC-2	2	9V Eveready	#216
6.2	₩-	45V Eveready 1.5V "D" Flashlight Eveready	#455 #950
G.2B	1	1.5V "D" Flashlight Eveready 22.5V Burgess Y-15 or Eveready	#950 #505
G-2C & G-2D	₩ ←	1.5V Alk. Energizer Eveready 22.5V Burgess Y·15 or Eveready	#E-91 #505
G-2E/G-22	2	9V Eveready	#216
J&J(A)	← ←	1.5V Alk, Energizer Eveready 22.5V Burgess Y·15 or Eveready	#E-91 #505
J-1 & J-2	2	9V Eveready	#216

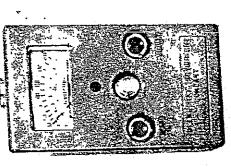
9

12

OTHER INSTRUMENTS AVAILABLE

Electronic THERMOMETER

Model TM-2


The TM-2 is a solid-state, portable battery operated instrument.

Remote sensing is possible up to 1000' or more. Probe extensions available in 3' rigid sections.

RANGES

TM-2 (30°.150°F/0.65°C.)^{*}
TM-3 (-20°.110°F)^{*}
TM-4 (100°.250°F)
TM-5 (-20°.200°F)

The TS-2 Sensor is used to measure the temperature of liquids, gases or solids.

THE DELMHORST KIL-MO-TROL

The kiln keeps operating - you stay outside and measure moisture content of lumber while it is drying. There is no need to enter a hot kiln or to shut it down.

Saves, Lumber - No need for sample boards. Tests are made on the lumber in the charge.

Saves Time - Shows exactly when lumber is dry.

Sayes Labor - Twenty moisture tests, shell and core, in all parts of the charge can be made in less than two minutes.

Send sketch showing your kilns and control panel for a free Kil-Mo-Trol layout and cost of installation.

Appendix 2

MOISTURE CONTENT SCALES

There are two common ways of reporting moisture writings, moisture content is always based upon the content in wood. In this book, and in most technical ovendry weight of the wood: weight of moisture removed in oven drying weight of ovendry wood (ovendry wood basis) Moisture content

Using this scale, wood which is half water by weight has a moisture content of 100 percent.

A second way to report moisture contents is based on

the weight of the moist wood:

initial weight of wood, including its moisture weight of moisture removed in oven drying (nwist word basis) Moisture content

Using this scale, wood which is half water by weight has a moisture content of 50 percent.

ovendry wood basis is the same as 25 percent moisture content on a moist wood basis. To facilitate comparisons These different scales for reporting moisture contents are another possible cause for discrepancies among lists of energy contents. 20 percent moisture content on an between writings using the two conventions, Table A2-1 gives conversions.

MOISTURE CONTENT ON A MOIST-WOOD BASIS PERCENT	%0	æ. 4		13,0	16,7	20.0	23,1	25.9	980	2 0	ついけい	3/,5	41,2	50,0	60.0	88.7		71.4
MOISTURE CONTENT IN EITHER SCALE PERCENT	%0	<u>ភ</u>	10	<u>.</u>	20	. 25	30	u u	3	04	20	09	70	100) (1)	000	200	250
MOISTURE CONTENT ON AN OVENDRY-WOOD BASIS PERCENT	%0	ເຕີ		17.6	25.0	2,000	0.00	0.01	ວາ, ຕ	66.7	100.0	150.0	0.555	7.77	Intinite	!	1 1	1 1

dry wood scales. To use the table for either conversion, find the value to be converted in the TABLE A2-1. Conversions between moisture contents as expressed in the moist wood and ovencenter column. Then to convert from dry to moist basis read to adjacent number in the right column. To convert from moist to dry, read the adjacent number in the left column. If m and d represent the moisture contents on the moist-wood and dry-wood bases respectively, then m == d/1 + d), and d = m/(1-m).

OMNI Envir	onmental Services, I
OMNI-Test.	Laboratories, Inc. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Beaverton, OR	Phone (503) 643-3788

DIFFERENTIAL PRESSURE GAUGE CALIBRATION DATA SHEET Magnehelic Gauge

Instrument to be calibrated: Dywer Mag.	NAHELIC DRAFT GAUGE
Range: <u>0 - 0.25"</u>	ID Number: CFM 076
Calibration Instrument: Liquid Manometer	ID Number: 33
Date: 4-10-06	By: K. Morgan

Liquid Manometer (A) (inches of H ₂ 0)	Magnehelic Gauge (B) (inches of H₂0)	Difference (A - B)	% Error of Full Span [*]
- 0.012	-0.013	.001	,004
- 0.036	-0.038	,002	,008
-0.074	-0.075	,001	.004
-0.154	-0.150		1,6

^{*}Acceptable tolerance is 4%.

This calibration is traceable to NIST through the Dwyer Liquid Manometer, NIST Test #MAS 822/254143-94.

Technician signature:	16 1. Mora	Date:	4-10-06
	* //		***

Control No. C-SFA-0003 (Differential Pressure Gauge Calibration Data Sheet).doc, Effective date: 10/04/2000

Page 1 of 1

Vermont Castings Temperature Device Calibration

Temperature Device: Make: Owega _Model: 09 2000 Serial #: Calibrator: Make: Ometa Model: CL531 Serial #: UCT 079

Date: 7/29/06

Time:

Calibrated By: 10

Next Calibration Due: ১/১৭/০ ৰ

800°

799°

7990

10

11

800°

800°

800°

Barometric Pressure: <u>๑๑. ๖५</u>%

				• • • •	Į.	- 1	
i 		· ·			Scale 21	8	
Туре	Channel	Ice Bath or	Cal. Value	Boil. Water	or Cal. Value	Upscal	e Value
		Meas'd Temp °F	Ref * Temp °F	Meas'd Temp °F	Ref * Temp °F	Meas'd Temp °F	Calibrator Value °F
K	. 1	740	75°	90°	90°	190 _e)20°
4	3	799°	800°	1201°	1900	a50 T	350 °
K	3	799°	8000	130(0	1200°	J50°	250°
K_	4	799°	8000	1900,	1900	∂ <i>5</i> 0°	250°.
K	5	7990	8000	1901	19000	ລ 50°	<i>35</i> 0°
K	G	799°	కరం	19010	19000	<i>୬5</i> 0°	∂50°
K	7	8000	දිගර	1201°	1200°	250°	∂ <i>5</i> 0°
15	8	800	800°	1901	1960	250°	250°

1961°

19010

1901

too'

13000

19000

<u> 25</u>0°

<u> 250°</u>

350

250

250°

* Reference Temp.: ASTM Mercury-in-Glass Thermometer or Omega Temperature. Calibrator / Thermometer Serial Number or lce Bath-32 °F; Boiling Water- see attached chart for temperature corrected for barometeric pressure

Printed Name Signature Date-

Vermont Castings Temperature Device Calibration

Temperature Device: Make: Calibrator: Make:	`	Model: <u>CL521</u>	Serial #: UCI OTY
Date: 7/24/06	J		

Calibrated By: Nan.W

Next Calibration Due: ১/১৭/০ব

Barometric Pressure: 39.346 in. Hg

Туре	Channel	Ice Bath or	Cal. Value	Boil. Water o	or Cal. Value	Upscale Value				
, , , ,		Meas'd Temp °F	Ref * Temp °F.	Meas'd Temp ⁰F	Ref * Temp °F	Meas'd Temp °F	Calibrator Value °F			
K	13	799°	కిర ల్.	1,300	1700°	∂50°	950°			
4	13	490	50°	99*	1000	วรา°	2500			
h	14	490	60°	89°	90°	985	1000			
K	15				·	-				
K	16	50°	50	89°	90°	990	100			
				,						

* Reference Temp.: ASTM Mercury-in-Glass Thermometer or Omega Temperature Calibrator / Thermometer Serial Number _____ or Ice Bath-32 °F; Boiling Water- see attached chart for temperature corrected for barometeric pressure

Printed Name Signature Date

1 Day Whiteomb Lan Whiteomb 07/29/66

Certificate of Calibration for **CFM DEVELOPMENTS LTD**

Custo	mar	PO-
GUSIO	HE	ru.

917689

Model #: CL521

Report #:

602978474

Serial #: 1385

Cal-3

OMEGA Engineering, Inc. certifies the above instrumentation has been calibrated to meet or exceed the published specifications. This calibration was performed using instrumentation and Standards that are traceable to the United States National Institute of Standards and Technology and is in compliance with ISO-10012-1 and ANSI/NCSL Z540-1-1994. This Certificate/Report shall not be reproduced, except in full, without the written consent of OMEGA Engineering, Inc.

Accuracy of UUT: SEE MANUAL

* Indicates Out Of Tolerance Condition

Range	Standard	As Found Input	As Left Input	As Found Output	As Left Output
mV	0	0.000	0.000	0.003	0.003
	25	25.004	25.004	25.000	25.000
•	50	50.006	50.006	49.999	49.999
	75	75.008	75.008	74.997	74.997
	100	100.010	100.010	99.997	99.997
Ohm	100	99.98	99.9	N/A	N/A N/A
	200 400	199.95 399.89	199.95 399.89	N/A N/A	N/A N/A
. KF	32 2500	31.7 2499.8	31.7 2499.8	32.2 2499.8	32.2 2499.8

Max calibration System Uncertainty: 8 ppm (DC), ± 0.01%(ohms), ± 0.19°F

NIST Traceable Test No: 775585-5985303:1073509367

Cal Due:

Calibration Standards

Fluke 5700A Calibrator

STD-098-04

4/7/06

Ice Point Reference

CL-098-19

7/25/06

Test Conditions: Temp 24°C, ± 3°C RH 35%, ± 20 %

Accepted By:

Certified by:

2/23/06

Lab Representative

Due Date: 2/23/07

Page 1 of 1

Date:

OMNI Environmental Services, Inc. OMNI-Test Laboratories, Inc. Beaverton, OR

Tape Measure Calibration Log

Place the calibrated 12" ruler under the tape measure and verify that each ½" (i.e. 1.5", 2", 2.5") between 0 and 36" is within 1/8".

Technician Initials																									
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8 天	4	A T	₹	45	15	A5	45	45	S)	A5		45	AS	As	£	¥	8	XX	45	ŝ	\$	\$	45	
	1740 F Sarwa 51105 #	•	October 10/10/05 AS	•																					
Cal Dates	of ser		KINK /											,											
Ca	+	11/0/1/	41-104 Clubs	// /pojijk	Hilour	hour	11.104	liteu	100,1	+011	11/10/11/1	. , ,	17/00/	417104	3/25/05/	\$25f0g	3/25/05	30162k	zolości	Shall old	Zzyloż	3 2 VIO	/।क्षांक	Mission	_
	ľ	Mana - Orange - & Workforce	5' Leverlock Stanley	Richard-White Austraftamm	mak	Welenco	16 Work force Auto-stup silve - 14	4 Jan 11 11	2101 Lufking oraa,	Stanter Domertock 16 -Silver 1	twi m	cal using culix of compating 25.4 mm=1"	ľ	Fabrian Stone day Masmons Blue 4	Strafter Romer legt 14" - Silver 3		4010W (25 Stanker		Vellen, 27 Stanley Pourson - Tared I	3	ر		Gray Starregg 251 051 25-1 wald 3	χ	
Tape Measure Number	TM-1	1 M-2	Tm-3	Tm.4	TM-5	7-M-1	Tm-7	TM-S	Tmig	01-101	-1m-11		Fraigh	1m, 13	TM-14	Tm-15	Tm-16	TN-17	- M - 13	TM-19	T-M-20	-17M-21	Tro-22	Tho-23	

Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032

Example Calculations

Note: OMNI uses the Lotus 1-2-3 computer program for all Method 5G and 5H calculations. The program automatically carries 14 decimal points in all calculations. The numbers on the printouts have been rounded for display only.

Equations and Sample Calculations - Method 5G

Equations used to calculate the parameters listed below are described in this appendix. Sample calculations are provided for each equation. The raw data and printout results from a sample run are also provided for comparison to the sample calculations.

BR Dry burn rate, kg/hr

m_n Total particulate matter collected, mg

 $V_{\text{m(std)}}$ Volume of gas sampled corrected to standard conditions, dscf

v_s Average dilution tunnel gas velocity, ft/sec

C_s Particulate concentration, g/dscf

Q_{sd} Average dilution tunnel gas flow rate, dscf/min

E Particulate emission rate, lbs/hr

PR Proportional rate variation, %

Dry Burn Rate

Using equation 28-3:

$$BR = \frac{60 \times W_{wd}}{\theta} \times \frac{100 - \%M_{w}}{100}$$

Where,

BR = Dry burn rate, lb/hr

 W_{wd} = Mass of wood burned (wet basis) during test run, lb

 θ = Total time of test run, minutes

%M_w = Average moisture content of test fuel charge, wet basis percent

Sample Calculation:

Dry basis moisture of fuel = 20.03%

Using the equation 28-2 for converting dry basis moisture to wet basis moisture,

$$\%M_{\rm w} = \frac{20.03 \times 100}{20.03 + 100}$$

$$\%M_{w} = 16.69\%$$

The wet weight of the fuel charge was 7.8 pounds. Converting pounds to kilograms yields a weight of 3.538 kg. The run time for this run was 180 minutes. Therefore, the burn rate equation appears thus:

$$BR = \frac{60 \times 3.538 \times (100 - 16.69)}{180 \times 100}$$

$$BR = 0.98 \ kg/hr = 2.17 \ lb/hr$$

Total Particulate Matter Collected

$$m_n = F_1 + F_2 + R - (V_a \times B_a)$$

Where:

 m_n = Total particulate matter collected, mg

F₁ = Particulate matter collected on front filter, mg

F₂ = Particulate matter collected on rear filter, mg

R = Residue from evaporated probe and filter holder acetone rinse, mg

V_a = Volume of acetone evaporated probe and filter holder actone rinse, ml

B_a = Acetone blank value, mg/ml

Sample Calculation:

$$m_n = 12.6 - 0.4 + 4.7 - (180 \times 0.0040)$$

$$m_n = 16.2 \text{ mg}$$

Volume of Gas Sampled Corrected to Dry Standard Conditions

Using equation 5-1:

$$V_{m(std)} = V_m \times Y \times (\frac{T_{std}}{P_{std}}) \times \frac{(P_b + \frac{\Delta H}{13.6})}{T_m}$$

Where:

K = 17.64 °R/in. Hg

 $T_{std} = 528 \, {}^{\circ}R$

 $P_{std} = 29.92 \text{ in. Hg}$

 V_m = Volume of gas sample measured at the dry gas meter, dcf

Y = Dry gas meter calibration factor, dimensionless

 P_b = Barometric pressure at the testing site, in. Hg

 ΔH = Average pressure differential across the orifice meter, in. H_2O

T_m = Absolute average dry gas meter temperature, °R

Sample Calculation:

$$V_{m(std)} = 98.434 \times 1.01 \times (\frac{528}{29.92}) \times \frac{30.03 + \frac{0.7}{13.6}}{532.5}$$

$$V_{m(std)} = 99.116 \ ft^3$$

Dilution Tunnel Gas Velocity

Using equations 2-7 and 2-6, calculated at each recorded interval:

$$v_s = k_p \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{T_{s(avg)}}{P_s \times M_s}}$$

$$M_s = M_d \times (1 - B_{ws}) + 18.0 \times B_{ws}$$

Where:

 v_s = Average dilution tunnel gas velocity, ft/sec

$$k_p$$
 = Pitot tube constant: $85.49 \frac{ft}{sec} \left[\frac{(lb/lb-mole) \times (inches Hg)}{(^oR) \times (inches H_2O)} \right]^{\frac{1}{2}}$

C_p = Pitot tube coefficient (0.99 for standard pitot tube; 0.84 may be used for S-type pitot tubes constructed according to Method 2 procedures), unitless

 ΔP = ΔP measured during the pre-test flow traverse of the dilution tunnel; the square root of the ΔP values are averaged for this calculation, in. H₂O

P_b = Barometric pressure at test site, in. Hg

P_g = Static Pressure of tunnel, in. Hg

 P_s = Absolute tunnel pressure, = $P_b + P_g$

 M_s = Molecular weight of tunnel gas; assume M_d =29 lb/lb-mole (per method 5G)

B_{ws} = Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)

 T_s = Dilution tunnel temperature, ${}^{\circ}R$; (${}^{\circ}R = {}^{\circ}F + 460$)

Sample calculation:

$$M_s = 29 \times (1 - 0.04) + 18.0 \times 0.04 = 28.56$$

$$v_s = 85.49 \times 0.99 \times \sqrt{0.0351} \times \sqrt{\frac{(548)}{(30.03 + \frac{-0.45}{13.6}) \times (28.56)}}$$

$$v_s = 12.69 \ \frac{ft}{sec}$$

Particulate Concentration

Using equation 5G-2:

$$C_s = 0.001 \frac{g}{mg} \times \frac{m_n}{V_{m(std)}}$$

Where:

C_s = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscf

m_n = Total mass of particulate matter collected in the sampling train, mg

 $V_{m(std)}$ = Volume of gas sampled corrected to dry standard conditions, dscf

Sample calculation:

$$C_s = \frac{0.001 \times 16.2}{99.116}$$

$$C_s = 0.000163 \ g/dscf$$

Average Dilution Tunnel Gas Flow Rate

Using equation 2-8, calculated at each recorded interval:

$$Q_{sd} = 3600 \times (1 - B_{ws}) \times v_s \times A \times \frac{T_{std}}{T_{s(avg)}} \times \frac{P_s}{P_{std}}$$

Where:

 Q_{sd} = Gas flow rate corrected to dry, standard conditions, dscf/hr

3600 = Conversion from seconds to hours

B_{ws} = Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)

v_s = Average dilution tunnel gas velocity, ft/sec

A = Cross sectional area of dilution tunnel, ft^2

 T_{std} = Standard absolute temperature, 538°R

 $T_{s(avg)}$ = Average absolute dilution tunnel temperature, °R, (°R = °F + 460)

P_b = Barometric pressure at test site, in. Hg

P_g = Dilution tunnel static pressure, in. Hg

 P_s = Absolute dilution tunnel gas pressure, in Hg, $(Hg = P_b + P_g)$

 P_{std} = Standard absolute pressure, 29.92 in Hg

Sample calculation:

$$Q_{sd} = 3600 \times (1 - 0.04) \times 12.69 \times \frac{(\pi \times 3^2)}{144} \times \frac{528}{548} \times \frac{30.03 + \frac{-0.45}{13.6}}{29.92}$$

 Q_{sd} = 8313.36 dscf/hr = 138.56 dscf/min

Particulate Emission Rate

Using equation 5G-3 and 5G-4:

$$E = C_s \times Q_{sd}$$

$$E_{adj} = K_3 \times E^{0.83}$$

Where:

E = Particulate emission rate, g/hr

 E_{adj} = Particulate emission rate, adjusted, g/hr

C_s = Concentration of particulate matter in the stack, corrected to dry, standard conditions, g/dscf

 Q_{sd} = Average dilution tunnel gas flow rate, dscf/hr

 K_3 = Constant, 1.82 for metric units, 0.643 for English units

Sample calculation:

$$E = 0.000163 \times 8313.36 \times 60$$

$$E = 1.36 g/hr$$

$$E_{adi} = 1.82 \times 1.36^{0.83}$$

$$E = 2.35 g/hr$$

Proportional Rate Variation

Using equation 5H-9, calculated at each recorded interval:

$$PR = \frac{\theta \times (V_{mi} \times V_s \times T_m \times T_{si})}{10 \times (V_m \times V_{si} \times T_s \times T_{mi})} \times 100$$

Where:

PR = Percent proportional rate

 θ = Time of test, min

S_i = Measured tracer gas concentration for the "ith" interval, in this case, the inverse of the calculated flow in the stack based on CO₂ concentrations in the stack and in the dilution tunnel

V_{mi(std)} = Volume of gas sample measured by the dry gas meter during the "ith" 10 minute interval, dscf

V_m = Volume of gas sample as measured by dry gas meter, dscf

V_{si} = Average gas velocity in the dilution tunnel during each 10 minute interval, i, of the test run, m/sec

V_s = Average gas velocity in the dilution tunnel, m/sec

T_{mi} = Absolute average dry gas meter temperature during each 10 minute interval, i, of the test run, °R

T_m = Absolute average dry gas meter temperature, °R

T_{si} = Absolute average gas temperature in the dilution tunnel during each 10 minute interval, i, of the test run, °R

T_s = Absolute average gas temperature in the dilution tunnel, °R

Sample calculation (for the reading at 50 minutes into test run 1):

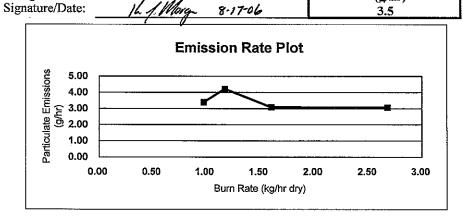
$$PR = \frac{180 \times 5.6 \times 12.69 \times 533 \times 552}{10 \times 98.434 \times 12.63 \times 548 \times 532} \times 100$$

$$PR = 103.8\%$$

Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032

Section 4

Test Data by Run


EPA Weighted Average Emissions EPA Method 28

Stove Model: Century/Dutch West Stove Type: Non-Catalytic Stove

Test Dates: 7/31/06 - 8/03/06

Project Number: 259-S-12-3 Weighted Average Tracking Number: 861 (g/hr)

12.06%

Run #	1	
Burn Rate (dry kg/hr)	0.98	
Catagory	2	
Overall Efficiency (%)	63%	
Emissions (g/hr)	3.38	
Cap (g/hr)	15	
Weighting Factor	0.526	32.53%
Heat Output (BTU/hr)	11842	
• ` '		

Run #	2	
Burn Rate (dry kg/hr)	1.18	
Catagory	2	
Overall Efficiency (%)	63%	
Emissions (g/hr)	4.21	
Cap (g/hr)	15	
Weighting Factor	0.446	27.57%
Heat Output (BTU/hr)	14259	

Run #	3	
Burn Rate (dry kg/hr)	1.61	
Catagory	3	
Overall Efficiency (%)	63%	
Emissions (g/hr)	3.08	
Cap (g/hr)	18	
Weighting Factor	0.450	27.84%
Heat Output (BTU/hr)	19454	

Run #	5
Burn Rate (dry kg/hr)	2.68
Catagory	4
Overall Efficiency (%)	63%
Emissions (g/hr)	3.06
Cap (g/hr)	18
Weighting Factor	0.195
Heat Output (BTII/hr)	32384

Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032

Manufacturer: CFM Majestic Model: Century Project No.: 259-S-12-3

Tracking No.: 861

Run: 1

Test Date: 7/31/006

Burn Rate	0.98 kg/hr dry
Average Tunnel Temperature	90 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	14.5 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	8926.4 dscf/hour
Average Delta p	0.045 inches H20
Average Delta H	0.00 inches H20
Total Time of Test	340 minutes

	AVERAGE	SAMPLE TRAIN 1	SAMPLE TRAIN 2
Total Sample Volume - Vm	46.06 cubic feet	45.59 cubic feet	46.53 cubic feet
Average Gas Meter Temperature	77 degrees Fahrenheit	77 degrees Fahrenheit	78 degrees Fahrenheit
Total Sample Volume (Standard Conditions) - Vmstd	54.2 dscf	63.2 dscf	45.2 dscf
Train-2 corrected for 6.42 PSI meter pressure		*	
Total Particulates - mn		14.6 mg	10.9 mg
Particulate Concentration (dry-standard)	0.00024 grams/dscf	0.00023 grams/dscf	0.00024 grams/dscf
Particulate Emission Rate	2.11 grams/hour	2.06 grams/hour	2.15 grams/hour
Adjusted Emissions	3.38 grams/hour	3.32 grams/hour	3.44 grams/hour
Difference from Average	·	0.06 grams/hour	0.06 grams/hour
7.5% of the average emission rate	0.25		•
Weighted Average Emission Rate Limit	4.10 grams/hour		
7.5% of the weighted average emission rate limit	0.31		
	. F	Results Are Acceptab	le

OMNI-Test Laboratories, Inc.

In 1	Signature Date: /L. f. Merg. 8-24-06	Tunnel Velocity:	Dilution Tunnel MW(dry): 29.00 1b/lb-mole Intial Tunnel Flow. 148.2 scfm				Pitot Tube Cp: 0.99 Post-Test Leak Check (2): 0 @ 13 cfm@ Hg	1.005	3nd Average Total Particulate (1)	29,47 29.43 29.39 29.43 "Hg Total Particulate (2): 10.9
Wood Heater 1 est Data - E.F.A Infethou 3G			Velocity Traverse Data	Pil Pil Pil Pil Pil Pil Pil Pil Pil	Initial dP 0.038 0.048 0.050 0.044 0.040 0.050 0.050 0.040 TH2O	Initial Temp 92 92 92 92 92 92 92 92 0F		OMMI Equipment Numbers:		
	Run:	Manufacturer: CFM Majestic	Model: Century	Tracking No.: 861	Project No.: 259-S-12-3	Test Date: 7/31/006	Beginning Clock Time: 13:50	Recording Interval: 10 min.	Total Sampling Time: 340 min.	

10.9	Charal.	Stack	Draft In. H20	-0.040	-0.035	-0.035	-0.035	-0.035	-0.048	-0.055	-0.055	-0.058	-0.058	-0.053	-0.053	-0.053	-0.055	-0.048	-0.045	-0.043	-0.040	-0.038	-0.035	-0.035	-0.033	-0.033	0000	0000	0.030	0000	-0.030	-0.030	-0.028	-0.028	-0.028	-0.028	-0.028	-0.025
ulate (2):		1	Ambient	74	9/	75	75	74	75	73	75	73	75	74	74	75	74	74	74	75	74	74	74	74	75	73	4 5	5,1	4,	2 :	74	74	74	73	73	74	74	74
Total Particulate (2):		t	Impinger exit (2)																				İ															
"Hg		Ì	Impinger exit (1)																									Ī										
29.43 "			Filter (2)	75	79	1.1	73	73	73	74	74	74	75	75	92	75	9/	76	75	75	75	74	74	74	23	73	6/	0 8	5 2	5	73	72	72	72	72	72	72	72
29.39			Filter (1)	75	79	11	76	75	76	77	80	79	80	80	80	80	80	80	79	78	7.8	77	7.7	76	76	26	9 5	ę į	2 1	2	75	75	75	74	74	74	74	74
29.43	,	Data, of	Stack	277	230	233	243	231	337	374	378	399	397	358	352	361	383	334	305	303	274	264	255	246	240	237	234	000	27.8	C77	224	222	219	215	214	210	204	199
29.47		mperatur	Average Surface	334.6	322.4	288.8	266.8	263.8	268.6	317.2	340.2	366.4	380.6	371.4	365.0	364.6	382.8	377.4	358.6	352.0	337.6	326.4	320.4	314.6	309.6	305.0	301.4	0767	295.8	4.767	289.6	287.4	283.2	277.4	276.4	273.6	267.0	261.4
1100000		Wood Heater Temperature Data, or	Catalyst Exit																																			
Datonica ic i tossaic.	,	Wood	Firebox Right	339	304	251	231	226	226	254	262	322	351	356	349	352	369	376	360	347	338	331	326	320	315	310	306	301	298	967	295	293	288	278	274	270	262	257
		ľ	Firebox Left	319	293	248	230	224	222	246	281	302	317	321	321	321	331	343	327	322	314	307	304	299	293	288	283	6/2	276	2/3	27.1	569	268	265	264	264	258	252
		-	Firebox 1 Back	308	297	265	237	200	187	281	313	362	386	379	377	380	407	401	387	390	363	339	330	324	319	313	310	306	305	167	289	285	277	273	277	273	264	255
	İ		Firebox F Bottom	416	427	413	393	373	354	342	327	317	308	302	262	295	293	262	262	293	294	295	562	297	298	299	539	299	299	298	297	297	294	290	288	286	284	282
		-		L		792	243	296	_	463	488	529	L	499	481	475	L	475	427	408	379	360		\dashv			309	+	+	-	+	293		Н	-	Н	267	261
	-	e e	14	ši M		-	L	H			-		_	_	-	L	L		_	_	_					_	4	+	+	+	4	-0.2	-0.2		Н	Н	-0.2	L
		Fuel Weight, lb	ule Weight ling Change	9	2 -0.4	8 -0.4	2 -0.6	9.0- 9	-1	8.0 8	5 -1.2	5 -1.1	4 -1.1	9.0-	8.0-	9.0-	2 -0.8	9.0- 9	3 -0.3	9 -0.4	7 -0.2	5 -0.2	3 -0.2	Н	-	-	+	+	+	+	+	0.8	0- 9:0	0.5 -0.1	Н	0.3 -0	0.1 -0	0.0
	ŀ	-	Rate Scale %() Reading	14.6	5 14.2	-	2 13.2	2 12.6	2 11.6	10.8	2 9.6	1 8.5	2 7.4	1 6.6	1 5.8	1 5.0	H	1 3.6	1 3.3	9 2.9	2 2.7	1 2.5	_	0 2.0	\dashv	Н	+	+	+	+	_	-			Н	_	100 0.	00
		- 1	Pro. Rate Pro. Rate (10%) (10%) (2)		3 105	H	0 102	0 102			101 102	101		101	101	101	<u> </u>	-	_	102 99	-	101	101 100	_	Н	100 100	+	+	+	100	+	8	100		Н	_	100	100
		- 1	Dilution Pro. Tunnel (10 dP (1	45	45 103	├-	45 100	45 100			H	0.045 10	0.045 102	0.045	┞	0.045 101	-	0.045	0.045 101	0.045	0.045	0.045 101	0.045 10	_	Н	H	+	+	+	-	\dashv	0.045	L	_	Н		0.045	0.045
		ŀ	Dilution Dilu Tunnel Tun Temp.	92 0.045	92 0.045	H	88 0.045	86 0.045	93 0.0	96 0.045	98 0.045	100	101 0.0	H	97 0.0	H	t	95 0.0	93 0.0	93 0.0	_	89 0.0	88 0.0	_		_	+	+	+	+	+	83	84 0.1	83 0.1	82 0.	83 0.	82 0.	H
		ŀ		<u> </u>	_	-					ŀ	-			-	_	_								_		+	+		-	-	_						
		ŀ	ic. Meter Vac. In. Hg. (2)	0	Ó	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	°	0	0	0	0	0	0	0	0	0	c
		Data	Meter, Vac. In. Hg. (1)	٥	0	0	0	0	٥	0	0	٥	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	c
		Particulate Sampling Data	oF (2)	-	17	╁	77		11	11	11	11	77	78	. 78	78	┝	78	78	78	H	-	78	78			+	+	+	+	-	11	11	11	11	11	11	77
		ticulate	ice oF (I)	77 0	0. 77	⊢	0 76		0. 76	0 76	0 79	92 0	0 77	0 77	0 77	0 77	⊢	77 0	77 0	77 0	77 0	77 0	77 0	77 0	77 0	77 0	+	+	+	4	\dashv	92 0	92 01	94 01	Н	-	92 00	76
1		Par	Orifice Orifice dH (1)	00:00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	00:0	00.00	00.00	00.00	0.00	t	00'0	00.00	┝	00'0	\vdash	00:00	Н		Н	\dashv	╅	+	\dashv	\dashv	0.00	00.00	00.0	00.00	Н	00.00	000
uu min				0:00	00.00	╁	0.00	<u> </u>	00.00	0.00	00.0	00.0	0.00	00.00	00.00	00.00	T	00.0	00'0	00.0	00'0		00:0		H	Н	7	1	1	7	1	0.00	00:0	0.00	00'0	00.00	00.00	000
		ŀ	Sample n Rate, cfm (2)		0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.14	0.13	0.14	0.14	0.14	0.14
340		ŀ	Sample t Rate, cfm (1)		0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.13	0.13	. 0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.14	0.13	0.13	0.13
Total Sampling Time:			Gas Meter Cubic Feet (2)	321.800	323.215	324.620	326.000	327.385	328.760	330.125	331.500	332.855	334.225	335.590	336.960	338.320	339.680	341.050	342.420	343.760	345.145	346.515	347.880	349.240	350.610	351.975	353.335	354.700	356.070	357.430	358.790	360.135	361.520	362.850	364.240	365.610	366.975	368 330
Total Samj			Gas Meter Cubic Feet (1)	592.600	593.970	595.310	596.645	597.985	599.315	099'009	602.000	603.330	604.670	606.010	607.350	608.685	610.030	611.360	612.695	614.050	615.385	616.730	618.070	619.410	620.750	622.090	623.430	624.770	626.115	627.455	628.800	630.140	631.480	632.800	634.165	635.510	636,850	638.191
	-	_	Elapsed Gr Time Ct	0 5	10 5	20 5	30 5	40 5	50 5	9 09	70	9 08	90	100	110 6	120 6	H	140 6	150 6	160 6	170	180 6	9 061	200		-	+	╅	\dashv	+	\dashv	280 6	290 6	300	Н		330 6	340 6

STOVE TEMPE

OM st Ld oriei
Beaverton, OR Phone (503) 643-3788

	of		
	Page	•	
SI DAIA - METHOD 5G			-
Ц			
T I EIMPERATORE I			
U .	415		

Run #: Tracking #: 861_ Project #: 259-S-12-3 Test Crew: K. Margon Client/Model: CFM Vermont Castings___ OMNI Equipment ID #: Date: 7-31-06

<u>.</u>	r,										
Liebnin M	록.			Coal Bed:		_				Actual:	
Test				Data:	= 0		Range:	3.0 - 3.6	J	Coal Bed:	3,5
	Fuel	Delta	Stack			√ TE	MPERAT	TEMPERATURES (oF	(Not Useo
Time	Weight	Weight	Draft	Ambient	Top 4	Bottom	Back 7	Left 6	Right 5	Flue 3	Catalyst
0	101		060	15	708	353	280	h2#	714	181)
10	3,6	51)	oLo'-	75	100	380	519	43/	th.tr	1194	
20	4.7	71	0201-	73	640	388	j+6 j=1	60#	<i>#5#</i>	467	
30	019	4'1	890' -	75	655	384	484	407	944	43	
40	5.1	0.7	~,063	73	613	380	465	465	437	425	
50	4.6	0.5	£50	hL.	573	378	457	390	415	346	
09	413	0.3	S }1 0'-	44	415	383	405	349	364	762	
* 70	36	* 0.4	040'-	44	348	397	348	329	346	275	
80	£.4€	7'0	0401-	7.5	355	410	315	32(340	509	/
8390	3,3	011	<,0 40	14	341	416	308	319	334	277	,
00									-		_
10						,					
20											/
30											/
40										•	·
50										-	
60											
70	*	Removed	ois in at	67 min							/ / /
80											\backslash
90											ń.
AVG		,									

Technician signature:

Date:

Client Name: CFM Vermont Castings	Equipment Numbers:	Run#:	1
Model: Century		Train#:	1
Project No.: 259-S-12-3 Tracking No.: 861		Date:	07/31/06

Sample Component	Reagent	Filter#or		Weights	
		Probe#	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D368	141.6	127.7	13.9
B. Rear filter catch	Filter	D366	122.6	122,1	0.5
C. Probe catch	Probe	2	83356.4	83356.2	0.2

Total Particulate, mg:	14.6

C	
Component	Equations:
A. Front filter catch	
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg
	1 1 mar (mg) - 1 ard (mg) - 1 ard chiade, mg

Analyst: 1/2 Morge Date: 8-7-06

Document Control No. P.SSX-0003 Effective Parter 2/7/2002

Page 1 of

Client Name:	CFM Vermont Castings	Equipment Numbers:		Run#:	. 1
Model:	Century			Train#:	2
Project No.:				Date:	07/31/06
Tracking No.:	861		-	-	

Sample Component	Reagent	Reagent Filter # or		Weights			
		Probe#	Final, mg	Tare, mg	Particulate, mg		
A. Front filter catch	Filter	D367	123.7	113.5	10.2		
B. Rear filter catch	Filter	D365	119.7	119.1	0.6		
C. Probe catch	Probe	В	86787.9	86787.8	0,1		

Total Particulate, mg:	10.9

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: /h/.//logn

Date: 8-7-06

	R	un Notes	•			
Model: Projec	Model: <u>CFM Vermont Castings</u> : <u>Century</u> t #: <u>259-S-12-3</u> ng Number: <u>861</u>			·		
Test C						
CIVILAI	Equipment IÓ Numbers:	PREBURN				
DESCR A	RIBE OR SKETCH AIR OR THERMOMS CCURATE AND REPRODUCABLE)		GS BELO	W: (SET	TINGS MUST E	BE
PRIMA	RY:		SEC	ONDARY	: <u>Fixeb</u>	· · · · · · · · · · · · · · · · · · ·
	Fully Closed		TER	TIARY:	N/A -N	ONE
	,		FAN:		ON-Low)
	PREBURN SET	─ TINGS ANI	O ACTIV	/ITIES		
TIME	AIR (THERMO) <u>CHANGES</u> PRIMARY/SECONDARY/TERTIARY	FAN SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	COMMEN
67	TEST Setting			0.3	Removed loa	Levelled
83						Leveluq
TEST F	UEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)	- FUE	PASS: EL LOADI DOC	NG <u>Loa</u> NR: <u>Clos</u>		
	FRONT -> VIEW FROM LEFT	ОТІ	HER:	Nav	L	
DESCR PRIMAI	RIBE OR SKETCH TEST SETTINGS BI RY:	ELOW: (SETTII			RATE AND REPRO	DDUCIBLE)
	Fully Closed		TER	TIARY:	NoNE	
	v .		FAN		A M	First 3 Remaina

FUEL DATA

ient: CFM Vermont Castings		
odel: <u>Century</u>		
oject#: <u>259-S-12-3</u> Tracking #: 5	<u>861</u>	
ite: <u>7-31-06</u> Test	t Crew: K. Magas	Run #:/
MNI Equipment ID #:		
ÆL LOAD PREPARED BY: K	. Morgan	Run #:
JEL: DOUGLAS-FIR SPECIES, IMENSIONAL LUMBER.	UNTREATED, AIR-DRIED, STANDA	ARD GRADE OR BETTER,
,	PRE-BURN FUEL	
CALIBRATION: Cal Value Cal Value	DISTURE CONTENT (METER DR) e (1) = 12% Actual Reading	2,10 2,10
Piece Length 1 # ft 2 # ft 3 ft	19.0 Readings	77 Type 2x4 2x4 2x4
21@ 8,2	inches Pre-Burn Fuel A	
		· ·
Time (clock):	oom Temperature (F): Initi	als:
	TEST FUEL	
FUEL TYPE AND AMOUNT: CALCULATED LOAD WEIGHT FUEL PIECE LENGTH:	TEST FUEL 2 × 4 3 4 × . T:15,4 ACTUALLOAD	4 _ Z WEIGHT:
	TEST FUEL 2 × 4 3 4 × T:/5,4 ACTUAL LOAD 6.0 DISTURE CONTENT (METER DR	
MO PIECE	DISTURE CONTENT (METER – – DR READINGS	Y BASIS) TYPE
<u>MO</u>	DISTURE CONTENT (METER – – DR READINGS	Y BASIS) TYPE
PECE 1 2 3	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9	YBASIS) TYPE 244 ZXY
PECE 1 2 3 4	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9 20.6 19.4 18.9	YBASIS) TYPE 244 ZX4
PECE 1 2 3 4	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9	YBASIS) TYPE 244 224
PECE 1 2 3 4	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9 20.6 19.4 18.9	YBASIS) TYPE 244 ZX4
PECE 1 2 3 4 5 6 7 8	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9 20.6 19.4 18.9	YBASIS) TYPE 244 ZXY
PECE 1 2 3 4 5 6 7 8 9	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9 20.6 19.4 18.9	YBASIS) TYPE 244 ZXY
PECE 1 2 3 4 5 6 7 8	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9 20.6 19.4 18.9	YBASIS) TYPE 244 ZXY
PIECE 1	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 20.2 19.5 18.9 20.6 19.4 18.9	TYPE
PIECE 1	READINGS 19.0 18.9 19.3 19.0 19.4 18.9 18.9 18.9 18.9 18.9 20.2 19.4 18.9 20.6 19.4 18.9 19.4 18.9 21.3 21.3 21.6	TYPE 244 2x4 2x4 4x4 4x4 4x4

Client: (CFM Vermor	nt Castings					•
	<u>Century</u>	11 0 0 0 11 1 1 1 1	·		·		
	No.: <u>259-S-</u> 1	<u>12-3</u>	Tracking N	lo.: <u>861</u>			
	7-31-06			 Run No	o.: <u> </u>	Booth:	2 B
	ew: K. Morga						
OMNI E	quipment#	s:					
Gas An	alyzer Train	Leak Check	, ,				
	Stack:			ution Tunnel	(Method 5G	Only):	
	Initial:			In	itial:		
·	Final:	N/A		Fi	nal:/	/ <u>A</u>	
Calibrat	Final: j ions: Span (Gas CO₂:	NA O	2: N/A (00: <u>N/A</u>	CO ₂ (DT): _	MA
	N ₂ Span	N ₂ Span	N ₂ Span	N ₂ Span	N ₂ Span	N ₂ Span	N ₂ S
Time							
O ₂		-					
CO ₂			N	A			
CO							
CO ₂ (DT)	<u>,,</u> ,						
Stack D	iameter (incl	nes):	6.0				
Air Velo	city (ft/min):	Initial:	< 50	Final:	450	.	
Scale A	udit (lbs.):	Pretest: _	10,0	Post Te	st:	·	
	Draft:						
Pitot Tu	be Leak Tes	t: Pre: <u>/</u>	@ 3.1" Wi	<u>t.</u> P	ost: <i>&</i> _@	3.2" W.E	→ '-
Flue Pip	e Cleaned F	Prior to First	Test in Serie	es: Date:	7-29-06	Initials:	1
		lni	tial	Mic	idle	End	ding
Pb (ir	n. Hg)	29,	47	29,	13	29	39
Room Te	∋mp (°F)	-7.	4	74		7	4

Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032

Manufacturer: CFM Vermont Castings

Model: Century Project No.: 259-S-12-3

Tracking No.: 861

Run: 2

Test Date: 08/01/06

Burn Rate	1.18 kg/hr dry
Average Tunnel Temperature	97 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	14.3 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	8664.3 dscf/hour
Average Delta p	0.043 inches H20
Average Delta H	0.00 inches H20
Total Time of Test	270 minutes

	AVERAGE	SAMPLE TRAIN 1	SAMPLE TRAIN 2
Tatal Camula Valuma Van	20.00 autic foot	CO OF autic foot	00.07 autic foot
Total Sample Volume - Vm	36.36 cubic feet	36.05 cubic feet	36.67 cubic feet
Average Gas Meter Temperature	77 degrees Fahrenheit	76 degrees Fahrenheit	77 degrees Fahrenheit
Total Sample Volume (Standard Conditions) - Vmstd	42.8 dscf	50.0 dscf	35.6 dscf
Train-1 corrected for 6.42 PSI meter pressure			
Total Particulates - mn	•	15.8 mg	11.3 mg
Particulate Concentration (dry-standard)	0.00032 grams/dscf	0.00032 grams/dscf	0.00032 grams/dscf
Particulate Emission Rate	2.75 grams/hour	2.74 grams/hour	2.75 grams/hour
Adjusted Emissions	4.21 grams/hour	4.20 grams/hour	4.21 grams/hour
Difference from Average		0.01 grams/hour	0.01 grams/hour
7.5% of the average emission rate	0.32	1	
Weighted Average Emission Rate Limit	4.10 grams/hour		
7.5% of the weighted average emission rate limit	0.31		
	F	Results Are Acceptab	le

		//////////////////////////////////////	Initial dP 0.040 0.044	Initial Temp. 97 97		OMNI Equipment Numbers:	
CFM Vermont Castings	A.n.		259-S-12-3	01-Aug-06		min.	min.
Manufacturer: CFM	Model: Century	Tracking No.: 861	Project No.: 259-	Test Date: 01-A	Beginning Clock Time: 10:15	Recording Interval: 10	Total Sampling Time: 270

	ft/sec.	scfm	scfm	ם	cfm@"]	cfm@"]	51	1	-
	14.29	144.3	144.4	0.1883	0 @ 12	0 @ 10	lry basis %):	rticulate (1):	Total Particulate (2):
	Tunnel Velocity: 14.29 ft/sec.	Intial Tunnel Flow: 144.3 scfm	ge Tunnel Flow	Tunnel Area:	'ost-Test Leak Check (1): 0 @ 12 cfm@"	ost-Test Leak Check (2):	uel Moisture (d	Total Pa	Total Pa
,	Tun	Intial	Averag	2	Post-Test La	Post-Test Le	(Z) Fi	End Average	29.40 "Hg
							1.005	End A	29.4
		29.00 lb/lb-mole	lb/lb-mole	percent	_'H2O			Ť	29.4
	010/020	29.00	28.56	4.00	-0.180 "H2O	0.99	(1) 2600	Begin	29.40
	PM Control Module: 010/020	Dilution Tunnel MW(dry):	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	Pitot Tube Cp:	Meter Box Y Factor:	Barometric Pressure:	
				"H2O	oF				
			Pt.8	0.042	- 62				
			Pt.7	0.046	26				
			Pt.6	0.044	6				
		rse Data	Pt.5	0.040	76				
		ty Traver	Pt.4	0,040	6				
		Veloci	Pt.3	44 0.048	6				

Stack	Draft In. H2O	-0.035	-0.033	-0.035	-0.045	-0.050	-0.063	-0.065	-0.065	-0.065	-0.063	-0.063	-0.060	-0.055	-0.053	-0.048	-0.045	-0.043	-0.043	-0.043	-0.038	-0.038	-0.038	-0.035	-0.033	-0.033	-0.030	-0.030	-0.030	-0.046
	Ambient	72	73	73	72	73	73	72	73	74	74	75	75	. 75	75	75	74	74	74	75	75	75	75	74	74	75	74	74	74	
	Impinger exit (2)																			_										#DIV/0i
	Impinger exit (1)																													#DIA/0i
	Filter (2)	72	75	74	74	75	11	78	- 26	8	80	80	08	80	62	79	78	77	77	76	76	76	2/2	2/2	75	75	75	75	75	76.75
L.	Filter (1)	73	75	75	75	76	78	80	81	81	82	82	82	81	08	80	62	78	78	78	11	11	11	11	11	9/	92	9/	9/	96:11
re Data, o	Stack	250	221	217	308	332	473	474	480	469	451	449	425	381	366	332	314	_	294	292	279	269	260	250	243	236	230	226	221	
emperatu	Average	347.6	314.4	284.4	288.8	291.4	365.6	395.0	417.2	432.4	434.8	434.0	432.0	411.8	404.6	391.2	376.0	366.0	354.8	350.8	340.6	328.8	318.2	309.6	300.8	292.2	284.8	277.8	269.6	78
Wood Heater Temperature Data, oF	Catalyst Exit																													
Wood	Firebox Right	335	285	247	226	223	276	326	362	384	400	412	416	405	396	387	370	358	346	343	337	324	313	302	292	283	275	268	261	
	Firebox Left	313	273	236	231	252	294	322	348	373	392	401	404	390	382	369	352	340	328	323	313	302	292	281	271	797	253	246	242	
	Firebox Back	284	285	256	263	229	322	366	403	434	452	437	433	412	422	421	416	410	397	389	366	341	314	302	284	267	257	252	238	
	Firebox Bottom	489	465	436	412	389	368	361	355	352	351	352	354	355	354	353	351	350	348	348	347	352	359	364	368	369	367	358	347	
	Firebox Top	317	264	247	312	364	268	009	819	619	579	568	553	497	469	426	391	372	355	351	340	325	313	299	289	280	272	265	260	
tht, lb	Weight I		-0.4	-0.3	8.0-	7	-1.4	-1.4	-1.3	-13	-11	17	8.0-	-0.5	-0.4	-0.3	-0.2	-0.2	-0.2	-0.2	-0.1	-0.2	0.1	-0,2	-0.1	-0.1	-0.2	-0.1	-0.1	
Fuel Weight, lb	Scale Reading (14.1	13.7	13.4	12.6	11.6	10.2	8.8	7.5	6.2	5.1	4.0	3.2	2.7	2.3	2.0	1.8	1.6	1.4	1.2	11	6.0	8.0	9.0	0.5	0.4	0.2	0.1	0.0	
	Δ.		103	103	102	101	101	103	103	102	101	102	102	100	101	100	100	101	100	100	100	100	100	66	100	66	100	66	66	100.76
	Pro. Rate Pro. Rate (10%) (10%) (2)		103	100	101	100	101	102	102	101	102	102	101	101	101	101	100	100	100	100	100	100	81	100	101	100	66	100	100	100.75
	Dilution Tunnel dP	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043
	Dilution Tunnel Temp.	- 26	68	87	91	94	108	110	113	112	111	111	108	104	101	86	95	94	93	93	92	16	8	68	68	88	88	87	87	96.79
	Meter Vac. In. Hg. (2)	0	-	1	1	-	-	-	-	_	1	1		1	П	-	-	-	-	-	-	-	-	-	-	-	-	1	-	
et	Meter Vac. Meter Vac. In. Hg. In. Hg. (2)	0		-	_		-		-	-	1	-		1	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	
Particulate Sampling Data	Meter Me oF I (2)	9/	75	75	75	75	75	92	9/	77	11	11	11	78	78	78	78	78	78	78	78	78	78	78	78	78	78	78	78	11.77
late Sam	Meter 1 oF (1)	75	75	75	75	75	75	9/	92	92	9/	92	11	77	11	11	11	11	77	11	11	11	77	11	77	11	77	77	77	76.39
Particu	Orifice dH (2)	0.00	00:0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:0	0.00	0.00	0.00
	Orifice dH(1)	0.00	0.00	00:0	0.00	0.00	00.0	0.00	00:0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	00.0	0.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
	Sample Rate, cfm (2)		0.14	0.14	0.14	0.14	0.13	0.14	0.14	0.13	0.14	0.14	0.14	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.13	0.14	0.14	0.13	0.14	0.14	0.14	0.14	0.14	0.14
	Sample Rate, cfm (1)		0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
	Gas Meter R Cubic Feet R (2)	368.500	369.890	371.280	372.650	374.015	375.360	376.735	378.095	379.445	380.795	382.150	383.510	384.855	386.210	387.560	388.915	390.280	391.630	392.985	394.335	395.690	397.050	398.400	399.755	401.105	402.460	403.815	405.167	36.667
	Gas Meter Gas Cubic Feet Cul (1)	┝		641.110 37	-	H	-	646.440 37	647.775 37	649.100 37	⊢	H	H	┢	┢	-	658.425 38	-	-	662.425 39	663.760 39	⊢	H	┝	H	670,450 40	-	673.115 40	674.454 40	Н
		638.400	639.770		642.450	643.780	645.100		H	_	650.430	0 651.760	_	0 654.425	0 655.755	0627.090	-	092699	-	-	 -	0 665.095	0 666.435	0 667.765	-	_	0 671.780	H		otal 36.054
	Elapsed	0	10	20	30	40	20	9	70	80	8	100	110	120	130	140	150	160	170	180	180	200	210	220	230	240	250	260	270	Avg/Total

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G).xls, Effective date: 08/07/2000

Technician signature: _

Date: 8-01-06

								one (503) 643-3788	Beaverton, OR Pho	
								Jries	חומה וג דמר	. -
innedessa vivets	Landerstand	francisco para de la casa para de la casa de	-	Committee of Section Section 1	Lagrange projection to the	bear commented	indigenous and in the state of	i i i i i i i i i i i i i i i i i i i	2.7	_[`

STOVE STOVE
STOVE STOVE Neight Draft 1,2
STOVE STOVE Neight Draft 1.2
Neight 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Solution one (503) 643-372 (Solution) 643-372 (Solution) 643-642 (Solution) 642 (Solution) 642 (Solution) 642 (Solution) 645 (
Client Cl

Client Name:	CFM Vermont Castings	Equipment Numbers:	Run	#: 2
Model:	Century		Train	#: 1.
Project No.:	259-S-12-3		 Dat	e: 08/01/06
Tracking No.:	861			

Sample Component	Reagent	Filter # or		Weights	
		Probe#	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D364	140.41	125,9	14.5
B. Rear filter catch	Filter	D362	124.2	124.0	0,2
C. Probe catch	Probe	4	79068.4	79067.3	1.1

Total Particulate, mg:	15.8

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg.
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: /h / Morg Date: 8-7-06

Client Name:	CFM Vermont Castings	Equipment Numbers:	Run#:	2
Model:	Century		Train#:	2
-	259-S-12-3		Date:	08/01/06
Tracking No.:	861-			

Sample Component	Reagent	Filter # or		Weights	
		Probe#	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D363	126,4	116.3	10.1
B. Rear filter catch	Filter	D361	118.1	117.8	0.3
C. Probe catch	Probe	6	76807.4	76806,5	0.9

Total Particulate, mg: 11.3	Total Particulate, mg:	11.3

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: 12 f. Morga Date: 8-7-06

Beavertor	Test Laboratories,ic.		٠	(
	Ru	ın Notes	5		• .	
Model Projec Tracki Run #: Test C	Model: CFM Vermont Castings Century t #: 259-S-12-3 ng Number: 861 Z Date: 0 rew: K. Mergal					
DESCE	DE OR SKETOLIAIR OR THERMOMO	REBURN				
DESCR	IBE OR SKETCH AIR OR THERMOMS CCURATE AND REPRODUCABLE)	TAT SETTING	GS BELO	W: (SETT	INGS MUST I	3E
PRIMA	₹Y:		SEC	ONDARY:	FIXED	
	OPEN 0.375"		TER	ΓIARY:	NONE	
			FAN:		ON-LOW	
	PREBURN SET	- TINGS ANI	O ACTIV	/ITIES		
TIME	AIR (THERMO) <u>CHANGES</u> PRIMARY/SECONDARY/TERTIARY	FAN SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	СОММЕ
16 76	test setting		-		K -	Lavelle
·		<u>TEST</u>				
TEST F	UEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)		STAF PASS: EL LOADI	#/بر_	OCEDURES	min).
	<u> </u>		DOO	R: ASAR		min.
X	M FRONT ->	PRI		R: ABRU	epty Closed	oct 5,0
X W	FRONT -> VIEW FROM LEFT					ot 5,0
DESCR	VIEW FROM LEFT IBE OR SKETCH TEST SETTINGS BEI	ОТН	MARY AI HER: NGS MUST	Nowa	e	
DESCR	VIEW FROM LEFT IBE OR SKETCH TEST SETTINGS BEI	ОТН	MARY AI HER: NGS MUST SEC	Nowa	e ATE AND REPRO	
DESCR	VIEW FROM LEFT IBE OR SKETCH TEST SETTINGS BEI RY:	ОТН	MARY AI HER: NGS MUST SEC	Nowake Nowake BE ACCURA ONDARY:	ATE AND REPRO	30 miras

FUEL DATA

te: 8 -01-06 Tracking #:	t Crew: K. Morgan	Run #:	2
ANI Equipment ID #:			
MNI Equipment ID #: EL LOAD PREPARED BY: <u>K</u>	Mary AN		
EL: DOUGLAS-FIR SPECIES,	UNTREATED, AIR-DRIED, STANDARI	O GRADE OR BETTE	ER,
MENSIONAL LUMBER.			
MC	PRE-BURN FUEL DISTURE CONTENT (METER DRY B	(DID A	
CALIBRATION: Cal Value	e (1) = 12% Actual Reading 12.6	•	
Cal Value	e $(2) = 22\%$ Actual Reading ZZ .	<u> </u>	
Piece Length	Readings	Tyne	
1 ft	21.5 /8.6 /9.8 21.7 /9.9 20.7	224	
2 <u>\$</u> ft 3 ft	<u>21.7 19.9 20.7</u>	2 * 4	
Length of cut pieces:	inches Pre-Burn Fuel Aver	age Moisture: 20	0.37%
Time (clock): O 1130 Ro	oom Temperature (F): 69 Initials:		
	TEST FUEL	,	
FUEL TYPE AND AMOUNT:	TEST FUEL 2 × 4 3	2 59	
FUEL TYPE AND AMOUNT: CALCULATED LOAD WEIGH	TEST FUEL 2 × 4 3	2 IGHT: 5. 9	(2×4)
FUEL TYPE AND AMOUNT: CALCULATED LOAD WEIGHT FUEL PIECE LENGTH: /6	2 × 4 3	2 IGHT: 5.9 8:2	(2 × 4) (4 × 4)
FUEL TYPE AND AMOUNT: CALCULATED LOAD WEIGH FUEL PIECE LENGTH:	2 × 4 3	2 IGHT: 5. 9 8.2 14.1	(2 × 4) (4 × 4) Total
FOEL PIECE LENGTH:	2 × 4 3		(2 × 4) (4 × 4) Total
MO	2 × 4 3 4 × 4 1:		(2 × 4) (4 × 4) Total
FOEL PIECE LENGTH:	2 × 4 3		(2 × 4) (4 × 4) Total
MO	2 × 4 3 4 × 4 1:		(2 × 4) (4 × 4) Total
MO PIECE PIECE	2 × 4 3 4 × 4 1:		(2 × 4) (4 × 4) Total
PIECE 1	2×4 3 4×4 7.5.4 ACTUAL LOAD WE .0 ISTURE CONTENT (METER DRY F READINGS 19.2 19.6 21.4 19.6 20.4 19.9 20.3 19.9	TYPE	(2 × 4) (4 × 4) Total
PIECE 1 2 3 4	2×434×4	TYPE 4 *4 4 *4 2 *4 2 *4	(2 × 4) (4 × 4) Total
PIECE 1 2 3 4 5	2×4 3 4×4 7.5.4 ACTUAL LOAD WE .0 ISTURE CONTENT (METER DRY F READINGS 19.2 19.6 21.4 19.6 20.4 19.9 20.3 19.9	TYPE	(2 × 4) (4 × 4) Total
PIECE LENGTH:	2×434×4	TYPE 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4	(2 × 4) (4 × 4) Total
PIECE 1	2×434×4	TYPE 4 *4 4 *4 2 *4 2 *4	(2 × 4) (4 × 4) Total
PIECE LENGTH:	2×434×4	TYPE 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4	(2 × 4) (4 × 4) Total
PIECE 1	2×434×4	TYPE 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4	(2 × 4) (4 × 4) Total
PIECE 1 2 3 4 5 6 7 8 9 10	2×434×4	TYPE 4 ry 4 ry 2 ry 2 ry 2 ry	(2 × 4) (4 × 4) Total
PIECE 1 2 3 4 5 6 7 8 9 10	2×434×4	TYPE 4 ry 4 ry 2 ry 2 ry 2 ry	(2 × 4) (4 × 4) Total
PIECE 1 2 3 4 5 6 7 8 9 10	2×434×4	TYPE 4 r4 4 r4 2 r4 2 r4 2 r4 19.95%	(2 × 4) (4 × 4) Total

,	OR	Supple	mental E)ata EPA	5G/5H		
0" (rata El 7	00,011		
	CFM Vermor	nt Castings	•				
	<u>Century</u>					,	
	No.: <u>259-S-1</u>		_				
	08-01-66						
	ew: K. Morga					Stop Time:	14:45
OMNI E	Equipment #'s	s:	·····				
Gas An	alyzer Train	Leak Check	: :				
5	Stack:		Dilu	ıtion Tunnel	(Method 50	Only):	
	Initial:		<u> </u>	In	itial:	, , ,	
	Initial: Final: tions: Span (N/A		Fi	nal://		
Calibrat	tions: Span (Gas CO ₂ :	N/H O	: N/# (CO: N/A	CO ₂ (DT): *	1/1
-				,	•	· - · , 	
	N₂ Span	N ₂ Span	N₂ Span	N ₂ Span	N ₂ Span	N ₂ Span	N ₂ S ₁
Time							
O_2			,	1.			
CO ₂			N	A			
CO							
CO ₂ (DT)							
		haa):					
Stack D	iameter (incl		010				
	iameter (incl ocity (ft/min):			Final	100		
Air Velo	ocity (ft/min):	Initial:	<50			•	
Air Velo Scale A	ocity (ft/min): .udit (lbs.):	Initial: Pretest: ₋	< 50 10:0	Post Te	st: <u>/0.0</u>		
Air Velo Scale A Induced	ocity (ft/min): .udit (lbs.): I Draft:	Initial: Pretest: _	< 50 10.0 %S	Post Te moke Captu	st: <u>/0.0</u> ire: <u>/00</u>		_
Air Velo Scale A Induced Pitot Tu	ocity (ft/min): udit (lbs.): I Draft: be Leak Tes	Initial: Pretest: ot: Pre:	<50 10:0 %S (@3:z"w.c	Post Te moke Captu • P	st: <u>/0.0</u> ire: <u>/00</u> ost: <u>\$7</u>	Ø 3,1″W,€,	
Air Velo Scale A Induced Pitot Tu	ocity (ft/min): .udit (lbs.): I Draft:	Initial: Pretest: ot: Pre:	<50 10:0 %S (@3:z"w.c	Post Te moke Captu • P	st: <u>/0.0</u> ire: <u>/00</u> ost: <u>\$7</u>	Ø 3,1″W,€,	
Air Velo Scale A Induced Pitot Tu	ocity (ft/min): udit (lbs.): I Draft: be Leak Tes	Initial: Pretest: et: Pre:ø Prior to First	<50 10:0 %S (@3:z"w.c	Post Te moke Captu Pes: Date:	st: <u>/0.0</u> ire: <u>/00</u> ost: <u>\$7</u>	ສະ,,"ພ, ຍ , Initials: <u>/</u>	
Air Velo Scale A Induced Pitot Tu Flue Pip	ocity (ft/min): udit (lbs.): I Draft: be Leak Tes	Initial: Pretest: et: Pre:ø Prior to First	<i><50</i> // // // // // // // // // // // // //	Post Te moke Captu Pes: Date: Mic	st: <u>/0.0</u> ire: <u>/00</u> ost: <u>&</u> 7-29-06	ສະທິພ. ຢ . Initials:/ຜ End	<u></u>

Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032

Manufacturer: CFM Vermont Castings

Model: Century

Project No.: 259-S-12-3

Tracking No.: 861

Run: 3

Test Date: 08/02/06

Burn Rate	1.61 kg/hr dry
Average Tunnel Temperature	117 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	15.6 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	9071.5 dscf/hour
Average Delta p	0.049 inches H20
Average Delta H	0.12 inches H20
Total Time of Test	200 minutes

	AVERAGE	SAMPLE TRAIN 1	SAMPLE TRAIN 2
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	31.07 cubic feet 84 degrees Fahrenheit 29.6 dscf	31.48 cubic feet 83 degrees Fahrenheit 29.9 dscf	30.67 cubic feet 84 degrees Fahrenheit 29.3 dscf
Total Particulates - mn Particulate Concentration (dry-standard) Particulate Emission Rate Adjusted Emissions	0.00021 grams/dscf 1.88 grams/hour 3.08 grams/hour	6.3 mg 0.00021 grams/dscf 1.91 grams/hour 3.12 grams/hour	6 mg 0.00020 grams/dscf 1.86 grams/hour 3.04 grams/hour
Difference from Average 7.5% of the average emission rate Weighted Average Emission Rate Limit 7.5% of the weighted average emission rate limit	0.23 4.10 grams/hour 0.31	0.04 grams/hour	0.04 grams/hour
	F	Results Are Acceptab	le

-0.043

73.67 72.14 #DIV/0! #DIV/0!

85

100.73

100.71

117.19 0.049

0.10 83.19 84.00

0.12

31.475 30.665

Wood Heater Test Data - EPA Method 5G

OMNI-Test Laboratories, Inc.

16 4. Menga 8-28-06

	Α	M/////// Pt.1 Pt.2 P	Initial dP 0.046 0.050 0.0	Initial Temp. 126 126 15		OMNI Equipment Numbers:	
fanufacturer: CFM Vermont Castings	Century	1	259-S-12-3	02-Aug-06	40	min.	0 min.

																							_		_				_		_
ft/sec.	scfm	scfm ft2	0 @ 4 cfm@"Hg	0@3 cfm@"Hg	19.85	63	0.0	Stack	Draft In. H2O	-0.050	-0.053	-0.070	-0.078	-0.078	-0.078	-0.075	-0.073	-0.070	-0.065	-0.060	-0.055	-0.055	-0.053	-0.050	-0.048	-0.048	-0.048	-0.045	-0.043	-0.043	0.00
15.56		151.2 scfi 0.1883 ft2	0@4	0@3	v basis %):	Total Particulate (1):	iculate (2).		Ambient	82	81	81	08	81	81	81	82	81	81	82	81	80	81	79	79	79	78	78	11	76	
clocity:	el Flow:	nnel Flowd Area:	heck (1):	reck (2):	Fuel Moisture (dry basis %):	Total Parti Total Parti	I Olai raiu		Impinger exit (2)																						
Tunnel Velocity:	Intial Tunnel Flow:	Average Tunnel Flow: Tunnel Area:	Post-Test Leak Check (1):	Post-Test Leak Check (2):	Fuel M	ř	8		Impinger exit (1)																						
1		⋖	Post-T	_		Average			Filter (2)	62	. 62	71	73	74	74	73	73	72	7.1	7.1	72	72	72	73	73	73	74	74	75	76	.,
	9	9					07:67	۲۰.	Filter (1)	9	72	74	76	78	78	11	2/2	75	74	73	73	73	72	72	72	73	74	75	75	75	- 7
0	29.00 lb/lb-mole	28.56 lb/lb-mole 4.00 nercent	-0.200 "HZO	1. 1	(1)	Middle	16.67	Data, ol	Stack	328	321	474	260	582	565	533	207	482	446	392	367	346	334	326	314	309	305	298	290	285	1111111
010,020	29.00	28.56	-0.200	0.99	(1) 766.0	Begin	29.39	Wood Heater Temperature Data, oF	Average Surface	385.0	362.6	375.8	428.4	444.4	461.8	463.8	460.0	430.8	435.6	405.0	388.4	368.8	355.8	347.6	334.2	328.4	322.0	317.0	308.8	303.2	L
l Module:	MW(dry):	MW(wet): inel H2O:	nel Static:	Pitot Tube Cp:	Y Factor:	Pressure:		Teater Te	Catalyst Exit																						
PM Control Module:	Dilution Tunnel MW(dry):	Dilution Tunnel MW(wet): Dilution Tunnel H2O:	Dilution Tunnel Static:	Pitot	Meter Box Y Factor:	Barometric Pressure:		Wood l	Firebox Right	393	336	317	351	416	458	472	476	467	452	422	396	377	364	357	344	337	327	323	313	305	XIIIIIII
	Diluti	Dilut	Д			_			Firebox Left	363	315	281	297	345	383	411	423	429	427	406	387	366	350	341	327	319	311	308	301	297	18/1/////
		ç							Firebox] Back	293	323	382	449	359	380	384	399	397	377	349	352	330	317	304	286	284	281	272	263	257	
		Pt.8 0.048 "H2O	Т	1					Firebox F Bottom	486	490	469	444	423	405	393	384	379	376	375	372	370	367	365	363	360	357	355	352	349	
		Pt.7	╁						Firebox Fi	390	349	430	109	619	683	629	819	482	546	473	435	401	381	371	351	342	334	327	315	308	MARIAN
		Pt.6 1	╀					ıt, lb	Weight Fi		-0.6	-1.2	-1.8	-1.9	-1.7	-1.4	1.1-	7	-0.7	-0.5	-0.3	-0.3	-0.2	-0.3	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	
	Data	Pt.5	╀	\cdot				Fuel Weight, lb	Scale W Reading CI	14.2	13.6	12.4	9.01	8.7	7.0	5.6	4.5	3.5	2.8	2.3	2.0	1.7	1.5	1.2	1.0	8.0	9.0	0.4	0.2	0:0	11811111
	Velocity Traverse Data	Pt.4	┿						Pro. Rate (10%) (2)		100	102	103	103	103	103	102	101	101	100	100	100	100	100	101	86	66	100	101	86	
	Velocity	Pt.3	+						Pro. Rate P (10%) (1)		86	101	102	100	66	86	26	66	100	102	102	102	102	102	102	101	101	102	100	103	ľ
		Pt.2	╁						Dilution P Tunnel dP	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	l
		Pt.1 0.046	╁		umbers:				Dilution 1 Tunnel Temp.	126	112	125	138	143	141	138	134	130	124	117	113	109	107	901	103	102	100	66	16	76	
		Initial dP	1 -		OMNI Equipment Numbers:				Meter Vac. In. Hg. (2)	0	-	1	-	-	_	-	-	-	-	-	-	-	1	_			_	1	_	-	THE PERSON NAMED IN
	_		Ē	J	OMNLE				Meter Vac. Malin. Hg. (1)	0	-	1	1		_	_	1	_	1	1	_ -	L	1	1	_	_	_	_	_	1	<i>UMILLI</i>
								ing Data	Meter Mete oF In. (2)		82	84	84	85	85	85	85	85	85	85	85	84	84	84	83	83	83	82	82	81	11111
								Particulate Sampling Data	Meter Moder (1)	85	85	84	84	**	 24	84	28	84	84	84	84	83	83		83	82	81	81	81	80	-
	. 4	14511		1				Particula	Orifice dH (2)	00.0	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	-
					min.	min.			Orifice dH(1)	00.0	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	
Castings									Sample Rate, cfm (2)		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.15	
Manufacturer: CFM Vermont Castings	Century	861 259-S-12-3	02-Aug-06	12:40					Sample Rate, cfm (1)		0.15	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	91.0	0.16	
cturer: CF	Model: Cer		•			Time: 200			Gas Meter S Cubic Feet R (2)	420.500	422.025	423.570	425.105	426.645	428.180	429.720	431.250	432.780	434.315	435.845	437.370	438.900	440.435	441.970	443.520	445.030	446.560	448.095	449.650	451.165	-
Manufa	1	Tracking No.: Project No.:	Test	Beginning Clock Time:	Recording Interval:	Total Sampling Time:				-	_	_	_	_	-		-	-	H	H	Н	Н	_	_	Н	Н	Н	Н	Н	-	
				Begit	25	Tot				698.900	700.440	702.010	703.570	705.105	706.630	708.150	709.645	711.170	712.730	714.325	715.930	717.535	719.140	720.745	722.360	723.950	725.550	727.160	Н	730.375	
									Elapsed Time	0	10	20	30	40	50	09	70	80	8	100	110	120	130	140	150	160	170	180	190	200	

STOVE TEMPERATURE TEST DATA - METHOD 5G

Beaverton, OR Phone (503) 643-3788

OM st Landorie,

ठ

Page__

Tracking #: 861_ Project #: 259-S-12-3 Client/Model: CFM Vermont Castings_

Run # Test Crew: K. Mogram Date: 8-02-06

M

OMNI Equipment ID #:

Preburn 🗷	<u>\</u>			Coal Bed						Actual:	
Test	-	-		Data:	= 0		Range:	29-35		Coal Bed: 3,5	3,5
	Fuel	Delta	Stack			1	EMPERAT	TEMPERATURES (OF	(NotUsed
Time	Weight	Weight	Draft	Ambient	Top #	Bottom	Back 7	Left 6	Right 6	Flue 3	3 Catatyst
0	13.5		060'-	79	455	151	Shh	426	60h	861)
10	12,0	511	010'-	18	595	237	306	403	421	71.H	
20	10.2	1.8	2101-	78	619		3/4/202	370	420	539	
30	8.5	1.7	- ,078	78	189	391	737	387	443	267	/
40	617	الا	-1078	28	723	400	373.	,81F	480	578	
50	5,3	1.4	-,073	83	470	405	403	418	16#	725	\
90	4.5	9 10	-1078	78	277	114	904	424	477	461	
70	4,0	0.5	-,063	78	305	437	212	hih	75h	414	
80	1.5	0.3	-,058	78	446	794	376	391	424	368	
90	3,5	2.0	055)\$	401	479	301	367	348	346	
00											
10	•										
20											/
30											
40	,				1.0						7
50	-										\rightarrow
60											-
70											-
80				-	,			-		-	
90	·										
AVG									-		
									-		

Technician signature:

20-20-8 Date:

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G).xls, Effective date: 08/07/2000

Client Name:	CFM Vermont Castings	Equipment Numbers:		Run#:	3
Model:	Century			Train#:	1
Project No.:	259-S-12-3			Date:	08/02/06
Tracking No.:	861		-	•	

Sample Component	Reagent	Filter # or		Weights	Ī
		Probé #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D360	134.5	129.9	4.6
B. Rear filter catch	Filter	D359	129.6	128.8	0,8
C. Probe catch	Probe	10	76014.7	76013.8	0.9

Total Particulate, mg:	6.3

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: 1/4 1. Marge Date: 8.7-06

Client Name:	CFM Vermont Castings	Equipment Numbers:	 Run#:	3
Model:	Century		Train#:	2
Project No.:	259-S-12-3		 Date:	08/02/06
Tracking No.:	. 861		•	

Sample Component	Reagent	Filter # or	Weights							
		Probe#	Final, mg	Tare, mg	Particulate, mg					
A. Front filter catch	Filter	D358	121,2	116.6	4.6					
B. Rear filter catch	Filter	D357	128.1	127.1	1,0					
C. Probe catch	Probe	Е	76257.4	76257.0	0.4					

Total Particulate, mg:	6.0
	1

F***	
Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: /h/.//orga Date: 8-7-06

j	OMNI-	Test Laboratories,	.,1C.			(
] '	Beaverton	, OR	Rı	ın Notes	5			
	Model: Project Trackir Run #: Test C	Model: <u>CFM Vermodentury</u> th: <u>259-S-12-3</u> ng Number: <u>861</u>	ont Castings Date: _ <i>o</i>	8-02-06				111
	DESCR	IBE OR SKETCH AIR CCURATE AND REPR	F OR THERMOMS	REBURN				BE
<u>.</u> [PRIMAR	RY:		_	SEC	ONDARY:	FIXED	
		OPEN 0.75	o"		TER'	TIARY:	NONE	
					FAN:		ON - High	
	<u> </u>	PI	REBURN SET	⅃ <u>TINGS ANI</u>	O ACTIN	/ITIES		
, .	TIME	AIR (THERMO) PRIMARY/SECOND/	CHANGES ARY/TERTIARY	FAN SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	COMMENT
	-6 90	test setting						Levelled
	X	JEL CONFIGURATION (INDICATE VIEW ANGLE)	-> FRONT VIEW FROM LEFT	PRI	PASS: EL LOADI DOC MARY AI HER:	NG Load PR: AJA R: Full Abrup d 5.0 Non	lad by 1:1 R UNTIL g Open un y Set to to un.	3.0 <u>unin</u> l til 5.0 min, est sulling
F	PRIMAR	BE OR SKETCH TES Y: Same As As	;	LOW: (SETTIN	SEC		ATE AND REPRO FIXED. None	DDUCIBLE)
		JAME HY HS	70€		FAN:		Off for 1- Hen ON-1	^{z+} 30 win, ligh Remainle
)			Technician sigr	ature:/	1. M.	rige	_ Date: _ 8 · 4	

OMNI-Test Laboratories, Inc. (
Beaverton, OR

FUEL DATA

	Test Crew:	K. Morgan		Run#: 3
OMNI Equipment ID #				Run#: _3
FUEL LOAD PREPAR	ED BY: K. Morg A	J		-
FUEL: DOUGLAS-F DIMENSIONAL LUM	IR SPECIES, UNTRE			
	MOISTURI	PRE-BURN F CONTENT (MET		210)
CALIBRATION:	Cal Value (1) = 12 Cal Value (2) = 22	2% Actual R 2% Actual R	eading 12.0 eading 22.0	
Piece 1 2	Length	23.0 Reading 23.0 19.	0 20,1	<u>Type</u> 2 / 4 2 / 4
3	ft		<u> </u>	
Length of cut pie	ces:i7@8,5	Pre-	Burn Fuel Averag	e Moisture: 20,5
Time (clock): O	7:15 Room Tem	perature (F): 76	Initials:	/2
_		i å	•	
PITEL TVDE AND	ANOINT. 2.	TEST FUE	المالية	.
CALCULATED LO	AMOUNT. 27 DAD WEIGHT: 15.	4 ACTU	—	HT. 6,4 (2)
		21010		
FUEL PIECE LENG	этн: <u>/6.0</u>			7.8 (4)
FUEL PIECE LENC	Jin			
FUEL PIECE LENC	Jin	CONTENT (MEI		
FOEL TECE LEVE	Jin			
PIE	MOISTURE	CONTENT (MEI	ER – – DRY BA	TYPE
PIE 1	MOISTURE MOISTURE 1	CONTENT (MET READINGS	ER DRY BA	
PIE 1 2	MOISTURE 1	READINGS 19.0 19.6	ER DRY BA	
PIE 1	MOISTURE 1 /9.3 2 /9.3 2 20.3	READINGS 19.0 19.6 20.3	19,2 20,1 20,4	
PIE 1 2	MOISTURE 1 /9.3 2 /9.3 3 20.3 19.2	READINGS 19.0 19.6 20.3 19.6	19,2 20,1 20,4 21,6	
PIE 1 2 3 4 5 5	MOISTURE /9.3 /9.3 /9.3 /9.2 /9.2 /9.2	READINGS 19.0 19.6 20.3	19,2 20,1 20,4	
PIE 1 2	MOISTURE 1 /9.3 2 /9.3 3 20.3 4 19.2 5 20.4	READINGS 19.0 19.6 20.3 19.6	19,2 20,1 20,4 21,6	
PIE 1 2 3 4 5 6 7	MOISTURE 1 /9.3 2 /9.3 3 20.3 4 19.2 5 20.4	READINGS 19.0 19.6 20.3 19.6	19,2 20,1 20,4 21,6	
PIE 1 2 3 4 5 6	MOISTURE 1	READINGS 19.0 19.6 20.3 19.6	19,2 20,1 20,4 21,6	
PIE 1 2 3 4 5 6 7 8	MOISTURE 1	READINGS 19.0 19.6 20.3 19.6	19,2 20,1 20,4 21,6	
PIE 1 2 3 4 5 6 7 8 9	MOISTURE 1	READINGS 19.0 19.6 20.3 19.6 19.2	19,2 20,1 20,4 21,6 20,3	7712 Tot SIS) TYPE 2x4 2x4 4x4 4x4

		ouppie	mental [Jala LITA	3 3 7311	•	
Client: C	CFM Vermor	nt Castings	·				
Model:	<u>Century</u>						
Project l	No.: <u>259-S-</u>	12-3	Tracking N	No.: <u>861</u>			
Date: _	08-02-06	•		Run No	o.: 3	Booth:	28
Test Cre	∍w: K. Morga	an		Start Ti	me: <u>/2:40</u>	Stop Time:	16:00
OMNI E	quipment #'	s:			-	·	
Gae Ans	alyzer Train	Leak Chack		•			
	Stack:	Leak Offeck		ution Tunnel	(Method 50	2 Only):	
	Initial:		Dill		itial:	o Offig).	
	Final:	MA	· ···	Fi	nal· N/#	1	
Calibrati	ions: Span (Gas CO ₂ :	- N/4 0:	· NA ·	CO: N/H	CO ₂ (DT): _	NIA
			777	z. <u> </u>	. <u> </u>	_ 002(B1)	***
	N ₂ Span	N₂ Span	N₂ Span	N₂ Span	N ₂ Span	N ₂ Span	N ₂ S
Time							
O_2			, ,	/_			
CO ₂			N/i	4			
со							
CO ₂ (DT)							
Stack Di	iameter (inc	hes).	6.0				
			< 50	— Final·	150		
			10,0				
			%S				
			7@ 3.1 "Wil			1"w.e.	
						Initials: /	_ _
-					• .	- · · · · · · · · · · · · · · · · · · ·	
		Init	tial	Mic	ldle	En	ding
	ı. Hg)	29.	39	29,	3 (29,	26
Pb (in						1	

Model: Century CFM – Vermont Castings 62 Vermont Castings Road Bethel, VT 05032

Manufacturer: CFM Vermont Castings
Model: Century
Project No.: 259-S-12-3

Tracking No.: 861

Run: 4

Test Date: 08/03/06

Burn Rate	1.12 kg/hr dry
Average Tunnel Temperature	97 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	14.2 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	8579.7 dscf/hour
Average Delta p	0.042 inches H20
Average Delta H	0.12 inches H20
Total Time of Test	290 minutes

	AVERAGE	SAMPLE TRAIN 1	SAMPLE TRAIN 2
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	43.10 cubic feet 76 degrees Fahrenheit 41.7 dscf	42.71 cubic feet 75 degrees Fahrenheit 41.2 dscf	43.49 cubic feet 76 degrees Fahrenheit 42.2 dscf
Total Particulates - mn Particulate Concentration (dry-standard) Particulate Emission Rate Adjusted Emissions	0.00021 grams/dscf 1.81 grams/hour 2.98 grams/hour	8.5 mg 0.00021 grams/dscf 1.77 grams/hour 2.92 grams/hour	9.1 mg 0.00022 grams/dscf 1.85 grams/hour 3.03 grams/hour
Difference from Average 7.5% of the average emission rate Weighted Average Emission Rate Limit 7.5% of the weighted average emission rate limit	0.22 4.10 grams/hour 0.31	0.05 grams/hour	0.05 grams/hour
	F	Results Are Acceptab	le

CFM Vermont Castings

Manufacturer: (

Wood Heater Test Data - EPA Method 5G

1. Morgen 8-29-06

Signature/Date: //
Tunnel Velocity:

b	Tunnel Velocity: 14.18 ft/sec.	Intial Tunnel Flow: 142.5 sofm	Average Tunnel Flow 143.0 scfm	Tunnel Area: 0.1883 ft2	Post-Test Leak Check (1): 0 @ 5 cfm@"Hg	Post-Test Leak Check (2): 0 @ 5 cfm@"Hg	1.005 (2) Fuel Moisture (dry basis %): 19.51	ge	4 "Hg Total Particulate (2):	
	010,020	29.00 lb/lb-mole	28.56 lb/lb-mole	4.00 percent	-0.196 "H2O	66.0	(1) 266.0	Begin Middle I	29.30 29.35 29.38	
	PM Control Module:	Dilution Tunnel MW(dry): 29.00 lb/lb-mole	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	Pitot Tube Cp:	Meter Box Y Factor:	Barometric Pressure:		
								[1	
				.HZ0	P.					
			Pt.8	0.040 "H2O	99 oF					
			Pt.7 Pt.8	0.042 0.040 "H2O	99 99 oF					
			Pt.6	0.044 0.042 0.040 "H2O	100 99 99 oF					
		rse Data	Pt.5 Pt.6 Pt.7 Pt.8	0.038 0.044 0.042 0.040 "H2O	100 100 99 99 oF					
		oity Traverse Data	Pt.6	0.042 0.038 0.044 0.042 0.040 "H2O	101 100 100 99 99 oF					
		Velocity Traverse Data	Pt.6	0.046 0.042 0.038 0.044 0.042 0.040 "H2O	101 101 100 100 99 99 oF					*
		Velocity Traverse Data	Pt.6	0.044 0.046 0.042 0.038 0.044 0.042 0.040 "H2O	102 101 101 100 99 99 oF					
		Velocity Traverse Data	Pt.6	0.042 0.044 0.046 0.042 0.038 0.044 0.042 0.040 "H2O	102 102 101 101 100 99 99 oF		Numbers:			
		Velocity Traverse Data	Pt.6	Initial dP 0.042 0.044 0.046 0.042 0.038 0.044 0.042 0.040 "FL2O	Initial Temp. 102 102 101 101 100 100 99 99 0F		OMNI Equipment Numbers:			

min.

| Model: Century | Tracking Vo. 861 | Project No. 262 | Project No. 265-5-12.3 | Project No. 255-5-12.3 | Project No. 250 | Project No. 29

Stack	Draft In. H2O	-0.038	-0.030	-0.033	-0.035	-0.045	-0.055	-0.065	-0.068	-0.068	-0.068	-0.065	-0.065	-0.063	-0.058	-0.055	-0.050	-0.048	-0.045	-0.043	-0.043	-0.040	-0.040	-0.038	-0.038	-0.038	-0.035	-0.035	-0.033	-0.033	-0.030	-0.047
	Ambient	72	73	73	72	73	72	73	74	72	73	74	74	7.5	73	74	73 .	. 73	72	72	74	74	75	75	75	75	11	77	9/	75	75	
	Impinger exit (2)																															#DIV/0!
	Impinger exit (1)																															#DIV/0i
	Filter I	71	73	73	73	73	73	75	11	78	78	79	79	79	62	78	1.1	9/	92	75	7.4	74	74	74	75	75	52	7.5	75	74	74	75.37
	Filter (1)	71	74	73	73	73	73	7.5	9/	11	78	78	79	78	78	77	76	9/	75	75	74	74	74	75	75	75	75	75	75	75	74	75.20
Data, oF	Stack	249	506	228	235	275	376	463	483	484	482	461	462	435	394	372	338	322	311	300	290	284	281	276	264	258	251	245	238	232	225	
Wood Heater Temperature Data, oF	Average Surface	364.6	308.4	278.2	261.6	255.6	287.8	359.6	404.6	439.4	454.4	458.8	467.0	465.6	455.2	441.6	417.6	398.8	385.2	375.4	363.6	355.6	350.2	346.8	337.6	330.0	321.2	314.6	305.6	300.0	289.4	75
eater Ten	Catalyst Exit																															
Wood H	Firebox (Right	343	285	245	220	211	235	289	345	382	404	420	430	436	429	416	391	372	355	341	331	319	309	305	297	290	282	276	566	259	252	
	Firebox	316	569	232	208	201	214	253	300	337	363	380	392	400	400	393	378	361	347	345	328	322	317	315	306	294	283	274	264	259	252	
	Firebox Back	410	321	278	246	239	266	385	450	520	554	573	869	599	290	280	543	514	864	484	467	458	456	450	433	425	412	404	392	387	362	
	Firebox Bottom	440	425	405	381	361	346	335	329	327	326	326	330	334	340	345	348	350	350	349	347	344	342	340	339	338	336	334	331	327	322	
	Firebox Top	314	242	231	253	266	378	536	599	1631	625	595	585	559	517	474	428	397	376	358	345	335	327	324	313	303	293	285	275	268	259	
ght, lb	Weight Change		-0.1	-0.3	-0.4	-0.6	7	-1.5	-1.5	-1.4	-1.2	-1.2	Ŧ	-0.8	-0.5	-0.5	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	
Fuel Weight, lb	Scale Reading	14.3	14.2	13.9	13.5	12.9	611	10.4	8.9	7.5	6.3	5.1	4.1	3.3	2.8	2.3	2.1	19	1.7	1.5	13	1.1	6.0	8.0	0.7	0.5	0.4	0.3	0.2	0.1	0.0	
	Pro. Rate (10%) (2)		102	103	102	102	101	102	102	102	102	102	101	101	101	100	101	001	100	100	100	100	100	101	100	100	66	66	101	26	66	100.74
-	Dilution Pro. Rate Pro. Rate Tunnel (10%) (10%) dP (1) (2)		86	102	102	101	101	102	102	102	102	101	101	101	101	100	101	101	100	101	100	101	101	101	100	100	100	66	101	66	100	100.75
	Dilution Tunnel dP	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042
	Dilution Tunnel Temp.	101	88	98	98	68	26	109	113	114	114	112	112	110	105	101	86	96	93	92	16	8	25	95	63	8	06	68	87	87	98	28.96
	Meter Vac. In. Hg. (2)	0	-	-	_	_		-	-			-		-	-	-	-	-	-	-	-		-	-	1	_	-	-	-	-	-	
ata	Meter Vac. Meter Vac. In. Hg. In. Hg. (2)	0	-	-	-	_	-	-	-	-	1	1	1	-	1	-	-	-	-	-	-	-	-	-	. 1	-	-	1	-	_	-	
Particulate Sampling Data	Meter oF (2)	75	75	75	75	74	75	75	75	9/	9/	9/	11	11	11	11	11	11	11	11	9/	9/	9/	9/	1.1	1.1	11	2/8	28	78	78	76.33
ulate Sa	Meter oF (1)	75	75	74	74	74	74	74	74	75	75	75	9/	9/	9/	76	9/	9/	9/	75	75	75	75	75	9/	9/	2/2	9/	9/	76	76	75.27
Partic	Orifice dH (2)	0.00	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Orifice dH(1)	0.00	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
	Sample Rate, cfm (2)		0.15	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Sample Rate, cfm (1)		0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Gas Meter Cubic Feet (2)	451.600	453.125	454.675	456.210	457.725	459.225	460.725	462,220	463.715	465.210	466.700	468.190	469.680	471.180	472.670	474.170	475.660	477.155	478.655	480.155	481.650	483.150	484.650	486.145	487.640	489.130	490.625	492.140	493.595	495.092	43.492
	Gas Meter C Cubic Feet C (1)	730.700	732.145	733.650	735.145	736.630		739.570	741.040	742,505	743.970	745.425	746.885	748.340	749.805	751.270	Н	754.220	755.690	757.175	758.650	\vdash	761.615	763.090	-	766.045	Н	, 066.892	770.475	771.935	773.415	42.715
	Elapsed G Time C	0 7	10 7	20 7	30 7	40 7	50 7	60 7	70 7	80 7	90 7	100	110 7	120 7	130	140	150 7	160	170	180 7	190	200 7	210 7	220 7	_	240 7	Н	260 7	270 7	280 7	290 7	Avg/Total 4

Date: 3-02-06

08/07/2000
date.
Effective
5G).xls,
Data-Method 5G,
Test.
Temperature
(Woodstove
-SFG-0004 (Wo
Control No. P

Technician signature:

Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

Client Name:	CFM Vermont Castings	Equipment Numbers:	 Run#:	4
Model:	Century		Train #:	1 .
Project No.:	259-S-12-3		Date:	08/03/06
Tracking No.:	861			

Sample Component	Reagent	Filter# or		Weights	-
		Probe#	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D356	118.4	111.1	7.31
B. Rear filter catch	Filter	D354	117.7	117.3	0.4
C. Probe catch	Probe	ĸ	80663.0	80662.2	0,8

Total Particulate, mg	8.5

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: 161. Morgan Date: 8-7-06

Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

Client Name:	CFM Vermont Castings	Equipment Numbers:	Run#:	4
Model:	Century		 Train#:	. 2
Project No.:	259-S-12-3		Date:	08/03/06
Tracking No.:	861		 •	

Sample Component	Reagent	Filter# or		Weights	
		Probe#	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D355	132.0	124.0	8.0
B. Rear filter catch	Filter	D317	113.8	113.3	0.5
C. Probe catch	Probe	8	76913.1	76912.5	0.6

Total Particulate, mg:	9.1

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: 161. Marga Date: 8-7-06

	R	un Notes	S			
Client	Model: <u>CFM Vermont Castings</u>					
Model	: Century		-			
	t#: <u>259-S-12-3</u> ng Number: <u>861</u>					
Run #	: Date:	8-03-06	-			
Test C	Crew: K. Morgan					
OMNI	Equipment ID Numbers:					
DESCR A	IBE OR SKETCH AIR OR THERMOMS CCURATE AND REPRODUCABLE)	PREBURN STAT SETTIN	GS BELC	W: (SETT	INGS MUST	BE
PRIMA	RY:		SEC	ONDARY:	FIXED	
	1			•		
	OPEN 0,375"		TER ⁻	TIARY:	NONE	
			FAN:		NONE - 1	FAN
<u>_</u>					CONFIRMA	Kart
	PREBURN SET	TINGS ANI	D ACTIV	<u>/ITIES</u>		·
TIME	AIR (THERMO) <u>CHANGES</u> PRIMARY/SECONDARY/TERTIARY	FAN SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	COMMEN
Ø	test setting	CHANGE	TVVI.	- VV I .		
४०		 			×	Levelled
	·					
			:			
	UEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)	<u>TEST</u>	STAI	RT UP PR //A	OCEDURES	
		丁 FU兵		NG Loos		
		í		R: <u>AJA</u>	< 4 min, 3 OPEN 5,0	
	Tonit .	PRI		R: <u>Fully</u>		,
\square	FRONT -	PRI		R: <u>Fully</u> 		•
	FRONT - VIEW FROM LEFT			R: Fully Novle		,
	VIEW FROM LEFT	ОТІ	MARY AI	None		
	VIEW 7000M LEFT IBE OR SKETCH TEST SETTINGS BE	ОТІ	MARY AI HER:	None	ATE AND REPRO	
DESCR	VIEW 7000M LEFT IBE OR SKETCH TEST SETTINGS BE	ОТІ	MARY AI HER: NGS MUST SEC	Nove BE ACCURA	ATE AND REPRO	
DESCR	VIEW 7000M LEFT IBE OR SKETCH TEST SETTINGS BE RY:	ОТІ	MARY AI HER: NGS MUST SEC	BE ACCURA ONDARY:	TE AND REPRO	

Control No. P-SFAK-0004 (Run Notes).doc, Effective date: 12/22/2003

Page 1 of 1

OMNI-Test Laboratories, Inc.	۲ \
Beaverton, OR	

FUEL DATA

NI Equipment ID #:	Test Crev	v: <u>K • Mor</u> g	/AN	71. N	Run #:	
NI Equipment ID #: LL LOAD PREPARI	ED BY: K. Worg	AN	ius			
L: DOUGLAS-FI ENSIONAL LUME	R SPECIES, UNT	REATED, A	IR-DRIED, S	STANDARD	GRADE OR BE	TTER,
	LIX.					
) (Atomic		BURN FUE	_		1
CALIBRATION:	Cal Value (1) =	RE CONTE. 12%	NT (METER Actual Read	ing 12.0	. <u>SiS)</u>	\
	Cal Value (2) =	22%	Actual Read	ing 22.0		
<u>Piece</u>	<u>Length</u>		Readings		Type	\
1		20.7	216	21.7	2×4	
2 3	_8 _ft ft	20,5	20,5	20.6	224	_
						
Length of cut piec	es: inch	es	Pre-Bur	n Fuel Averag	ge Moisture:	20.93%
Time (clock):O	7:30 Room To	emperature (F): 70	Initials:	14	_
		. TI	EST FUEL			
UEL TYPE AND A	MOUNT:	TI 2 × 4 3	ST FUEL	4×4	2	······
UEL TYPE AND A ALCULATED LOA	MOUNT:	TI 2×4 _ 3 /5.4	ACTUAL	4×4 LOAD WEIG	Z EHT: 6.5	(2 × 4)
UEL TYPE AND A ALCULATED LOA UEL PIECE LENG	MOUNT: 2 D WEIGHT: 4	TI 2 × 4 <u>3</u> 1 5.4 5" 14 16.0	ACTUAL	4×4 LOAD WEIG	2 HT: 6.5 7,8	(2 × 4) (4 × 4) Total
UEL TYPE AND A ALCULATED LOA UEL PIECE LENG		2 × 4 <u> </u>	ACTUAL:			(2 × 4) (4 × 4) Total
UEL TYPE AND A ALCULATED LOA UEL PIECE LENG		2 × 4 <u> </u>	ACTUAL:	4×4 LOAD WEIG		(2 × 4) (4 × 4) Total
UEL TYPE AND A ALCULATED LOA UEL PIECE LENG PIEC	MOISTU	2 × 4 <u>3</u> / 5.4 5" / 6 / 6 / 6	ACTUAL:			(2 × 4) (4 × 4) Total
	<u>MOISTUI</u> E	2 × 4 3 / 5 . 4 5 " / 6 / 16 / 0 RE CONTER	ACTUAL: " NT (METER DINGS	–– DRY BA	SIS) TYPE	(2 × 4) (4 × 4) Total
	<u>MOISTUI</u> E	2 × 4 3 / 5 . 4 5 " / 6 / 16 / 0 RE CONTER	ACTUAL: " NT (METER DINGS	–– DRY BA	SIS) TYPE	(2 × 4) (4 × 4) Total
<u> PIE.0</u> 1	<u>MOISTUI</u> E	2 × 4 3 / 5.4 5" / 6 / 16.0 RE CONTEN REA 2	ACTUAL	–– DRY BA	SIS)	(2 × 4) (4 × 4) Total
PIEG 1 2 3 4	MOISTU E 	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 2 / 9 4 / 9	ACTUAL " NT (METER DINGS 7.6 7.5	DRYBA 19.5 19.6 19.5 19.5	SIS) TYPE 2×4 2×4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5	MOISTU E /9; /9;6 /9;6	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 2 / 9 4 / 9	ACTUAL " NT (METER DINGS 7.6 7.5	DRYBA 19.5 19.6 19.5	SIS) TYPE 2x4 2x4 2x4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5	MOISTU E 	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 2 / 9 4 / 9	ACTUAL " NT (METER DINGS 7.6 7.5	DRYBA 19.5 19.6 19.5 19.5	SIS) TYPE 2x4 2x4 2x4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5 6 7	MOISTU E 	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 2 / 9 4 / 9	ACTUAL " NT (METER DINGS 7.6 7.5	DRYBA 19.5 19.6 19.5 19.5	SIS) TYPE 2x4 2x4 2x4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5 6 7	MOISTU E 	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 2 / 9 4 / 9	ACTUAL " NT (METER DINGS 7.6 7.5	DRYBA 19.5 19.6 19.5 19.5	SIS) TYPE 2x4 2x4 2x4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5 6 7 8	MOISTU E 	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 2 / 9 3 / 9	ACTUAL " NT (METER DINGS 7.6 7.5	DRYBA 19.5 19.6 19.5 19.5	SIS) TYPE 2x4 2x4 2x4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5 6 7 8 9	MOISTU	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 5 / 9	ACTUAL " NT (METER DINGS 7.6 7.5 1.0 7.5	DRYBA 19.5 19.6 19.5 19.5 19.5	TYPE 2x4 2x4 2x4 4x4 4x4	(2 × 4) (4 × 4) Total
PIEC 1 2 3 4 5 6 7 8 9	MOISTU E 	2 × 4 3 / 5.4 5" / 6 / 16.0 RECONTER REA 2 / 9 5 / 9	ACTUAL " NT (METER DINGS 7.6 7.5 1.0 7.5	DRYBA 19.5 19.6 19.5 19.5 19.5	SIS) TYPE 2x4 2x4 4x4	(2 × 4) (4 × 4) Total

		Supple	mental [Data EPA	.5G/5H		
Client:	CFM Vermor	nt Castings					
Model:	Century						
Project	No.: <u>259-S-1</u>	12-3	Tracking N	lo.: <u>861</u>			
Date: _	08-03-06			Run No	o.: <u>4</u>	Booth:	2 B
Test C	rew: K. Morga	an		Start Ti	me: <u>10:05</u>	Stop Time:	14:55
OMNI	Equipment #'	s:			-		
Gas Ar	nalyzer Train	l eak Chack					
	Stack:	LCAR OTICCR		ıtion Tunnel	(Method 5G	: Only):	
					-		
	Final:	N/A	_	E	inal: N/A		
Calibra	Initial: Final: tions: Span (Gas CO ₂ .	 	· N/A ·	CO: N/4	CO _c (DT):	MA
	and opan	Jug 00 ₂ .	<u></u>	<u>, </u>	50. <u>1911 </u>	OO ₂ (D1)/	
	N ₂ Span	N ₂ Span	N ₂ Span	N ₂ Span	N₂ Span	N ₂ Span	N ₂ Sp
Time							
O ₂							
CO ₂				N/A		-	
co							· · · · · · · · ·
CO ₂ (DT)							
Stack [Diameter (incl	hoo):	<i>(-</i> 0)		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	ocity (ft/min):			——Einol:	. = 5		
	Audit (lbs.):						
	d Draft:	•			· ·		
	ube Leak Tes						_
	pe Cleaned F						
	,						
		Init	ial	Mic	idle	End	ding
Pb (i	n. Hg)	. 29	.30	29,35	5	29	,38
Room T	emp (°F)	7:	2_	73		75	•
	cian signature		11		Date:		

Run 5

Wood Heater Test Data - EPA Method 5G

Manufacturer: CFM Vermont Castings

Model: Century Project No.: 259-S-12-3 Tracking No.: 861

Run: 5 Test Date: 08/03/06

Burn Rate	2.68 kg/hr dry
Average Tunnel Temperature	157 degrees Fahrenheit
Average Gas Velocity in Dilution Tunnel - vs	16.7 feet/second
Average Gas Flow Rate in Dilution Tunnel - Qsd	9140.9 dscf/hour
Average Delta p	0.053 inches H20
Average Delta H	0.08 inches H20
Total Time of Test	130 minutes

	AVERAGE	SAMPLE TRAIN 1	SAMPLE TRAIN 2
Total Sample Volume - Vm Average Gas Meter Temperature Total Sample Volume (Standard Conditions) - Vmstd	13.94 cubic feet 80 degrees Fahrenheit 13.4 dscf	13.80 cubic feet 80 degrees Fahrenheit 13.2 dscf	14.08 cubic feet 80 degrees Fahrenheit 13.6 dscf
Total Particulates - mn Particulate Concentration (dry-standard) Particulate Emission Rate Adjusted Emissions	0.00020 grams/dscf 1.87 grams/hour 3.06 grams/hour	2.5 mg 0.00019 grams/dscf 1.73 grams/hour 2.86 grams/hour	3 mg 0.00022 grams/dscf 2.02 grams/hour 3.26 grams/hour
Difference from Average 7.5% of the average emission rate Weighted Average Emission Rate Limit 7.5% of the weighted average emission rate limit	0.23 4.10 grams/hour 0.31	0.20 grams/hour	0.20 grams/hour
	F	Results Are Acceptab	ile

Run 5

Wood Heater Test Data - EPA Method 5G

		"H20	oF.	
	Pt.8	0.052	160	
	Pt.7	0.054	160	
	Pt.6	0.054	160	
se Data	Pt.5	0.052	191	
y Travers	Pt.4	0.052	161	
Velocit	Pt.3	950.0	161	
	Pt.2	0.054	162	
	Pt.1	0.050	162	
		Initial dP	Initial Temp.	

OMNI-Test Laboratories, Inc.

14 f. Warg. 8-28-0	ec.	E	В		i@"Hg	i@"Hg	20.26	2.5	3.0	Stack	Draft In	HZO	-0.068	-0.083	-0.088	-0.090	-0.088	-0.083	-0.078	-0.075	-0.070	-0.068	-0.063	-0.060	-0.058	-0.053	-0.073
Mors	16.70 ft/sec.	151.8 scfm	152.3 scfm	0.1883 ft2	0@3 cfm@"Hg	0@3 cfm@"Hg	sis %):	(1);	te (2):		┝	Ambient	78	- 11	- 11	75	- 21	- 22	- 22	- 11	- 9/	75	- 9/	- 9/	- 9/	- 92	
Å.	Ш	_				<u>.</u> 3	Fuel Moisture (dry basis %):	Total Particulate (1)	Total Particulate (2):		<u> </u>												_				IV/01
Signature/Date:	Tunnel Velocity:	Intial Tunnel Flow:	Average Tunnel Flow:	Tunnel Area:	Post-Test Leak Check (1):	Post-Test Leak Check (2):	Fuel Moist				inger Im	exit (1) exit (2)								_							#DIV/0! #DIV/0!
Signatur	T.	Inti	Aven		Post-Test	t-Test	(2)	Average	29.41 "Hg		Tiltar Imm		08	72	71	71	70	69	99	65	63	63	19	99	09	09	66.50 #D
								٦,	29.42 2		Tiltar T		18	72	7.1	71	70	69	89	1.9	65	65	2	26	64	65	68.29
		/lb-mole	/lb-mole	ercent	H20			Middle	29.42	ata, oF		Stack	425	593	723	782	741	634	595	555	105	473	448	415	393	360	
	010,020	29.00 lb/lb-mole	28.56 lb/lb-mole	4.00 percent	-0.230 "H2O	0.99	(1) 2660		29.40	Wood Heater Temperature Data, oF	A	Surface	445.8	420.6	466.0	537.6	524.0	506.6	487.2	472.0	452.2	438.2	414.4	393.6	372.2	354.0	92
	Module:	fW(dry):	IW(wet):	nel H20:	el Static:	Pitot Tube Cp:	Y Factor:	ressure:		leater Ten	tortoto	Exit															
	PM Control Module:	Dilution Tunnel MW(dry):	Dilution Tunnel MW(wet):	Dilution Tunnel H2O:	Dilution Tunnel Static:	Pitot.	Meter Box Y Factor:	Barometric Pressure:		Wood H	Direction		461	378	402	459	507	202	486	468	453	434	418	403	379	354	
		Diluti	Diluti	1	Q			-			Timbox		425	353	353	404	461	485	478	460	435	413	398	380	364	346	
				"H2O	Dz.						Direkov	Back	318	332	391	563	415	411	415	412	418	431	391	357	321	301	
			Pt.8	0.052	160 oF						Dirahan	Воттош	999	542	209	482	461	449	439	428	419	412	408	404	407	409	
			Pt.7	0.054	160						Lirehov	Top	465	498	675	780	9//	189	618	265	536	501	457	424	390	360	
			Pt.6	0.054	160					Fuel Weight, Ib	Weight	Change		-1.6	-2.7	-2.8	-2.3	-1.5	-1.3	6.0-	9.0-	9.0-	-0.4	-0.3	-0.2	-0.2	
		e Data	Pt.5	0.052	161					 Fuel W	Cools	Reading	15.4	13.8	11.1	8.3	6.0	4.5	3.2	2.3	1.7	1.1	0.7	0.4	0.2	0.0	
		Velocity Traverse Data	Pt.4	0.052	161						Pro. Rate	(10%)		104	107	106	103	101	100	101	100	100	96	86	86	<i>L</i> 6	100.76
	٠	Veloci	Pt.3	950.0	161						Dilution Pro. Rate Pro. Rate	(10%)		102	103	102	88	86	86	104	102	101	66	100	100	100	100.71
			Pt.2	0.054	162						Dilution	Tunnel dP	0.053	0.053	0.053	0.053	0.053	0.053	0.053	6.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053
			Pt.1	0.050	162		Numbers:				Dilution	Tunnel Temp.	191	157	185	200	194	182	165	174	148	138	131	125	121	114	156.78
				Initial dP	Initial Temp.		OMNI Equipment Numbers:				Meter Vac.	in Hg	0	-	1	-	_	-	1	1	1	1	1	1	1	1	
		****					SWO O			ata	Meter Vac.	ы. (Э)	0	1	1	-	-1	1	1	1	1	1	1	1	1	1	
								ı		Particulate Sampling Data	-	^{મું} છે	83	82	81	81	82	81	81	81	80	80	- 62	19	78	78	80.43
		٠								ulate Sa	Y	% E	82	81	81	. 81	18	80	80	79	13	79	78	78	77	77	79.50
	1			 I				٠.		Partic	Orifice	dH (2)	0.00	0.09	60:0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.08
		i					min	min.		ı	Orifice		0.00	0.09	0.09	0.09	60:0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0:08
	ont Castings										Sample	Rate, cfin (2)		0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
	CFM Verm	Century			□ [- 1		130			Sample	Rate, cfin (1)		0.11	0.11	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
_	Manufacturer: CFM Vermont Castings	Model:	Tracking No.:	Project No.:	Test Date:	Beginning Clock 1 me.	Recording Interval:	Total Sampling Time:				Cubic Feet (2)	495.500	496.625	497.750	498.850	499.930	500.995	502.060	503.130	504.210	505.300	506.350	507.430	508.505	509.578	14.078
S	Σ		F			Beginning	Record	Total San			Gas Meter	Cubic Feet (1)	774.300	775.375	776.435	777.480	778.500	779.515	780.555	781.630	782.715	783.795	784.860	785.940	787.015	788.098	13.798
Run:											Elapsed	Time	0	01	70	30	40	20	99	0,	08	8	100	110	120	130	Avg/Total

STOVE TEMPERATURE TEST DATA - METHOD 5G

OM it La pries

Beaverton, OR Phone (503) 643-3788

ਰੱ

Page

Tracking #: 861 Project #: 259-S-12-3_ Client/Model: CFM Vermont Castings_____

Run #: Test Crew: K. Mongan Date: 08-03-04

OMNI Equipment ID #:

Preburn [A	'n Ž			Coal Bed:						Actual:	
Test				Data:	II 0	_	Range: 3	3,1-3,8	Ŏ	Coal Bed:	is in
	Fuel	Delta	Stack			<u> </u>	TEMPERATURES (oF	URES (oF			Not Useo
Time	Weight	Weight	Draft	Ambient	⊬ do⊥	Bottoma	Back 7	Left 6	Right 5	Flue 3	Catalys t
0	26.7		580'-	12	029	310	426	403	165	115)
10	18,0	2,7	-,090	76	756	404	283	386	403	767	
20	8/4/	3,2	260'-	91	498	421	308	365	431	258	
30	11.4	3,4	560'-	77	921	479	358	379	11.17	860	
40	8,3	5,(-,095	78	076	818	465	8//7	223	838	
50	5,7	7'8	5601-	18	768	54H	545	455	553	839	
90	4,(91/	-,083	18	743	267	200	509	557	626	/
70	3.7	h'0	-,073	77	545	855	366	454	364	493	
74 80	3,5	2,0	-,068	78	74h	260	329	435	124	430	
90											
00											
10											
20											
30											
40											//
. 50											Z
90											
70											
80				-	-						
06									.		
AVG					*						

4 - 4 2

OF 4 - 4 7

Technician signature:

Date: 8-03-06

Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

Client Name:	CFM Vermont Castings	Equipment Numbers:	Run#:	5
Model:	Century		Train #:	1
Project No.:	259-S-12-3		Date:	08/03/06
Tracking No.:	861		•	

Sample Component	Reagent	Filter#or		Weights	
		Probe#	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D318	126.0	123.7	2.3
B. Rear filter catch	Filter	D325	111.8	111.5	0.3
C. Probe catch	Probe	Н	91534.2	91534.3	-0,1

	
Total Particulate, mg:	2.5

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst: 1h 1. Morga Date: 8-7-06

OMNI-Test Laboratories, Inc.

Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

Client Name:	CFM Vermont Castings	Equipment Numbers:	 Run#:	5
Model:	Century		 Train #:	2
Project No.:	259-S-12-3		 Date:	08/03/06
Tracking No.:	861	-		

Sample Component	Reagent	Filter # or		Weights	
		Probe #	Final, mg	Tare, mg	Particulate, mg
A. Front filter catch	Filter	D319	123.6	121.2	2.4
B. Rear filter catch	Filter	D326	128.4	127.2	1.2
C. Probe catch	Probe	K	92571.2	92571.8	-0.6

Total Particulate, mg:	3.0

Component	Equations:
A. Front filter catch	Final (mg) - Tare (mg) = Particulate, mg
B. Rear filter catch	Final (mg) - Tare (mg) = Particulate, mg
C. Probe catch	Final (mg) - Tare (mg) = Particulate, mg

Analyst:

Morg.

Date: 8-/

Lab 5 Train 2.xls

-	Rı	ın Notes)			
Client/	Model: <u>CFM Vermont Castings</u>					
Model:	Century					
	t #: <u>259-S-12-3</u> ng Number: <u>861</u>					
	<u>5</u> Date:	1-03-06				
Test C	rew: <u>K. Morgan</u>					
OMNI	Equipment ID Numbers:					
	<u>F</u> IBE OR SKETCH AIR OR THERMOMS CCURATE AND REPRODUCABLE)	PREBURN TAT SETTING	GS BELC	W: (SETT	INGS MUST	BE
PRIMA	RY:	7	SEC	ONDARY:	FIXED	
	+ 11. Dar.1		TER*	ΓIARY:	NONE	
	Fully OPEN					1
			FAN:		ON - Hig	rh
L	PREBURN SET	- <u>TINGS ANI</u>	O ACTIN	<u>/ITIES</u>		
TIME	AIR (THERMO) <u>CHANGES</u> PRIMARY/SECONDARY/TERTIARY	FAN SETTING CHANGE	ADD FUEL + WT.	ADD FUEL - WT.	RAKE COAL	СОММЕ
B	test setting	01114102				
53					_ × -	>TIR -Levelled
72						
		TEST				
	UEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)	RVI	STAI PASS:	RT UP PR	OCEDURES	
	(ITOIO) TE VIETVITOLE)		EL LOADI	NG Load		Sec.
K	7	PRI	DOC MARY AI	R: AJAR R: Fully	contil 3	ration of
\rightarrow	FRONT->			test.	7	
\leftarrow	VIEW FROM	ОТІ	HER:	NONE	•	
DESCR PRIMAR	IBE OR SKETCH TEST SETTINGS BE RY:	LOW: (SETTIN			ATE AND REPR	
	•		TER	TIARY:	None	
	E 11					
	Fully open.		FΔN	•	OFF 1ST	30 ILATAI
	Fully open.		FAN	:	OFF 1st ON-High	30 min, Remainder

Beaverton, OR	
FUEL DATA	
Client: CFM Vermont Castings	
Model: Century	
Project #: <u>259-S-12-3</u> Tracking #: <u>861</u>	
· ·	Run#: 5
OMNI Equipment ID #:	· · · · · · · · · · · · · · · · · · ·
FUEL: DOUGLAS-FIR SPECIES, UNTREATED, AIR-DRIED, STANDARD	O GRADE OR BETTER.
DIMENSIONAL LUMBER.	
PRE-BURN FÚEL	
MOISTURE CONTENT (METER DRY B	ASIS)
CALIBRATION: Cal Value (1) = 12% Actual Reading 12.0 Cal Value (2) = 22% Actual Reading 22.0	<u> </u>
	
Piece Length Readings 1 8 ft 20.4 20.6 19.0	Type
2 <u>8</u> ft <u>19.9</u> 21.0 <u>19.1</u>	<u>z x 4</u>
3 8 ft 2010 2415 23.6	_ <u> </u>
Length of cut pieces: inches Pre-Burn Fuel Aver	age Moisture: 20,9 1/
Length of cut pieces: inches	
Time (clock):/3;40 Room Temperature (F):75 Initials:	<u> </u>
Time (clock):/3;4/0	<u>/</u> K
Time (clock):	Z IGHT: 7.1 (2×4) 8.3 (4×4)
Time (clock):	Z IGHT:
Time (clock):	Z
Time (clock):/3;40 Room Temperature (F):75 Initials:	Z IGHT: 7.1 (2×4)
Time (clock):	Z IGHT: 7.1 (2×4)
Time (clock):	Z IGHT: 7.1 (2×4)
Time (clock):	Z IGHT: 7.1 (2×4)
Time (clock):	Z IGHT: 7.1 (2×4)
Time (clock):	Z IGHT: 7.1 (2×4)
Time (clock):/3;40 Room Temperature (F):75 Initials:	Z IGHT: 7.1 (2×4)
Time (clock):/3;40	Z IGHT: 7.1 (2×4)

Date: _ Technician signature:

OVERALL TEST FUEL LOAD MOISTURE AVERAGE: 20.26 %

Room Temperature (F): ________

Time (clock): /3:45

	OR	Supple	mental F	Data EPA	5G/5H		
			anontal E	odu Li A	30/3/1		
	CFM Vermo	nt Castings					
	Century				-		
	No.: <u>259-S-</u>		Tracking N	·			
						Booth:	
						Stop Time:	19:40
OMNIE	-quipment #	s:			········		
Gas An	alyzer Train	Leak Check	•				
5	Stack:		Dilu	ıtion Tunnel	(Method 5G	GOnly):	
	Initial:			in	itial:		
•	Final:	NA		Fi	itial:/	A	
Calibrat				2: <u>N/A</u> (CO: <u>~/</u> #	CO ₂ (DT):	N/A
	F						
	N ₂ Span	N₂ Span	N ₂ Span	N₂ Span	N₂ Span	N ₂ Span	N ₂ S
Time					<u>.</u>		
O ₂							
CO ₂			N/A	1			
CO							
CO ₂ (DT)		hae\·	6.0				
	iameter (inc	1103).					
Stack D	liameter (inc		< 50	Final:	450		
Stack D Air Velo	city (ft/min):	Initial: Pretest: _					
Stack D Air Velo Scale A	city (ft/min): udit (lbs.):	Initial: Pretest: _	10.0	Post Te	st:	3	
Stack D Air Velo Scale A Induced	city (ft/min): udit (lbs.): l Draft:	Initial:	%S	Post Te moke Captu	st: <u>/0,0</u> ıre: <u>/0,0</u>))	
Stack D Air Velo Scale A Induced Pitot Tu	city (ft/min): udit (lbs.): l Draft: be Leak Tes	Initial: Pretest: _ & t: Pre: _&	/0,0 %S @ 3.1"w.e	Post Te moke Captu P	st: <u>/0,0</u> ure: <u>/00</u> ost: Ø @ 3))	- - 1L
Stack D Air Velo Scale A Induced Pitot Tu	city (ft/min): udit (lbs.): l Draft: be Leak Tes	Initial: Pretest: _ & t: Pre: _&	/0,0 %S @ 3.1"w.e	Post Te moke Captu P	st: <u>/0,0</u> ure: <u>/00</u> ost: Ø @ 3)) 3.3"W.C.	- - 1 <u>L</u>
Stack D Air Velo Scale A Induced Pitot Tu	city (ft/min): udit (lbs.): l Draft: be Leak Tes	Initial: Pretest: _ & t: Pre: _& Prior to First	/0,0 %S @ 3.1"w.e	Post Te moke Captu Pes: Date:	st: <u>/0,0</u> ure: <u>/00</u> ost: Ø @ 3)) 3.3"W.C.	- · ·
Stack D Air Velo Scale A Induced Pitot Tu Flue Pip	city (ft/min): udit (lbs.): l Draft: be Leak Tes	Initial: Pretest: _ & t: Pre: _& Prior to First	/0.0 %S @ ౩.١″ພ.౿ Test in Serie	Post Te moke Captu Pes: Date:	st: <u>/0,0</u> ire: <u>/00</u> ost: <u>\$ @ 3</u> 7-29-06	o s.s″ω,ε. Initials:,	ding
Stack D Air Velo Scale A Induced Pitot Tu Flue Pip	city (ft/min): udit (lbs.): I Draft: be Leak Tes be Cleaned I	Initial: Pretest: _ ot: Pre: Prior to First	/0.0 — %S @ ౩.١″ພ.ల Test in Serie	Post Te moke Captu Pes: Date: Mic	st: <u>10.0</u> ure: <u>10.0</u> ost: <u>\$ @ 3</u> 7-29-06 Idle	Initials:	ding

Model: Century
CFM - Vermont Castings
62 Vermont Castings Road
Bethel, VT 05032

Section 5

Sampling Procedures and Test Results

INTRODUCTION

CFM – Vermont Castings retained *OMNI* to perform U.S. Environmental Protection Agency (EPA) certification testing on the model Century wood stove. The Century wood stove is a non-catalytic, freestanding, radiant-type room heater. The firebox is constructed of mild steel. The usable firebox volume was measured to be 2.2 cubic feet. The stove is vented through a 6" diameter flue collar located at the top of the unit.

The testing was performed at CFM – Vermont Castings' testing facility in Bethel, Vermont. The altitude of the laboratory is 573 feet above sea level. The unit was in good condition and was assigned and labeled with *OMNI* ID #861. *OMNI* representative Ken Morgan conducted the certification testing and completed all testing by August 3, 2006. The EPA was notified of the testing dates in a letter dated July 14, 2006. A testing contract, including provisions for Random Compliance Audit (RCA) testing, has been signed by Mark Champion of CFM – Vermont Castings and is on file at *OMNI*'s testing facility.

The Century wood stove was tested in accordance with the U.S. EPA 40 CFR Part 60, Subpart AAA – Standard of Performance for Residential Wood Heaters (Appendix A, Methods 28 and 5G). Particulate emissions were measured using a Method 5G sampling train consisting of two filters (front and back). The weighted average emissions of the five test runs included in the results indicate a particulate emission level of 3.5 grams per hour. Run #4, a fan confirmation test run, was performed and was not used in the weighted average emission results. Test runs were conducted in each of three burn rate categories (0.80-1.25 kg/hr, 1.25-1.90 kg/hr, and maximum). Emissions for each of their individual test runs did not exceed the cap. The Century results are within the emission limit of 7.5 grams per hour for non-catalytic affected facilities manufactured on or after July 1, 1990, or sold at retail on or after July 1, 1992.

The wood heater was sealed after completion of testing in compliance with the EPA regulation as follows:

- "DO NOT TAMPER" labels were placed on the door and all other openings.
- Plastic material sealed with "DO NOT TAMPER" labels and tape was wrapped around the unit.
- The unit was sealed in a wood box constructed for the unit and secured with steel banding.
- "DO NOT TAMPER" labels were placed on all outer surfaces of the box.

This report is organized in accordance with the EPA-recommended outline and is summarized in the Table of Contents immediately preceding this report.

Table 1.1 - Particulate Emissions

Run	Burn Rate (kg/hr dry)	Method 5G Emissions (g/hr)
1	0.98	3.38
2	1.18	4.21
3	1.61	3.08
5 ighted particulate emi	2.68	3.06

Table 1.2 – Test Facility Conditions

		Room Temperature (°F)		Pressure g)	Air Ve (ft/n	
Run	Before	After	Before	After	Before	After
1	74	74	29.47	29.39	<50	<50
2	72	74	29.40	29.40	<50	<50
3	82	76	29.39	29.26	<50	<50
5	78	76	29.40	29.42	<50	<50

Table 1.3.1 – Fuel Measurement and Crib Description Summary – PRETEST

Run	Pretest Fuel Weight (Starting weight in lbs)	Pretest Moisture (Dry basis - %)	Coal Bed Weight (lbs)
1	10.1	19.4	3.3
2	10.6	20.4	3.2
3	13.5	20.6	3.5
5	20.7	20.9	3.5

Table 1.3.2 - Fuel Measurement and Crib Description Summary - TEST

Run	Test Fuel – Wet Basis (lbs)	Firebox Volume (ft³)	Fuel Loading Density – Wet Basis (lbs/ft³)	Fuel Moisture Content – Dry (%)	Piece Length (in)	2x4s Used	4x4s Used
1	14.6	2.2	6.64	19.6	16.0	3	2
2	14.1	2.2	6.41	20.0	16.0	3	2
3	14.2	2.2	6.45	19.9	16.0	3	2
5	15.4	2.2	7.00	20.3	16.0	3	2

Table 1.4 - Dilution Tunnel Gas Measurements and Sampling Data Summary

		Average Dilution Tunnel Gas Measurements					
Run	Length of Test (min)	Velocity (ft/sec)	Flow Rate (dscf/min)	Temperature (°F)			
1	340	14.5	148.8	89.6			
2	270	14.3	144.4	96.8			
3	200	15.6	151.2	117.2			
5	130	16.7	152.3	156.8			

Table 1.5 - Heater Operation Data (Average Temperature Data)

1		111	
	334.6	261.4	73
2	347.6	269.6	78
3	385.0	303.2	82
5	445.8	354.0	92

Table 1.6 – Pretest Configuration

Run	Combustion Air	Fuel Added	Fuel Removed (lbs)	Time (min)
1	Fully Closed	10.1 lbs at start; no addition; coal bed 3.3 lbs	0.3	83
2	Open 0.375"	10.6 lbs at start; no addition; coal bed 3.2 lbs	0.0	90
3	Open 0.750"	13.5 lbs at start; no addition; coal bed 3.5 lbs	0.0	90
5	Fully Open	20.7 lbs at start; no addition; coal bed 3.5 lbs	0.0	74

Table 1.7 - Run Data

Run	Average Dry Burn Rate (kg/hr)	Initial (Induced) Draft (H₂O)	Primary Air Setting	Run Time (min)	Average Draft (H ₂ O)
1	0.98	0	Fully Closed	340	-0.039
2	1.18	0	Open 0.375"	270	-0.046
3	1.61	0	Open 0.750"	200	-0.059
5	2.68	0	Fully Open	130	-0.073

Table 1.8 – Test Configurations

Run	Five-Minute Startup	Combustion Air
Itali		Continuation Air
1	Bypass: N/A. Fuel Loading: Loaded by 104 seconds. Door: Closed at 3.0 minutes. Primary Air: Fully open until 5.0 minutes. Other: None. Secondary: Fixed. Tertiary: None. Fan: Off for first 30.0 minutes; on Low for remainder of test.	Fully Closed
2	Bypass: N/A. Fuel Loading: Loaded by 1.5 minutes. Door: Ajar until 3.0 minutes. Primary Air: Abruptly closed at 5.0 minutes. Other: None. Secondary: Fixed. Tertiary: None. Fan: Off for first 30.0 minutes; on Low for remainder of test.	Open 0.375"
3	Bypass: N/A. Fuel Loading: Loaded by 1.25 minutes. Door: Ajar until 3.0 minutes. Primary Air: Fully open until 5.0 minutes; abruptly set to test setting at 5.0 minutes. Other: None. Secondary: Fixed. Tertiary: None. Fan: Off for first 30.0 minutes; on High for remainder of test.	Open 0.750"
5	Bypass: N/A. Fuel Loading: Loaded by 70 seconds. Door: Ajar until 3.5 minutes. Primary Air: Fully open for duration of test. Other: None. Secondary: Fixed. Tertiary: None. Fan Off for first 30.0 minutes; on High for remainder of test.	Fully Open

		•			•	
Model: Century CFM – Vermont Casting 62 Vermont Castings Ro	ış ad					
Bethel, VT 05032 TEST RESUL		ISSION				
A total of five to conducted in the results: two in the one at maximum	est runs were per following cates ae 0.80 to 1.25 k	rformed on the (gories and includ	ded in the we	ighted average	emission lev	el
The weighted pa	rticulate emissi	on level was me	easured to be	3.5 g/hr.		
The proportiona test run are prese	lity results for a	ll five test runs ? 2 of this report.	were acceptal	ole. Quality ch	eck results fo	or each
				·		
					•	
				-		