

# **TEST REPORT**

## **SCOPE:** EMISSIONS AND OUTPUT

# FUEL: EPA TEST FUEL (CRIBS)

## TEST STANDARD: EPA

## **MODEL:** SOLUTION 2.5 ZC WOOD FIREPLACE

Notice to reader: Our Solution 2.5 ZC wood fireplace was tested as part of our Monaco 2008 firebox. Therefore, the Monaco 2008 is referenced throughout the attached test report.



# **Certification Test Report Stove Builder International**

Wood Fireplace Insert Model: Monaco 2008

Report Number: 338-F-68-3

Part 1 of 2

OMNI-Test Laboratories, Inc. Product Testing & Certification

Mailing: Post Office Box 743 Street: 5465 SW Western Avenue • Suite G Beaverton, Oregon 97075 USA

1



Phone: (5 Fax: (5

(503) 643-3788 (503) 643-3799

## **Certification Test Report**

## Stove Builder International Wood Fireplace Insert Model: Monaco 2008

| • .                 |                                                                                                          |
|---------------------|----------------------------------------------------------------------------------------------------------|
| Prepared for:       | Stove Builder International<br>1700, Léon-Harmel<br>Québec (Québec), Canada<br>G1N 4R9                   |
| Prepared by:        | OMNI-Test Laboratories, Inc.<br>5465 SW Western Avenue, Suite G<br>Beaverton, OR 97005<br>(503) 643-3788 |
| Test Period:        | December 11, 2007 through December 13, 2007                                                              |
| <b>Report Date:</b> | January 2008                                                                                             |
| Report Number:      | 338-F-68-3                                                                                               |

All data and information contained in this report are confidential and proprietary to Stove Builder International. Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from Stove Builder International and OMNI-Test Laboratories, Inc. No use of the OMNI-Test Laboratories, Inc. name, logo, or registered mark (O-TL) is permitted, except as expressly authorized by OMNI-Test Laboratories, Inc. in writing.

i of iii

\* · · ·

A STREET

A STOCKER AND

C211/2/10/2014/2010

To the second

-wight Chiefe

## **AUTHORIZED SIGNATORIES**

This report has been reviewed and approved by the following authorized signatories:

M

Alana Smith, Senior Manager OMNI-Test Laboratories, Inc.

John Voorhees, Technical Services Director OMNI-Test Laboratories, Inc.

. ///org

Ken Morgan, Emissions Testing Technician OMNI-Test Laboratories, Inc.

.

1.000

and a contract

and Second

and the second

2

## TABLE OF CONTENTS

|       | PREFACE                                                                                                                                                                            | (3 pages)                                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1.    | FUEL PHOTOGRAPHS/APPLIANCE DESCRIPTION/DRAWINGS<br>Fuel Photographs<br>Appliance Description<br>Manufacturer Design Drawings (K List)<br>Manufacturer Design Drawings (Remainder). | 1-3<br>1-6<br>1-7                                                                                                |
| 2.    | QUALITY ASSURANCE/QUALITY CONTROL<br>Sample Analysis<br>Calibrations – Methods 28 and 5G<br>Example Calculations                                                                   |                                                                                                                  |
| 3.    | MANUFACTURER OWNER'S MANUAL                                                                                                                                                        | 3-1 (39 pages)                                                                                                   |
| 4.    | TEST DATA BY RUN<br>Run 1<br>Run 2<br>Run 3<br>Run 4<br>Run 5                                                                                                                      |                                                                                                                  |
| 5.    | SAMPLING PROCEDURES AND TEST RESULTS<br>Introduction                                                                                                                               |                                                                                                                  |
| · · · | Table 1.1 - Particulate Emissions Results                                                                                                                                          |                                                                                                                  |
|       | Table 1.2 - Test Facility Conditions         Table 1.3.1 - Fuel Measurements and Crib Descriptions - Pretest                                                                       |                                                                                                                  |
|       | Table 1.3.2 - Fuel Measurements and Crib Descriptions - Teest         Table 1.3.2 - Fuel Measurements and Crib Descriptions - Test                                                 |                                                                                                                  |
|       | Table 1.4 - Dilution Tunnel Gas Measurements and Sampling Data                                                                                                                     |                                                                                                                  |
|       | Table 1.5 - Heater Operation                                                                                                                                                       |                                                                                                                  |
|       | Table 1.6 - Pretest Configurations                                                                                                                                                 |                                                                                                                  |
| · ·   | Table 1.7 - Run Data      Table 1.8 - Test Configurations                                                                                                                          |                                                                                                                  |
|       | Test Results and Discussion                                                                                                                                                        |                                                                                                                  |
|       |                                                                                                                                                                                    | and the second |

in a second

i.

and the second

at a second

------

·

-----

## Section 1

## **Fuel Photographs/Appliance Description/Drawings**

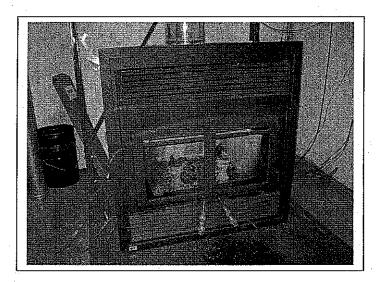
1-1 of 1-153

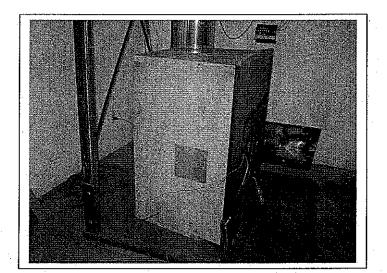
And the state of t

601012357012500

Conversion of

WINDOWSKI I


bolivantivosta


A Second Street

Contraction of the second

.

## Stove Builder International Monaco 2008 Test Dates: December 11, 2007 through December 13, 2007





OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Omnisrv\users\Testing\SBI - Stave Builder International\338-S-68-3 Monaco 2008\338-F-68-3 1-2 of 1-153

AND AM GRADON .

- ANDRET-MONTH

Louise Strange

and a state of the state of the

louveriet reason

- An spectra burner

Salesson Service

and the second

a strategy and

Also de la composición de la

Vian state of the

. . .

A Contraction of the second

South States of the

## Section 2

## Quality Assurance/Quality Control

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Onnisrv\users\Testing\SBI - Stove Builder International\338-S-68-3 Monaco 2008\338-F-68-3 2-1 of 2-65

### **QUALITY ASSURANCE/QUALITY CONTROL**

*OMNI* follows the guidelines of ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories," and the quality assurance/quality control (QA/QC) procedures found in *OMNI*'s Quality Assurance Manual.

*OMNP*'s scope of accreditation includes, but is not limited to, the following:

- ANSI (American National Standards Institute) for certification of product to safety standards.
- To perform product safety testing by the International Approval Service (formerly ICBO ES) under accreditation as a testing laboratory designated TL-130.
- To perform product safety testing as a "Certification Organization" by the Standards Council of Canada (SCC).
- Serving as a testing laboratory for the certification of wood heaters by the U.S. Environmental Protection Agency.

This report is issued within the scope of *OMNP*'s accreditation. Accreditation certificates are available upon request.

2-2 of 2-65

-

, internet

.

.

Like service

an and a subscription of

## Sample Analysis Analysis Worksheets

Analysis Worksheets Tared Filter and Beaker Data Solvent Blank Data

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Omnisrvhusers\Testing\SBI - Stove Builder International\338-S-68-3 Monaca 2008\338-F-68-3 2-3 of 2-65

#### OMNI-Test Laboratories Beaverton, OR

Allow Sciences

Contraction of the

.

-

2.

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u>                     | · · · ·                               |                |       |     |
|----------------------------------------|---------------------------------------|----------------|-------|-----|
| Model: Monaco 2008                     |                                       |                | •     |     |
| Project #: 338-F-68-3 Tracking #: 1161 | · · · · · · · · · · · · · · · · · · · |                |       |     |
| Date: 12-11-07 Test Ci                 | rew: K. MorgAN                        | Run #:         | 1     |     |
| Sample Train #:A                       | Train assembled by:                   | K. MorgAN      |       |     |
| Balance ID #: OMNI - 00023             | Thermo/Hygro meter ID                 | #: OMNÍ -      |       |     |
| Audit weight ID #: OMNI – 00131        | (Balance audit mfr. std:              | 500 ± 0.72 mg) | · · · |     |
|                                        |                                       |                |       | k., |

|                                                   |          |             | W                 | eighing Rec      | ord   |              |          |
|---------------------------------------------------|----------|-------------|-------------------|------------------|-------|--------------|----------|
| Train Part                                        | Date     | Time        | Weight<br>(grams) | Audit<br>(grams) | R/H % | Temp.<br>(F) | Initials |
| Front Filter                                      | 12-18-07 | 16:30       | .1151             | .5001            | 20    | 77           | 12       |
| Lab ID #<br>ID # (                                | 12-19-07 | 09:30       | .1/51             | ,5001            | 17    | 66           | 1K -     |
| Tare wt. <u>./04/6</u>                            |          |             |                   |                  |       |              |          |
| D/T in desiccator<br><u>12-17-07</u> 08:00        |          | -           |                   |                  | -     |              |          |
| Preliminary wt.:<br>.// <i>5</i> 2                |          |             |                   |                  |       | -<br>-       |          |
| Rear Filter                                       | 12-18-07 | 16:30       | .1187             | . 5001           | 20    | 77           | IL ;     |
| Lab ID #<br>ID #                                  | 12-19-07 | 09:30       | .1186             | .5001            | 17    | 66           | 14 -     |
| Tare wt <i>.1178</i>                              |          | -           |                   |                  |       | •            |          |
| D/T in desiccator:<br>12-11-07 08:00              |          |             |                   |                  |       |              |          |
| Preliminary wt.:<br>                              |          |             |                   |                  |       |              |          |
| Probe                                             | 12-18-07 | 16:30       | 171.8694          | ,5001            | 20    | 77           | 14       |
| Probe #<br>Tare wt <b>/71.8688</b><br>Cleaned by: | 12-19-07 | 09:30       | 171,8693          | 5001             | 17    | 66           | 14 -     |
| D/T in desiccator:<br>12-17-07 08:00              |          |             |                   |                  |       |              |          |
| Preliminary wt.:<br>/7/, 87//                     |          | · · · · · · |                   |                  |       |              |          |
|                                                   |          |             |                   |                  | · · · |              |          |
| <i>'</i>                                          |          |             |                   |                  |       |              |          |

Technician signature:

\_\_\_ Date: \_\_\_

12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet). doc, Effective date: 04/04/2007 Page 1 of 1 2 - 4 0 F 2 - 6 5

16 1. Morge

OMNI-Test Laboratories c. Beaverton, OR

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u><br>Model: <u>Monaco 2008</u>                 |                     |                    |                   |                                                 |                      |              |           |
|-----------------------------------------------------------------|---------------------|--------------------|-------------------|-------------------------------------------------|----------------------|--------------|-----------|
| Project #: 338-E-68-3 T                                         | racking #: <u>-</u> | 1161<br>Sast Crown | 16 Marca          | . 1                                             | - "                  |              | · .       |
| Date: <u>12-11-07</u><br>Sample Train #: <u>B</u>               | I                   | est Crew.<br>Tra   | in accomble       | d by: <u>K. <i>Mo</i>r</u>                      | Run #:               | 1            |           |
| Sample Train #: <u>B</u><br>Balance ID #: <u>OMNI -</u>         | 00023               | 11d<br>Th          | assembled         | 1 UY. <u>K. <i>[VI O</i>/</u><br>potor ID #: OK | gan                  |              | <b></b> - |
| Audit weight ID #: <u>OMN</u>                                   | -00131              | (Ba                | alance audit n    | nerei 10 #. <u>OK</u><br>nfr. std: 500 4        | $\frac{1}{10}$ 72 mg |              |           |
| J                                                               |                     | (50                |                   | ini. sta. 500 a                                 | . 0.72 mg/           |              |           |
|                                                                 |                     |                    |                   |                                                 |                      |              |           |
|                                                                 |                     |                    | V                 | Veighing Re                                     | cord                 |              | ·         |
| Train Part                                                      | Date                | Time               | Weight<br>(grams) | Audit<br>(grams)                                | R/H %                | Temp.<br>(F) | Initials  |
| Front Filter                                                    | 12-18-07            | 16:30              | .1321.            | , 5001                                          | 20                   | 77           | 14        |
| Lab ID #<br>ID #3                                               | 12-19-07            | 09:30              | .1321             | ,5001                                           | 17                   | 66           | 14 -      |
| Tare wt. <u>1193</u>                                            |                     |                    |                   |                                                 |                      |              |           |
| D/T in desiccator<br>12-17-07 08:00                             |                     |                    |                   |                                                 |                      |              |           |
| Preliminary wt.:<br>./32/                                       |                     |                    |                   |                                                 |                      |              |           |
| Rear Filter                                                     | 12-18-07            | 16:30              | .1231             | .5001                                           | 20                   | 77           | K         |
| Lab ID #<br>ID #4                                               | 12-19-07            | 09:30              | .1232             | . 5001                                          | 17                   | 66           | 16 -      |
| Tare wt                                                         | -                   |                    |                   |                                                 |                      | · ·          |           |
| D/T in desiccator:                                              |                     |                    |                   |                                                 |                      |              |           |
| Preliminary wt.:                                                |                     |                    |                   |                                                 |                      |              |           |
| Probe                                                           | 12-18-07            | 16:30              | 187.7418          | .5001                                           | 20                   | 77           | 14        |
| Probe # <u>z.</u><br>Tare wt. <u>187.7420</u><br>Cleaned by:    | 12-19-07            | 09:30              | 187.7416          | ,5001                                           | 17                   | 66           | 14        |
| D/T in desiccator:<br><u>12.17-07</u> 08:00<br>Preliminary wt.: |                     |                    |                   |                                                 |                      |              | · ·       |
| 187.7432                                                        |                     | · . ·              | · · ·             |                                                 |                      |              | ···       |
|                                                                 |                     |                    |                   |                                                 |                      |              |           |

Technician signature:

\_\_\_ Date: \_\_\_

12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007

16 1. Morgan

OMNI-Test Laboratories<sub>j</sub> Beaverton, OR

Districtive Add

),

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u>                     |                                             |                   |   |  |
|----------------------------------------|---------------------------------------------|-------------------|---|--|
| Model: Monaco 2008                     |                                             |                   |   |  |
| Project #: 338-F-68-3 Tracking #: 1161 |                                             | · · ·             |   |  |
| Date: 12-12-07 Test (                  | Crew: K. MorgAN                             | Run #:            | Z |  |
| Sample Train #: <b>A</b>               | _ Train assembled by: _                     | K. MorgAN         |   |  |
| Balance ID #: <u>OMNI - 00023</u>      | _ Thermo/Hygro meter I                      | D #: <u>OMNI</u>  |   |  |
| Audit weight ID #: <u>OMNI – 00131</u> | <ul> <li>(Balance audit mfr. sto</li> </ul> | 1: 500 ± 0.72 mg) |   |  |
|                                        |                                             |                   |   |  |

. . . . . . .

|                                                          |          |         | M                 | leighing Rec     | ord            |              |          |
|----------------------------------------------------------|----------|---------|-------------------|------------------|----------------|--------------|----------|
| Train Part                                               | Date     | Time    | Weight<br>(grams) | Audit<br>(grams) | R/H %          | Temp.<br>(F) | Initials |
| Front Filter                                             | 12-18-07 | 16;30   | ,1192             | , 5001           | 20             | 77           | 12       |
| Lab ID #<br>ID # <u>5</u>                                | 12-19-07 | 09:30   | ,1191             | ,5001            | 17             | 66           | 16 -     |
| Tare wt. <u>./042</u>                                    |          |         |                   |                  | с <sup>т</sup> |              |          |
| D/T in desiccator                                        |          |         |                   |                  |                | <u> </u>     |          |
| Preliminary wt.:<br>.//93                                |          |         |                   |                  |                | -            |          |
| Rear Filter                                              | 12-18-07 | 16:30   | .1242             | . 5001           | 20             | 77           | 1L       |
| Lab ID #<br>ID #6                                        | 12-19-07 | 09:50   | ,1241             | . 5001           | 17             | 66           | 14 -     |
| Tare wt 72 32                                            |          |         |                   |                  |                | а.<br>- к    | -        |
| D/T in desiccator:<br>12-17-07 08:00                     |          |         |                   |                  |                | -            |          |
| Preliminary wt.:                                         |          |         |                   |                  |                |              |          |
| Probe                                                    | 12-18-07 | 16:30   | 188.0818          | ,5001            | 26             | 77           | 12       |
| Probe #<br>Tare wt <u>/ 8 8.08/5</u><br>Cleaned by:      | 12-19-07 | 09:30   | 188,0815          | , 5001           | 17             | 66           | /L -     |
| D/T in desiccator:<br>12-17-07 08;00<br>Preliminary wt.: |          |         |                   |                  |                |              |          |
| <u>188,0834</u>                                          |          |         |                   |                  |                |              |          |
|                                                          |          | · · · · |                   |                  |                |              |          |

Technician signature:

Date: 12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007 Page 1 of 1 2 - 6 0 F 2 - 6 5

16 1. Morga

OMNI-Test Laboratories Beaverton, OR

Constraint of the second se

.....

Σ.

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u><br>Model: <u>Monaco 2008</u>  |              |                                          |                               |                  |           | •<br>•••     |             |
|--------------------------------------------------|--------------|------------------------------------------|-------------------------------|------------------|-----------|--------------|-------------|
| Project #: 338-F-68-3 Tr                         | racking #: 1 | 161                                      |                               |                  |           |              |             |
| Date: 12-12-07                                   | T            | est Crew:                                | K. Mory                       | en .             | Run, #:   | 2            |             |
| Sample Train #: <u>B</u><br>Balance ID #: OMNI - |              |                                          | in assembled                  |                  |           |              | · · · · · · |
| Audit weight ID #: <u>OMNI</u>                   |              |                                          | ermo/Hygro m<br>lance audit m |                  |           |              |             |
| · · · · · · · · · · · · · · · · · · ·            |              |                                          | anoo adarem                   | 11. ota. 000 1   | 0.72 mg)  |              |             |
|                                                  |              |                                          | M                             | /eighing Red     | cord      |              | # * · · ·   |
| Train Part                                       |              | 1                                        |                               |                  | 1         |              | 1 .         |
|                                                  | Date         | Time                                     | Weight<br>(grams)             | Audit<br>(grams) | R/H %     | Temp.<br>(F) | Initials    |
| Front Filter                                     | 12-18-07     | 16:30                                    | ,1388                         | ,5001            | 20        | 77           | 12          |
| Lab ID #<br>ID #7                                | 12-19-07     | 09:30                                    | ,1387                         | ,5001            | 17        | 66           | 16 -        |
| Tare wt                                          |              |                                          |                               |                  |           |              |             |
| D/T in desiccator                                |              |                                          |                               |                  |           |              |             |
| 12-17-07 08:00                                   |              |                                          |                               |                  |           |              |             |
| Preliminary wt.:<br>,/385                        |              |                                          |                               |                  |           |              |             |
| Rear Filter                                      |              |                                          |                               | <u>.</u>         | _ <u></u> |              |             |
|                                                  | 12-18-07     | 16:30                                    | ,1272                         | ,5001            | 20        | 77           | K           |
| Lab ID #                                         | 12-19-07     | 09:30                                    | .1272                         | , 5001           | 17.       | 66           | 11 -        |
| ID#                                              |              | 01.70                                    | 11212                         | , 5007.          |           |              | 16 -        |
| Tare wt                                          |              |                                          |                               |                  |           |              |             |
| D/T in desiccator:                               |              |                                          | ·<br>·                        | <u></u>          | -         |              |             |
| 12-17-07 08:00                                   |              |                                          | ł                             |                  |           |              |             |
|                                                  |              |                                          |                               |                  | •         |              |             |
| Preliminary wt.:                                 |              |                                          |                               |                  |           | 4. A         |             |
| ./272                                            |              |                                          |                               |                  |           |              |             |
| Probe                                            | 12-18-07     | 16:30                                    | 197,3886                      | ,5001            | -         | 7-1          | 1/2         |
| Lab ID #                                         | 12-10-07     | 16.30                                    | 111,3086                      | ,5001            | 20        | 77           | 12          |
| Probe # 5                                        |              |                                          | (                             |                  |           |              |             |
| Tare wt. 197, 3876                               | 12-19-07     | 09:30                                    | 197,3884                      | ,5001            | 17        | 66           | K -         |
| Cleaned by:                                      |              |                                          |                               |                  |           |              |             |
| D/T in desiccator:                               |              |                                          |                               |                  |           |              |             |
| 12-17-07 08:00                                   |              |                                          |                               |                  |           |              |             |
| Preliminary wt.:                                 |              |                                          |                               |                  |           |              |             |
| 197.3904                                         |              | an a |                               |                  |           |              |             |
|                                                  | ļ            | · · · ·                                  |                               |                  |           | -            |             |
| :<br>• •                                         |              |                                          |                               | · · ·            |           | · .          |             |
|                                                  |              |                                          | 1 ····                        |                  |           |              |             |

Technician signature:

Date: 12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007 2 - 7

Page 1 of 1 7 0 F 2 - 6 5

#### OMNI-Test Laboratories Beaverton, OR

2.

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u>                                   |                                |          |   |       |
|------------------------------------------------------|--------------------------------|----------|---|-------|
| Model: <u>Monaco 2008</u>                            | · · ·                          |          |   |       |
| Project #: <u>338-F-68-3</u> Tracking #: <u>1161</u> | 1 . 44                         |          |   |       |
| Date: /2-/2-07 Test C                                | rew: K. Morgan                 | _ Run #: | 3 |       |
| Sample Train #:A                                     | Train assembled by: K. Mon     | rAN      |   | · · · |
| Balance ID #: <u>OMNI - 00023</u>                    | Thermo/Hygro meter ID #: OM    | NI -     |   | · •   |
| Audit weight ID #: OMNI – 00131                      | (Balance audit mfr. std: 500 ± | 0.72 mg) |   |       |
|                                                      |                                |          |   |       |

|                                                             | -        |       | W                 | eighing Rec      | ord   |              |          |
|-------------------------------------------------------------|----------|-------|-------------------|------------------|-------|--------------|----------|
| Train Part                                                  | Date     | Time  | Weight<br>(grams) | Audit<br>(grams) | R/H % | Temp.<br>(F) | Initials |
| Front Filter                                                | 12-18-07 | 16:30 | ,1083             | .5001            | 20    | 77           | 14       |
| Lab ID #<br>ID #9<br>Tare wt <i>1048</i>                    | 12-19-07 | 09:30 | .1082             | ,5001            | 17    | 66           | 16-      |
| D/T in desiccator<br><u>12-17-07</u> 08;00                  |          |       |                   |                  |       |              |          |
| Preliminary wt.:<br>. <i></i>                               |          |       |                   |                  |       |              |          |
| Rear Filter                                                 | 12-18-07 | 16:30 | .1179             | . 5001           | 20    | 77           | 1L       |
| Lab ID #<br>ID #<br>Tare wt. •//75                          | 12-19-07 | 09:30 | ,1179             | ,5001            | 7716  | 66           | 12 -     |
| D/T in desiccator:                                          |          |       |                   |                  |       |              |          |
| Preliminary wt.:<br>.//15                                   |          |       |                   |                  |       |              |          |
| Probe                                                       | 12-18-07 | 16;30 | 188,2559          | . 5001           | 20    | 77           | 12       |
| Probe # <u>3</u><br>Tare wt. <u>188,2558</u><br>Cleaned by: | 12-19-07 | 09:30 | 188,2559          | ,5001            | 17    | 66           | 14       |
| D/T in desiccator:<br>/z-/1-07 08:00                        |          | · ·   |                   |                  |       |              |          |
| Preliminary wt.:<br>/88.2578                                |          |       |                   |                  |       |              |          |
|                                                             |          |       |                   |                  |       |              |          |

Technician signature:

Date: 12-19-07

6 5

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007

1h J. Morgan

2.

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u>                  |                                                |                                       |                   |                  |          |              |          |
|-------------------------------------|------------------------------------------------|---------------------------------------|-------------------|------------------|----------|--------------|----------|
| Model: Monaco 2008                  |                                                |                                       |                   | · · · ·          |          | •            |          |
| Project #: 338-F-68-3 Tra           | acking #: <u>1</u> 1                           | <u>161</u>                            | 1 44              | 1                |          |              |          |
|                                     | Τε                                             |                                       | K. MORGA          |                  | _ Run #: |              |          |
| Sample Train #: B                   |                                                |                                       | n assembled i     |                  |          |              |          |
|                                     | 0023                                           |                                       | rmo/Hygro me      |                  |          |              |          |
| Audit weight ID #: <u>OMNI</u>      | <u>     00131                             </u> | (Bala                                 | ance audit mf     | r. std: 500 ±    | 0.72 mg) |              |          |
|                                     |                                                |                                       |                   |                  |          |              |          |
|                                     |                                                | · · · · · · · · · · · · · · · · · · · | W                 | eighing Rec      | ord      |              |          |
| Train Part                          | Date                                           | Time                                  | Weight<br>(grams) | Audit<br>(grams) | R/H %    | Temp.<br>(F) | Initials |
| Front Filter                        | 12-18-07                                       | 16:30                                 | .1246             | .5001            | 20       | 77           | 14       |
| Lab ID #<br>ID #                    | 12-19-07                                       | 09:30                                 | .1247             | ,5001            | . 17     | 66           | 16 -     |
| Tare wt                             |                                                |                                       |                   |                  |          |              |          |
| D/T in desiccator<br>12-17-07 08:00 |                                                |                                       |                   |                  |          |              |          |
|                                     | 1 1                                            | i                                     | , I               | í                |          | i +          | ·        |

| 12-17-07 08:00                                                  |          |       |          |        |    | ,<br>, |       |
|-----------------------------------------------------------------|----------|-------|----------|--------|----|--------|-------|
| Preliminary w <u>t</u> .:<br><del>_4216</del> 1241              |          | -     |          | -      |    |        |       |
| Rear Filter                                                     | 12-18-07 | 16:30 | .1254    | .5001  | 20 | 77     | IL    |
| Lab ID #<br>ID #<br>Tare wt,/2 <i>5</i> 0                       | 12-19-07 | 09:30 | . 12.55  | .5001  | 17 | 66     | K     |
| D/T in desiccator:<br>12-11-01 08:00                            |          | -     |          |        |    |        | · · · |
| Preliminary wt.:<br>./z53                                       |          |       |          |        |    |        |       |
| Probe                                                           | 12-18-07 | 16:30 | 188,1227 | , 5061 | 20 | 77     | 16    |
| Probe #<br>Tare wt <i><u>/88,1228</u><br/>Cleaned by:</i>       | 12-19-07 | 09130 | 188,1228 | ,5001  | 17 | 66     | 12    |
| D/T in desiccator:<br><u>12-17-07</u> 08:00<br>Preliminary wt.: |          |       |          | · ·    |    |        |       |
| _188.1247                                                       |          |       |          |        |    |        |       |
|                                                                 |          |       |          |        |    |        | -     |

Technician signature:

\_\_\_\_ Date: \_\_

12-19-07

Control No. L-SF2-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007 Page 1 of 1 2 - 9 0 F 2 - 6 5

1. J. Morga

OMNI-Test Laboratories Beaverton, OR

Lagenta States

and the second second

Э.

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: <u>SBI</u><br>Model: <u>Monaco 2008</u>                 |                          | . · ·                   | •<br>•                          |                   |           |                                       |          |
|-----------------------------------------------------------------|--------------------------|-------------------------|---------------------------------|-------------------|-----------|---------------------------------------|----------|
| Project #: <u>338-F-68-3</u> Tr<br>Date: <u>12-13-07</u>        | acking #: <u>1</u><br>Te | <u>161</u><br>est Crew: | K. Morgan                       | 1                 | Run #:    | 4                                     |          |
| Sample Train #: <u>A</u>                                        |                          | Tra                     | in assembled                    | by: <u>K. Mor</u> | 9AN       |                                       |          |
| Balance ID #: <u>OMNI - (</u><br>Audit weight ID #: <u>OMNI</u> |                          |                         | ermo/Hygro me<br>lance audit mi |                   |           |                                       |          |
|                                                                 |                          |                         | W                               | eighing Rec       | ord       |                                       |          |
| Train Part                                                      | Date                     | Time                    | Weight<br>(grams)               | Audit<br>(grams)  | R/H %     | Temp.<br>(F)                          | Initials |
| Front Filter                                                    | 12-18-07                 | 16:30                   | .1254                           | ,5001             | 20        | 77                                    | 12       |
| Lab ID #<br>ID # <i>E146</i>                                    | 12-19-07                 | 09:30                   | .12.54                          | ,5001             | 17        | 64                                    | 14 -     |
| Tare wt                                                         |                          |                         |                                 |                   |           |                                       |          |
| D/T in desiccator<br>12-17-07 08:00                             |                          |                         |                                 |                   |           |                                       |          |
| Preliminary wt.:<br>./250                                       |                          |                         |                                 |                   |           |                                       |          |
| Rear Filter                                                     | 12-18-07                 | 16;30                   | .1269                           | .5001             | 20        | 77                                    | 12       |
| Lab ID #<br>ID # <i>£144</i>                                    | 12-19-07                 | 09:30                   | ,1270                           | ,5001             | 17        | 66                                    | 12 -     |
| Tare wt68                                                       |                          |                         |                                 |                   |           |                                       |          |
| D/T in desiccator:                                              |                          |                         |                                 |                   |           |                                       | ·        |
| Preliminary wt.:                                                |                          |                         |                                 |                   |           |                                       |          |
| Probe                                                           | 12-18-07                 | 16:30                   | 114,7390                        | ,5001             | 20        | 77                                    | 1/L      |
| Probe #<br>Tare wt <u>//4,7384</u><br>Cleaned by:               | 12-19-07                 | 09:30                   | 114.7389                        | . 5001            | 17        | 66                                    | 1L -     |
| D/T in desiccator:<br>/2-/7-07 08:00                            |                          |                         |                                 |                   |           |                                       |          |
| Preliminary wt.:<br>114.1401                                    |                          | · · · ·                 |                                 |                   |           | · · · · · · · · · · · · · · · · · · · |          |
|                                                                 |                          |                         |                                 |                   | · · · · · |                                       |          |

Technician signature:

Date: 12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet). doc, Effective date: 04/04/2007 Page 1 of 1 10 0F 2 - 65

12 J. Morge

44045557745527472

provintations

2.

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: SBI                                             |          |           |                                           |              |            |                                       |          |
|---------------------------------------------------------|----------|-----------|-------------------------------------------|--------------|------------|---------------------------------------|----------|
| Model: Monaco 2008                                      |          | ,         |                                           | · ·          |            |                                       |          |
| Project #: <u>338-F-68-3</u> Tr                         |          |           |                                           |              | · · ·      | ,                                     |          |
| Date: <u>12-13-07</u>                                   | Te       | est Crew: | K. MorgAN                                 | /            | _ Run #:   | 4                                     |          |
| Sample Train #: <u>B</u><br>Balance ID #: <u>OMNI -</u> | 00022    |           | in assembled<br>srmo/Hygro m              |              |            | · · · · · · · · · · · · · · · · · · · |          |
| Audit weight ID #: OMN                                  |          | (Ba       | lance audit m                             |              |            | · · · · · · · · · · · · · · · · · · · | ·        |
|                                                         | 00101    | (Du       |                                           |              | y, r z mg) |                                       | · -      |
|                                                         |          | · · ·     |                                           | /-:          |            |                                       |          |
|                                                         |          |           | VV                                        | leighing Rec | ora        | ·.                                    |          |
| Train Part                                              |          |           | Weight                                    | Audit        | 54100      | Temp.                                 | 1        |
|                                                         | Date     | Time      | (grams)                                   | (grams)      | R/H %      | (F)                                   | Initials |
| Front Filter                                            |          |           |                                           |              | · · · · ·  |                                       |          |
|                                                         | 12-18-07 | 16:30     | .1253                                     | ,5001        | 20         | 77                                    | K        |
| Lab ID #                                                |          |           |                                           |              |            |                                       | ·        |
| ID#_E145                                                | 12-19-07 | 09:30     | .1253                                     | ,5001        | 17         | 66                                    | 14 +     |
| Tare wt/2.14                                            |          |           |                                           |              |            | ·····                                 | · · ·    |
|                                                         |          |           |                                           |              |            |                                       |          |
| D/T in desiccator                                       |          |           |                                           |              |            |                                       |          |
| 12-17-07 08:00                                          |          |           |                                           |              |            |                                       |          |
| <b>_</b>                                                |          |           |                                           |              |            |                                       |          |
| Preliminary wt.:                                        | İ        |           |                                           |              | _          |                                       |          |
| .1250                                                   |          |           |                                           |              |            |                                       |          |
| Rear Filter                                             | 12-18-07 | 16:30     | ,1183                                     | .5001        | 20         | 77                                    | IL.      |
|                                                         |          |           | ,1102                                     |              |            |                                       | /~       |
| Lab ID #                                                | 12-19-07 | 07:30     | .1183                                     | .5001        | 17         | 64                                    | 14 -     |
| ID# ει43                                                | 1014 07  |           |                                           |              |            |                                       | 10.      |
| Tare wt83                                               |          |           |                                           |              |            |                                       |          |
| D/T in desiccator:                                      |          |           |                                           |              |            |                                       |          |
| 12-17-07 08:00                                          | ļ        |           |                                           |              |            |                                       |          |
| 12-11-01-08/00                                          |          |           |                                           |              |            |                                       |          |
| Preliminary wt.:                                        |          |           | 1. A. |              |            |                                       |          |
| , 1183                                                  |          |           |                                           |              |            |                                       | 1.       |
| Probe                                                   |          |           |                                           |              |            |                                       |          |
| · · · · · · · · · · · · · · · · · · ·                   | 12-18-07 | 16:30     | 11.4, 14/31                               | .5001        | 20         | 77                                    | 1L       |
| Lab ID #                                                |          |           |                                           |              |            |                                       |          |
| Probe # <u>38</u>                                       | 10.07    |           | 114.1430                                  |              | <b>ب</b> ر |                                       |          |
| Tare wt. <u>114,1425</u>                                | 12-19-07 | 09:30     | 117.1730                                  | 5001         | 17         | 66                                    | K        |
| Cleaned by:                                             |          |           | -                                         |              |            | 1                                     |          |
| D/T in desiccator:                                      |          |           |                                           |              |            |                                       |          |
| <u>12-17-07</u> 08:00<br>Preliminary wt.:               |          |           |                                           |              |            |                                       |          |
| // <i>4./444</i>                                        |          | 1         |                                           |              |            |                                       |          |
| // <i>1/177</i>                                         |          |           |                                           |              |            |                                       |          |
|                                                         |          |           |                                           |              |            |                                       |          |
|                                                         |          |           |                                           |              | •          |                                       |          |
|                                                         |          |           |                                           |              | ·          |                                       |          |
|                                                         | 11       |           | I                                         | ·            |            |                                       |          |

Technician signature:

Date:

12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007 2

16 1. Morga

Page 1 of 1 1 0F 2 -65 1

OMNI-Test Laboratories; >. Beaverton, OR

iensebu tovotra

## Dilution Tunnel (Method 5G) Analysis Worksheet

| Client: SBI                      |                                  |                    |   |     |  |
|----------------------------------|----------------------------------|--------------------|---|-----|--|
| Model: Monaco 2008               | · · · · ·                        |                    |   |     |  |
| Project #: <u>338-F-68-3</u> Tra | cking #: <u>1161</u>             |                    |   |     |  |
| Date: 12-13-07                   | Test Crew: K. MorgAN             | Run #:             | 5 | · · |  |
| Sample Train #:                  | Train assembled by: _A           | K. Morgan          |   |     |  |
| Balance ID #: OMNI - 00          | 0023 Thermo/Hygro meter ID       | D #: <u>OMNI -</u> |   |     |  |
| Audit weight ID #: <u>OMNI -</u> | - 00131 (Balance audit mfr. std: | : 500 ± 0.72 mg)   | • |     |  |
|                                  |                                  |                    |   | • . |  |
|                                  | Weighi                           | ng Record          |   |     |  |

|                                                              |          |       | ٧V                | eigning Reco     | ora          | ,            |          |
|--------------------------------------------------------------|----------|-------|-------------------|------------------|--------------|--------------|----------|
| Train Part                                                   | Date     | Time  | Weight<br>(grams) | Audit<br>(grams) | R/H %        | Temp.<br>(F) | Initials |
| Front Filter                                                 | 12-18-07 | 16:30 | .1122             | .5001            | 20           | 77           | 12       |
| Lab ID #<br>ID #/ 3<br>Tare wt <i>,10</i> 98                 | 12-19-07 | 09:30 | .1/23             | ,5001            | 17           | 66           | 12 -     |
| D/T in desiccator                                            |          |       |                   |                  |              |              |          |
| Preliminary wt.:<br>.// 2.2                                  |          |       |                   | - <u>.</u>       | -            |              | · ·      |
| Rear Filter                                                  | 12-18-07 | 16:30 | ,1228             | .5001            | 20           | .77          | 14       |
| Lab ID #<br>ID # <u>/4</u><br>Tare wt <u>,1227</u>           | 12-19-07 | 09:30 | .1228             | ,5001            | 17           | 66           | 14 -     |
| D/T in desiccator:<br>12-17-07 08;00                         |          |       |                   |                  | <del>.</del> |              |          |
| Preliminary wt.:<br>.1zz3                                    |          |       |                   |                  | r .          | 4            |          |
| Probe<br>Lab ID #                                            | 12-18-07 | 16:30 | 199,9083          | .5001            | 20           | 77           | 1L       |
| Probe # <u>7</u><br>Tare wt. <u>199,9084</u><br>Cleaned by:  | 12-19-07 | 09:30 | 199.9085          | ,5001            | 17           | 66           | 16 -     |
| D/T in desiccator:<br>12 - 17 - 67 68;00<br>Preliminary wt.: |          |       |                   |                  |              |              |          |
| (99.9107                                                     |          |       |                   |                  |              |              | ~        |
|                                                              |          |       |                   |                  |              |              |          |

Technician signature:

Date: 12-19-07

Page 1 of 1

0F 2

6 5

12

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007

16 1. Marga

OMNI-Test Laboratories

weeks on a l

and the second se

λ.

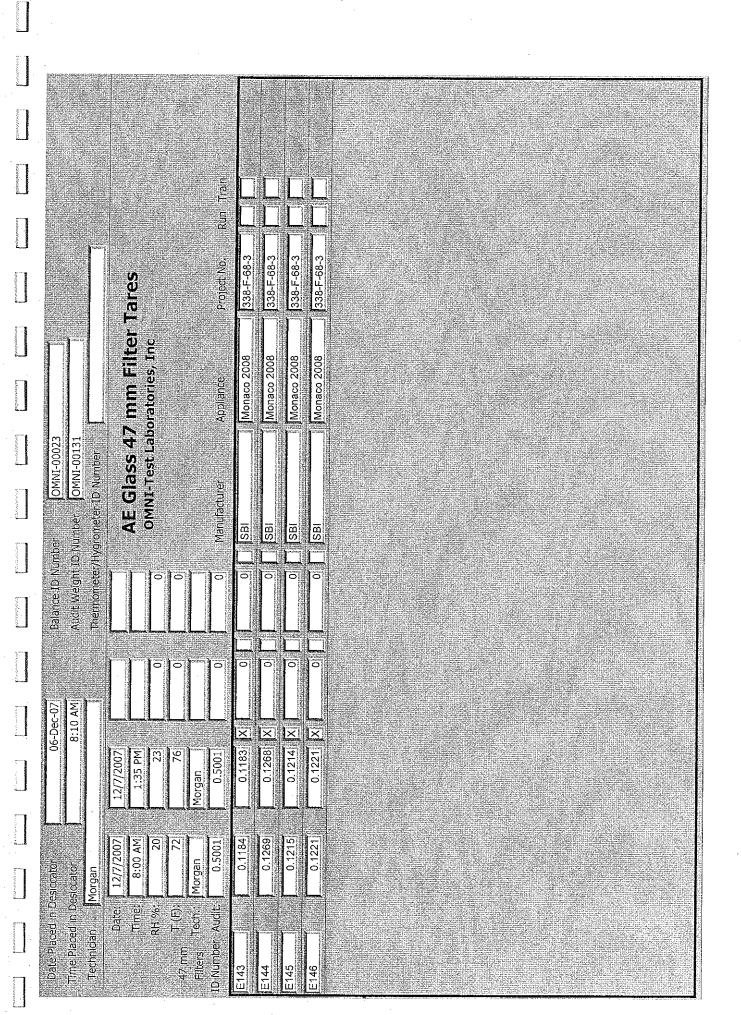
## Dilution Tunnel (Method 5G) Analysis Worksheet

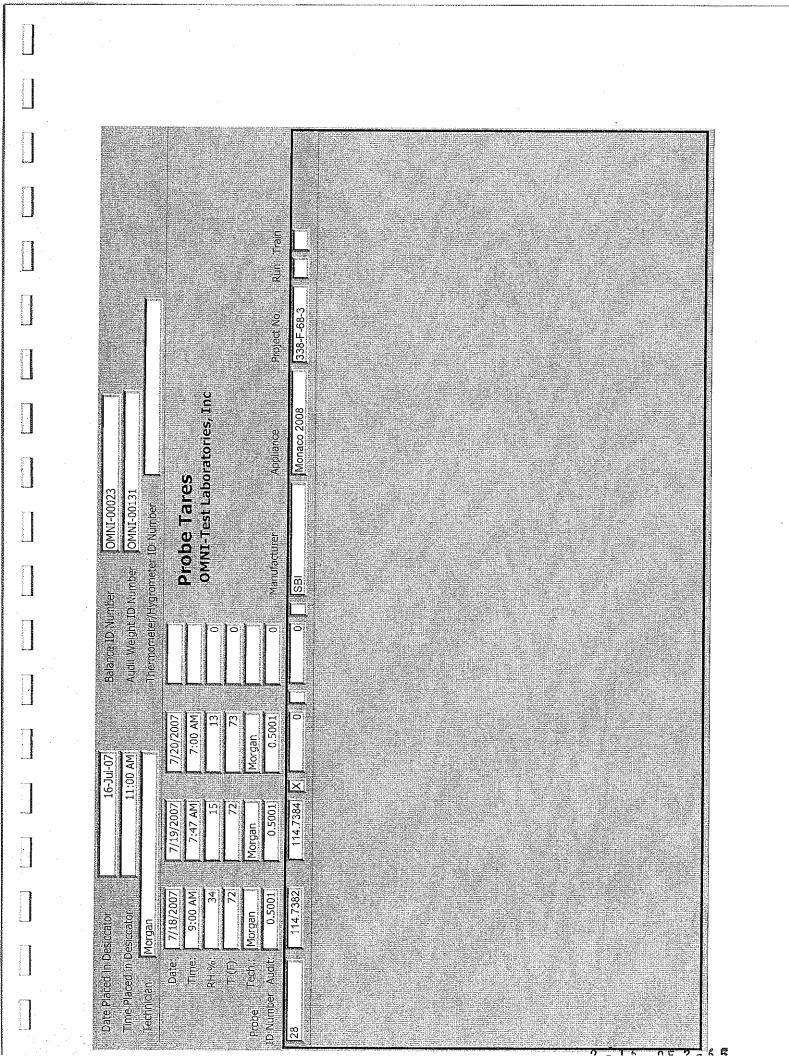
| Client: <u>SBI</u><br>Model: <u>Monaco 2008</u><br>Project #: <u>338-F-68-3</u> Tr<br>Date: <u>12-13-07</u><br>Sample Train #: <u>B</u><br>Balance ID #: <u>OMNI</u> -<br>Audit weight ID #: <u>OMNI</u> | T        | est Crew:<br>Tra<br>The | rmo/Hygro m                           | eter ID #: ON    | ÍNI -                                 | 5            |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|---------------------------------------|------------------|---------------------------------------|--------------|----------|
|                                                                                                                                                                                                          |          |                         | M                                     | /eighing Rec     | ord                                   | ·····        |          |
| Train Part                                                                                                                                                                                               | Date     | Time                    | Weight<br>(grams)                     | Audit<br>(grams) | R/H %                                 | Temp.<br>(F) | Initials |
| Front Filter                                                                                                                                                                                             | 12-18-07 | 16:30                   | ,1267                                 | , 5001           | 20                                    | 77           | 12       |
| Lab ID #<br>ID # <i>15</i>                                                                                                                                                                               | 12-19-07 | 09:30                   | .1267                                 | .5001            | 17                                    | 66           | 12       |
| Tare wt                                                                                                                                                                                                  |          |                         | · · · · · · · · · · · · · · · · · · · |                  |                                       | <u></u>      |          |
| D/T in desiccator                                                                                                                                                                                        |          |                         |                                       |                  | · · · · · · · · · · · · · · · · · · · |              | · .      |
| Preliminary wt.:<br>.1266                                                                                                                                                                                |          |                         |                                       |                  | -                                     | ~            |          |
| Rear Filter                                                                                                                                                                                              | 12-18-07 | 16:30                   | .1266                                 | .5001            | 20                                    | 77           | 12       |
| Lab ID #<br>ID #/6                                                                                                                                                                                       | 12-19-07 | 09:30                   |                                       | ,5001            | 17                                    | 66           | 16 -     |
| Tare wt <u>/263</u>                                                                                                                                                                                      |          |                         |                                       |                  |                                       |              |          |
| D/T in desiccator:                                                                                                                                                                                       |          |                         |                                       |                  |                                       |              |          |
| Preliminary wt.:<br>J265                                                                                                                                                                                 |          |                         |                                       |                  |                                       |              |          |
| Probe<br>Lab ID #                                                                                                                                                                                        | 12-18-07 | 16:30                   | 199.0950                              | .5001            | 20                                    | 77           | 14       |
| Probe # <u>16 38 8</u><br>Tare wt. <u>199.0947</u><br>Cleaned by:                                                                                                                                        | 12-19-07 | 09:30                   | 199.0950                              | ,5001            | 17                                    | 66           | 12-      |
| D/T in desiccator:                                                                                                                                                                                       |          |                         |                                       |                  |                                       |              |          |
| Preliminary wt.:<br>199.0967                                                                                                                                                                             |          |                         |                                       |                  |                                       |              |          |
|                                                                                                                                                                                                          |          |                         |                                       |                  |                                       |              |          |

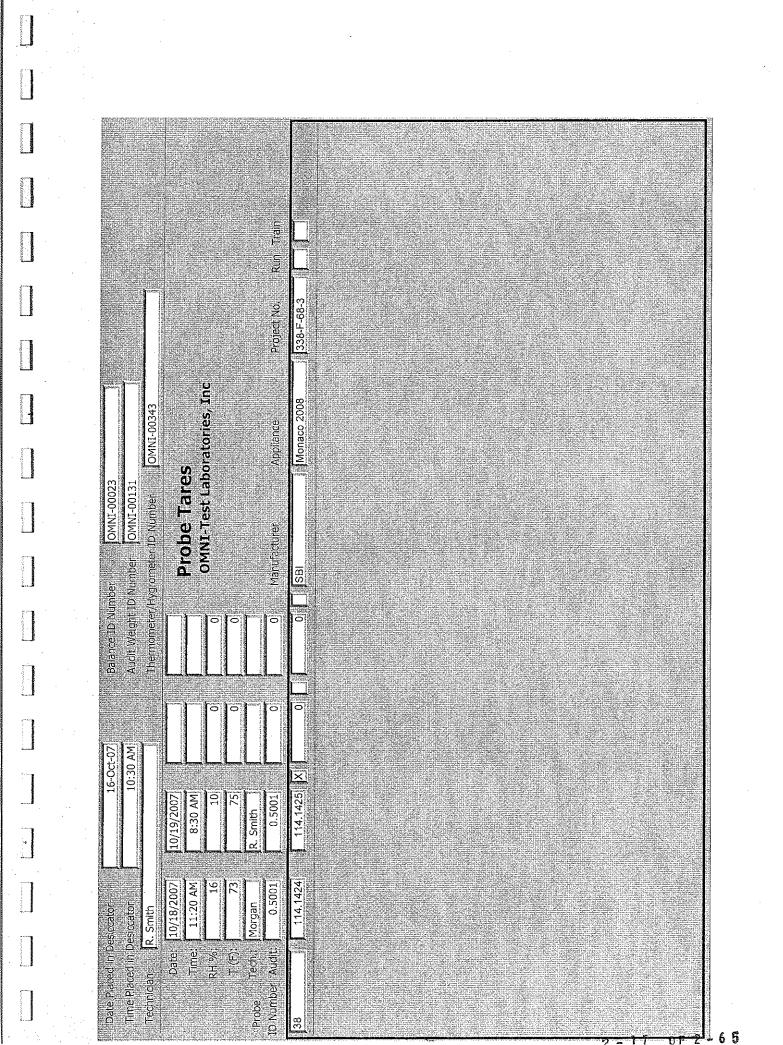
Technician signature:

Date: 12-19-07

Control No. L-SFZ-0004 (Dual Train - Dilution Tunnel Method 5G Analysis Worksheet).doc, Effective date: 04/04/2007


16 1. Morga


| -                          | -             | . •        |                    |           |            | • • • |   |  |
|----------------------------|---------------|------------|--------------------|-----------|------------|-------|---|--|
| Date placed in dessicator: | i dessicator: | 2007-11-22 |                    |           |            |       |   |  |
|                            |               |            |                    |           |            |       |   |  |
|                            | Date          | 26-11-502  | 1-11-28 2007-12-08 | 12-10-07  | 12-11-07   |       |   |  |
| 47 mm Filters              | Time          | 15450      | 10441              | 13:00     | 10:40      |       |   |  |
|                            |               |            |                    |           |            |       |   |  |
| -   (                      |               |            | 0,1045             | 0.1046    |            |       | - |  |
| 7                          |               | 0.1180     | 0,1180             | 0,1178    |            |       |   |  |
| m                          |               | 0.1190     | 0,1192             | 0.1193    |            |       |   |  |
| 4                          |               | 0.1224     | 2461,0             | 0.1224-   |            |       |   |  |
| Ω.                         |               | 0.1042     | 0,1042             | 0.1042 -  |            |       |   |  |
| 9                          |               | 0.1233     | 0:1233             | 0.1232    |            |       |   |  |
| 2                          |               | Cerlad     | 0.1221             | 0.1221    |            |       |   |  |
| ω                          |               | 0.1263     | 0.1362             | 0.1262    |            |       |   |  |
| ი                          |               | 01048      | 0,050              | 0,1048    |            |       |   |  |
| 10                         |               | 0.1175     | 0.1146             | 0.1175    |            |       |   |  |
| 11                         |               | 60,61,0    | 0.1208             | 0.1210    |            |       |   |  |
| 12                         |               | 4.4e1.0    | 64610              | 0.1250    |            |       |   |  |
| 13                         |               |            | 0.1102             | 0,1095    | 1          | -     |   |  |
| 14                         |               |            | 0,1227             | 0.1227    |            |       |   |  |
| 15                         |               |            | 0.1243             | 0.1238    |            |       |   |  |
| 16                         |               | 0.1265     | 0,1265             | 011263    |            |       |   |  |
| 17                         |               | 0.1080     | 62010              | - 18010   |            |       |   |  |
| 18                         |               |            | 0.1206             | 0.1207    |            |       |   |  |
| 19                         |               |            | 0.1202             | 0.1203    |            |       |   |  |
| 20                         |               |            | 01230              | 0,1228-   | 1          |       |   |  |
|                            |               |            |                    |           |            |       |   |  |
| Probe                      |               |            |                    |           |            |       |   |  |
|                            |               |            |                    |           |            |       |   |  |
|                            |               | -1         | 171,8559           | 171. 8689 | 171.8638 - |       |   |  |
| 2                          |               | 187.7266   | 187.7272           | 8144181   | 187, 7420- | 1     |   |  |
| ო                          |               | 188.2405   | 188,2420           | 188.2525  | 188.2558-  |       |   |  |
| 4                          |               |            | 182,0681           | 182,0811  | 188.0815-  |       |   |  |
| 2                          |               |            | 197,3736           | 8785.79   | -7282 661  |       |   |  |
| 9                          |               |            | _                  | 188.1229  | 188.1228 - |       |   |  |
| - 2                        |               | 199,8938   |                    | 199,9086  | 199,9084   |       |   |  |
| 8                          |               | 199,0789   |                    | 199,0946  | 199,0947-  |       |   |  |
|                            |               | •          | ł                  |           |            |       |   |  |


and the second second

16 4. Marg-12-11-07

2-14 OF 2-65







No. Company

Hand Andreas Andreas

hand have

.

## Calibrations

## Methods 28 and 5G

| ID #    | Lab Name/Purpose                  | Log Name              | Attachment Type |
|---------|-----------------------------------|-----------------------|-----------------|
| 362     | Stopwatch                         | Stopwatch - Sportline | Calibration Log |
| 373     | TC Simulator                      | T/C Calibrator        | Calibration Log |
| SBI-008 | Temperature Data Logger           |                       |                 |
| SBI-012 | Test Fuel Scale                   |                       |                 |
| SBI-014 | Platform Scale                    | · · ·                 |                 |
| SBI-016 | Moisture Meter                    |                       | · · · · ·       |
| SBI-020 | Incline Manometer                 |                       |                 |
| SBI-046 | DGM-1                             |                       |                 |
| SBI-047 | DGM-2                             |                       |                 |
| SBI-096 | TC Simulator                      |                       |                 |
| SBI-102 | Analytical Scale                  | · · · ·               |                 |
| SBI-103 | DTM 200A                          |                       |                 |
| SBI-104 | Pitot                             |                       |                 |
| SBI-105 | Magnehelic Gauge                  |                       |                 |
|         | Quebec Airport Barometer Readings |                       |                 |

OMNI Environmental, Inc. OMNI-Test Laboratories, Inc. Beaverton, OR (503) 643-3788

## NIST Stopwatch Calibration, Time Proficiency Testing Procedure and Data Sheet

Date: 1 181,07 User/Dechnician: Michelle Dolman Plass D Fail

NIST traceable stop watch OMNI Tracking Number:  $^{\pm}292$ 

Stopwatch to be tested for time proficiency OMNI Tracking Number: On NI-0086 2

- Start the NIST traceable stopwatch; at a predetermined time (i.e., 1.00 minutes), the technician shall start the watch being tested. When 15.00 seconds have passed (i.e., the NIST traceable stopwatch reads 1 minute, 15 seconds), the technician shall stop the watch being tested. Record the target time interval (i.e., 15.00 seconds). Repeat this step twice and record the data.
- 2. Repeat step #1 for each of the following target time intervals: 30.00 seconds, 10.00 minutes, and 30 minutes.
- 3. If the delta between the target time and measured time is less than 5% of the target time interval or 2.00 seconds (whichever is less), then the technician has demonstrated proficiency with the specific instrument utilized in the proficiency test. The proficiency is valid for a period of twelve months.
- 4. Archive the proficiency test data and information, including the effective date and expiration date of the proficiency, in the equipment record for the instrument involved.

|                       |               |                   | ** Y .   |                   |          |                   | . <del>.</del> . |
|-----------------------|---------------|-------------------|----------|-------------------|----------|-------------------|------------------|
| Target time: 1        | 15.00 seconds | #1 Measured time: | \$\$1457 | #2 Measured time: | 14.94    | #3 Measured time: | 14.94            |
|                       | ·             | #1 Measured time: |          |                   |          | #3 Measured time: |                  |
| Target time: <u>1</u> | 10.00 minutes | #1 Measured time: | 15:00.26 | #2 Measured time: | 10:00.0b | #3 Measured time: | 10:00.13         |
| Target time: 3        | 30.00 minutes | #1 Measured time: | 30:00.00 | #2 Measured time: | 30:00.29 | #3 Measured time: | 30,00.03         |

 $\leq$ 

Technician Signature: 222. Juli Date: 1.31-07

2.7.06

Last Cal:

12-11-07 SB1 MONACO 2008 10 16 = 10.00 TUNNEL Versey Colorado Calibration Omni tc 373 Leave and the Thue AWB \FI Bot Right TOP BACK DB Left. Amb 13 -1.5 - 2 900-2 ø -1.1 ∽li( -2.6 -26 -1,8 -1.8 -1.7 100 450 98.5 99.5 99.5 98,1 98.4 98.2 98.8 98.1 98.6 300 2995 299.7 299.8 300,2 249,8 298.6 298,9 299.5 299.5 299.3 1007 500,2 500 5005 499.6 499.6 500.4 500.9 499.5 5000 500.5 500.2 Rol 3 -700 701,1 TO1.2 700.2 700.3 700.2 700,7 100.1 700,7 901.0 902.3 900,7 901.4 704 900 901.2 901,4 901.6 mi-out mz-IN m-z-out mi -in -1.7 -2.2 -1.3 -2.6 Þ..... <del>کר</del> [] 741 ibυ 73.0 73.0 73.9 tij) 98.1 98.7-99.0 99.0 148.3 144.5 149.0 149.2 50 SBI-ANALYTICAL SCALE Scientech MODEL SH 310 wt. RESPONSE 0,0000 0 0,100Z 100 mg 200 mg 0.2000 99.9983 100 g 200g 200.0006 150 g 150,0008

obligate News

2 - 2 0 0 F 2 - 6 5

OMNI-Test Laboratories, Inc.

## Thermal Metering System Calibration Y and dH@

| Manufacturer:                | American Meter Con | прапу                         |
|------------------------------|--------------------|-------------------------------|
| Model:                       | DTM 200A           |                               |
| Serial Number:               | 07J264             | 1834                          |
| OMNI Tracking No             | SBI-1              | 03                            |
| Average Orifice<br>Meter dH@ |                    | Average Gas<br>Meter y Factor |
| 0.000                        |                    | 0.976                         |
| Calibration Date:            | 12/14/             | 07                            |
| Calibrated by:               | Ken Morgan         |                               |
| Calibration Frequency:       | 6 Mor              | 1th                           |
| Next Calibration Due:        | 06/13/08           |                               |
| Instrument Range:            | 1.000              | cfm                           |
| Standard Temp.:              | 68                 | oF                            |
| Standard Press.:             | 29.92              | "Hg                           |
| Barometric Press .:          | 29.88              | -<br>"Hg                      |
| Signature/Date:              |                    | -                             |
|                              |                    |                               |

#### **Previous Calibration Comparision**

|   | Date       | n/a    | Acceptable     |           |
|---|------------|--------|----------------|-----------|
|   | dH@ Value  | n/a    | Deviation (5%) | Deviation |
|   | y Factor   | n/a    | 0              | 0.976     |
| i | Acceptance | Out of | Limits         |           |

#### Current Calibration

| Acceptance     | Acce                     | eptable |  |
|----------------|--------------------------|---------|--|
| Maximum dH(    | @ Deviation              | 0.000   |  |
| Acceptable dH  | Acceptable dH@ Deviation |         |  |
| Maximum y D    | eviation                 | 0.003   |  |
| Acceptable y I | Deviation                | 0.020   |  |

| ·          | Reference    | e Standard *    |                |
|------------|--------------|-----------------|----------------|
| Standard   | Model        | Standard Test 1 | Meter          |
| Calibrator | S/N          | 1               |                |
|            | Calib. Date  | 03-May-07       |                |
|            | Calib. Value | 0.9980          | y factor (ref) |

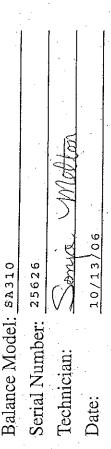
| Calibration Parameters                   | Run 1   | Run 2   | Run 3   |
|------------------------------------------|---------|---------|---------|
| Vacuum ("Hg)                             | 0.00    | 0.00    | 0.00    |
| dH ("H2O)                                | 0.00    | 0.00    | · 0.00  |
| Initial Reference Meter                  | 232.5   | 237.693 | 243.126 |
| Final Reference Meter                    | 237.643 | 242.78  | 248.478 |
| Initial DGM                              | 78.063  | 83.393  | 88.957  |
| Final DGM                                | 83.343  | 88.597  | 94.413  |
| Temp. Ref. Meter (°F), Tr                | 73.0    | 73.0    | 73.0    |
| Temperature DGM (°F), Td                 | 73.0    | 73.0    | 73.0    |
| Time (Minutes)                           | 64.0    | 36.0    | 16.0    |
| Net Volume Ref. Meter, Vr                | 5.143   | 5.087   | 5.352   |
| Net Volume DGM, Vd                       | 5.28    | 5.204   | 5.456   |
| Gas Meter y Factor =                     | 0.972   | 0.976   | 0.979   |
| Gas Meter y Factor Deviation (from avg.) | 0.003   | 0.000   | 0.003   |
| Orifice dH@                              | 0.00    | 0.00    | 0.00    |
| Orifice dH@ Deviation (from avg.)        | 0.000   | 0.000   | 0.000   |

#### where:

1. Deviation = |Average value for all runs - current run value|

2. y = [Vr x (y factor (ref)) x (Pb) x (Td + 460) / [Vd x (Pb + (dH / 13.6)) x (Tr + 460]]

3.  $dH@ = 0.0317 \text{ x } dH / (Pb (Td + 460)) \text{ x } [(Tr + 460) \text{ x time}) / Vr]^2$ 


\* Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Control No. C-SSB-0004 (Thermal Testing Dry Gas Meter Calibration) xls, Effective Date: 11/06/2002

DGM SBI103

# Certificate of Compliance

balance was 100% manufactured in the United States and it has met or exceeded all of the quality Scientech is an American owned and registered ISO9000 Company. We certify that the following calibration weights used to verify the product's quality and calibration are routinely maintained standards as specified by Scientech's ISO9000 Quality System. All of the intruments, tools, and using reference standards traceable to the National Institute of Standards and Technology.



calibrate the balance, at your site, both prior to its use and periodically. Please follow the set up between the manufacturer's facility and yours. Good Laboratory Practices suggest that you This balance has been calibrated at the factory. However, any balance's calibration will be affected by differences in altitude, latitude, electrostatics, magnetism, and static buoyancy procedures as outlined in Scientech's operator's manual



Electronic Weighing 
Laser Power/Energy Measurement 5649 Arapahoe Avenue 
Boulder, Colorado 80303-1399 Phone: (800) 525-0522 
(303) 444-1361 
Fax: (303) 444-9229 Web Site: http://www.scientech-inc.com 
E-Mail: inst@scientech-inc.com PVN 11161 Rev. 0



## **RAPPORT D'ESSAI EXHAUSTIF**

| Nom du client SBI inc. |        |               | N° DU TICKET SAV/ORDRE D'INTERVENTION |              |                     |     |
|------------------------|--------|---------------|---------------------------------------|--------------|---------------------|-----|
| Emplacement u          | nité   | Laboratoire   |                                       | N° du client | SB1012              |     |
| Marque/N° de n         | nodèle | Ohaus Explore | ۲<br>۲                                | N° de série  | D019024982          |     |
| Capacité               | 6100g  | kg 🔲 Ib       | Nb.Divisions                          | - 6100       | 10 Taille divisions | .1g |

L'équipement de pesage mentionné sur le présent rapport a été vérifié et/ou calibré en conformité avec la procédure Mettler Toledo Réf. VP0023IR, et la norme canadienne et/ou le manuel NIST N°., le cas échéant

### VÉRIFICATIONS DES COINS

Poids Appliqué: 900



|          |               | 1 |
|----------|---------------|---|
| -        | lel que remis |   |
|          |               |   |
| 2        | 3             |   |
|          |               |   |
| 1        | 4             |   |
| <u>-</u> | J             |   |

Dans la tolérance sans réglage

Erreur permissive

Dans la tolérance après réglage

Hors tolérance

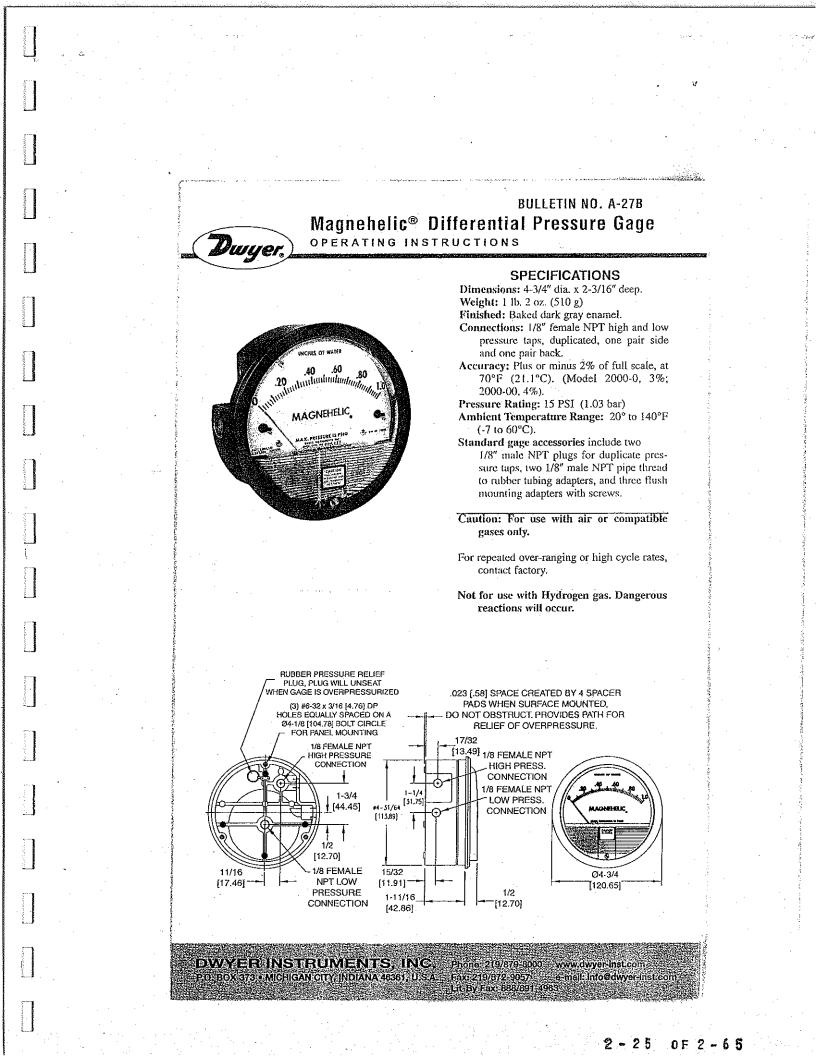
| Essai<br>progressif | Poids Appliqué    | Lecture tel<br>que trouvé | Erreur: plus<br>ou moins (d) | Erreur<br>permissive (d) | Lecture tel que remis | Dans la ToléranceO/N |
|---------------------|-------------------|---------------------------|------------------------------|--------------------------|-----------------------|----------------------|
| _éro                | 10.09             | 10,00                     |                              |                          | 10.0 5                |                      |
|                     | 50.09             | 50, Oc                    |                              |                          | 50-2 G                |                      |
|                     | 100-05            | 100,05                    |                              |                          | 100.0 5               |                      |
|                     | 100-05<br>500.09. | 500.29                    |                              |                          | 500.09                |                      |
| Charge<br>Maximale* | 1000.89.          | 1000.55                   |                              |                          | 1000.0 g              |                      |
|                     | DKg.              | 2001.00                   |                              |                          | 2000.00               |                      |
| · · · ·             | 515               | 5002.39                   |                              |                          | 4979.99               | 0 🗌 N 🖸              |
|                     | 64.               | 6002.85                   |                              |                          | 6000.09               |                      |
| Zéro                |                   | · ·                       |                              |                          |                       |                      |

Dans la tolérance sans réglage

OBSERVATIONS:

Bol New Legal

| NUMÉROS D'IDENTIF                            | FICATION DES POIDS; | 300 2 544                       | Kirk      | T14 |                                      |  |
|----------------------------------------------|---------------------|---------------------------------|-----------|-----|--------------------------------------|--|
| N° du certificat de<br>traçabilité du poids: | 1200425             | DATE D'ÉT<br>POUR CLIE          | ALONNAGE  | 11  | PROCHAIN ÉTALLONNAGE<br>POUR CLIENT: |  |
| RÉALISER PAR:                                | HE                  | NRI OREGO, BA                   | 5         | Ani | The                                  |  |
|                                              |                     | Nom du technicien (en lettres o | apitales) |     | Signature du technicien              |  |
| -                                            |                     |                                 | 1         |     |                                      |  |
| j cas échéant:                               |                     | Nom du client (en lettres can   | tales     |     | Signature du client                  |  |




#### **RAPPORT D'ESSAI EXHAUSTIF**

| Nom du clien | SBI inc. |                |              | N° DU TICKET SAV/ORDRE D'INTERVENTION |                  |       |  |
|--------------|----------|----------------|--------------|---------------------------------------|------------------|-------|--|
| Emplacement  | t unité  | Laboratoire    |              | N° du client                          | SBI014           |       |  |
| Marque/N° de | e modèle | Weightronix WI | -110         | N° de série                           | 29009            |       |  |
| Capacité     | 500lb    | kg⊡lbx         | Nb.Divisions | 10000                                 | Taille divisions | .05lb |  |

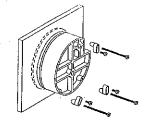
L'équipement de pesage mentionné sur le présent rapport a été vérifié et/ou calibré en conformité avec la procédure Mettler Toledo Réf. VP0023IR, et la norme canadienne et/ou le manuel NIST N°., le cas échéant

| Tel que trouvé $2, 00$ $[7,96]$ $2, 00$ $[7,96]$ $2$ $3$ $2$ $1$ $1$ $3$ $2$ $1$ $1$ $3$ $2$ $3$ $2$ $3$ $1$ $1$ $4$ $3$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <                                                                                                                                                                                                                                                                                                                                          | VÉRIFICATIONS                | DES COINS        | Poids Appliqué:                | 20/69         | Erreur permis                         | síve              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|--------------------------------|---------------|---------------------------------------|-------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                  | Tel que rem                    | lis           | Dans                                  | la folérance sans |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | 61.00            | 2 3                            |               |                                       |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | ]4 <br>          | J                              |               | régla                                 | ge 📋              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                  |                                |               |                                       |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | 1                |                                | ermissive (u) | que remis                             |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | » [                          |                  |                                |               |                                       |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 F F .                      |                  |                                | ·             | · · · · · · · · · · · · · · · · · · · |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | • •              |                                |               |                                       |                   |
| Maximale*       / OC. Ook,       99.98 k       -1d       O N         & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Charge                       | ÷ 1              |                                |               |                                       |                   |
| Boths     75-98 k     -1d     O N       Goths     Goths     Goths     O N       40 k     39-98 k     -1d     O N       40 k     39-98 k     -1d     O N       Zéro     20 k     39-98 k     -1d       Zéro     20 k     20.00 k     0 N       *Charge maximale utilisé pour l'essai     0 N     N       Dans la tolérance sans réglage     0     N       OBSERVATIONS:     VBCR floor     0 2.02 2.00 Congradue     Non sensible Non Legic       NUMÉROS D'IDENTIFICATION DES POIDS:     500 2.544     Non sensible Non Legic       NUMÉROS D'IDENTIFICATION DES POIDS:     500 2.544     Non du technicien (en lettres capitales)       REALISER PAR:     HENR:     Gothes Gothes     Henric Mark       Nom du technicien (en lettres capitales)     Signétutifé du technicien |                              | 20.00k, 99.98    | 3k - 1d                        |               |                                       |                   |
| Go K       Go. Co K       O N         40 K       39.98 K       -1d         Zéro       20 K       O N         *Charge maximale utilisé pour l'essai         Dans la tolérance sans réglage         OBSERVATIONS:         VBATS floor       Dã         NUMÉROS D'IDENTIFICATION DES POIDS:       500 à 544         Num du certificat de tracabilité du polds:       1300 735         POUR CLIENT:       / 3/1 N NOG         REALISER PAR:       HENR:         MERNE:       Conte Goi RE         Nom du technicien (en lettres capitales)       Signétute du technicien                                                                                                                                                                                                            | δ                            |                  |                                |               |                                       |                   |
| 40 kg       39.98 kg       -1d       0 N         Zéro       20 kg       20 kg       0 N       0         *Charge maximale utilisé pour l'essai         Dans la tolérance sans réglage       0       N         OBSERVATIONS:       VARTAGE CON DE .02 E .04 Con guodrualian Unin sensible NON LEGL         NUMÉROS D'IDENTIFICATION DES POIDS:       DO 2.544         MUMÉROS D'IDENTIFICATION DES POIDS:       DO 2.544         Pour cuenti:       1300435         REALISER PAR:       HENR:       GAE Goi RE         Nom du technicien (en leitres capitales)       Signature du technicien                                                                                                                                                                                     | 6                            |                  | 7                              |               |                                       |                   |
| Zéro       20 kg.       20.00k       0 d         *Charge maximale utilisé pour l'éssai       0       N         Dans la tolérance sans régtage       0       N         OBSERVATIONS:       0       N       0         VBRTATions:       VBRTATions:       Non LeyL         NUMÉROS D'IDENTIFICATION DES POIDS:       500 à 544         Nº du certificat de traçabilité du poids:       1200435         RÉALISER PAR:       HENR:       CARE Goi RE         Nom du technicien (en lettres capitales)       Signáture du technicien                                                                                                                                                                                                                                                 |                              |                  |                                |               |                                       |                   |
| *Charge maximale utilisé pour l'essai<br>Dans la tolérance sans réglage<br>OBSERVATIONS:<br><i>V D.R.; fl con</i> DE . 02 = . 04 Con globuation Tim sensible NON LEGL<br>NUMÉROS D'IDENTIFICATION DES POIDS: 500 à 544<br>N° du certificat de<br>tracabilité du poids: 1200435 POUR cilent: / 3/120060 PROCHAIN ÉTALLONNAGE<br>POUR CLIENT: / 3/120060 POUR CLIENT: RÉALISER PAR: HENR: CONE GOIRE HOUR CLIENT: Signature du technicien<br>Nom du technicien (en lettres capitales) Signature du technicien                                                                                                                                                                                                                                                                     |                              |                  |                                |               |                                       |                   |
| OBSERVATIONS:<br><i>VBASSIGEON</i> DE.022.04 Con groduation fin sensible NON LEYL<br><u>NUMÉROS D'IDENTIFICATION DES POIDS</u> 500 à 544<br><u>N° du certificat de</u><br>traçabilité du poids:<br><u>RÉALISER PAR</u> :<br><u>HENR</u> : <u>HENR</u> : <u>GRE GOIRE</u><br><u>Nom du technicien (en lettres capitales)</u><br><u>Nom du technicien (en lettres capitales)</u><br><u>Signature du technicien</u>                                                                                                                                                                                                                                                                                                                                                                | *Charge maximale utilisé p   | our l'essai      |                                | ·····         | I                                     |                   |
| VBRIJERN DE. 02 E. 04 Cov grobustion Two sensible NON LEGL         NUMÉROS D'IDENTIFICATION DES POIDS:       500 à 544         N° du certificat de<br>traçabilité du poids:       1200435         POUR CLIENT:       / 3 / Jii V OG/<br>POUR CLIENT:         RÉALISER PAR:       HENR:         Nom du technicien (en lettres capitales)       Signátute du technicien                                                                                                                                                                                                                                                                                                                                                                                                           | Dans la tolérance sans       | réglage          |                                |               |                                       |                   |
| N° du certificat de<br>traçabilité du poids:     DATE DÉTALONNAGE<br>POUR CLIENT:     PROCHAIN ÉTALLONNAGE<br>POUR CLIENT:       RÉALISER PAR:     HENR:     GRE GOIRE<br>Nom du technicien (en lettres capitales)     PROCHAIN ÉTALLONNAGE<br>POUR CLIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OBSERVATIONS:<br>VARIATION D | 8.02 2.04        | Con geoduatio                  | n grou,       | sensible                              | NON LEGL          |
| N° du certificat de<br>traçabilité du poids:     1300735     DATE D'ÉTALONNAGE<br>POUR CLIENT:     PROCHAIN ÉTALLONNAGE<br>POUR CLIENT:       RÉALISER PAR:     HENR:     GRE GOIRE     Mom du technicien (en lettres capitales)     PROCHAIN ÉTALLONNAGE<br>POUR CLIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NUMÉROS D'IDENTIFICATION     | DES POIDS: 500 à | 544                            |               |                                       |                   |
| REALISER PAR: HENR. GAE GOIRE<br>Nom du technicien (en lettres capitales) Signature du technicien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N° du certificat de          |                  | DATE D'ÉTALONNAGE              | S USLA        | PROCHAIN ÉTA                          | ALLONNAGE         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | HENR: (          | SKE GOIRE                      | Join C        | lenin M.                              |                   |
| e cas échéant: Nom du client (en lettres capitales) Signature du client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | Nom du tech      | inicien (en lettres capitales) |               | Signature                             | u techniclen      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e cas échéant:               | Nom du cl        | ent (en lettres capitales)     |               | Signature                             | du client         |



#### **MAGNEHELIC® INSTALLATION**

Overpressure Protection: Standard Magnehelic gages are rated for a maximum pressure of 15 psig and should not be used where that limit could be exceeded. Newer models employ a rubber plug on the rear which functions as a relief valve by unseating and venting the gage interior when over pressure reaches approximately 25 psig. To provide a free path for pressure relief, there are four spacer pads which maintain .023" clearance when gage is surface mounted. Do not obstruct the gap created by these pads.


1.Select a location free from excessive vibration and where the ambient temperature will not exceed 140°F (60°C). Also, avoid direct sunlight which accelerates discoloration of the clear plastic cover. Sensing lines my be run any necessary distance. Long tubing lengths will not affect accuracy but will increase response time slightly. Do not restrict lines. If pulsating pressures or vibration cause excessive pointer oscillation, consult the factory for ways to provide additional damping.

**2.** All standard Magnehelic gages are calibrated with the diaphragm vertical and should be used in that position for maximum accuracy. If gages are to be used in other than vertical position, this should be specified on the order. Many higher range gages will perform within tolerance in other positions with only rezeroing. Low range Model 2000-00 and metric equivalents must be used in the vertical position only.

#### 3. Surface Mounting

Locate mounting holes, 120° apart on a 4-1/8" dia. circle. Use No. 6-32 machine screws of appropriate length.

#### 4. Flush Mounting



Provide a 4-9/16'' dia. opening in panel. Insert gage and secure in place with No. 6-32 machine screws of appropriate length, with adapters, firmly secured in place. To mount gage on 1-1/4''-2'' pipe, order optional A-610 pipe mounting kit.

## 5. To zero the gage after installation

Set the indicating pointer exactly on the zero mark, using the external zero adjust screw on the cover at the bottom. Note that the zero check or adjustment can only be made with the high and low pressure taps both open to atmosphere.

#### Operation .

**Positive Pressure:**Connect tubing from source of pressure to either of the two high pressure ports. Plug the port not used. Vent one or both low pressure ports to atmosphere.

Negative Pressure: Connect tubing from source of vacuum or negative pressure to either of the two low pressure ports. Plug the port not used. Vent one or both high pressure ports to atmosphere.

Differential Pressure: Connect tubing from the greater of two pressure sources to either high pressure port and the lower to either low pressure port. Plug both unused ports.

When one side of the gage is vented in dirty, dusty atmosphere, we suggest an A-331 Filter Vent Plug be installed in the open port to keep inside of gage clean.

A. For portable use of temporary installation use 1/8" pipe thread to rubber tubing adapter and connect to source of pressure with rubber or Tygon tubing.

B. For permanent installation, 1/4" O.D., or larger, copper or aluminum tubing is recommended. See accessory bulletin S-101 for fittings.

2-26 OF 2-65

#### MAINTENANCE

Maintenance: No lubrication or periodic servicing is required. Keep case exterior and cover clean. Occasionally disconnect pressure lines to vent both sides of gage to atmosphere and re-zero. Optional vent valves, (bulletin S-101), should be used in permanent installations.

Calibration Check: Select a second gage or manometer of known accuracy and in an appropriate range. Using short lengths of rubber or vinyl tubing, connect the high pressure side of the Magnehelic gage and the test gage to two legs of a tee. Very slowly apply pressure through the third leg. Allow a few seconds for pressure to equalize, fluid to drain, etc., and compare readings. If accuracy unacceptable, gage may be returned to factory for recalibration. To calibrate in the field, use the following procedure. Calibration:

1. With gage case, held firmly, loosen bezel, by turning counterclockwise. To avoid damage, a canvas strap wrench or similar tool should be used.

2. Lift out plastic cover and "O" ring.

3. Remove scale screws and scale assembly. Be careful not to damage pointer.

4. The calibration is changed by moving the clamp. Loosen the clamp screw(s) and move slightly toward the helix if gage is reading high, and away if reading low. Tighten clamp screw and install scale assembly. 5. Place cover and O-ring in position, Make

sure the hex shaft on inside of cover is properly engaged in zero adjust screw.

6. Secure cover in place by screwing bezel down snug. Note that the area under the cover is pressurized in operation and therefore gage will leak if not properly tightened. 7. Zero gage and compare to test instrument.

Make further adjustments as necessary,

#### **Ordering Instructions:**

When corresponding with the factory regarding Magnehelic® gage problems, be sure to include model number, pressure range, and any special options. Field repair is not recommended; contact the factory for repair service.

©Copyright 2002 Dwyer Instruments, Inc.

Caution: If bezel binds when installing, htbricate threads sparingly with light oil or molybdenum disulphide compound.

Warning: Attempted field repair may void your warrenty. Recalibration or repair by the user is not recommended. For best results, return gage to the factory. Ship prepaid to:

Dwyer Instruments, Inc.

Attn: Repair Dept.

102 Indiana Highway 212

Michigan City, IN 46360

Trouble Shooting Tips:

•Gage won't indicate or is sluggish.

1. Duplicate pressure port not plugged.

2. Diaphragm ruptured due to overpressure.

3. Fittings or sensing lines blocked, pinched, or leaking.

4. Cover loose or "O"ring damaged, missing.

5. Pressure sensor, (static tips, Pitot tube, etc.) improperly located.

6. Ambient temperature too low. For operation below 20°F (-7°C), order gage with low temperature, (1.T) option.

•Pointer stuck-gage can't be zeroed.

1. Scale touching pointer,

2. Spring/magnet assembly shifted and touching helix.

3. Metallic particles ellinging to magnet and interfering with hells movement.

4. Cover zero adjust shaft broken or not properly engaged in adjusting screw.

We generally recommend that gages needing repair be returned to the factory. Parts used in various sub-assemblies vary from one range of gage to another, and use of incorrect components may cause improper operation. After receipt and inspection, we will be happy to quote repair costs before proceeding.

Consult factory for assistance on unusual applications or conditions.

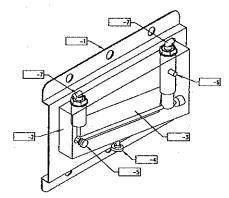
Use with air or compatible gases only.

Printed in U.S.A. 6/02

Fax 2

219/879-8000

Fax: 219/872-9057 Lit-By Fax: 888/891-4963


FR# 12-440212-04 Rev. 2

e-mail: info@dwyer-inst.com

www.dwyer-inst.com

DWYER INSTRUMENTS, INC. BOX 973 • MICHIGAN CITY, INDIANA 46361, U.S.A

Bulletin D-3 **Inclined and Vertical Stationary Manometers** Dwyer, **Operating Instructions and Parts List** 



Specify model number if manometer as a prefix to above part num-bers. For example, scale for No. 200 Inclined manometer is designat-ed as part no. 200-3.

- -1) Panel
- -2) Gage Body -3) Scale
- Scale Screw and -4)

Washer ( -5) Leveling Screw, Nut and Washer

- (-6) Mounting Screw and Washer Molded Nylon (-7)
  - Connector-rapid shut off
- type ( -8) 3/4 oz. bottle Red Gage Oil (not shown)

1. Mount panel securely on a vertical surface, avoiding excessive heat. (Temperatures over 135°F, will damage the gage.)

- Vent gage to atmosphere.
   With an inclined manometer, release level adjustment screw, center bubble between cross hairs on spirit level and tighten level screw securely.
- 4. Slide scale to zero mark lies directly behind oil meniscus, as shown below.

# 

Align oil meniscus and the reflected image to eliminate parallax error.

- Add or remove oil as necessary. 5.
- Run connection provided to left side of gage or plus (above atmospheric) pressures. Connect to right side for minus (below atmospheric) pressures. Connect to both sides for differential pressures, as with a pitot tube. 6,

#### CAUTION:

Use only Dwyer gage oil. Clean with mild soap and water only. Other fluids, solvents or cleaning agents may damage the gage.

#### DWYER INSTRUMENTS INC. MICHIGAN CITY, IN 46360 U.S.A.

Copyright 2003 by Dwyer instruments Inc.

Printed in U.S.A. 5/03

#### AIR VELOCITY

The total pressure of an air stream flowing in a duct is the sum of the static or bursting pressure exerted upon the sidewalls of the duct and the impact or velocity pressure of the moving air. Through the use of a pitot tube con-nected differentially to a manometer, the velocity pressure alone is indicated and the corresponding air velocity determined.

For accuracy of plus or minus 2%, as in laboratory applications, extreme care is required and the following precautions should be observed:



- (8.64 mm) or greater. 2. Make an accurate traverse per sketch at right and average the readings.
- 3. Provide smooth. straight duct sections 10 diameters in length both upstream and downstream

type straightene

upstream from the pitot tube.



FORA CONCENTRY



OF AREA

0

PRIDT TUBE STATIONS INDICATED BY CO

o o o 0

ο 0 0 o

٥ o

0 40

IGEN EDUAL RECTANCELAR AREAS

In making an air velocity check, select a location as suggested above, con-nect tubing leads from both pitot tube connections to the manometer and insert in the duct with the tip directed into the air stream. If the manometer Insert in the duct with the tip directed into the air stream, it the manoneter shows a minus indication reverse the tubes. With a direct reading manome-ter, air velocities will now be shown in feet per minute. In other types, the manometer will read velocitly pressure in inches of water and the corre-sponding velocity will be found from the curves in Bulletin H-11. If circum-stances do not permit an accurate traverse, center the pitot tube in the duct, determine the center velocity and multiply by a factor of .9 for the approxi-mate average velocity. Field tests run in this manner should be accurate within plus or minus 5%.

The velocity indicated is for dry air at 70°F (21.3°C), 29.9° Barometric Pressure and a resulting density of .075=/cu. ft. For air at a temperature other than 70°F, refer to the curves in Bulletin H-11. For other variations from these conditions, corrections may be based upon the following data: Air Velocity=1096.7  $\sqrt{\frac{P_v}{D}}$ 

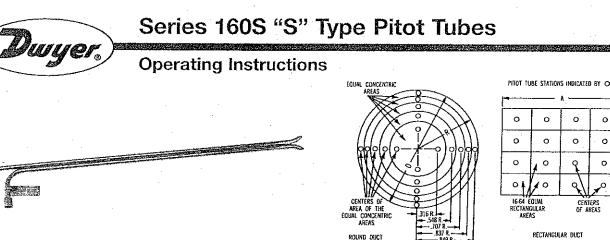
where Pv=velocity pressure in inches of water D=Air density in lbs/cu. ft. Air Density=1.325 x  $\underline{P}_{\theta}$ 

where  $P_u = Barometric Pressure in inches of mercury$ T = Absolute Temperature (indicated temperature plus 460)Flow in cu. ft. per min. = Duct area in square feet x air velocity in ft.per minute.STATIC PRESSURE

In checking inlet and discharge fan and blower pressures, balancing ventilation and dust collection systems, checking exhaust systems and similar installations, air velocities above 700 ft, per min. (12.81 kms/hr) can cause an appreciable error. It is recommended that the static connection of the an appreciate error, in the commended that the static pressure tip or pitot tube or a static pressure tip be used. In using the static pressure tip or pitot tube, the tip should be directed into the air stream. For permanent installation, static pressure tips are recommended. If not available, make connections, enter the duct perpendicular to the air stream and finish off flush and smooth on the inside. FURNACE DRAFT

FURNACE DRAFT Connect the terminal tube to the minus pressure gage opening and insert it into the combustion chamber for over fire draft reading. If a drilled port is not available insert through fire door but seal the crack. For last pass or smoke pipe draft, connect into the breeching on the furnace side of any draft con-trol or damper. To determine draft loss through the furnace, make connec-tion as indicated for smoke pipe draft and add a second tube, connecting the manometer differentially to the combustion chamber. All FILTER TEST

AIR FILTER TEST To determine the pressure drop across an air filter, connect the manometer differentially with one tubing from the downstream or blower side of the filter to the right hand or minus pressure gage connection. Run the second tub-ing from the upstream side of the filter to the other gage connection. Use static pressure tips if available, with the tips directed into the air stream, to eliminate possibility of error due to air velocity. Read the pressure drop across the filter in inches of water and follow the filter manufacturer's rec-ommendations for filter cleaning or replacement.


FR# 30-440079-00 Rev.1

Bulletin H-12

ò

0

σ



Series 160S Pitot Tubes are designed to meet the need of the environmental testing field for an inexpensive, yet accurate and reliable way to measure the flow of particulate-laden air or gas streams. These pitot tubes use large 5/16" diameter stainless steel tubing for both total and static pressures to avoid plugging. Versatile 1/8" female NPT connections enable use with any type of piping or tubing. Two barbed tubing adapters are included for use with 3/16" I.D. rubber or vinyl tubing.

This instrument was built to allow measurement of flows by the procedures detailed in U.S. Environmental Protection Agency publication 40 CFR Change 1, Application A, Method 2. For complete information, refer to that publication and the procedures contained within,

#### INTRODUCTION

The total pressure of a flowing air stream in a duct or pipe is the sum of the static or bursting pressure exerted on the sidewalls and the velocity or impact pressure of the moving air. The difference between total and static pressure is called velocity pressure, which can be used to determine the linear rate of air movement expressed in FPM (feet per minute). A pitot tube has two tubes arranged to sense both pressures simultaneously. By connecting these two tubes differentially to a manometer, velocity pressure is indicated directly and the corresponding air velocity can be calculated after applying the appropriate correction factor. For maximum accuracy of ±2%, as in laboratory applications, care is required and the following recommendations should be followed.

- 1. Duct diameter should be 4" or larger.
- 2. Point total pressure opening upstream facing flow and static pressure opening downstream pointing in the direction of the flow. The faces of both openings
- must be perpendicular to the airflow.
- 3. Make an accurate traverse per drawings; calculate the the velocities at each point and average them.

Take readings in a smooth, straight duct section a minimum of 81/2 duct diameters in length upstream and 11/2 diameters downstream from the pitot tube.

5. Provide an egg-crate type straightener upstream from the pitot tube.

FIG. 4 - TRAVERSE ON ROUND AND SQUARE DUCT AREAS

#### TAKING AIR VELOCITY READINGS

To measure air velocity with a Series 160S Pitot Tube, make a 13/16" (20 mm) opening in side of duct. Permanentmount models require a 1" female NPT opening. Note: permanent mounting is not recommended with insertion lengths over 24" (61 cm) due to risk of excessive deflection. Connect tubing from total pressure port to high pressure side of manometer and from static pressure port to the low pressure side. If reading is negative, reverse connections.

Make a series of readings traversing the duct in horizontal and vertical planes. Using velocity pressures recorded at each location, calculate velocities and average them for final velocity value. If circumstances do not permit or require an accurate traverse, center the pitot tube in the duct, determine the pressure differential (velocity pressure), calculate actual center velocity, and multiply this value by 0.9. Tests run in this manner should be accurate within ±5%.

#### CALCULATING VELOCITY

Air Velocity = 1096.2 (C<sub>p</sub>)  $\sqrt{\frac{P_V}{D}}$ 

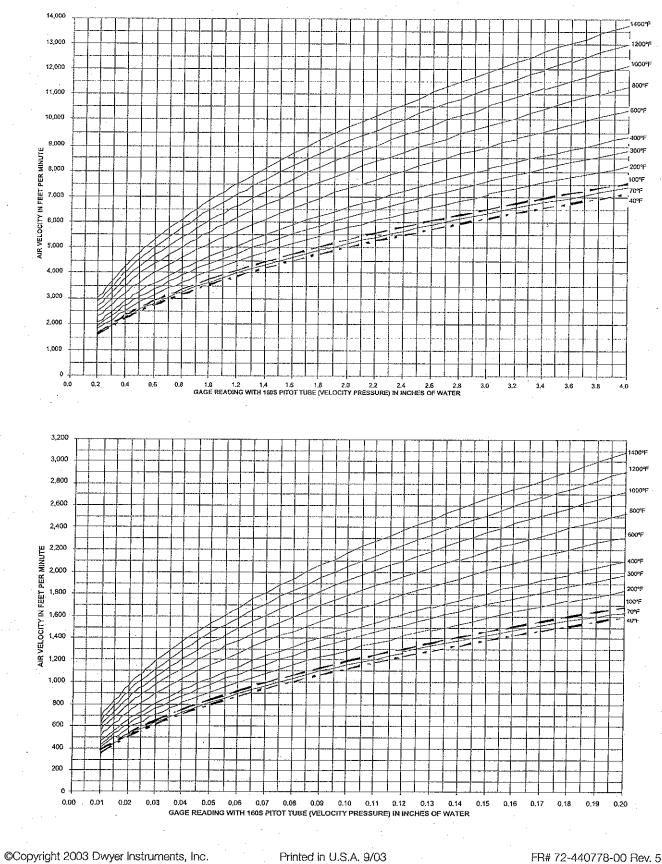
where:

T

- $P_{v}$  = Sensed pressure difference (velocity pressure) in inches of water column
- D = Air density in lbs./ft.<sup>3</sup> (dry air = .075)
- C<sub>p</sub> = Pitot tube coefficient: 0.84

Air Density = 
$$1.325 \times \frac{P_B}{2}$$

- Pв = Barometric pressure in inches of mercury
  - Absolute Temperature (Indicated == Temperature in °F plus 460)


Flow in cubic feet per minute equals duct cross sectional area in square feet x air velocity in feet per minute.

With dry air at 29.9 inches of mercury, air velocity can be read directly from temperature correction charts on reverse.

DWYER INSTRUMENTS, INC.

P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A.

Phone: 219/879-8000 www.dwyer-inst.com Fax: 219/872-9057 e-mail: info@dwyer-inst.com



DWYER INSTRUMENTS, INC. | Phone: 219/879-8000

P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A. Fax: 219/872-9057

www.dwyer-inst.com

e-mail: info@dwyer-inst.com

2-31 OF 2-65

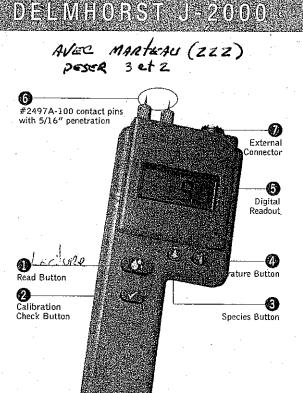


## TABLE OF CONTENTS

a heidige to be a start of the st

- 2 J-2000 Features
- 3 Before You Begin
- 3 Check Calibration
- 4 Set Species

Managaration


Constant of the

and the second sec

And a state of the 
. .

Secondard vol L

- 5 Species Code Chart
- 6 Set Temperature
- 7 Set Pin Calibration
- 7 Taking a Reading
- 8 Information About Your Readings
- 8 To Check Accumulated Readings
- 8 To Reset Meter
- 9 Pin Talk
- 9 Care of Your Meter
- 10 Service For Your Meter
- 11 Warranty
  - Species Correction Chart on Back Cover



## J-2000 FEATURES

Resistance technology recognized worldwide as the most accurate method for measuring moisture

- ▶ 6% to 40% moisture range
- ► Digital readout
- Averages up to 100 accumulated readings
- Built-in correction for 48 different species
- Built-in temperature compensation both Fahrenheit and Celsius
- Proven microcontroller circuit for increased reliability and accuracy
- Easy one-hand operation
- Includes (1) 9-Volt Battery
- Includes sturdy carrying case
- One-year warranty
- Over fifty years of proven quality, accuracy and service

## BEFORE YOU BEGIN Button Functions

READ BUTTON - Reads the Percent Moisture Content value (%MC), corrected for temperature and species.

CALIBRATION CHECK BUTTON - Checks meter calibration. It also displays the average of up to 100 accumulated readings; displays the maximum stored reading; erases the readings.

SPECIES BUTTON - Sets the species code for the wood you are using. Species are numbered from 1 to 48 and are listed on the Species Code Chart. This button also acts as a scroll key, depending on the function.

TEMPERATURE BUTTON - Sets the wood temperature and changes the temperature mode (Fahrenheit or Celsius). This button also acts as a scroll key, depending on the function.

## CHECK CALIBRATION

Press the calibration check button 2 and read button 3 simultaneously. Meter is in calibration if it displays 12% (+ or - .2).

If you check the calibration and the meter does not display 12% it is likely an indication of a low battery. If this occurs, change the battery immediately. Continued use with a low battery may cause the meter to go out of calibration. If you have a fresh battery and the instrument still does not indicate a proper calibration, return it to DELMHORST for service. See "Service for your Meter" section.

When the battery is removed and then reconnected, the meter displays its software version for one second and then turns itself off. After replacing the battery, you must reset the meter as described in "Resetting the Meter" section.

- 3 Å

0F 2 - 65

# SET SPECIES

The J-2000 defaults to Species Code #1 - Douglas Fir - the USDA standard and basis for all calibrations. Because the electrical characteristics of different species vary, all species read differently at the same moisture content. For this reason you need to adjust for species. If you are working with a species other than Douglas Fir, set the species code using the species button (3), and the meter will make the necessary corrections.

- To change species press the species button (3). The meter will display the current species code for one second.
- To scroll forward through the species list hold the species button (3) while the current species code is displayed and scroll to the species number desired.
- To scroll backward through the species list, press and hold the temperature button (2) within one second of pressing the species button (3). Release the species button (3) and continue to hold the temperature button (4) and the species number will decrease.
- When scrolling in either direction, release the button to stop at your desired species.

If you prefer to make manual corrections, a species correction chart and temperature slide rule have been provided. Be sure to set the meter to the #1 species code, Douglas Fir, and the temperature to  $70^{\circ}$ F when making manual corrections.

The J-2000 can be used to test more than just wood. It will also give a relative reading on plywood, OSB, particleboard and MDF or can be fitted with a 26-ES slide hammer for specific applications. Call Delmhorst at 800-222-0638 or e-mail <u>info@delmhorst.com</u> for information on how to interpret the readings for other materials.

### Species Code Chart

| COD    | E/SPECIÉS          | , CODE | / SPECIES                      |
|--------|--------------------|--------|--------------------------------|
| 1      | Fir, Douglas       | 25     | Magnolia                       |
| 2<br>3 | Pine, Southern     | 26     | Mahogany, African (also Khaya) |
| 3      | SPF                | 27     | Mahogany, Honduras             |
| 4      | Alder              | 28     | Mahogany, Philippine           |
| 5      | Apitong            | 29     | Maple, Hard/Soft               |
| 6      | Aspen              | 30     | Meranti, Dark Red              |
| 7      | Ash, White         | 31     | Oak, Red                       |
| 8.     | Basswood           | 32     | Oak, White                     |
| 9      | Birch              | 33     | Pecan                          |
| 10     | Cedar, Eastern Red | 34     | Pine, Longleaf                 |
| 11     | Cedar, Incense     | 35     | Pine, Ponderosa                |
| 12     | Cherry             | 36     | Pine, Shortleaf                |
| 13     | Cottonwood         | 37     | Pine, Sugar                    |
| 14     | Cypress            | 38     | Pine, White                    |
| 15     | Elm, American      | 39     | Poplar, Yellow                 |
| 16     | Fir, Red           | 40     | Ramin                          |
| 17     | Fir, White         | 41     | Radiata Pine                   |
| 18     | Gum, Black         | 42     | Redwood                        |
| 19     | Gum, Red           | 43     | Spruce, Sitka                  |
| 20     | Hemlock, Western   | 44     | SPF, COFI*                     |
| 21     | Hackberry          | 45     | Teak                           |
| 22     | Hickory            | 46     | Virola                         |
| 23     | Keruing            | 47     | Walnut, Black                  |
| 24     | Larch              | 48     | Western Hemlock - COFI*        |
|        |                    |        |                                |

\*Species and temperature correction data for both Western Hemlock-COFI (code #48) and SPF-COFI (code #44) were developed by COFI.

When comparing readings between the model RDM-2/COFI or the RDM-2S/COFI, used with type 26-E electrode with insulated pins, and the J-2000, be sure both meters are set to 2-pin electrode (insulated pins).

5

# SET TEMPERATURE

The J-2000 defaults to a temperature of 70°F. As wood temperature increases, its electrical resistance decreases and indicated moisture content rises. Lower wood temperatures result in lower indicated moisture content. A correction is necessary if the wood temperature is outside the range of 50°F (10°C) to 90°F (32°C). Set the temperature accordingly and the meter will make the correction.

- To change temperature press and release the temperature button . The meter will display the current temperature for one second.
- To scroll forward through the temperature settings, press and hold the temperature button (2) while the current temperature is displayed.
- To scroll backward press and hold the species button within one second of pressing the temperature button Release the temperature button and continue to hold the species button and the temperature will decrease.
- When scrolling in either direction, release the button to stop at the desired temperature.

### Set Temperature Mode 15 à 32 °

- ► To change from Fahrenheit to Celsius mode or Celsius to Fahrenheit mode press the temperature button ④.
- Press the calibration check button 2 within one second and release when you are in the mode needed.
- The meter will display the current temperature setting in the new mode and will wait one more second until shutting off so that you may change the temperature value as described above.

If the meter is in Fahrenheit mode, the letter "F" will display in the left-hand corner. If it is in Celsius mode, no letter will appear in the display.

In the Fahrenheit mode, the temperature will change in increments of 5°F. In Celsius, the temperature will change in increments of either 2°C or 3°C depending on its conversion from Fahrenheit. If you desire a reading closer to your temperature for greater accuracy, we have included a temperature correction slide rule. This will give you correction values for your meter readings in small gradual increments.

In the Fahrenheit mode, the temperature value will display in whole numbers. In the Celsius mode, positive values will display in whole numbers; negative values will display with a decimal point and a "-" sign in the left-hand corner. (i.e.: -17.0)

## SET PIN CALIBRATION

The basic factory calibration of the J-2000 is for use with uninsulated pins — either the integral pins is or with an optional external electrode, such as the #4-E. The difference in readings between insulated and uninsulated pins is small below 10% moisture content. The difference increases as moisture content increases above 10%. When using an electrode with insulated pins, such as the 26-ES, you can change the calibration to compensate for this difference.

- ► To change the pin setting, press and release the species button ③, then press the calibration check button ② within one second.
- The meter will display the current pin calibration as either 222 for insulated or 444 for uninsulated pins.
- If you continue to hold the calibration check button 2, the meter will change pin calibration. The new calibration will remain in "memory" until you change it again, or you remove the battery.

## TAKING A READING

The contact pins () provided are best for stock up to 6/4. On stock over 6/4 or for hardwoods over 4/4 we recommend using a remote probe such as the 26-ES ram-type electrode. Mount the 26-ES directly to the external connector (). See additional information under the "Pin Talk" section.

- Remove the protective cover to expose the pins. Check that the contact pins (6) are firmly hand tightened.
- ► To take a reading, align the contact pins parallel to the grain and push them to their full penetration into the wood, if possible. Insulated pins read only at the tip and can be driven to the desired depth.
- Press the read button (1) and read the moisture content on the meter scale. The meter displays the %MC for two seconds.
- To add a reading to the sum of all the previously stored readings, release the read button (1) within 2 seconds.

### INFORMATION ABOUT YOUR READINGS

Readings below 6% will be displayed as a numeric value, (-##.#), and will not be added to accumulation. A reading below 6% which is due to temperature and species adjustments will be shown as a numeric value with no minus sign and this reading will be added to the accumulation.

Readings above 40% are always displayed as 999 and are not added to the accumulation.

The meter will accumulate up to 100 readings. After all 100 readings are stored it will not add new readings until the memory has been cleared. It will also continue to display the average of all 100 readings as a reminder that the memory is full.

When taking and storing readings for a specific wood species, be sure to "clear" the meter before moving on to the next species if you do not want to group all of the readings together.

### TO CHECK ACCUMULATED READINGS

This feature allows you to view the total number of all accumulated readings, the average of those readings, and the highest stored reading.

- ► To view the readings press and release the calibration check button ②. First the meter displays the number of accumulated readings for one second, then the average of those readings for two seconds. Then it displays the highest stored reading for two seconds. The total "cycle" time is five seconds.
- ► To erase readings hold the calibration check button down for 5 seconds. All accumulated readings will be erased and the meter will display "0.".

### TO RESET METER

8

- Press and release the calibration check button 2.
- Within one second press the species button 3.
- ► The meter will reset itself and display "170" to indicated Species #1 (Douglas Fir) at 70°F. All of the readings in memory will be cleared.

### PIN TALK

There are two types of contact pins - uninsulated, which were provided with your meter, and insulated. When using uninsulated pins, push them in to the wood to their full length, if possible. This will give you the highest measured reading. Insulated pins read only at the tip and can be driven to a desired depth to gather shell and core (gradient) information. Additional types and lengths of both the insulated and uninsulated pins are available for specific applications.

## CARE OF YOUR METER

To keep your meter in good working order:

- Store your meter in a clean, dry place. The protective carrying case provided is an ideal storage place when the meter is not in use.
- Change the 9-Volt battery as needed. Continued use with a low battery may cause the meter to go out of calibration.
- Change contact pins as needed. Keep contact pins hand tightened.
- Clean the meter and contact pins with any biodegradable cleaner. Use the cleaner sparingly and on external parts only. Keep cleaner out of the external connector **7**.
- Remove the battery if the meter will not be used for one month or longer.

## SERVICE FOR YOUR METER

- Pack your meter securely. Enclose a purchase order or letter with a brief description of the problem.
- There is no need to call us for a return authorization number if you are within the U.S. Customers outside the U.S. must contact us for more specific instructions prior to returning a meter.
- Include your name, address, daytime phone and fax numbers or e-mail address. If you believe the meter is under warranty, please provide the original sales slip or invoice.
- Ship via UPS, Express Mail, Priority Mail, or any overnight courier who provides prompt service. Do not use standard parcel post.
- Insure your instrument for its full value and ship prepaid. We are not responsible for damage in transit.
- We do not accept COD shipments or cover any incoming freight or duty charges on returned merchandise
- Turnaround time on repairs is approximately two weeks.
- We will call you with an estimate if you specifically request one, or if we determine that the meter may be too costly to repair.
- Non-warranty repairs will be returned via UPS/COD unless you have already established other payment terms. There is no COD service outside the U.S. To pay by credit card, include the card number and expiration date with your repair. We accept Visa/MasterCard, American Express, and Discover.
- Warranty repairs will be returned at no charge if shipped within the U.S. via UPS Ground Service. Freight charges for expedited services (i.e., Federal Express, UPS/2 Day, UPS/1 Day, etc.) are the customer's responsibility and will be charged as per the above terms.

## WARRANTY

Delmhorst Instrument Co., referred to hereafter as Delmhorst, guarantees its J-2000 meter for one year from date of purchase and any optional electrodes against defects in material or workmanship for 90 days. If, within the warranty period, you find any defect in material or workmanship return the meter following the instructions in the "Service for Your Meter" section. This limited warranty does not cover abuse, alteration, misuse, damage during shipment, improper service, unauthorized or unreasonable use of the meter or electrodes. This warranty does not cover batteries or contact pins. If the meter or any optional electrodes have been tampered with, the warranty shall be void. At our option we may replace or repair the meter.

Delmhorst shall not be liable for incidental or consequential damages for the breach of any express or implied warranty with respect to this product or its calibration. With proper care and maintenance the meter should stay in calibration; follow the instructions in the "Care of Your Meter" section.

Under no circumstances shall Delmhorst be liable for any incidental, indirect, special, or consequential damages of any type whatsoever, including, but not limited to, lost profits or downtime arising out of or related in any respect to its meters or electrodes and no other warranty, written, oral or implied applies. Delmhorst shall in no event be liable for any breach of warranty or defect in this product that exceeds the amount of purchase of this product.

The express warranty set forth above constitutes the entire warranty with respect to Delmhorst meters and electrodes and no other warranty, written, oral, or implied applies. This warranty is personal to the customer purchasing the product and is not transferable.

2 - 38

0F2-65

11

10 .

For more detailed information about using a wood moisture meter, call us toll-free at 1-800-222-0638. Ask for your free copy of "Measuring Wood Moisture Content: Straight Talk from Delmhorst". Or find it on our web site at www.delmhorst.com.

A STREET, STRE

J

For over 50 years, Delmhorst has been the leading manufacturer of high-quality resistance moisture meters. Today we offer the innovative KIL-MO-TROL® in-kiln monitoring system, and Loadmaster®, a fully automated weight-based kiln control system for the ultimate in accuracy. We also offer a complete line of portable moisture meters for woodworking/lumber, agriculture, construction and paper.

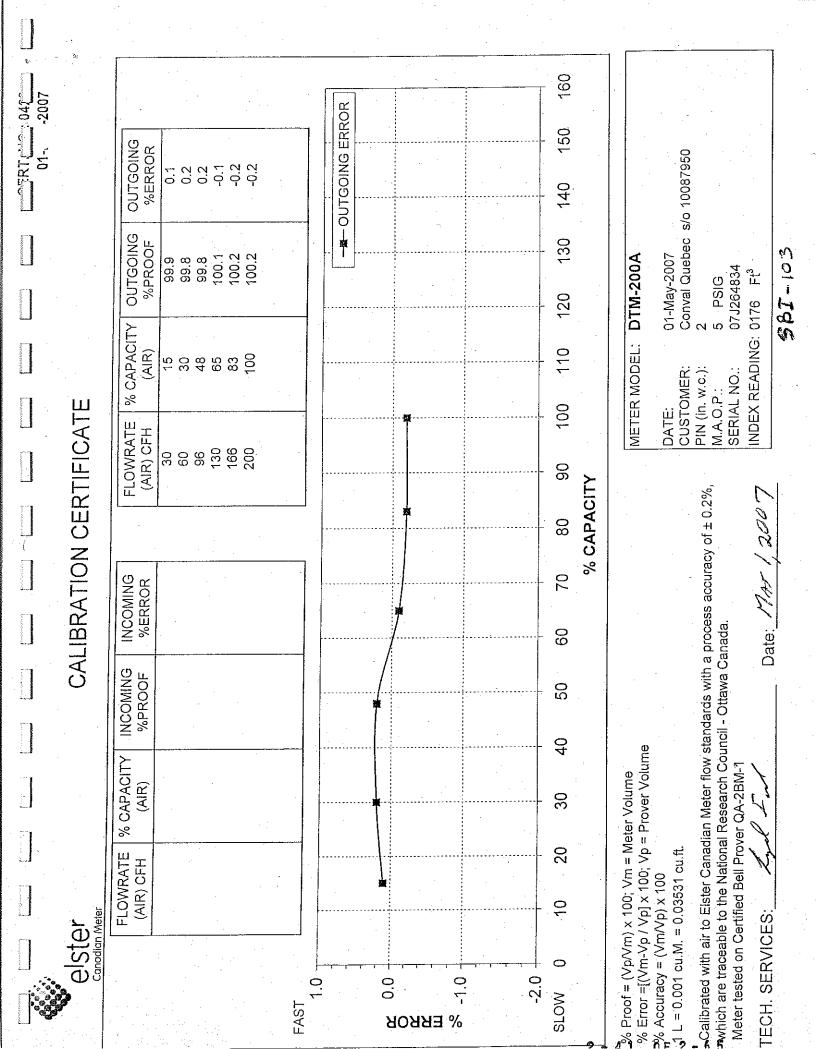
12

2

「「「「「「」」」

### METER READINGS WITH NON-INSULATED PINS

|                         |                  | MELE          | - HEAL   | JINGS    | VVIIHN          | ION-IN     | ISULAT          | EDPIN    | JS   |                   |            |
|-------------------------|------------------|---------------|----------|----------|-----------------|------------|-----------------|----------|------|-------------------|------------|
| SPECIES                 | . <sup>+</sup> 7 | 8             | . 9      | 10 -     | 12              | 14         | 16              | 18       | 20   | 22                | 24.        |
| ALDER                   | 8                | 9             | 10       | 11       | 13              | 15         | 17.5            | 19.5     | 21.5 | 24                | 27         |
| APITONG                 | 8                | 9             | - 10     | 11       | 13              | 15         | 17              | 20       | 22   | 24                | 27         |
| ASPEN                   | 7                | 8             | 9        | 10       | 11.5            | 13         | 15              | 16.5     | 18   | 20                | 21         |
| ASH, WHITE              | 6.5              | 7.5           | 8        | 9        | 11              | 13         | 14.5            | 16       | 18   | 19.5              | 21         |
| BASSWOOD                | 7                | 8             | 8        | 9        | 10.5            | 13         | 15              | 17       | 19   | 20.5              | 22         |
| BIRCH                   | 8                | 9             | 10       | 11       | 13              | 15         | 17              | 19       | 21,5 | 23.5              | 25.5       |
| CEDAR, EAST. RED        | 8                | 9.5           | 10.5     | 12       | 14              | 17         | 19              | 21       | 23   | 25                | 26         |
| CEDAR, INCENSE          | 7                | 8             | 9.5      | 10.5     | 12.5            | 15         | 17              | 19       | 21   | 23                | 25         |
| CHERRY                  | 8                | 9             | 10       | 11       | 13.5            | 15.5       | 18              | 20       | 22   | 24                | 26         |
| COTTONWOOD              | 6                | 7.5           | 8.5      | 9.5      | 12              | 14         | 15              | 17       | 19,5 | , 21              | 23         |
| CYPRESS                 | 7                | 8             | 9        | 10       | 12              | 14         | 16              | 18       | 19.5 | 21.5              | 23.5       |
| ELM, AMERICAN           | 7                | 7.5           | 8        | 8.5      | 10              | 11.5       | 13              | 15       | 16   | 18                | 19         |
| FIR, DOUGLAS            | 7                | 8             | 9        | 10       | 12              | 14         | 16              | 18       | 20   | 22                | 24         |
| FIR, RED                | 7                | 8             | 9        | 10       | 12.5            | 15         | 17              | 19       | 21   | 23                | 25         |
| FIR, WHITE              | 8                | 9             | 9.5      | 10.5     | 12.5            | 15         | 17              | 19       | 21   | 23                | 25         |
| GUM, BLACK              | 7.5              | 9             | 10 .     | 11       | 13              | 15         | 16              | 18       | 19   | 20.5              | 22         |
| GUM, RED                | 7                | 8             | 9        | 10       | 12.5            | 14.5       | 16.5            | 19       | 20.5 | 22.5              | 24         |
| <u>HEMLOCK, WESTERN</u> | 7                | Š             | 9        | 10.5     | _13             | 15         | 17              | 19       | 20.5 | 22                | 23.5       |
| HACKBERRY               | 7                | 8.5           | 9        | 9.5      | 12              | 13         | 15              | 17       | 18.5 | 20                | 22         |
| HICKORY                 | 8                | 8.5           | . 9      | 10       | 11              | 12.5       | 14              | 15.5     | 17   | 19                | 20.5       |
| KERUING                 | 8                | 9             | 10       | 11       | 13              | 15         | 17              | 20       | 22   | 24                | 27         |
| LARCH                   | 7.5              | 9             | 10 ·     | 11       | 13              | 15         | 17              | 19       | 21   | 23                | 25.5       |
| MAGNOLIA                | 7.5              | 9             | 10       | 11.5     | 14              | 16         | 17.5            | 19       | 21   | 22.5              | 24.5       |
| MAHOGANY, AFRICAN       | 8                | 9.5           | 10.5     | 12       | 15              | 17 .       | 19.5            | 22       | 24   | 26                | 28         |
| (ALSO KHAYA)            |                  |               |          |          |                 |            |                 |          |      |                   |            |
| MAHOGANY, HOND.         | 7                | 8             | 9        | 10.5     | 12.5            | 14.5       | 16              | 18       | 19.5 | 21.5              | 22.5       |
| MAHOGANY, PHIL.         | 6                | 7             | 7.5      | 8        | 9.5             | 11         | 13              | 14       | 15.5 | 17                | 18         |
| MAPLE, HARD/SOFT        | 8                | 9 ·           | 9.5      | 10       | 12              | 14         | 16              | 18       | 20   | 22.5              | 25         |
| MERANTI, DARK RED       | 8.5              | 9.5           | 10.5     | 11.5     | 12.5            | 16         | 18              | 20.5     | 22.5 | 24.5              | 26.5       |
| OAK, RED                | 7                | 8             | 9        | 10       | 12              | 14         | 16              | 18       | 20   | 22                | 24         |
| OAK, WHITE              | 7                | 8             | 8.5      | 9.5      | 11.5            | 13.5       | 15              | 17       | 18.5 | 20                | 22         |
| PECAN                   | 6.5              | 8             | 9.5      | . 11     | 12.5            | 14         | 16              | 17.5     | 19   | 22                | 24         |
| PINE, LONGLEAF          | 8                | 8.5           | 10       | 11       | 13              | 15.5       | 17.5            | 19.5     | 21   | 23                | 25         |
| PINE, PONDEROSA         | 7.5              | 8.5           | 10       | 11       | 13.5            | 15.5       | 17.5            | 19.5     | 21   | 23                | 25.5       |
| PINE, SHORTLEAF         | 7.5              | 9             | 10       | 11       | 13              | 15.5       | 17.5            | 19.5     | 21.5 | 23.5              | 25         |
| PINE, SO. YELLOW*       | 8                | 9.5           | 10.5     | 12       | 14.5            | 16.5       | 19              | 21       | 23   | 25                | 28         |
| PINE, SUGAR             | 7                | 8             | .9       | 10       | 12              | 15         | 17              | 19       | 21   | 23                | 25         |
| PINE, WHITE             | 7                | 8             | 9        | 10       | 13              | 15<br>15   | 17              | 19       | 21   | 23                | 25.5       |
| POPLAR, YELLOW          | 8                | 8.5           | 10       | 11       | 13              | 15.5       | 17.5            | 19.5     | 22   | 24                | 26         |
| RAMIN                   | 7                | 8             | 9        | 10       | 11              | 13         | 15              | 16       | 18   | 20                | 20<br>21   |
| RADIATA PINE            | 10               | 11            | 11       | 12       | 14              | 16         | 18              | 20       | 23   | 25                | 27         |
| REDWOOD                 | 7                | 8             | 9        | 10       | 12              | 13.5       | 15              | 17       | 19   | 22                | 24         |
| SPRUCE, SITKA           | 7                | 8             | 9        | 10       | 12.5            | 14.5       | 17              | 19       | 21   | 23.5              | 26         |
| SPF**                   | 9                | 10            | 11.5     | 13       | 15.5            | 18         | 20.5            | 23       | 25   | <u>29.5</u><br>28 | 30         |
| SPF/C0FI                | 8                | 9             | 10       | 11       | 13              | 15         | 17              | 19       | 21   | 23                | 25         |
|                         |                  |               |          |          |                 |            |                 |          | 17   |                   |            |
| ТЕАК                    | 7                | 8             | -8.5     | 9 /      | 11              | - 1Z       | 1.4             |          |      | 10.7              | <u></u>    |
| TEAK<br>VIROLA          | 7<br>6.5         | <b>8</b><br>7 | <u> </u> | <b>9</b> | <u>11</u><br>11 | 12<br>12.5 | <b>14</b><br>14 | 15<br>16 | 18   | 18.5<br>18.5      | 20<br>20.5 |


\*Meter readings taken with 26-E 2-pin electrode. Do not apply 2-pin correction.

\*\*SPF correction based on 2-pin 26-E reading with insulated pins. It is based on USDA/Forintek data and can be used for the following species: Lodgepole Pine

6 5

Alpine Fir

La constanta





# **Certificate of Accuracy**

Cert-02 Revision E American Meter Company Quality System Original September 24th, 1996. Certificate No. 006697 ISO 9001-2000 certified November 6, 2004. Meters under 500CU-FT/HR ANSI-B109.1 – April 13, 2000 Meters 500CU-FT/HR and over ANSI-B102.2 – April 13, 2000 Residential Regulators ANSI-B109.4 – April 23, 1998 & CGA 6.18-M95

American Meter Company certifies that the following named product is accurate to the specifications listed.

| Customer Order Number:  | 1008     | 8109 | CMCO # 1      | 055531   |    |
|-------------------------|----------|------|---------------|----------|----|
| Product Description:    | DTM-200A |      |               |          |    |
| Manufacturing Number:   | 07J264   | 834  | thru          | I        |    |
| Working Pressure (Psi): | 10       | . ]  | Test Pressure | e (Psi): | 15 |
| Accuracy @              | 200.0    | CFH  | 100.1         | %        |    |
| Accuracy @              | 65.0     | CFH  | 99.9          | %        |    |

XK-1179, XU-3530

Jelon

Prover Number/s:

Wayne Nelson

Certified By:\_

Date: 4/19/2007

Data obtained on prover certified accurate using PI tape #04190452, NIST #821/263310-00, and digital caliper #0056464, NIST #821/267216-02.

Quality Assurance Manager

ISO 9001: 2000

Certificate No. 006697

- 42

0F 2 - 65

2221 Industrial Road Nebraska City, NE 68410 U.S.A +1 402 873 8200 +1 402 873 7616

F

Elster American Meter

www.americanmeter.com



# GAS METER TEST RECORD

Page:

Date: 04/24/2007

1

| Qty Ordered:                            | CANADIAN METE<br>I<br>1055531         | ER - Cambridge  |             | SALES ORD<br>SHOP ORD | SOLD TO ID:<br>SALES ORDER NO:<br>SHOP ORDER NO:<br>PROOF TYPE: |                                          |  |
|-----------------------------------------|---------------------------------------|-----------------|-------------|-----------------------|-----------------------------------------------------------------|------------------------------------------|--|
| SERIES ID:<br>200A                      | Туре:                                 | Drive:<br>0.1FT | Remote Rdr: | Тор:                  | Index:                                                          | proo                                     |  |
| MFG Badge No                            | SOLD TO                               | BADGE NO        | REMOTE RE   | EADER NO              | OPEN                                                            | CHECK                                    |  |
| 07J264834                               |                                       |                 |             | <u></u>               | 100.1                                                           | 99.9                                     |  |
|                                         | · · · · · · · · · · · · · · · · · · · | · · · · ·       |             |                       |                                                                 |                                          |  |
|                                         | ·                                     |                 | · .         |                       |                                                                 | <br>                                     |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 | 11 - L                                   |  |
|                                         |                                       | · ·             |             |                       |                                                                 |                                          |  |
| алан алан алан алан алан алан алан алан |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 | · · · ·                                  |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             | •                     |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 | <u>.</u>    |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
| · · ·                                   | . · · ·                               |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 | ·<br>·                                   |  |
|                                         |                                       | · · · ·         |             |                       |                                                                 |                                          |  |
|                                         |                                       | · · ·           |             |                       |                                                                 |                                          |  |
| •                                       |                                       |                 |             | · · · ·               |                                                                 |                                          |  |
| •                                       | •                                     | •.              |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 | · · · ·                                  |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 | • .         |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 | •<br>•                                   |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 |                                          |  |
|                                         |                                       |                 |             |                       |                                                                 | an a |  |
|                                         |                                       |                 |             |                       | 2 - 4 3 01                                                      | 2 - 6 5                                  |  |



AVVI SOCIALS

and the first of the second

Constant and the second

The second second

(

La compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de

Ulrich Métrologie inc. Ulrich Metrology Inc. 9912, Côte-de-Liesse Montréal (Québec) H8T 1A1

Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca

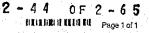
## CALIBRATION CERTIFICATE

| Certificate no.: | 88544                       | Calibration date:   | July 27, 2007               |
|------------------|-----------------------------|---------------------|-----------------------------|
| Instrument ID:   | ID-179543                   | Certificate issued: | August 03, 2007             |
| Туре:            | MANOMETER, DWYER MAGNEHELIC | Interval:           | 12 months                   |
| Size:            | 0 TO 0.5 IN WATER           | Due date:           | July 27, 2008               |
| Manufacturer:    | DWYER                       | Procedure:          | See notes below.            |
| Model no.:       | MAGNEHELIC                  | Environment:        | See notes below.            |
|                  |                             | Temperature:        | See notes below.            |
|                  |                             | Humidity:           | See notes below.            |
|                  |                             | Metrologist:        | АМК                         |
| Property of:     | SBI                         |                     | · · · ·                     |
|                  | 1700, RUE LEON HAMEL        |                     | Milerio Mercuri             |
|                  | QUEBEC, QC G1N 4R9          | Approved by:        | Nuccio Mercuri, Lab Manager |

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and QM-07. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement.

#### CALIBRATION STANDARDS

See notes below.


#### MEASUREMENT UNCERTAINTY

See notes below.

#### MEASUREMENT RESULTS

This gauge was subcontracted. See next page for measurement results.

Copyright of this Calibration Certificate CE-03-03 is owned by Ukrich Metrology Inc. and may not be reproduced other than in full except with the prior approval of Ukrich Metrology Inc.





Tél. (514) 328-2550 I 800 522-1226 Fax (514) 327-0604 4850, bd Gouin est Montréal-Nord, Qc Canada H1G 1A2 www.chevrierinstruments.com info@chevrierinstruments.com Instruments de mesure et de régulation pour les procédés industriels et laboratoire d'étaionnage

## Certificat d'étalonnage **Calibration certificate**

| Description                                  | Manomèt  | re différentiel Magne<br>Modèle : 2000D-0 |                                    | Numéro de série<br>Serial number | ·                                   |             |
|----------------------------------------------|----------|-------------------------------------------|------------------------------------|----------------------------------|-------------------------------------|-------------|
| Plage<br>Range                               |          | 0/0.5 "CE                                 |                                    |                                  | Identification                      | ID-179543   |
| Précision<br>Accuracy                        | -        | ±2% p.é.                                  | Reçu conforme<br>Received in specs | Oui                              |                                     |             |
| Client / Customer                            |          | Ulrich Métrologie In<br>17311             | с.                                 |                                  | Quitte conforme<br>Leaving in specs | Ουί         |
| Bon de travail<br>Work order #               | 17041-02 | État instrument<br>Condition              | <u>Arrivée/In</u><br>Bon           | <u>Sortie/Out</u><br>Bon         | Réparation (o/n)<br>Repaired (y/n)  | Non         |
| Conditions d'étalonn<br>Ambient conditions a |          |                                           |                                    | 20±1°C                           |                                     | 35-55% H.R. |
| Remarque(s)                                  |          |                                           |                                    |                                  |                                     |             |

Comments

| Appliquée<br>Applied<br>"CE | Lectun<br>Readin<br>(ascendantes)<br>(ascending) |         | Appliquée<br>Applied<br>"CE | Lecturi<br>Readin<br>(descendantes)<br>(descending) | A Start Contained |
|-----------------------------|--------------------------------------------------|---------|-----------------------------|-----------------------------------------------------|-------------------|
| 0.0000                      | 0.00                                             | 0.0000  | 0.0000                      | 0.00                                                | 0.0000            |
| 0.0981                      | 0.10                                             | 0.0019  | 0.0926                      | 0.10 -                                              | 0.0074            |
| 0.2556                      | 0.25                                             | -0.0056 | 0.2431                      | 0.25                                                | 0.0069            |
| 0.3495                      | 0.35                                             | 0.0005  | 0.3418                      | 0.35                                                | 0.0082            |
| 0.4971                      | 0.50                                             | 0.0029  | 0.4971                      | 0.50                                                | 0.0029            |

L'instrument ci-haut mentionné a été étalonné selon la méthode de comparaison en conformité avec la procédure PR004 The above instrument was calibrated using the comparison method in conformance with the procedure PR004

Étaions utilisés traçable au C.N.R.C / N.I.S.T.- Standards used C.N.R.C / N.I.S.T. Traceable CHEV029, manomètre/simulateur différentiel Fumess Controls PPC500 n/s 960294, 0.0008/80"CE, 0/20 mA, 0/20 Vcc précision pression: ±0.008°CE 0 à 8°CE ailleurs : ±(0.1% v.m. +1 chiffre), précision voltage et courant ±(0.05% v.m. + 1 chiffre), certifié NIST, Certificat: FC06-303-B01, date due 30 octobre 2007.

Certifié par Certified by

ТB Julien Bernier

Date 2007-juil-27 Numéro du certificat Certificate number

Date due 2008-juil-27 Due Date 17041-02-17311

H:\WPAT\CERTIFIC\Save\17041-02-17311.doc

C.Q. DC

C. Q

J.B

révision.070727, Reproduction interdite sans consentement ecrit

ion, le raijo d'incertitude étalon/instrument est d'au moins 4 pour 1. ombrage. Out of tolerance readings shaded.

Page 1 de 1

Enregistre par le BNQ selon ISO 9001 The test uncertainty ratio exceeds four to one unless otherwise indicated



Ulrich Métrologie inc. Ulrich Metrology Inc. 9912, Côte-de-Liesse Montréal (Québec) H8T 1A1 Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca

### CALIBRATION CERTIFICATE

| Certificate no.: | 82536                   | Calibration date:   | June 27, 2007               |
|------------------|-------------------------|---------------------|-----------------------------|
| Instrument ID:   | SBI-096                 | Certificate issued: | June 27, 2007               |
| Type:            | CALIBRATOR, OMEGA CL23A | Interval:           | 12 months                   |
| Size:            | TC K/J/T                | Due date:           | June 27, 2008               |
| Manufacturer:    | OMEGA                   | Procedure:          | MET/CAL                     |
| Model no.:       | CL23A                   | Environment:        | CLAS Type 2 Laboratory      |
| Serial no.:      | T-256137                | Temperature:        | 23 ± 2°C                    |
| -                |                         | Humidity:           | 35 - 55% RH                 |
|                  |                         | Metrologist:        | MAR                         |
| Property of:     | SBI                     |                     |                             |
|                  | 1700, RUE LEON HAMEL    |                     | (Nuecro Mercun              |
|                  | QUEBEC, QC G1N 4R9      | Approved by:        | Nuccio Mercuri, Lab Manager |

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and QM-07. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement.

#### CALIBRATION STANDARDS

See notes below.

#### MEASUREMENT UNCERTAINTY

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

Copyright of this Calibration Cartificate CE-03-03 is owned by Ulrich Metrology Inc. and may not be reproduced other than in full except with the prior approval of Ulrich Metrology Inc.

#### MEASUREMENT RESULTS

See next page for measurement results.

#### Notes:

9V battery replaced.



Calibration Data for Certificate No. 82536

#### Ulrich Métrologie inc. - Ulrich Metrology Inc. 9912, Côte-de-Liesse Tél. (514) 631-6653

Lachine, QC H8T1A1 Fax (514) 631-6122 www.ulrich.ca info@ulrich.ca

CALIBRATION DATA Certificate No. 82536 Instrument ID: SBI-096 PASS Result: Type: CALIBRATOR THERMOMETER -Condition: FOUND-LEFT Serial no.: T-256137 Procedure: Omega CL23A: 5520A-M CALIBRATION STANDARDS Standard ID Type Manufacturer Model no. Cal. Date Due Date 8608002 CALIBRATOR FLUKE 5520A 2006/10/14 2008/10/14 MEASUREMENT RESULTS (Per MET/CAL) TRUE ACCEPTANCE LIMITS TEST PASS/ PARAMETER VALUE RESULT LOW HIGH FAIL TUR DISPLAY CALIBRATION Did all segments of the display illuminate? Result of Operator Evaluation PASS THERMOMETER CALIBRATION K Type Thermocouple -200.0degF -200.5 -201.0 -199.0 PASS 1.7 -60.0degF -59.9 -61.0 -59.0 PASS 3.1 -40.0degF -40.2 -40.5 -39.5 PASS 1.5 32.0degF 31.7 31.5 32.5 PASS 1.7 1240.0degF PASS 1239.7 1239.5 1240.5 1.1 1260.0degF 1259.7 1259.5 1260.5 PASS 1.1 2500.0degF 2499.2 2499.0 2501.0 PASS 1.4 J Type Thermocouple -200.0degF -200.8 -199.0 PASS -201.0 2.1 -60.0degF -60.4 -61.0 -59.0 PASS 3.5 -40.0degF 1.7 -40.4 -40.5 -39.5 PASS 32.0degF 31.5 31.5 32.5 PASS 2.0 1240.0degF 1239.5 1239.5 1240.5 PASS 1:6



------

and a second second

ĺ

#### Ulrich Métrologie inc. • Ulrich Metrology Inc.

 9912, Côte-de-Liesse
 Tél. (514) 631-6653

 Lachine, QC H8T1A1
 Fax (514) 631-6122

 www.ulrich.ca
 info@ulrich.ca

| PARAMETER             | TRUE<br>VALUE       | TEST<br>RESULT | ACCEPTAN<br>LOW     | CE LIMITS<br>HIGH                     | PASS/<br>FAIL | TUR      |
|-----------------------|---------------------|----------------|---------------------|---------------------------------------|---------------|----------|
| 1260.0degF            |                     | 1259.5         | 1259.5              | 1260.5                                | PASS          | 1.6      |
| 1400.0degF            |                     | 1399.7         | 1399.4              | 1400.6                                | PASS          | 1.8      |
| Type Thermocouple     |                     |                | алар (1997)<br>Алар | · · · · · · · · · · · · · · · · · · · | <br>          |          |
| 200.0degF             |                     | -200.1         | -201.0              | -199.0                                | PASS          | 2.3      |
| 60.0degF              |                     | -60.1          | -61.0               | -59.0                                 | PASS          | 2.3      |
| 40.0degF              |                     | -39.9          | -40.5               | -39.5                                 | PASS          | 1.2      |
| 32.0degF              |                     | 31.9           | 31.5                | 32.5                                  | PASS          | 1.7      |
| 750.0degF             |                     | 749.9          | 749.5               | 750.5                                 | PASS          | 2.0      |
| ALIBRATOR CALIBRATION |                     |                | ·                   | · · · ·                               |               |          |
| Type Thermocouple     |                     |                | ·                   |                                       |               |          |
| 200.0degF             |                     | -199.3         | -201.0              | -199.0                                | PASS          | 1.7      |
| 60.0degF              |                     | -59.7          | -61.0               | -59.0                                 | PASS          | 3.1      |
| 40.0degF              |                     | -39.8          | -40.5               | -39.5                                 | PASS          | 1.5      |
| 32.0degF              |                     | 32.1           | 31.5                | 32.5                                  | PASS          | 1.7      |
| 1240.0degF            |                     | 1239.7         | 1239.5              | 1240.5                                | PASS          | 1.1      |
| 1260.0degF            |                     | 1259.7         | 1259.5              | 1260.5                                | PASS          | 1.1      |
| 2500.0degF            |                     | 2499.7         | 2499.0              | 2501.0                                | PASS          | 1.4      |
| Type Thermocouple     |                     |                |                     |                                       |               | ·<br>• . |
| 00.0degF              |                     | -199.2         | -201.0              | -199.0                                | PASS          | 2.1      |
| 0.0degF               |                     | -59.7          | -61.0               | -59.0                                 | PASS          | 3.5      |
| 0.0degF               |                     | -39.6          | -40.5               | -39.5                                 | PASS          | 1.7      |
| 2.0degF               |                     | 32.2           | 31.5                | 32.5                                  | PASS          | 2.0      |
| 240.0degF             |                     | 1240.0         | 1239.5              | 1240.5                                | PASS          | 1.6      |
| 260.0degF             | · · ·               | 1259.9         | 1259.5              | 1260.5                                | PASS          | 1.6      |
| 400.0degF             |                     | 1399.5         | 1399.4              | 1400.6                                | PASS          | 1.8      |
| Type Thermocouple     | en tra cui<br>Statu |                | •                   |                                       | 4 * <u>.</u>  |          |
| 00.0degF              |                     | -200.2         | -201.0              | 199.0                                 | PASS          | 2.3      |
| 0.0degF               |                     | -60.2          | -61.0               | -59.0                                 | PASS          | 2.3      |

Calibration Data for Certificate No. 82536



nan yaawaa anga

SV-LVCSfinatelia

A NORTH A REPORT

Contractory and

A PROPERTY AND DRAW

PERSONAL CONTRACTOR

a velocity (construction)

Uirich Métrologie inc. - Ulrich Metrology Inc.9912, Côte-de-LiesseTél. (514) 631-6653Lachine, QC H8T1A1Fax (514) 631-6122www.ulrich.cainfo@ulrich.ca

| · · · · · · | TRUE                       | TEST   | ACCEPTAN | NCE LIMITS | PASS/ |     |
|-------------|----------------------------|--------|----------|------------|-------|-----|
| PARAMETER   | VALUE                      | RESULT | LOW      | HIGH       | FAIL  | TUR |
| -40.0degF   |                            | -40.0  | -40.5    | -39.5      | PASS  | 1.2 |
| 32.0degF    | алар (1993)<br>Алар (1993) | 31.8   | 31.5     | 32.5       | PASS  | 1.7 |
| 750.0degF   |                            | 749.7  | 749.5    | 750.5      | PASS  | 2.0 |

End of Test Data

magnetulic Calibration 581-105 - checked against incline Manun # 585-020 meline magnahelie .218 .225 .158 .155 .085 ,080 .040 ,040 . . -----

| • Henne<br>• Ste Mar<br>• Dati 7FAO<br>• Dati 7FAO<br>• En trançois<br><b>Last 24 hours</b><br><b>Last 24 hours</b><br><b>Tuesday, 11 Dac 2897</b><br>Québec Alroot<br><b>Deservations</b><br><b>TUE 17</b><br><b>Sty</b> Temp (7) Deservation<br><b>Sty</b> Temp (7) Deservation<br><b>Sty</b> Temp (7) Deservation<br><b>TUE 18</b><br><b>48</b> -10 985<br><b>102 000</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.7</b> ( <b>11 1.6</b> 800 <b>30.13</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.6</b> 800 <b>30.13</b><br><b>1.7</b> ( <b>11 1.6</b> 800 <b>30.13</b><br><b>1.6</b> 1.8 800 <b>30.13</b><br><b>1.6</b> 1.8 800 <b>30.13</b><br><b>1.7</b> ( <b>11 1.6</b> 1.7 <b>1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Weath                  | ner Networ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rk - Last 24  | 4 hours - Q | uebec Air | port      |                                                                                                  | Rues (  |       | Page 1 sur | 2                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------|-----------|--------------------------------------------------------------------------------------------------|---------|-------|------------|---------------------------------------|
| <ul> <li>Help / FAQ</li> <li>En françois</li> <li>Last 24 hours</li> <li>Tuesday, 11 be: 2007</li> <li>Quebec: Alrport</li> <li>Observations</li> <li>TUE 17</li> <li>TUE 17</li> <li>Barting</li> <li>Barting</li> <li>Barting</li> <li>TUE 18</li> <li>Barting</li> <li>Barting</li> <li>Barting</li> <li>TUE 18</li> <li>Barting</li> <li>Barting&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Site I</li> </ul> | Мар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |             |           |           | (                                                                                                |         |       | · · · ·    |                                       |
| Last 24 hours<br>Tuesday, 11 Dec 2007<br>Quebec Airport<br>Observations<br>V = 10<br>TUE 16<br>TUE 16<br>TUE 16<br>TUE 16<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 12<br>TUE 14<br>TUE 12<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 15<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 14<br>TUE 15<br>TUE 14<br>TUE 15<br>TUE 15<br>TUE 15<br>TUE 16<br>TUE 16<br>TUE 06<br>TUE 05<br>TUE 05 | <ul> <li>Help</li> </ul>   | / FAQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |           |           | ÷.                                                                                               |         |       |            | · · · · · · · · · · · · · · · · · · · |
| Tuesday, 11 Bac 2007<br>Quebec: Airport         Observations       Sky       Term (°)       Dewpoint       Eals       Wind<br>(Km/h)       Relative<br>Humidity       Pressure       Visibility       Ceiling<br>(Km)       Ceiling<br>(Km)         TUE 17       Sky       -8       -10       -       -       85       101.03       1.6       600       30.10         TUE 16       -8       -10       -       -       85       102.09       2.4       700         TUE 15       -9       -11       -       SW 9       85       102.27       4.8       600       30.17         TUE 13       -9       -11       -16       SW 9       85       102.27       4.8       600         TUE 13       -9       -11       -16       SW 19       85       102.40       4.8       500         TUE 11       -11       -13       -17       W 11       85       102.40       4.8       500         TUE 14       -11       -13       -17       W 11       85       102.40       4.8       500         TUE 10       -12       -13       -19       W 13       92       102.62       1.0       200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | •           | 44/125    | Weather   |                                                                                                  |         |       |            |                                       |
| Quebec Airport           Observations           Sky         Temp (*<br>C)         Dewpoint<br>C)         Feels<br>Like         Wind<br>(Kn/h)         Relative<br>Hundidity<br>(Kn/h)         Pressure<br>(kpa)         Visibility<br>(kpa)         Celling<br>(km)           TUE 17         Image: Colspan="6">Sky         -8         -10         -         -         85         10133         1.6         600         30.10           TUE 16         Image: Colspan="6">Image: Colspan="6">Structure         -         85         102.02         3.2         800         30.13         4           TUE 16         Image: Colspan="6">Structure         -         -         85         102.02         2.4         700         -           TUE 14         Image: Colspan="6">-9         -11         -         SW 9         85         102.09         2.4         700         -           TUE 13         -9         -11         -16         SW 19         85         102.40         4.8         600         30.17           TUE 12         -10         -12         -18         W 20         85         102.40         4.8         600           TUE 12         -11         -12         -18         W 20         85         102.40 </td <td></td> <td></td> <td>rs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs            |             |           |           |                                                                                                  |         |       |            |                                       |
| Sky       Implement       Dewpoint       De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quebec                     | : Airport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | · * .       |           |           |                                                                                                  |         | ·     |            |                                       |
| Image: Tue In the Image: Tue In th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kime<br>(                  | Sky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temp (°<br>C) | Dewpoint    |           |           | Humidity                                                                                         |         |       |            |                                       |
| I       TUE 15       Image: Constraint of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -8            | -10         | -         |           | 85                                                                                               |         |       |            |                                       |
| TUE 14 $337$ -9       -11       -       SW 9       85 $102.13$ 4.8 $600$ $3^4$ , $17$ TUE 13 $332$ -9       -11       -16       SW 19       85 $102.27$ 4.8 $600$ TUE 12 $332$ -10       -12       -18       W 20       85 $102.40$ 4.8 $500$ TUE 11 $332$ -10       -12       -18       W 20       85 $102.40$ 4.8 $500$ TUE 11 $332$ -11       -13       -17       W 11       85 $102.44$ 4.8 $10000$ TUE 10 $332$ -12       -13       -19       W 13       92 $102.58$ 2.4 $500$ TUE 09 $332$ -12       -14       -20       W 17 $85$ $102.62$ $1.0$ $200$ TUE 08 $-14$ -16       -       NE 4 $85$ $102.62$ $4.8$ $400$ TUE 07 $332$ -14       -16       NE 7 $85$ $102.62$ $0.6$ $100$ TUE 06 $-12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • .           | - ··        | -         | -         | 9<br>2<br>9<br>2<br>9<br>2<br>9<br>2<br>9<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2 |         | - Run | <b>`</b>   | 30.13                                 |
| TUE 12       Image: second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | -         | -<br>SW 9 |                                                                                                  |         |       |            | 30,17                                 |
| TUE 11       Image: State of the state of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TUE 13                     | <u>a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9             | -11         | -16       | SW 19     | 85                                                                                               | 102.27- | 4.8   | 600        |                                       |
| TUE 10 $\checkmark$ $-12$ $-13$ $-19$ W 13 $92$ $102.58$ $2.4$ $500$ TUE 09 $\checkmark$ $-12$ $-14$ $-20$ W 17 $85$ $102.62$ $1.0$ $200$ TUE 08 $\checkmark$ $-14$ $-16$ $-$ NE 4 $85$ $102.62$ $4.8$ $400$ TUE 07 $\checkmark$ $-13$ $-15$ $-$ NE 7 $85$ $102.61$ $2.4$ $300$ TUE 06 $\checkmark$ $-12$ $-14$ $-19$ W 15 $85$ $102.62$ $0.6$ $100$ TUE 05 $\checkmark$ $-12$ $-14$ $-20$ SW 20 $85$ $102.59$ $1.6$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TUE 12                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10           | -12         | -18       | W 20      | 85                                                                                               | 102.40- | 4.8   | 500        |                                       |
| TUE 09       Image: state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TUE 11                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11           | <b>-13</b>  | -17       | W 11      | 85                                                                                               | 102.44- | 4.8   | 10000      |                                       |
| TUE 08       Image: Signal symbols       Image: Fignal symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YIL: YIL: WARMEN           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |           |           |                                                                                                  |         |       |            |                                       |
| TUE 07 $300$ TUE 06 $-13$ $-15$ $ NE 7$ $85$ $102.61$ $2.4$ $300$ TUE 06 $-12$ $-14$ $-19$ $W 15$ $85$ $102.61$ $2.4$ $300$ TUE 06 $-12$ $-14$ $-19$ $W 15$ $85$ $102.62$ $0.6$ $100$ TUE 05 $-12$ $-14$ $-20$ $SW 20$ $85$ $102.59$ $1.6$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | -20       | -         | •                                                                                                |         | · ·   |            |                                       |
| TUE 05 -12 -14 -20 SW 20 85 102.59 1.6 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | ·         |           | N.                                                                                               |         | · ·   |            |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TUE 06                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -12           | -14         | -19       | W 15      | 85                                                                                               | 102.62  | 0.6   | 100        |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TUE 05                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -12           | -14         | -20       | SW 20     | 85                                                                                               | 102.59  | 1.6   | 100        |                                       |
| u 12 martine - Constant de la constant de la constant de la constant de la constant de <b>2 → 5 1 mort 2 → 6 5</b> martine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | And the second se |               |             |           |           |                                                                                                  |         | 2-51  | 0F 2 - 6   | 5                                     |

Page 1 sur 2

Ruas 2,3

- Home Site Map Contact Us Help / FAQ En français



12-12-07

# Last 24 hours

Wednesday, 12 Dec 2007

Quebec Airport

Observations

South the second

arev maked one

and a second second

and the second

.

|        | Sky                                                                                                        | Temp (°<br>C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dewpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feels<br>Like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wind<br>(Km/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relative<br>Humidity<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure<br>(kpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Visibility<br>(km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ceiling<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VED 22 | Ć                                                                                                          | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (102.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VED 21 | Ċ                                                                                                          | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VED 20 | Q.                                                                                                         | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VED 19 | Q.                                                                                                         | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VED 18 | E.                                                                                                         | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VED 17 | æ                                                                                                          | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NW 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /ED 16 | Ę,                                                                                                         | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NW 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (101.52_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| /ED_15 | \$                                                                                                         | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /ED 14 |                                                                                                            | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W`28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24<br>RUND 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| /ED 13 | @                                                                                                          | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /ED 12 | 愛                                                                                                          | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| /ED 11 | Ê                                                                                                          | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NW 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 'ED 10 |                                                                                                            | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | /ED 21<br>/ED 20<br>/ED 19<br>/ED 18<br>/ED 17<br>/ED 16<br>/ED 15<br>/ED 14<br>/ED 13<br>/ED 12<br>/ED 11 | VED 22       ()         VED 21       ()         VED 20       ()         VED 19       ()         VED 17       ()         VED 16       ()         VED 15       ()         VED 16       ()         VED 15       ()         VED 16       ()         VED 17       ()         VED 16       ()         VED 17       ()         VED 18       ()         VED 13       ()         VED 12       ()         VED 13       ()         VED 14       ()         VED 15       ()         VED 16       ()         VED 17       () | Sky       C)         VED 222       Image: Comparison of the com | NED 22       ()       13       -20         VED 21       ()       -13       -20         VED 21       ()       -13       -20         VED 20       ()       ()       -13         VED 19       ()       ()       -12       -18         VED 18       ()       -10       -17         VED 17       ()       -9       -16         VED 16       ()       -7       -15         VED 15       ()       -6       -13         VED 14       ()       -5       -11         VED 13       ()       -5       -11         VED 14       ()       -4       -11         VED 12       ()       -3       -8 | Ky         C)         Dewpoint         Like           VED 22         Image: Comparison of the comparison of | Sky         C)         Dewpoint         Like         (Km/h)           VED 22         I         -13         -20         -20         W 13           VED 21         I         -13         -20         -21         W 19           VED 20         I         -13         -20         -21         W 19           VED 20         I         -12         -19         -21         W 22           VED 19         I         -12         -18         -20         W 19           VED 18         I         -10         -17         -18         W 19           VED 17         I         -9         -16         -17         NW 24           VED 16         I         -7         -15         -16         NW 33           VED 15         I         -6         -13         -14         W 31           VED 14         I         -5         -11         -13         W 28           VED 15         I         -5         -11         -13         W 31           VED 14         I         -5         -11         -13         W 31           VED 15         I         -5         -11         -13         W 31 <t< td=""><td>Sky         Temp t<br/>C)         Dewpoint         Feers<br/>Like         Wind<br/>(Km/h)         Humidity<br/>(%)           VED 22         ()         -13         -20         -20         W 13         56           VED 21         ()         -13         -20         -21         W 19         56           VED 20         ()         -12         -19         -21         W 22         56           VED 19         ()         -12         -19         -21         W 22         56           VED 18         ()         -12         -18         -20         W 19         61           VED 18         ()         -10         -17         -18         W 19         56           VED 17         ()         -9         -16         -17         NW 24         57           VED 16         ()         -7         -15         -16         NW 33         53           VED 15         ()         -6         -13         -14         W 31         58           VED 16         ()         -5         -11         -13         W 31         63           VED 15         ()         -4         -11         -13         W 41         58           <t< td=""><td>Sky         Templ C         Dewpoint         Like         Wind Km/h         Humidity (%)         Pressure (kpa)           VED 22         Image: Single C         -13         -20         -20         W 13         56         IO2.48.           VED 21         Image: Single C         -13         -20         -21         W 19         56         IO2.48.           VED 20         Image: Single C         -12         -19         -21         W 22         56         IO2.18.           VED 19         Image: Single C         -12         -18         -20         W 19         61         IO2.07.           VED 18         Image: Single C         -10         -17         -18         W 19         56         IO1.93.           VED 17         Image: Single C         -9         -16         -17         NW 24         57         IO1.73.           VED 16         Image: Single C         -7         -15         -16         NW 33         53         IO1.52.           VED 14         Image: Single C         -7         -15         -16         NW 33         53         IO1.52.           VED 15         Image: Single C         -11         -13         W 28         63         IO1.13.</td><td>SkyTermp (<br/>C)DewpointPeers<br/>Like(Km/h)Humidity<br/>(Km/h)Pressure<br/>(kpa)(Km/h)VED 22<math>\checkmark</math>-13-20-20W 1356<math>\underbrace{02.49}{(kpa)}</math>24VED 21<math>\checkmark</math>-13-20-21W 1956<math>\underbrace{102.32}{(2.32)}</math>24VED 20<math>\checkmark</math>-12-19-21W 2256<math>102.18_{\bullet}</math>24VED 19<math>\checkmark</math>-12-18-20W 1961<math>\underbrace{002.07_{\bullet}}</math>24VED 18<math>\checkmark</math>-10-17-18W 1956<math>101.93_{\bullet}</math>24VED 17<math>\checkmark</math>-9-16-17NW 2457<math>101.73_{\bullet}</math>24VED 16<math>\checkmark</math>-7-15-16NW 3353<math>\underbrace{101.33_{\bullet}}</math>24VED 15<math>\oiint</math>-6-13-14W 3158<math>101.33_{\bullet}</math>24VED 14<math>\vcenter</math>-5-11-13W 2863<math>\underbrace{101.13}_{\bullet}</math>24VED 15<math>\checkmark</math>-6-11-13W 2863<math>\underbrace{100.97_{\bullet}}</math>24VED 12<math>\checkmark</math>-4-11-13W 4158<math>\underbrace{100.97_{\bullet}}</math>24ED 12<math>\checkmark</math>-4-11-13NW 2868<math>100.76_{\bullet}</math>24</td><td>Skyrein (C)Dewpointreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreens<thr< th="">reensreensreens<thr< td=""></thr<></thr<></td></t<></td></t<> | Sky         Temp t<br>C)         Dewpoint         Feers<br>Like         Wind<br>(Km/h)         Humidity<br>(%)           VED 22         ()         -13         -20         -20         W 13         56           VED 21         ()         -13         -20         -21         W 19         56           VED 20         ()         -12         -19         -21         W 22         56           VED 19         ()         -12         -19         -21         W 22         56           VED 18         ()         -12         -18         -20         W 19         61           VED 18         ()         -10         -17         -18         W 19         56           VED 17         ()         -9         -16         -17         NW 24         57           VED 16         ()         -7         -15         -16         NW 33         53           VED 15         ()         -6         -13         -14         W 31         58           VED 16         ()         -5         -11         -13         W 31         63           VED 15         ()         -4         -11         -13         W 41         58 <t< td=""><td>Sky         Templ C         Dewpoint         Like         Wind Km/h         Humidity (%)         Pressure (kpa)           VED 22         Image: Single C         -13         -20         -20         W 13         56         IO2.48.           VED 21         Image: Single C         -13         -20         -21         W 19         56         IO2.48.           VED 20         Image: Single C         -12         -19         -21         W 22         56         IO2.18.           VED 19         Image: Single C         -12         -18         -20         W 19         61         IO2.07.           VED 18         Image: Single C         -10         -17         -18         W 19         56         IO1.93.           VED 17         Image: Single C         -9         -16         -17         NW 24         57         IO1.73.           VED 16         Image: Single C         -7         -15         -16         NW 33         53         IO1.52.           VED 14         Image: Single C         -7         -15         -16         NW 33         53         IO1.52.           VED 15         Image: Single C         -11         -13         W 28         63         IO1.13.</td><td>SkyTermp (<br/>C)DewpointPeers<br/>Like(Km/h)Humidity<br/>(Km/h)Pressure<br/>(kpa)(Km/h)VED 22<math>\checkmark</math>-13-20-20W 1356<math>\underbrace{02.49}{(kpa)}</math>24VED 21<math>\checkmark</math>-13-20-21W 1956<math>\underbrace{102.32}{(2.32)}</math>24VED 20<math>\checkmark</math>-12-19-21W 2256<math>102.18_{\bullet}</math>24VED 19<math>\checkmark</math>-12-18-20W 1961<math>\underbrace{002.07_{\bullet}}</math>24VED 18<math>\checkmark</math>-10-17-18W 1956<math>101.93_{\bullet}</math>24VED 17<math>\checkmark</math>-9-16-17NW 2457<math>101.73_{\bullet}</math>24VED 16<math>\checkmark</math>-7-15-16NW 3353<math>\underbrace{101.33_{\bullet}}</math>24VED 15<math>\oiint</math>-6-13-14W 3158<math>101.33_{\bullet}</math>24VED 14<math>\vcenter</math>-5-11-13W 2863<math>\underbrace{101.13}_{\bullet}</math>24VED 15<math>\checkmark</math>-6-11-13W 2863<math>\underbrace{100.97_{\bullet}}</math>24VED 12<math>\checkmark</math>-4-11-13W 4158<math>\underbrace{100.97_{\bullet}}</math>24ED 12<math>\checkmark</math>-4-11-13NW 2868<math>100.76_{\bullet}</math>24</td><td>Skyrein (C)Dewpointreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreens<thr< th="">reensreensreens<thr< td=""></thr<></thr<></td></t<> | Sky         Templ C         Dewpoint         Like         Wind Km/h         Humidity (%)         Pressure (kpa)           VED 22         Image: Single C         -13         -20         -20         W 13         56         IO2.48.           VED 21         Image: Single C         -13         -20         -21         W 19         56         IO2.48.           VED 20         Image: Single C         -12         -19         -21         W 22         56         IO2.18.           VED 19         Image: Single C         -12         -18         -20         W 19         61         IO2.07.           VED 18         Image: Single C         -10         -17         -18         W 19         56         IO1.93.           VED 17         Image: Single C         -9         -16         -17         NW 24         57         IO1.73.           VED 16         Image: Single C         -7         -15         -16         NW 33         53         IO1.52.           VED 14         Image: Single C         -7         -15         -16         NW 33         53         IO1.52.           VED 15         Image: Single C         -11         -13         W 28         63         IO1.13. | SkyTermp (<br>C)DewpointPeers<br>Like(Km/h)Humidity<br>(Km/h)Pressure<br>(kpa)(Km/h)VED 22 $\checkmark$ -13-20-20W 1356 $\underbrace{02.49}{(kpa)}$ 24VED 21 $\checkmark$ -13-20-21W 1956 $\underbrace{102.32}{(2.32)}$ 24VED 20 $\checkmark$ -12-19-21W 2256 $102.18_{\bullet}$ 24VED 19 $\checkmark$ -12-18-20W 1961 $\underbrace{002.07_{\bullet}}$ 24VED 18 $\checkmark$ -10-17-18W 1956 $101.93_{\bullet}$ 24VED 17 $\checkmark$ -9-16-17NW 2457 $101.73_{\bullet}$ 24VED 16 $\checkmark$ -7-15-16NW 3353 $\underbrace{101.33_{\bullet}}$ 24VED 15 $\oiint$ -6-13-14W 3158 $101.33_{\bullet}$ 24VED 14 $\vcenter$ -5-11-13W 2863 $\underbrace{101.13}_{\bullet}$ 24VED 15 $\checkmark$ -6-11-13W 2863 $\underbrace{100.97_{\bullet}}$ 24VED 12 $\checkmark$ -4-11-13W 4158 $\underbrace{100.97_{\bullet}}$ 24ED 12 $\checkmark$ -4-11-13NW 2868 $100.76_{\bullet}$ 24 | Skyrein (C)Dewpointreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreensreens <thr< th="">reensreensreens<thr< td=""></thr<></thr<> |

0F 2 - 65 2 - 52

Page 1 sur 2

Runs 2,3

Home

in the second

- Annalisation

\_\_\_\_\_

.

Constant Automotion

- Site Map Contact Us Help / FAQ En français



12-12-07

# Last 24 hours

Wednesday, 12 Dec 2007

Quebec Airport

Observations

|                                         | Sky                 | Temp (°<br>C) | Dewpoint | Feels<br>Like | Wind<br>(Km/h) | Relative<br>Humidity<br>(%)           | Pressure<br>(kpa) | Visibility<br>(km) | Ceiling<br>(ft) |       |
|-----------------------------------------|---------------------|---------------|----------|---------------|----------------|---------------------------------------|-------------------|--------------------|-----------------|-------|
| WED 22                                  | C                   | -13           | -20      | -20           | W 13           | 56                                    | (102.48.          | 24                 | unlimited       | 30.26 |
| WED 21                                  | C                   | -13           | -20      | -21           | W 19           | 56                                    | 102.32            | 24                 | unlimited       | 30.22 |
| WED 20                                  | R.                  | -12           | -19      | -21           | W 22           | 56                                    | 102.18            | - Runs - 24.       | unlimited       |       |
| WED 19                                  | E.                  | -12           | -18      | -20           | W 19           | 61                                    | 102.07            | 24                 | unlimited       | 30.14 |
| WED 18                                  | æ                   | -10           | -17      | -18           | W 19           | 56                                    | 101.93            | 24                 | unlimited       |       |
| WED 17                                  | æ                   | -9            | -16      | -17           | NW 24          | 57                                    | 101.73            | 24                 | unlimited       |       |
| WED 16                                  | æ                   | -7            | -15      | -16           | NW 33          | 53                                    | 101.52            | 24                 | unlimited       | 29.98 |
| WED 15                                  | 愛                   | -6            | -13      | -14           | W 31           | 58                                    | 101.33            | 24                 | unlimited       |       |
| WED 14                                  |                     | -5            | -11      | -13           | W 28           | 63                                    | 101.13            | 24<br>- RUN 7      | 4000            | 29.86 |
| WED 13                                  | 國                   | -5            | -11      | -13           | W 31           | 63                                    | 100.97.           | 24                 | unlimited       |       |
| WED 12                                  | 愛                   | -4            | -11      | -13           | W 41           | 58                                    | 100.84            | 24                 | unlimited       | 29.78 |
| WED 11                                  |                     | -3            | -8       | -10           | NW 28          | 68                                    | 100.76            | 24                 | 4000            |       |
| WED 10                                  |                     | -3            | -8       | -10           | W 30           | 68                                    | 100.68            | 24                 | 7000            |       |
| And | - <b>1</b> 29 - 129 |               | . 1      |               |                | · · · · · · · · · · · · · · · · · · · |                   |                    |                 | 1     |

~ 53 0F2 - 652

- æ

- Home Site Map Contact Us Help / FAQ En français



# Last 24 hours

Thursday, 13 Dec 2007

63.050557729

(and a second 
Darwheet.

.

Quebec Airport

| bservation                              | 15   | ·             |          |               |                                       |                             |                     |                    | • •                |                  |
|-----------------------------------------|------|---------------|----------|---------------|---------------------------------------|-----------------------------|---------------------|--------------------|--------------------|------------------|
| annan ann an an ann an an ann an ann an | Sky  | Temp (°<br>C) | Dewpoint | Feels<br>Like | Wind<br>(Km/h)                        | Relative<br>Humidity<br>(%) | Pressure<br>(kpa)   | Visibility<br>(km) | Ceiling<br>(ft)    |                  |
| THU 20                                  | 6    | -15           | -21      | -22           | NE 11                                 | 60                          | 102.11              | 24                 | 13000              | 30,15            |
| THU 19                                  | G    | -15           | -21      | -             | NE 9                                  | . 60 .                      | 102.24              | - RUN<br>24        | 13000              | 30,19            |
| THU 18                                  | G    | -15           | -22      | ,<br>-        | E 4                                   | 55                          | (102.34-            | 24                 | 12000              | 30.21            |
| THU 17                                  | Ś    | -15           | -21      | -             | NE 6                                  | 60                          | 102.42-             | 24                 | 13000              | -                |
| THU 16                                  | G    | -15           | -21      | -             | N 6                                   | 60                          | 102.51              | 48                 | 13000              | -<br>-<br>-      |
| THU 15                                  | \$\$ | -14           | -21      | `             | · · · · · · · · · · · · · · · · · · · | 55                          | 102.45              | <b>4</b> 8         | 23000              | 30.25            |
| THU 14                                  | ¢D)  | -14           | -21      | -20           | SW 11                                 | 55                          | 102.61-             | 48<br>- RUAN       | 4 <sup>14000</sup> |                  |
| THU 13                                  | 徽    | -15           | -21      | -23           | SW 15                                 | 60                          | 102.64              | 48                 | 22000              | 30,31            |
| THU 12                                  | 翰    | -14           | -23      | -             | W 4                                   | 46                          | 102.58              | 48                 | 22000              | 30,29            |
| THU 11                                  |      | -15           | -23      | × <b>-</b>    | W 4                                   | 50                          | 102.76-             | 48                 | unlimited          |                  |
| THU 10                                  |      | -16           | -23      | -             | NE 4                                  | 55                          | 102.79 <del>~</del> | 48                 | unlimited          |                  |
| Г <b>HU</b> 09                          | 愛    | -18           | -25      | -             | S 9                                   | 54                          | 102.98              | 48                 | unlimited          |                  |
| THU 08                                  | 慶    | -20           | -27      | -             | W 7                                   | 53                          | 102.95              | 48                 | unlimited          | •<br>•<br>•<br>• |
|                                         |      |               |          |               |                                       |                             |                     |                    | •                  |                  |

- 6 5 0F 2

Page 1 sur 2

Russ

4+5

Page 1 sur 2

4+5

Russ

- Home
- æ
- Site Map Contact Us Help / FAQ En français
- a



# Last 24 hours

Thursday, 13 Dec 2007

Quebec Airport

| Observations |  |
|--------------|--|
|              |  |

-----

|              |        | Sky                                                                                                             | Temp (°<br>C) | Dewpoint | Feels<br>Like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wind<br>(Km/h) | Relative<br>Humidity<br>(%) | Pressure<br>(kpa)    | Visibility<br>(km) | Ceiling<br>(ft)    | •             |
|--------------|--------|-----------------------------------------------------------------------------------------------------------------|---------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|----------------------|--------------------|--------------------|---------------|
|              | THU 20 | 6                                                                                                               | -15           | -21      | -22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NE 11          | 60                          | 102.11               | 24                 |                    | 30115         |
|              | THU 19 | G                                                                                                               | -15           | -21      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NE 9           | 60.                         | (102.24)             | - Ruh<br>24        | 7<br>13000         | 30,19         |
|              | THU 18 | G                                                                                                               | -15           | -22      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E4             | 55                          | 102.34-              | 24                 | 12000              | 30.22         |
|              | THU 17 | G                                                                                                               | -15           | -21      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NE 6           | 60                          | 102.42 <del>~</del>  | 24                 | 13000              |               |
|              | THU 16 | G                                                                                                               | -15           | -21      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N6             | 60                          | 102.51               | 48                 | 13000              | ·<br>·<br>· · |
|              | THU 15 | 御                                                                                                               | -14           | -21      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 55                          | 102.45               | 48                 | 23000              | 30.25         |
| ·            | THU 14 | Ś                                                                                                               | -14           | -21      | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SW 11          | 55                          | 102.61🔫              | 48<br>0t           | भ <sup>14000</sup> | A A           |
|              | THU 13 | - COD                                                                                                           | -15           | -21      | -23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SW 15          | 60                          | 102.64               | 48                 | 22000              | 30,31         |
|              | THU 12 |                                                                                                                 | -14           | -23      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 4            | 46                          | 102.58               | 48                 | 22000              | 30,29         |
|              | THU 11 |                                                                                                                 | -15           | -23      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W 4            | 50                          | 102.76               | 48                 | unlimited          |               |
|              | THU 10 |                                                                                                                 | -16           | -23      | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NE 4           | 55                          | 102.79-              | 48 <sup>·</sup>    | unlimited          |               |
|              | THU 09 |                                                                                                                 | -18           | -25      | and the second sec | S 9            | 54                          | 102.98               | 48                 | unlimited          |               |
| :            | THU 08 | 學                                                                                                               | -20           | -27      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 7            | 53                          | 102,95               | 48                 | unlimited          | · · ·         |
| · · .<br>• 1 |        | 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 |               |          | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                             | ng voorlegy yn Hyjen |                    |                    |               |

OF 2-65 5 5 7

Model: Monaco 2008 Stove Builder International 1700, Léon-Harmel Québec (Québec), Canada G1N 4R9

Groundsmann

.

## **Example Calculations**

*Note:* 

OMNI uses the Lotus 1-2-3 computer program for all Method 5G and 5H calculations. The program automatically carries 14 decimal points in all calculations. The numbers on the printouts have been rounded for display only.

2-56 of 2-65

## Equations and Sample Calculations - Method 5G

Equations used to calculate the parameters listed below are described in this appendix. Sample calculations are provided for each equation. The raw data and printout results from a sample run are also provided for comparison to the sample calculations.

BR Dry burn rate, kg/hr

Line provide

Alexander Alexander

South and Aller

and the second second

.

- m<sub>n</sub> Total particulate matter collected, mg
- $V_{m(std)}$  Volume of gas sampled corrected to standard conditions, dscf
- v<sub>s</sub> Average dilution tunnel gas velocity, ft/sec
- C<sub>s</sub> Particulate concentration, g/dscf
- Q<sub>sd</sub> Average dilution tunnel gas flow rate, dscf/min
- E Particulate emission rate, lbs/hr
- PR Proportional rate variation, %

## Dry Burn Rate

Using equation 28-3:

 $BR = \frac{60 \times W_{wd}}{\Theta} \times \frac{100 - \% M_{w}}{100}$ 

Where,

MARE DOMESTICS

A STATE AND A STATE AND A STATE

02271723001172

Participation of the second 
.

| BR              | = | Dry burn rate, lb/hr                                            |
|-----------------|---|-----------------------------------------------------------------|
| $W_{wd}$        | = | Mass of wood burned (wet basis) during test run, lb             |
| θ               | = | Total time of test run, minutes                                 |
| %M <sub>w</sub> | = | Average moisture content of test fuel charge, wet basis percent |

Sample Calculation:

Dry basis moisture of fuel = 20.03%

Using the equation 28-2 for converting dry basis moisture to wet basis moisture,

$$\% M_w = \frac{20.03 \times 100}{20.03 + 100}$$

 $\% M_w = 16.69\%$ 

The wet weight of the fuel charge was 7.8

pounds. Converting pounds to kilograms yields a weight of 3.538 kg. The run time for this run was 180 minutes. Therefore, the burn rate equation appears thus:

 $BR = \frac{60 \times 3.538 \times (100 - 16.69)}{180 \times 100}$ 

 $BR = 0.98 \ kg/hr = 2.17 \ lb/hr$ 

# Total Particulate Matter Collected

$$m_n = F_1 + F_2 + R - (V_a \times B_a)$$

Where:

| m <sub>n</sub> | =     | Total particulate matter collected, mg                                |
|----------------|-------|-----------------------------------------------------------------------|
| $\mathbf{F}_1$ |       | Particulate matter collected on front filter, mg                      |
| $F_2$          | = .   | Particulate matter collected on rear filter, mg                       |
| R              | .=    | Residue from evaporated probe and filter holder acetone rinse, mg     |
| $V_a$          | ===   | Volume of acetone evaporated probe and filter holder actone rinse, ml |
| B,             | · = . | Acetone blank value, mg/ml                                            |

Sample Calculation:

 $m_n = 12.6 - 0.4 + 4.7 - (180 \quad 0.0040)$  $m_n = 16.2 \text{ mg}$ 

2-59 OF 2-65

Volume of Gas Sampled Corrected to Dry Standard Conditions

Using equation 5-1:

$$V_{m(std)} = V_m \times Y \times (\frac{T_{std}}{P_{std}}) \times \frac{(P_b + \frac{\Delta H}{13.6})}{T_m}$$

Where:

And the second second second

Service and respectively.

| K                             |          | 17.64 °R/in. Hg                                                    |
|-------------------------------|----------|--------------------------------------------------------------------|
| $\mathrm{T}_{\mathrm{std}}$   | ÷        | 528 °R                                                             |
| $\boldsymbol{P}_{\text{std}}$ | =        | 29.92 in. Hg                                                       |
| $\mathbf{V}_{\mathbf{m}}$     | -        | Volume of gas sample measured at the dry gas meter, dcf            |
| Y                             | <b>.</b> | Dry gas meter calibration factor, dimensionless                    |
| P <sub>b</sub>                | =        | Barometric pressure at the testing site, in. Hg                    |
| $\Delta H$                    | =        | Average pressure differential across the orifice meter, in. $H_2O$ |
| Tm                            | =        | Absolute average dry gas meter temperature, °R                     |

Sample Calculation:

$$V_{m(std)} = 98.434 \times 1.01 \times (\frac{528}{29.92}) \times \frac{30.03 + \frac{0.7}{13.6}}{532.5}$$

0F 2-65

2 - 6 0

 $V_{m(std)} = 99.116 \ ft^3$ 

## Dilution Tunnel Gas Velocity

Using equations 2-7 and 2-6, calculated at each recorded interval:

$$v_s = k_p \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{T_{s(avg)}}{P_s \times M_s}}$$

 $M_s = M_d \times (1 - B_{ws}) + 18.0 \times B_{ws}$ 

Where:

 $V_s$ 

k,

 $C_p$ 

ΔP

 $P_{b}$ 

=

=

Average dilution tunnel gas velocity, ft/sec

= Pitot tube constant:

$$85.49 \frac{ft}{sec} \left[ \frac{(lb/lb-mole) \times (inches Hg)}{(^{o}R) \times (inches H_2O)} \right]^{\frac{1}{2}}$$

2-61 DF 2-65

Pitot tube coefficient (0.99 for standard pitot tube; 0.84 may be used for S-type pitot tubes constructed according to Method 2 procedures), unitless  $\Delta P$  measured during the pre-test flow traverse of the dilution tunnel; the square root of the  $\Delta P$  values are averaged for this calculation, in. H<sub>2</sub>O

= Barometric pressure at test site, in. Hg

 $P_g = Static Pressure of tunnel, in. Hg$   $P_s = Absolute tunnel pressure, = P_b + P_g$   $M_s = Molecular weight of tunnel gas; assume M_d = 29 lb/lb-mole (per method 5G)$   $B_{ws} = Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G)$  $T_s = Dilution tunnel temperature, °R; (°R = °F + 460)$ 

Sample calculation:

 $M_s = 29 \times (1 - 0.04) + 18.0 \times 0.04 = 28.56$ 

$$v_s = 85.49 \times 0.99 \times \sqrt{0.0351} \times \sqrt{\frac{(548)}{(30.03 + \frac{-0.45}{13.6})} \times (28.56)}$$
  
 $v_s = 12.69 \frac{ft}{sec}$ 

## Particulate Concentration

Using equation 5G-2:

$$C_s = 0.001 \frac{g}{mg} \times \frac{m_n}{V_{m(std)}}$$

Where:

 $C_s$ 

and marked

Construction of the

Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscf

 $m_n = V_{m(std)}$ 

Total mass of particulate matter collected in the sampling train, mg Volume of gas sampled corrected to dry standard conditions, dscf

Sample calculation:

 $C_s = \frac{0.001 \times 16.2}{99.116}$ 

 $C_{s} = 0.000163 \ g/dscf$ 

# Average Dilution Tunnel Gas Flow Rate

Using equation 2-8, calculated at each recorded interval:

$$Q_{sd} = 3600 \times (1 - B_{ws}) \times v_s \times A \times \frac{T_{std}}{T_{s(avg)}} \times \frac{P_s}{P_{std}}$$

Where:

Ped vydy a tury

A VICTOR VICE AND A

-

Landose consid

Construction of the

100.00

| $Q_{\text{sd}}$             | =          | Gas flow rate corrected to dry, standard conditions, dscf/hr              |
|-----------------------------|------------|---------------------------------------------------------------------------|
| 3600                        | =          | Conversion from seconds to hours                                          |
| $\mathbf{B}_{ws}$           | = '        | Moisture content of dilution tunnel gas, ratio; assume 4% (per method 5G) |
| Vs                          | ` <b>=</b> | Average dilution tunnel gas velocity, ft/sec                              |
| А                           | =          | Cross sectional area of dilution tunnel, ft <sup>2</sup>                  |
| $\mathrm{T}_{\mathrm{std}}$ | <b></b>    | Standard absolute temperature, 538°R                                      |
| $T_{s(avg)}$                | =          | Average absolute dilution tunnel temperature, °R, (°R = °F + 460)         |
| $\mathbf{P}_{b}$            | =          | Barometric pressure at test site, in. Hg                                  |
| $P_g$                       | =          | Dilution tunnel static pressure, in. Hg                                   |
| P <sub>s</sub>              | <b></b>    | Absolute dilution tunnel gas pressure, in Hg, $(Hg = P_b + P_g)$          |
| P <sub>std</sub>            | =          | Standard absolute pressure, 29.92 in Hg                                   |

Sample calculation:

$$Q_{sd} = 3600 \times (1 - 0.04) \times 12.69 \times \frac{(\pi \times 3^2)}{144} \times \frac{528}{548} \times \frac{30.03 + \frac{-0.45}{13.6}}{29.92}$$

 $Q_{sd}$  = 8313.36 dscf/hr = 138.56 dscf/min

# Particulate Emission Rate

Using equation 5G-3 and 5G-4:

$$E = C_s \times Q_{sd}$$

$$E_{adj} = K_3 \times E^{0.83}$$

Where:

-----

ortogradi

| Е                | =  | Particulate emission rate, g/hr                                              |
|------------------|----|------------------------------------------------------------------------------|
| $E_{\text{adj}}$ | =  | Particulate emission rate, adjusted, g/hr                                    |
| $C_s$            | =  | Concentration of particulate matter in the stack, corrected to dry, standard |
|                  |    | conditions, g/dscf                                                           |
| Q <sub>sd</sub>  | _= | Average dilution tunnel gas flow rate, dscf/hr                               |
| K3               | =  | Constant, 1.82 for metric units, 0.643 for English units                     |
|                  |    |                                                                              |

Sample calculation:

 $E = 0.000163 \times 8313.36 \times 60$ 

 $E = 1.36 \, g/hr$ 

 $E_{adj} = 1.82 \times 1.36^{0.83}$ 

 $E = 2.35 \ g/hr$ 

## Proportional Rate Variation

Using equation 5H-9, calculated at each recorded interval:

$$PR = \frac{\theta \times (V_{mi} \times V_s \times T_m \times T_{si})}{10 \times (V_m \times V_{si} \times T_s \times T_{mi})} \times 100$$

Where:

θ

 $T_{\rm si}$ 

 $T_s$ 

PR = Percent proportional rate

= Time of test, min

 $S_i = Measured tracer gas concentration for the "i<sup>th</sup>" interval, in this case, the inverse of the calculated flow in the stack based on CO<sub>2</sub> concentrations in the stack and in the dilution tunnel$ 

$$V_{mi(std)} =$$
 Volume of gas sample measured by the dry gas meter during the "i<sup>th</sup>" 10 minute interval, dscf

 $V_m$  = Volume of gas sample as measured by dry gas meter, dscf

 $V_{si}$  = Average gas velocity in the dilution tunnel during each 10 minute interval, i, of the test run, m/sec

 $V_s$  = Average gas velocity in the dilution tunnel, m/sec

T<sub>mi</sub> = Absolute average dry gas meter temperature during each 10 minute interval, i, of the test run, °R

 $T_m$  = Absolute average dry gas meter temperature, °R

Absolute average gas temperature in the dilution tunnel during each 10
 minute interval, i, of the test run, °R

Absolute average gas temperature in the dilution tunnel, °R

Sample calculation (for the reading at 50 minutes into test run 1):

 $PR = \frac{180 \times 5.6 \times 12.69 \times 533 \times 552}{10 \times 98.434 \times 12.63 \times 548 \times 532} \times 100$ 

PR = 103.8%



# **Certification Test Report Stove Builder International**

# Wood Fireplace Insert Model: Monaco 2008

Report Number: 338-F-68-3

Part 2 of 2

OMNI-Test Laboratories, Inc. Product Testing & Certification



Phone: (5 Fax: (5

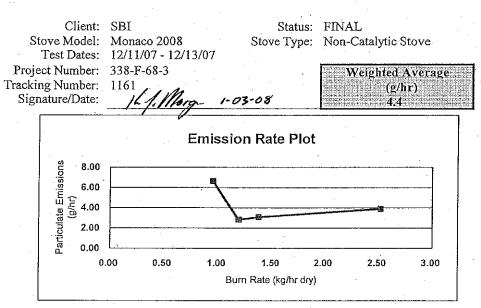
(503) 643-3788 (503) 643-3799

Mailing: Street:

Antorecelone

Post Office Box 743 5465 SW Western Avenue • Suite G Beaverton, Oregon 97075 USA Model: Monaco 2008 Stove Builder International 1700, Léon-Harmel Québec (Québec), Canada GIN 4R9

Conversion Assoc


# Section 4

Test Data by Run

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Omnisr\users\Testing\SBI - Stove Builder International\338-S-68-3 Monaco 2008\338-F-68-3

4-1 of 4-47

### EPA Weighted Average Emissions EPA Method 28



| Run #                  | 1     |                |      |
|------------------------|-------|----------------|------|
| Burn Rate (dry kg/hr)  | 0.95  |                |      |
| Catagory               | 2     |                |      |
| Overall Efficiency (%) | 63%   |                |      |
| Emissions (g/hr)       | 6.64  |                |      |
| Cap (g/hr)             | 15    |                |      |
| Weighting Factor       | 0.538 | 32.85%         |      |
| Heat Output (BTU/hr)   | 11479 | -              |      |
|                        |       |                |      |
| Run #                  | 4     |                |      |
| Burn Rate (dry kg/hr)  | 1.19  |                |      |
| Catagory               | 2     |                |      |
| Overall Efficiency (%) | 63%   |                |      |
| Emissions (g/hr)       | 2.82  |                |      |
| Cap (g/hr)             | 15    |                |      |
| Weighting Factor       | 0.342 | 20.91%         |      |
| Heat Output (BTU/hr)   | 14379 |                |      |
|                        | - 1   |                |      |
| Run #                  | 3     |                |      |
| Burn Rate (dry kg/hr)  | 1.37  |                |      |
| Catagory               | 3     | and the second |      |
| Overall Efficiency (%) | 63%   |                |      |
| Emissions (g/hr)       | 3.08  |                |      |
| Cap (g/hr)             | 15    |                |      |
| Weighting Factor       | 0.428 | 26.11%         |      |
| Heat Output (BTU/hr)   | 16554 |                | •    |
|                        |       | •              | 1    |
| Run #                  | 5     | · *.           |      |
| Burn Rate (dry kg/hr)  | 2.52  |                |      |
| Catagory               | 4     |                | 1.11 |
| Overall Efficiency (%) | 63%   |                |      |
| Emissions (g/hr)       | 3.89  |                |      |
| Cap (g/hr)             | 18    |                |      |
| Weighting Factor       | 0.330 | 20.13%         | •    |
| Heat Output (BTU/hr)   | 30450 |                |      |
| 1                      |       |                |      |
|                        |       |                |      |

Document Control No. P-SSF-0007 (EPA Method 28 Weighted Average Emissions).xls, Effective Date: 02/09/2005



2

Model: Monaco 2008 Stove Builder International Stove Builder International 1700, Léon-Harmel Québec (Québec), Canada G1N 4R9

Nation and a strain from

Anna sanga Sarasing

License Jester Ania

And a second sec

. Interference of the

-

Agent and a second

and and

A WEIGHT LINE AND A

and a second

# Run 1

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Omnisrv\users\Testing\SBI - Stove Builder International\338-S-68-3 Monaco 2008\338-F-68-3

4-3 of 4-47

Contractoria

South States

.

- ALANA

# Wood Heater Test Data - EPA Method 5G

|                                                                                                                                                          |                                                                |                                                                     | e et transfer de la companya de la c |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Manufacturer:<br>Model:<br>Project No.:<br>Tracking No.:<br>Run:<br>Test Date:                                                                           | Мопасо 2008<br>338-F-68-3<br>1161<br>1                         |                                                                     |                                                                                                                 |
|                                                                                                                                                          |                                                                |                                                                     |                                                                                                                 |
| Burn Rate                                                                                                                                                | 0.95 kg/hr dry                                                 |                                                                     |                                                                                                                 |
| Average Tunnel Temperature<br>Average Gas Velocity in Dilution Tunnel - vs<br>Average Gas Flow Rate in Dilution Tunnel - Qsd                             | 104 degrees Fahrenheit<br>13.3 feet/second<br>8508.6 dscf/hour |                                                                     |                                                                                                                 |
| Average Delta p<br>Average Delta H<br>Total Time of Test                                                                                                 | 0.052 inches H20<br>0.00 inches H20<br>230 minutes             |                                                                     |                                                                                                                 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                    | AVERAGE                                                        | SAMPLE TRAIN 1                                                      | SAMPLE TRAIN 2                                                                                                  |
| Total Sample Volume - Vm<br>Average Gas Meter Temperature<br>Total Sample Volume (Standard Conditions) - Vmstd                                           | 23.26 cubic feet<br>77 degrees Fahrenheit<br>22.4 dscf         | 21.07 cubic feet<br>77 degrees Fahrenheit<br>20.3 dscf              | 25.45 cubic feet<br>78 degrees Fahrenheit<br>24.5 dscf                                                          |
| Total Particulates - mn<br>Particulate Concentration (dry-standard)<br>Particulate Emission Rate<br>Adjusted Emissions                                   | 0.00056 grams/dscf<br>4.76 grams/hour<br>6.64 grams/hour       | 11.8 mg<br>0.00058 grams/dscf<br>4.93 grams/hour<br>6.85 grams/hour | 13.2 mg<br>0.00054 grams/dscf<br>4.58 grams/hour<br>6.44 grams/hour                                             |
| Difference from Average<br>7.5% of the average emission rate<br>Weighted Average Emission Rate Limit<br>7.5% of the weighted average emission rate limit | 0.50<br>4.10 grams/hour<br>0.31                                | 0.21 grams/hour                                                     | 0.21 grams/hour                                                                                                 |
|                                                                                                                                                          | R                                                              | lesults Are Acceptab                                                | le                                                                                                              |

Page 1 of 1

4 7

OF 4 -

4

|                                       | -<br>Aí                  | ri .                                          |                          |                              | 3"Hg                      | 21.60                                             | 60'17                                                                           | 13.2                   |   | Stack                            | Draft In.<br>H2O                       | 0.053   | 223         | 200     | 890       | 513     | 178     | 080     | 810     | 175       | 020    | 65      | 65         | 65      | 55      | 60      | 60      | SS      | 53          | 53      |         | 55     | 55      | 23        | S        | 8             |
|---------------------------------------|--------------------------|-----------------------------------------------|--------------------------|------------------------------|---------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|------------------------|---|----------------------------------|----------------------------------------|---------|-------------|---------|-----------|---------|---------|---------|---------|-----------|--------|---------|------------|---------|---------|---------|---------|---------|-------------|---------|---------|--------|---------|-----------|----------|---------------|
|                                       | N                        | 31 ft/sec.                                    |                          | 0.1963 ft2                   | 0@10 cfm@"Hg              | 002@10 cfin@"Hg                                   | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | )<br>3<br>3<br>3<br>3  |   | St                               |                                        | Τ       | -           | +       | -         | -       |         | -       | ┢       |           |        | ┢       |            | †       |         | -0.060  | -0.060  | -0.055  | -0.053      | -       | ┢       | ┢      | -       | -         | ┢        | -0.063        |
|                                       | 1.Mur                    | ity: 13.31                                    |                          |                              |                           |                                                   | Total Particulate (1).                                                          | Total Particulate (2): |   |                                  | nger<br>(2) Ambient                    |         | °, <u>L</u> | LL      | - 18      | 78      | 78      | 62      | 80      | 8         | 80     | 61      | 8          | 8       | 80      | 79      | 79      | 61      | 6/          | 61      | 62      | 62     | 62      | 62        | 6L       | 101           |
|                                       | Signature/Date: // ///// | Tunnel Velocity:                              | Average Trinnel Flow     | Tunnel Area:                 | Post-Test Leak Check (1): | Post-Test Leak Check (2):<br>(2) Fuel Moisture (d | nicional ture                                                                   | ļ                      |   |                                  | Inpinger Impinger<br>exit (1) exit (2) |         | +           | -       | _         |         |         | -       |         |           |        |         |            |         |         |         |         |         |             | -       |         |        |         | -         |          | 10//JIC# 10/  |
|                                       | Signatur                 | Tu<br>Tu                                      | A Vers                   | E                            | Post-Test I               | Post-Test L                                       | ٩                                                                               | 30.13 "Hg              |   |                                  | Filter Impi<br>(2) exit                | +       |             | 83      | 83        | 83      | 83      | 85      | 86      | 86        | 86     | 85      | 35         | 85      | 84      | 84      | 84      | 83      | 83          | 83 - 8  | 82      | 22-Mar | 82      | 2         | 82       | 33 - #DIV/0   |
|                                       |                          |                                               |                          |                              |                           | 0 974                                             |                                                                                 | 'i 1                   |   |                                  | Filter F<br>(1)                        |         |             |         | -         | 81      | 81      |         | 82      | -         | ╞      | 82 8    |            | 82      | - 82    | 82 82   | 81 8    | 81 8    | 81 8        | 81 8    | 8 8     | 81 22- |         | 81 8      | 80 8     | 81.08 83.33   |
|                                       |                          | 046,47<br>29.00 lb/lb-mole                    | 28.56 lh/lh-mole         | 4:00 percent                 | "H2O                      | Ξ                                                 | Middle                                                                          | 30.13                  |   | Data, oF                         | Stack                                  | 310     | 306         | 323     | 353       | 394     | 444     | 477     | 458     | 423       | 392    | 373     | 384        | 377     | 346     | 327     | 309     | 297     | 288         | 287     | 284     | 283    | 278     | 272       | 266      |               |
| ō                                     |                          | 281 046,47                                    | 28.56                    | 4.00                         |                           | 0.84                                              | Regin                                                                           | 30.17                  |   | Wood Heater Temperature Data, oF | Average<br>Surface                     | 430.6   | 410.8       | 400.4   | 405.2     | 427.0   | 462.8   | 488.4   | 485.2   | 475.4     | 466.4  | 458.8   | 464.4      | 471.4   | 453.4.  | 442.6   | 432.4   | 422.6   | 416.4       | 413.0   | 410,4.  | 408.2  | 400.2   | 390.6     | 383.0 :  | 48            |
|                                       |                          |                                               | MW(wet):                 | mel H2O:                     | nel Static:               | Pitot Tube Cp:<br>Box Y Factor:                   | Pressure                                                                        |                        |   | feater Ten                       | Catalyst<br>Exit                       |         |             |         |           |         |         |         |         |           |        |         |            | _       |         |         |         |         |             | _       |         |        |         |           | -        |               |
|                                       | 0                        | PM Control Module:<br>Dilution Tunnel MW/dn/) | Dilution Tunnel MW(wet): | Dilution Tunnel H2O:         | Dilution Tunnel Static:   | Pitot Tube Cp:<br>Meter Box Y Factor:             | Barometric Pressure                                                             |                        |   | Wood F                           | Firebox<br>Right                       | 368     | 345         | 320     | 308       | 305     | 323     | 345     | 361     | 370       | 380    | 383 .   | 387        | 391     | 391     | 383     | 374     | 366     | 361         | 350     | 345     | 340    | 335     | 325       | 322      |               |
|                                       |                          | Dilut                                         | Dilut                    |                              | <u>д</u>                  |                                                   | ~                                                                               |                        |   |                                  | Firebox<br>Left                        | 373     | . 360       | 338     | 330       | 335     | 350     | 368     | 387 .   | 391       | 392    | 390     | 393        | 399     | 393     | 385     | 377     | 369     | 363         | 358     | 357     | 355    | 352     | 346       | 340      |               |
|                                       |                          |                                               | •                        | "H2O                         |                           |                                                   |                                                                                 |                        |   |                                  | Firebox ]<br>Back                      | 507     | 487         | 444     | 425       | 426     | 436     | 457     | 489     | 523       | 549    | 560     | 566        | 568     | 577     | 587     | 588     | 580     | 572         | 566     | 560     | 551    | 526     | 501       | 482      |               |
| VICTION/                              |                          | Γ                                             | Pt.8                     |                              | 115                       |                                                   |                                                                                 |                        |   |                                  | Firebox F<br>Bottom                    | 423     | 422         | 399     | 376       | 357     |         | 332     | _       | -         |        | 329     | _          |         |         |         | +       |         |             | _       |         | _      | _       |           | 353      |               |
|                                       |                          |                                               | Pt.7                     |                              | 115                       |                                                   |                                                                                 |                        |   |                                  | Firebox Fi<br>Top B.                   | 482     |             | 501     |           | _       | _       | 940     |         |           | -      |         | _          | _       | -       | -       |         | +       |             | -       | _       |        |         |           | 418 3    |               |
| U U U U U U U U U U U U U U U U U U U |                          |                                               | _                        | 0.053 0                      | -                         |                                                   |                                                                                 |                        |   | it, Ib                           | Weight Fi                              |         | -0.9        | -0.6    | -0.8      | 6.0-    |         | _       | _       |           |        | -       | _          |         | -       |         | _       |         | +           | -       |         | -      |         |           | 1        |               |
|                                       |                          | Data                                          | $\vdash$                 | -                            | 110                       | ·                                                 |                                                                                 |                        |   | Fuel Weight, Ib                  | Scale W<br>Reading Ch                  | 8.6     | 6.8         | 8.3     | -         | _       |         | -       | -       |           | -      | +       |            |         | -       |         | -       | ┽       | -           | +       |         |        | -       | 0.1       | 0.0 -0.0 |               |
| Cattor                                |                          | Velocity Traverse Data                        | Pt.4                     | 0.050                        | 11/                       |                                                   |                                                                                 |                        | - |                                  | Pro. Rate<br>(10%)<br>R                |         | 92          | 101     | 99        | -       |         | +       |         | _         | -      |         | 66         | +       | +       | 66      |         | +       | +           | -       | 66      | +      | -       | •         | _        | 100.70        |
|                                       |                          | Velocity                                      | Pt.3                     | 0.050                        |                           |                                                   |                                                                                 |                        |   |                                  | Pro. Rate P<br>(10%)<br>(1)            |         | 94          | 103     | 103       | 102     | 101     | 102     | 102     | 102       | 16     | 104     | 100        | 102     | 102     | 102     | 16      | INT     | 8           | 100     | 100     | 100    |         | -         |          | 100.71        |
|                                       |                          |                                               | Pt.2                     | 0.053                        | 011                       |                                                   |                                                                                 |                        |   |                                  | Dilution<br>Tunnel<br>dP               | 0.052   | 0.052       | 0.052   | 0.052     | 0.052   | 0.052   | 0.052   | 0.052   | 0.052     | 0.052  | 0.052   | 0.052      | 0.052   | 0.052   | 0.052   | 0.052   | 70.0    | 0.052       | 0.052   | 0.052   | 0.052  | 0.052   | 0.052     | -+-      | 0.052         |
|                                       |                          |                                               | μĩ                       | 0.055                        | _                         | Numbers:                                          |                                                                                 |                        |   |                                  | Dilution<br>Tunnel<br>Temp.            | 117     | 105         | 101     | 103       | 109     | - 116   | 121     | 118     | 114       | 110    | 107     | 107        | 107     | 5       | 100     | 5, 5    | 12      | 8 2         | %       | 95      | 95     | 94      | 94        | 33       | 104.02        |
|                                       |                          |                                               |                          | Initial dP                   | undar roug.               | OMNI Equipment Numbers:                           |                                                                                 |                        |   |                                  | Meter Vac.<br>In. Hg.<br>(2)           | 0       | 0           | 0       | 0         | 0       | 0       | 0       | 0       | 0         | 0      | 0       | 0          | 0       |         | 0       | 5       | 5       | 5,0         |         | 0       | 0      | 0       | 0         | 0        |               |
|                                       |                          | ليعيا                                         |                          |                              | -                         | INMO                                              |                                                                                 |                        |   | Ī                                | In. Hg. [1]                            | 0       | 0           | 0       | 0         |         | •       | 0       | 0       | 0         | 0      |         | -          | 0       |         |         | 5 .0    |         | -           | 5       | -       | 0      | 0       | 0         | 0        |               |
|                                       |                          |                                               |                          |                              |                           |                                                   | ł                                                                               | 1                      | 4 | Famoulate Sampling Data          | Meter Meter M<br>oF oF<br>(1) (2)      | 11      | 77          | 77      | 77        | E E     |         | 11      | 11      | 11        | 2      | 8/ 1    | <u>*</u> 1 | 78      | 8/      | 8/      | 02      | 0/ 00   | <u>و</u> لو | //      | 8/      | 78     | 78      | 61        | 8/       | 77.58         |
|                                       |                          |                                               |                          | •<br>•                       |                           |                                                   |                                                                                 |                        | 0 | culare Sar                       |                                        | 76      | 76          | 76      | 76        | 9/      | 9       | 5       | 76      | FI        | 2      | 2       | 1          | 11      | 2 8     | 2 5     | 102     | 5 6     |             | 8/      | 8/      | 78     | 78      | 82        | 18       | 77.00         |
|                                       |                          |                                               |                          |                              | - '                       | 1 1                                               |                                                                                 |                        |   | Fartic                           | xe Orifice                             | 0.00    |             | +       |           |         | +       |         |         |           | +      | +       | ╈          |         | +       | 8.8     |         | +       | +-          |         | +       | -      | 0.0     | 0.00      | 00.0     | 0.00          |
|                                       |                          |                                               |                          |                              |                           | uin.                                              | min.                                                                            |                        |   |                                  | n Orifice<br>dH (1)                    | 0.00    | 0.0         | 0.00    | 0.00      | 000     | 0.0     | 0.00    | 0.0     | 0.00      | 00.0   | 0.00    | 0.00       | 0.00    | 0.00    | 0.00    | 800     | 8       | 3 6         | 3.0     | 00.0    | 0.0    | 0.00    | 0.00      | 0.0      | 0.00          |
|                                       |                          | 8                                             |                          |                              |                           |                                                   | -                                                                               |                        |   |                                  | Sample<br>Rate, cfm<br>(2)             |         | 0.10        | 0.11    | 0.11      | 0.10    | 0.10    | 0.11    | 0.11    | 0.11      | 11.0   | 71.0    | 0.11       | 1.0     | 0.10    | 110     | 11.0    | 110     | 11-0        | 11.0    | 0.11    | 0.11   | 11.0    | 0.12      | 0.12     | 0.11          |
|                                       | SBI                      | Monaco 2008                                   | 1161                     | 338-F-68-3<br>11-Dec-07      | 14:28                     | 10                                                | 230                                                                             |                        |   |                                  | Sample<br>Rate, cfm<br>(1)             |         | 0.09        | 0.09    | 0.09      | 60.0    | 60.0    | 0.09    | 60.0    | 60.0      | 60.0   | 60.0    | 60.0       | 0000    | 0000    | 0.00    | 0.00    | 000     | 0.00        | 000     | 60.0    | 60.0   | 60.0    | 60.0      | 60.0     | 0.09          |
|                                       | Manufacturer:            |                                               |                          | Project No.:<br>Test Date: 1 | · ·                       | ·. ·                                              |                                                                                 |                        |   |                                  | Uas Meter<br>Cubic Feet<br>(2)         | 660.392 | 661.398     | 662.512 | 663.594   | 2/0.400 | 07/ 200 | 666.821 | 006.100 | 060.600   | 000 12 | 307 1/0 | 204.210    | C44.610 | CU0-+10 | 000 929 | 677 880 | 678 975 | 680.068     | 000.000 | 001.100 | 007.28 | 083.390 | 024-02U   | 01-01-0  | 25.454        |
|                                       | Man                      |                                               | Trac                     | н<br>Ч                       | Beginning Clock Time:     | Recording Interval:                               | Total Sampling Time:                                                            |                        |   | H                                | Cubic Feet C<br>Cubic Feet C<br>(1)    | -       | +           |         | 662.610 6 | +       | -       | 000,300 | +       | 001.182 0 | +-     |         | ╈          | +       | +       | +       |         | ╋       | +           | +       |         | +      | +       | 0 0701080 | +        | 21.0/4 2      |
|                                       | Run:                     |                                               |                          |                              | ň                         | ,                                                 |                                                                                 |                        | - | 1                                | Time Cut                               |         | +           | ╈       | 99<br>99  |         | +       | 00      | +       | 90 P0     | +      | ┿       | -          | ╈       | +       | +       | ┿       | ┢       | +           | ╈       | +       | +      |         | 120 027   |          | Avg/10tal 21. |
|                                       | Ü                        |                                               |                          |                              |                           |                                                   |                                                                                 |                        |   | Ē                                | <u>i</u> H                             |         |             |         |           |         |         | 1       |         |           | 1      | -       |            | 1       |         | 1       | 1       |         | 12          | 1       | -   č   | 4 0    | v ĉ     | 4 6       | 1        | Avg           |

Wood Heater Test Data - EPA Method 5G

OMNI-Test Laboratories, Inc.

(mineral deside

Annere (nies

ectrologistics

based and

CALCOLOGICAL CONTRACTOR

Lanarian and

-

Page 1 of 1

Control No. P-SSU:0003 (Dual Train - 5G Emission Calculations).xls, Effective date: 10/19/2004

 $\left|_{\mathcal{U}_{i}^{(1)}(\mathcal{U}_{i}^{(1)}, \mathcal{U}_{i}^{(1)}, \mathcal{U}_{i}^{(1)})}\right|$ 

.....

[\_\_\_\_]

Colorado Provincio N

population of the

No.

. .

#### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

|     | Client Name:  | SBI              |      | Equipment N | Jumbers: |             |       | Run #:   | 1        |
|-----|---------------|------------------|------|-------------|----------|-------------|-------|----------|----------|
|     | Model:        | Monaco 2008      |      |             |          | •           | - ,   | Train #: | A        |
|     | Project No.:  | 338-F-68-3       |      |             |          |             |       | Date:    | 12/11/07 |
|     | Tracking No.: |                  | 1161 |             | . :      |             |       | -<br>    |          |
|     |               |                  |      |             | · · ·    |             |       |          |          |
| -   | . (           | Sample Component |      |             | Reagent  | Filter # or |       | Weights  |          |
| · [ |               |                  |      |             |          | n. ( . // . | TP1 1 |          | b        |

|                       |        | Probe # | Final, mg | l'are, mg | Particulate, mg |
|-----------------------|--------|---------|-----------|-----------|-----------------|
| A. Front filter catch | Filter | 1       | 115.1     | 104.6     | 10.5            |
| B. Rear filter catch  | Filter | 2       | 118.6     | 117.8     | 0.8             |
| C. Probe catch        | Probe  | 1       | 171869.3  | 171868.8  | 0.5             |

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 14 f. Morg

Date: 1-21-08

Total Particulate, mg :

11.8

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

Lab 1 A

saura tran

A REAL PROPERTY.

-Contax (public)

V<sub>APP</sub> ( on this )

and the second second

a nasatatan kana

and and and

ta entressonna e

perior and a second second

and the second

Section and the section of the

#### Final Laboratory Report - Method 5G Dual Train **Dilution Tunnel Particulate Calculations**

| Client Name:      | SBI              | Equipment | Numbers:               |             | · · ·     | Run #:   | . 1             |
|-------------------|------------------|-----------|------------------------|-------------|-----------|----------|-----------------|
| Model:            | Monaco 2008      |           | · ·                    |             |           | Train #: | В               |
| Project No.:      | 338-F-68-3       |           |                        |             |           | Date:    | 12/11/07        |
| Tracking No.:     | 1161             | -         |                        |             |           |          |                 |
| •                 |                  |           |                        |             |           |          |                 |
| S.                | Sample Component | ······    | Reagent                | Filter # or |           | Weights  |                 |
|                   | · · · · ·        |           |                        | Probe #     | Final, mg | Tare, mg | Particulate, mg |
| A Front filter of |                  |           | <b>D</b> <sup>11</sup> |             | 100.1     | 110.0    | 10.0            |

| A. From inter catch  | Filter | 3 | 132.1    | 119.3    | 12.8 |
|----------------------|--------|---|----------|----------|------|
| B. Rear filter catch | Filter | 4 | 123.2    | 122.4    | 0.8  |
| C. Probe catch       | Probe  | 2 | 187741.6 | 187742.0 | -0.4 |

| Total Particulate, mg : | 13.2 |
|-------------------------|------|
|                         |      |

Г

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 16 J. Morga

Date: 1-21-08

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

Page 1 of 1

Lab 1 B

Beaverton, OR Phone (503) 643-3788 MNR. Lables, L

STOVE TEMPERATURE TEST DATA - METHOD 5G

| Client/Model: SBI / Monaco 2008 Project #: _338-F-68-3<br>Date: <u>/z-/1-07</u> Test Crew: <u>K. Mergan</u> |
|-------------------------------------------------------------------------------------------------------------|
|                                                                                                             |

| IllData: $0 =$ Range:FuelDeltaStack $$ TEMPERATIWeightWreightDraftAmbientTopBottomBack $$5.5$ $\checkmark$ $?7$ 98% $4!7$ 332 $$4.6$ $0.9$ $078$ $78$ $84.6$ $4!7$ $332$ $3.7$ $0.7$ $076$ $78$ $84.6$ $4!7$ $332$ $3.0$ $0.7$ $076$ $78$ $84.6$ $4!7$ $332$ $2.6$ $0.7$ $076$ $78$ $84.7$ $373$ $481$ $2.12$ $0.7$ $066$ $78$ $736$ $393$ $481$ $2.2$ $0.1$ $065$ $78$ $407$ $497$ $497$ $2.12$ $0.1$ $065$ $78$ $422$ $427$ $497$ $2.12$ $0.1$ $065$ $78$ $497$ $497$ $491$ $2.12$ $0.1$ $065$ $78$ $422$ $427$ $497$ $2.12$ $0.1$ $065$ $78$ $497$ $497$ $497$ $1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | Actual:           |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|------------------|
| FuelDeltaStackAmbientTopBottonSrS $\checkmark$ $77$ $98$ $4/1$ SrS $0:7$ $77$ $98$ $4/1$ SrS $0:7$ $078$ $77$ $98$ $4/1$ Sr1 $0.7$ $078$ $78$ $846$ $4/12$ $3.7$ $0.7$ $078$ $78$ $846$ $4/12$ $3.7$ $0.7$ $078$ $78$ $846$ $4/12$ $3.7$ $0.7$ $076$ $78$ $846$ $4/12$ $3.7$ $0.7$ $076$ $78$ $846$ $4/12$ $2.6$ $0.7$ $026$ $78$ $786$ $4/07$ $2.15$ $0.1$ $026$ $78$ $786$ $4/07$ $2.2$ $0.1$ $026$ $78$ $782$ $4/07$ $2.2$ $0.1$ $025$ $78$ $4/82$ $4/23$ $2.2$ $0.1$ $026$ $78$ $4/82$ $4/23$ $2.2$ $0.1$ $025$ $78$ $4/82$ $4/23$ $2.2$ $0.1$ $025$ $78$ $4/82$ $4/23$ $2.12$ $0.1$ $0265$ $78$ $4/07$ $78$ $2.12$ $0.1$ $0265$ $78$ $78$ $4/07$ $2.12$ $0.1$ $0265$ $78$ $4/17$ $2.12$ $0.1$ $0265$ $78$ $4/17$ $2.12$ $0.1$ $0265$ $78$ $4/17$ $1.11$ $1.11$ $1.11$ $1.11$ $1.11$ $1.11$ $1.11$ <td< th=""><th>Range:</th><th>Z.O-Z.F Coal Bed.</th><th>NN</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Range:    | Z.O-Z.F Coal Bed. | NN               |
| Weight         Weight         Draft         Ambient         Top         Botton $S_1S$ $\checkmark$ $77$ $984$ $4/17$ $S_1S$ $0.7$ $078$ $78$ $846$ $4/17$ $3.7$ $0.7$ $078$ $78$ $846$ $4/10$ $3.7$ $0.7$ $070$ $78$ $847$ $393$ $3.0$ $0.7$ $070$ $78$ $8/7$ $393$ $2.6$ $0.7$ $076$ $78$ $8/7$ $393$ $2.15$ $0.5$ $065$ $78$ $482$ $407$ $2.2$ $0.1$ $055$ $78$ $482$ $423$ $2.2$ $0.1$ $055$ $78$ $423$ $2.2$ $0.1$ $055$ $78$ $423$ $2.2$ $0.1$ $055$ $78$ $423$ $2.18$ $482$ $423$ $423$ $2.18$ $055$ $78$ $423$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEMPERATU |                   | Not UKEN         |
| 5.5 $7.6$ $77$ $987$ $411$ $332$ $416$ $0.7$ $078$ $78$ $881.6$ $417$ $332$ $3.7$ $0.7$ $075$ $78$ $846.$ $410$ $429$ $3.0$ $0.7$ $076$ $78$ $846.$ $410$ $429$ $3.0$ $0.7$ $070$ $78$ $817$ $393$ $481$ $2.16$ $0.7$ $026$ $78$ $736.$ $393$ $481$ $2.15$ $0.1$ $026$ $78$ $786.$ $407$ $494$ $2.12$ $0.1$ $055$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $055$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $055$ $78$ $423$ $507$ $494$ $2.12$ $0.1$ $055$ $78$ $723$ $507$ $491$ $2.12$ $0.1$ $055$ $78$ $422$ $423$ $507$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Botton    | Left Right Flue   | Catatvist        |
| 416 $0.9$ $078$ $78$ $886$ $417$ $372$ $3.7$ $0.9$ $075$ $78$ $866$ $410$ $429$ $3.0$ $0.7$ $070$ $78$ $817$ $393$ $460$ $2.6$ $0.4$ $026$ $78$ $736$ $393$ $481$ $2.16$ $0.4$ $026$ $78$ $736$ $393$ $481$ $2.12$ $0.1$ $066$ $78$ $736$ $497$ $497$ $2.12$ $0.1$ $055$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $055$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $055$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $055$ $78$ $78$ $497$ $78$ $2.12$ $0.1$ $055$ $78$ $422$ $423$ $507$ $78$ $9.1$ $9.1$ $9.1$ $9.1$ $9.1$ $9.1$ $710$ </td <td>411 332</td> <td>261</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 411 332   | 261               | -                |
| 3.7 $0.7$ $075$ $78$ $866$ $410$ $429$ $3.0$ $0.7$ $070$ $78$ $817$ $393$ $460$ $2.6$ $0.4$ $068$ $78$ $736$ $393$ $481$ $2.5$ $0.5$ $068$ $78$ $736$ $497$ $494$ $2.5$ $0.5$ $065$ $78$ $482$ $423$ $507$ $2.2$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.2$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.2$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.2$ $0.1$ $053$ $78$ $482$ $423$ $507$ $100$ $053$ $78$ $78$ $723$ $507$ $78$ $2.2$ $0.1$ $053$ $78$ $78$ $78$ $78$ $78$ $700$ $053$ $78$ $78$ $78$ $78$ $78$ $78$ <t< td=""><td>417 392</td><td>312</td><td>+</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 417 392   | 312               | +                |
| 3.0 $0.7$ $070$ $78$ $8.7$ $393$ $440$ $2.16$ $0.4$ $068$ $78$ $736$ $393$ $481$ $2.13$ $0.3$ $065$ $78$ $482$ $497$ $494$ $2.13$ $0.1$ $065$ $78$ $482$ $497$ $494$ $2.12$ $0.1$ $065$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $053$ $78$ $482$ $423$ $507$ $2.12$ $0.1$ $053$ $78$ $78$ $723$ $507$ $78$ $9.07$ $9.01$ $9.01$ $9.01$ $9.01$ $9.01$ $710$ $9.01$ $9.01$ $9.01$ $9.01$ $9.01$ $9.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 410 429   | 342               | -                |
| Zib     0if    068     78     736     393     481       Zi3     0.5    065     78     407     494       Zi2     0.1    053     78     432     423     507       Zi2     0.1     0.1     1     1     1       Zi2     0.1     1     1     1       Zi2     0.1     1     1     1    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 393 460   |                   | -                |
| 2.3     0.3    065     78     407     491       2.2     0.1    053     78     482     423     507       2.1     0.1    053     78     482     423     507       2.1     0.1    053     78     482     423     507       2.1     0.1     1.05     18     482     423     507       2.1     1.05     18     18     19     10       1.1     1.1     1.1     11     11       1.1     1.1     1.1     11     11       1.1     1.1     1.1     11     11       1.1     1.1     1.1     11     11       1.1     1.1     1.1     11     11       1.1     1.1     1.1     11     11       1.1     1.1     1.1     1.1     11       1.1     1.1     1.1     1.1     1.1       1.1     1.1     1.1     1.1     1.1       1.1     1.1     1.1     1.1     1.1       1.1     1.1     1.1     1.1     1.1       1.1     1.1     1.1     1.1     1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 393 481   | 373               | +                |
| Zi2     0,1     -,053     78     432     423     507       Image: Solution of the state of the                                                                             | 107 494   |                   | $\downarrow$     |
| Image: series of the series | 423 507   | 21.5              | T                |
| 80       90       90         90       90       90         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10         10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                   |                  |
| 90       00       00       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   |                  |
| 00       10         10       10         20       30         30       1         40       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                   | +                |
| 10       10         20       30         30       40         40       10         50       10         70       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                   | $\downarrow$     |
| 20       30         30       40         50       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         70       1         7 <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                   |                  |
| 30<br>40<br>50<br>60<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                   |                  |
| 40<br>50<br>60<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   | +                |
| 20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                   | $\left  \right $ |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   | +                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   | _                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                   |                  |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   |                  |
| 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   | ≫                |
| AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                   |                  |

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G).xls, Effective date: 08/07/2000

7

Page 1 of 1

OMNI-Test Laboratories, Inc Beaverton, OR

No. of South States of Sta

Sugar and

•

. .

-------- FUEL DATA

| ан сайта (1996)<br>Станования (1996)                                  |                                       |                                       |                 |                                    |                               |
|-----------------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------|------------------------------------|-------------------------------|
| Client: SBI                                                           |                                       |                                       | · .             |                                    |                               |
| Model: Monaco 2008                                                    |                                       | ·                                     | •               |                                    | •                             |
| Project #: 338-F-68-3                                                 | racking #: 1161                       |                                       |                 |                                    |                               |
| Date: <u>12-11-07</u><br>OMNI Equipment ID #:<br>FUEL LOAD PREPARED B | Test Crew: K.                         | MorgAN                                |                 | Run #:                             | 1                             |
| OMNI Equipment ID #:                                                  |                                       |                                       |                 |                                    |                               |
| FUEL LOAD PREPARED B                                                  | Y: K. MorgAN                          | , CLAUPE                              | E PARE          |                                    |                               |
| FUEL: DOUGLAS-FIR SP.                                                 | ECIES, UNTREATED                      | , AIR-DRIED, S                        | TANDARD GRA     | DE OR BET                          | TER,                          |
| DIMENSIONAL LUMBER.                                                   |                                       |                                       |                 |                                    | · .                           |
| ·                                                                     |                                       |                                       | · ·             |                                    |                               |
|                                                                       | PI<br>MOISTURE CON                    | RE-BURN FUEI<br>TENT (METER           |                 |                                    | · .                           |
| CALIBRATION: C                                                        | al Value $(1) = 12\%$                 |                                       |                 |                                    |                               |
|                                                                       | al Value $(2) = 22\%$                 |                                       |                 |                                    |                               |
| Diana in t                                                            |                                       |                                       |                 | -<br>-                             |                               |
| Piece Leng<br>1 <b>ජ</b>                                              | <u>eth</u><br>ft 19.4                 | <u>Readings</u><br>9,9                | 197             | Type<br>ZX4                        |                               |
| 2                                                                     | ft                                    |                                       | /_//            |                                    |                               |
| 3                                                                     | ft                                    | · · · · · · · · · · · · · · · · · · · |                 |                                    | -                             |
| Length of cut pieces:                                                 | @ 8.75 inches                         | Pre-Burr                              | Fuel Average Mo | oisture: 19                        | 1.67%                         |
| Time ( le els)                                                        | -                                     |                                       |                 |                                    |                               |
| Time (clock): _//:/5                                                  | Room Temperatur                       | e (F): <u>75</u>                      | Initials:/2_    |                                    | -                             |
|                                                                       |                                       |                                       |                 |                                    | ,                             |
|                                                                       |                                       | · · · · · · · · · · · · · · · · · · · |                 | ·····                              |                               |
|                                                                       |                                       |                                       | ·····           | ·                                  |                               |
|                                                                       |                                       | TEST FUEL                             |                 |                                    |                               |
| FUEL TYPE AND AMOU                                                    |                                       |                                       |                 |                                    |                               |
| CALCULATED LOAD W                                                     |                                       | ACIUALL                               | OAD WEIGHT:     | <u> </u>                           | $(2 \times 4)$<br>(4 \cdot 4) |
| FUEL PIECE LENGTH:                                                    | 13.0"                                 |                                       |                 | 9.8                                |                               |
|                                                                       |                                       |                                       |                 |                                    |                               |
|                                                                       | MOISTURE CONT                         | <u>ENT (METER -</u>                   | – – DRY BASIS)  |                                    |                               |
| PIECE                                                                 | DI                                    | EADINGS                               |                 | TYPE                               |                               |
| 11000                                                                 | <u>N1</u>                             | <u>CADINOS</u>                        |                 |                                    |                               |
| 1                                                                     | 21.2                                  | 21.4                                  | 21.2            | 2×4                                |                               |
| 2                                                                     | 21.6                                  |                                       | 51,2            | 2×4                                |                               |
| 3                                                                     | 22.0                                  |                                       | 21.2            | <u>4 x 4</u>                       |                               |
| - 4                                                                   | 21,3                                  | 23,1 :                                | 21.9            | <u>4 ×4</u>                        |                               |
| 6                                                                     | · · · · ·                             |                                       |                 | •                                  |                               |
| 7                                                                     | · · · · · · · · · · · · · · · · · · · |                                       | · · ·           |                                    | •                             |
| 8                                                                     |                                       |                                       |                 |                                    |                               |
| 9                                                                     |                                       | ······                                | ·               |                                    |                               |
| 10                                                                    | <u> </u>                              | · · · · · · · · · · · · · · · · · · · |                 |                                    |                               |
| OVER                                                                  | RALL TEST FUEL LC                     | AD MOISTURI                           | E A VERAGE: 💈   | 1.69%                              |                               |
|                                                                       |                                       |                                       |                 | -                                  |                               |
| Time (clock): _//:                                                    | <u>30</u> Room                        | Temperature (F                        | ): _75          | Initials :                         |                               |
|                                                                       | <u>.</u>                              | · ·                                   |                 |                                    |                               |
| Π-                                                                    | abailing algorithms                   | 16 1. Mory                            | - · · ·         | <b>)</b> 0401 <b>1</b> 73 <b>1</b> | 6-07                          |
| Ie                                                                    | chnician signature:                   | 12 7. Verorg                          | <u>z</u> L      | Date: 12-1                         |                               |
|                                                                       |                                       |                                       |                 |                                    |                               |
|                                                                       | •                                     |                                       |                 |                                    |                               |

Page 1

0F 4

4

8 7

Control No. P-SFB-0006 (Woodstove Fuel Load Information).doc, Effective date: 04/18/2007

OMNI-Test Laboratorie Beaverton, OR

**Run Notes** 

Client: SBI Model: Monaco 2008 Project #: 338-F-68-3 Tracking #: 1161 Run #: \_\_\_\_ Test Crew: K. Morgan

Date: 12-11-07

OMNI Equipment ID'#(s):

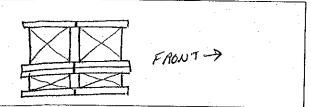
PREBURN DE SCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)

С.

PRIMARY:

Fully Closed

| SECONDARY: | Fully     | Closed | Posth    | an      |
|------------|-----------|--------|----------|---------|
| •          | (Tandouly | Contro | Ild with | primary |
| TERTIARY:  | NA        |        | ·        |         |
|            |           |        |          |         |


ON - High

PREBURN SETTINGS AND ACTIVITIES

FAN:

| TIME | AIR (THERMO) <u>CHANGES</u><br>PRIMARY/SECONDARY/TERTIARY | FAN<br>SETTING<br>CHANGE | ADD<br>FUEL<br>+ WT. | ADD<br>FUEL<br>- WT. | RAKE<br>COAL | COMMENT    |  |
|------|-----------------------------------------------------------|--------------------------|----------------------|----------------------|--------------|------------|--|
| 60   | test setting                                              |                          |                      |                      | K            | - Levelled |  |
|      |                                                           |                          |                      |                      | ·            |            |  |

TEST FUEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)



DESCRIBE OR SKETCH TEST SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCIBLE) PRIMARY:

SAME as above

TEST START UP PROCEDURES BYPASS: FUEL LOADING Louded by 45 Sec. AJAR UNTIL 4 min, 40 sec. DOOR: PRIMARY AIR: Fully Open 510 MIN -ABRUPHLY Closed to test SEtting at 5.0 min. OTHER: NONE

SECONDARY: Fully Closed Position

TERTIARY:

FAN:

NA ON-High

Technician signature:

Date: 12-11-07

Control No. P-SFAK-0006 (Run Notes).doc, Effective date: 05/08/2007

4 - 10 Page 1 81 14 7

OMNI-Test Laboratories, ?ic. Beaverton, OR

20160001201

tonsourseite

Supplemental Data EPA 5G/5H

| Model: <u>Monaco 2008</u><br>Project #: <u>338-F-68-3</u><br>Date: <u>12-11-07</u><br>Test Crew: <u>K. Morgad</u><br>OMNI Equipment #(s):<br>Gas Analyzer Train Leak<br>Stack:<br>Initial:<br>Final: <u>V</u><br>Calibrations: Span Gas | Check:<br>Dil              |                             |                                        | n:<br>/ <i>8: /४</i>  | ,<br>                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|----------------------------------------|-----------------------|---------------------------------------|
| Date: <u>12-11-07</u><br>Test Crew: <u>K. Morgad</u><br>OMNI Equipment #(s):<br>Gas Analyzer Train Leak<br>Stack:<br>Initial:                                                                                                           | Start Tir<br>Check:<br>Dil | Run #:<br>ne: <u>14/;28</u> |                                        | n:<br>/ <i>8: /8</i>  |                                       |
| OMNI Equipment #(s):<br>Gas Analyzer Train Leak<br>Stack:<br>Initial:                                                                                                                                                                   | Check:<br>Dil              |                             |                                        | n:<br>/ <i>8: /8</i>  |                                       |
| OMNI Equipment #(s):<br>Gas Analyzer Train Leak<br>Stack:<br>Initial:                                                                                                                                                                   | Check:<br>Dil              |                             |                                        | 18:18                 |                                       |
| Gas Analyzer Train Leak<br>Stack:<br>Initial:                                                                                                                                                                                           | Dil                        | ution Tunnel                |                                        |                       |                                       |
| Stack: hitial:                                                                                                                                                                                                                          | Dil                        | ution Tunnel                |                                        |                       |                                       |
| Initial:                                                                                                                                                                                                                                | 1                          | ution Tunnel                |                                        |                       |                                       |
|                                                                                                                                                                                                                                         | 1A                         |                             | (Method 5G                             | Gonly):               |                                       |
| Final:                                                                                                                                                                                                                                  | IA                         | In                          | itial:                                 |                       |                                       |
| •                                                                                                                                                                                                                                       | / •                        | Fi                          | nal;N/H                                | !                     |                                       |
| Calibrations: Span Gas                                                                                                                                                                                                                  | CO2: <u>N/H</u> C          | 2: N/A (                    | 0: <u>NA</u>                           | CO <sub>2</sub> (DT): | NA                                    |
|                                                                                                                                                                                                                                         | •                          |                             |                                        |                       |                                       |
| N <sub>2</sub> Span N <sub>2</sub> S                                                                                                                                                                                                    | Span N <sub>2</sub> Span   | N <sub>2</sub> Span         | N <sub>2</sub> Span                    | N <sub>2</sub> Span   | N <sub>2</sub> Span                   |
| Time                                                                                                                                                                                                                                    |                            |                             |                                        |                       |                                       |
| O <sub>2</sub>                                                                                                                                                                                                                          |                            |                             |                                        |                       |                                       |
| CO <sub>2</sub>                                                                                                                                                                                                                         | 1///                       | 1                           |                                        | · · ·                 |                                       |
| CO                                                                                                                                                                                                                                      | XV/M                       |                             |                                        |                       |                                       |
| CO <sub>2</sub> (DT)                                                                                                                                                                                                                    |                            |                             |                                        |                       | · · · · · · · · · · · · · · · · · · · |
| Stack Diameter (inches):                                                                                                                                                                                                                | 6.0                        |                             | ······································ |                       | · · ·                                 |
| Air Velocity (ft/min): Init                                                                                                                                                                                                             |                            | <br>Final:                  |                                        |                       | · .                                   |
| Scale Audit (lbs): Pre                                                                                                                                                                                                                  |                            |                             |                                        |                       | · .                                   |
| Induced Draft:                                                                                                                                                                                                                          |                            |                             |                                        | ·                     |                                       |
| Pitot Tube Leak Test: Pre                                                                                                                                                                                                               |                            | Smoke Captu                 |                                        | 214                   |                                       |
| the second s                                                                                                                          |                            |                             | ost: <u>ø@</u>                         |                       |                                       |
| Flue Pipe Cleaned Prior to                                                                                                                                                                                                              | o Filst Test in Sen        | es. Date: _/.               | 10-07                                  | initiais: <u>/</u>    | •••                                   |
|                                                                                                                                                                                                                                         | Initial                    | Mid                         | dle                                    | End                   | ing                                   |
| Pb (in/Hg)                                                                                                                                                                                                                              | -78-16 30.17 <sup>cr</sup> | -80                         | · <i>H</i> 30.13 <sup>a</sup>          | -79                   | 2-1L 30.10                            |
| Room Temp (°F)                                                                                                                                                                                                                          | 78                         | 80                          |                                        | 79                    | 9                                     |
| Technician signature:                                                                                                                                                                                                                   | 1. J. Morga                | E                           | )ate:                                  | -11-07                |                                       |
|                                                                                                                                                                                                                                         |                            |                             |                                        |                       |                                       |

Control No. P-SFAO-0007 (Supplemental Data EPA 5G).doc, Effective date: 05/08/2007

Page 1 of 1 **4 - 1 1 '0 F 4 - 4 7**  Model: Monaco 2008 Stove Builder International 1700, Léon-Harmel Québec (Québec), Canada GIN 4R9

and the second

and a contract of

FARMAN GAVAN ADAVA

har management

a subsection of the

and and a street of

1000 N 100 N

Lister Transfer

Construction of

And the state of the

-----

an and a start of the

Run 2

4-12 of 4-47

.

### Wood Heater Test Data - EPA Method 5G

|                                                   | · · ·                               |                               |                               |
|---------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------|
| Manufacturer:                                     |                                     | · · · ·                       |                               |
| Model:                                            | Monaco 2008                         |                               |                               |
| Project No.:                                      | 338-F-68-3                          |                               |                               |
| Tracking No.:                                     | 1161                                |                               |                               |
| Run:                                              | 2                                   | · · · ·                       |                               |
| Test Date:                                        | 12/12/07                            | · · · · ·                     |                               |
|                                                   |                                     |                               |                               |
|                                                   |                                     |                               |                               |
| · · · · · · · · · · · · · · · · · · ·             |                                     | · •                           |                               |
| Burn Rate                                         | 1.00 kg/hr dry                      |                               |                               |
|                                                   |                                     |                               |                               |
| Average Tunnel Temperature                        | 107 degrees Fahrenheit              |                               |                               |
| Average Gas Velocity in Dilution Tunnel - vs      | 13.6 feet/second                    |                               |                               |
| Average Gas Flow Rate in Dilution Tunnel - Qsd    | 8578.8 dscf/hour                    |                               |                               |
| Average Delta p                                   | 0.054 Jackar 1120                   |                               |                               |
| Average Delta H                                   | 0.054 inches H20<br>0.00 inches H20 |                               |                               |
| Total Time of Test                                | 240 minutes                         |                               |                               |
|                                                   |                                     | - ·                           |                               |
|                                                   | AVERAGE                             | -<br>SAMPLE TRAIN 1           | SAMPLE TRAIN 2                |
|                                                   |                                     |                               |                               |
| Total Sample Volume - Vm                          | 27.29 cubic feet                    | 25.19 cubic feet              | 29.40 cubic feet              |
| Average Gas Meter Temperature                     | 79 degrees Fahrenheit               | 78 degrees Fahrenheit         | 79 degrees Fahrenhei          |
| Total Sample Volume (Standard Conditions) - Vmstd | 26.0 dscf                           | 24.0 dscf                     | 28.0 dscf                     |
| Total Particulates - mn                           |                                     | 45.0                          |                               |
| Particulate Concentration (dry-standard)          | 0.00066 grams/dscf                  | 15.8 mg<br>0.00066 grams/dscf | 18.4 mg<br>0.00066 grams/dscf |
| Particulate Emission Rate                         | 5.64 grams/hour                     | 5.64 grams/hour               | 5.64 grams/hour               |
| Adjusted Emissions                                | 7.65 grams/hour                     | 7.65 grams/hour               | 7.65 grams/hour               |
|                                                   |                                     | , iso granianisan             | , ioo gramoriou               |
| Difference from Average                           |                                     | 0.00 grams/hour               | 0.00 grams/hour               |
| 7.5% of the average emission rate                 | 0.57                                |                               |                               |
| Weighted Average Emission Rate Limit              | 4.10 grams/hour                     |                               | · ·                           |
| 7.5% of the weighted average emission rate limit  | 0.31                                | l · ·                         | 1                             |
|                                                   |                                     | Results Are Acceptab          |                               |
|                                                   |                                     | courto Are Acceptan           | 10                            |

1 (Dual Train - 5G Emission Calculations) xls, Effective date: 4/29/2003

Page 1 of 1

| 1-21-08                               | 60         ft/sec.           3.0         scfin           3.1         scfin           3.0         scfin           3.1         scfin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stack                            | Draft In.<br>H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.065  | -0.065  | -0.070   | -0.070    | -0.073  | -0.080  | -0.075   | -0.070  | -0.068      | -0.065                   | COU.U-  | -0.065   | -0.063  | -0.063             | -0.060           | -0.060         | 0.060   | -0.058  | -0.055                 | -0.053  | -0.053  | -0.053  | -0.065      |     |  |    |        |   |  |                                                                                                 | , Ru           | 24<br>24<br>24<br>24 |        |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|-----------|---------|---------|----------|---------|-------------|--------------------------|---------|----------|---------|--------------------|------------------|----------------|---------|---------|------------------------|---------|---------|---------|-------------|-----|--|----|--------|---|--|-------------------------------------------------------------------------------------------------|----------------|----------------------|--------|
|                                       | Signature/Date: IF / 1/1/<br>Turnel Velocity: 13/60 ft/<br>Intial Turnel Velocity: 13/60 ft/<br>Average Turnel Flow. 13/30 est<br>Average Turnel Flow. 13/60 ft/<br>Post-Test Lask Check (1): 0(@) 6(1)<br>Post-Test Lask Check (2): 0(@) 6(2)<br>Post-Test Lask Check (2): |                                  | Ambient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62      | 78      | 61       | 62        | 80      | 81      | 82 1     | 81      | 81          | 81                       | 10      | 81       | 81      | 81                 | 80               | 80             | 08 0    | 80      | 80                     | 80      | 80      | 61      |             |     |  | 4. |        |   |  |                                                                                                 |                | 4 0 F                |        |
| 11                                    | Signature/Doiley: P 7-110-7<br>Tunnel Foicoty: 1316<br>Italia Tunnel Flow: 1315<br>Areage Tunnel Flow: 1433<br>Areage Teak Check (1): 0<br>84 Teat Lack Check (1): 0<br>94 Teat Lack Check (1): 0<br>94 Flet Molisture (4) Paiso<br>age Total Particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Impinger<br>exit (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |         |          |           |         |         |          |         |             |                          |         |          |         |                    |                  |                |         |         |                        |         |         |         | i0/AICI#    |     |  |    |        |   |  |                                                                                                 |                | 4 - 1                |        |
|                                       | ignature/Da<br>Tunnel<br>Intial Tu<br>Average T<br>Average T<br>Tunni<br>F-Test Leak<br>Fuel J<br>Fuel J<br>e<br>"Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | Impinger<br>exit (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |         |          |           |         |         |          |         |             |                          |         |          |         |                    |                  |                |         | . •     |                        |         | :       |         | #DIV/0      | 2   |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       | Sig<br>Post-1<br>Post-1<br>Post-7<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | r Filter<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79      | 83      | 84       | 84        | 88      | 8       | 86       | 84      | 18          | 98 F                     | 6/ 08   | 81       | 82      | 82                 | 83               | 83             | 83      | 83      | 84                     | 84      | 84      |         | 83.00       |     |  |    | Э.     |   |  |                                                                                                 |                |                      |        |
|                                       | nole<br>nole<br>tr<br><u>(5 29,98 </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oF                               | k Filter<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +       |         | -        | 88        |         | +       |          |         | -           | 20 F                     |         | ╞        | ┢       |                    | +                | 88             | ┿       | -       |                        | 82      | 82      | 82      | 81.76       |     |  |    |        |   |  |                                                                                                 |                | 21<br>• • •          | •      |
|                                       | 10.46,47<br>29.00 bMb-mole<br><u>28.56</u> bMb-mole<br><u>4.00</u> percent<br><u>0.118</u> +P2O<br><u>0.975</u> (1)<br><u>Begin Middle</u><br>29.78 29.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ure Data,                        | ge Stack<br>ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 320   |         | +        |           | 482     | -       |          |         |             |                          | 103     | +        | -       |                    | •                |                | 303     |         | +                      |         | 268     | 257     |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | remperat                         | t Average<br>Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 423.2   | 423.2   | 425.8    | 435.8     | 491.4   | 501.6   | 485.2    | 474.2   | 467.6       | 463.2                    | 483.4   | 476.4    | 460.8   | 451.6              | 443.2            | 433.0          | 425.0   | 416.8   | 407.8                  | 398.6   | 386.0   | 370.6   | 22          |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       | PM Control Module:<br>ion Tunnel MW(dry)<br>fon Tunnel MW(wei);<br>fon Tunnel H2O.<br>Dilution Tunnel H2O.<br>Dilution Tunne Eatic.<br>Pitot Tube Cp.<br>Meter Box Y Factor:<br>Barometric Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wood Heater Temperature Data, oF | Catalyst<br>Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          | _         |         |         |          |         |             |                          |         |          | ļ,      |                    |                  |                |         |         |                        |         |         |         |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       | PM Control Module: 5<br>Dilution Tunnel MW(dx)?<br>Dilution Tunnel MW(exc).<br>Dilution Tunnel H2CO:<br>Dilution Tunnel Satic<br>Pitor Tube Cp<br>Pitor Tube Cp<br>Barometric Pressure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W00                              | Firebox<br>Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 369     | 356     | 328      | 322       | 349     | 373     | 388      | 390     | 394         | 394                      | 404     | 409      | 405     | 405                | 400              | 389            | 272     | 367     | 356                    | 345     | 332     | 319     |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Firebox<br>Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 391     | 372     | 354      | 353       | 105     | 389     | 400      | 398     | 394         | 392                      | 665     | 403      | 399     | 393                | 387              | 380            | 368     | 363     | 356                    | 350     | 341     | 329     |             |     |  |    |        | ŗ |  |                                                                                                 |                |                      |        |
| Wood Heater Test Data - EPA Method 5G | aF<br>oF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | Firebox<br>Back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 491     | 517     | 473      | 452       | 480     | 518     | 540      | 551     | 572         | 288                      | 260     | 591      | 595     | 593                | 588              | 579            | 255     | 537     | 519                    | 503     | 493     | 477     |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
| Aetho                                 | Pt.8<br>0.052 10<br>102 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Firebox<br>Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 361     | 363     | 354      | 342       | 326     | 320     | 315      | 313     | 312         | 312                      | 312     | 313      | 317     | 323                | 326              | 328            | 32.0    | 347     | 356                    | 360 .   | 355     | 343     |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
| EPA N                                 | Pt.7 [0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.052 (0.0                                                                                                                                                                            |                                  | Firebox F<br>Top B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         | +        | 710       | 930 -   | 806     |          |         | 666         | +                        | -       | -        |         | _                  | _                | 489            | -       |         |                        |         | 409     | 385     |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
| ata - E                               | Pt6 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , Ib                             | Weight Fin<br>Change T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | .1 5    |          | -0.8      |         |         |          | _       |             | 4.0-                     | -       | +        |         |                    | -                | -              |         | -       |                        | :<br>   |         |         |             | - X |  |    |        |   |  |                                                                                                 |                |                      |        |
| est Da                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fuel Weight, Ib                  | Scale We<br>Reading Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 6 -1    |          |           |         | _       |          | -       | -           | ┼                        | +       |          | 5 -0.2  |                    |                  | 8 -0.2         | +       |         | +                      | -       |         | 0-0-0   |             |     |  |    |        |   |  |                                                                                                 | of 1           |                      |        |
| ater T                                | 7 Traverse D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | Pro. Rate Sc<br>(10%) Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         | -        | 101 7.9   | +       | 118 4.9 | $\vdash$ |         | -           | 2.7 COI                  | +       |          | 100 1.5 |                    | +                | 7 0.9          | 100 0.6 |         | $\left  \right $       |         | 101 0.1 | 0.0     | 100.62      |     |  |    | ,<br>, |   |  | Deco                                                                                            | Page 1 of 1    |                      | а<br>, |
| d He                                  | Velocity Traverse Data           Pt.3         Pt.4         Pt.5           104         0.046         0.053           112         110         108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | Pro. Rate Pro. (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10\%) (10 |         |         | -        |           | -       | -       |          |         | 103         | +-                       | -       | ┢        |         | +                  |                  | -              | +       |         |                        | -       | +       |         |             |     |  |    |        |   |  |                                                                                                 | •              |                      |        |
| Woo                                   | V<br>Pt2 P<br>0.052 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Tunnel [10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0:050   |         | -        |           | +       | -       |          | +       | +           | +                        | +       |          |         | +                  | -                | +              | 66 SS0. | -       |                        | -       |         |         | 2001 2001   |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       | │ │ │ │ │ │ │ │ │ │                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 L                              | Dilution Dily<br>Tunnel Tur<br>Temn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | _       |          | 112 0.053 | +       | -       |          | -       | 114 . 0.053 | 2200 - 601<br>2200 - 601 | +       |          | 105 0.0 | -                  |                  | cc0.0 6        |         | -       |                        | +       |         |         | -           |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       | 147 Pt.1<br>147 0.045<br>emp. 116<br>ment Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         | +        |           |         |         | Ξ        |         | +           |                          | : =     |          | 2       | 2                  | 201              | 66 08          | . 6     | 86      | 16                     | 96      |         | 94      | 100.08      |     |  |    |        |   |  |                                                                                                 |                |                      |        |
| •                                     | MIMIMA Pt1<br>Initial dr 0.045<br>Initial Temp. 116<br>OMNI Equipment Numbers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | c. Meter Vac.<br>In. Hg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90      | 0       | 0        |           |         | 0       | 0        | 0       | 0 0         |                          | • •     | 0        | 0       | 0                  | 0 0              |                |         | 0       | 0                      | 0       | 0       | 0       |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       | õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Data                             | Meter Vac.<br>In. Hg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0       | 0       | 0        |           |         | 0       | 0        | 0       | 0           |                          | 0       | 0        | 0       | 0                  | ó                | 0              |         | 0       | 0                      | 0       | 0       | 0       |             |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | npling                           | Meter<br>oF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78      | 78      | 78       | 70        | 6/      | 61      | 79       | 79      | 79          | 80                       | 8 8     | 62.      | 80      | 8                  | 08 8             | 80             | 80      | 80      | 80                     | 80      | 8       |         | 204-67      |     |  |    |        |   |  |                                                                                                 |                |                      |        |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ticulate S                       | ice Meter<br>(2) oF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +       |         |          | F 82      | +       | +       |          |         | 78          | +                        | -       | -        |         | •                  | +                | 6 <u>7</u>     | -       |         | $\left  - \right $     |         | _       |         | /8.44       |     |  |    |        |   |  |                                                                                                 |                |                      | Ż      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Par                              | Orifice Orifice<br>dH(1) dH(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         | -+-      | 0.00      | +       | +       | 00.0     |         | 0.00        | +                        | + -     | +        |         |                    | +                | 0000           | +       |         |                        |         |         | +       |             |     |  |    |        |   |  | 10/19/2004                                                                                      | 5007181.in1    |                      |        |
|                                       | min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |          | 2 0.00    | 1       | 1       |          | -       | 2 0.00      |                          |         | ┢        |         |                    | -                | 0.00           |         |         | $\left  \right $       |         |         | •       | 000         |     |  |    |        |   |  | active deter                                                                                    | rective date;  |                      |        |
|                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                | m Rate, cfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.12    | 0.12     | 0.12      | 0.12    | 0.14    | 0.13     | 0.12    | 0.12        | 0.12                     | 0.12    | 0.12     | 0.12    | 0.12               | 0.12             | 0.12           | 0.12    | 0.12    | 0.12                   | 0.12    | 0.13    | 0.12    | 710         |     |  |    |        |   |  | ions) vle F#                                                                                    | aous).xis, m   |                      |        |
|                                       | SBI<br>Monaco 2008<br>1161<br>338.F-68-3<br>12.18<br>12:18<br>12:18<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : L                              | Sample<br>Rate, cfm<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 0.11    | 0.11     | 0.11      | 0.10    | 0.10    | 0.11     | 0.10    | 0.11        | 010                      | 0.10    | 0.11     | 0.10    | 0.11               | 0.10             | 010            | 0.10    | 0.10    | 0.11                   | 0.10    | 0.11    | 0.10    |             |     |  |    |        |   |  | Control No. PSSI E0003 (Dual Train - 50 Emission Calculatione) vis. Pflooline date: 10/14/20104 | ssion calculat |                      |        |
|                                       | Manufacturer:<br>Model:<br>Tracking No.:<br>Project No.:<br>Test Date:<br>G Clock Time:<br>ording Interval:<br>ampling Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | Gas Meter<br>Cubic Feet<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 686.841 | 687.995 | 689.146  | 691 555   | 692.725 | 694.125 | 695.387  | 696.615 | 00.009      | 700.270                  | 701.485 | 702.720  | 703.950 | 705.185            | 012 EDF          | 708.806        | 710.035 | 711.264 | 712.500                | 713.740 | 715.000 | 716.240 | 666.62      |     |  |    |        |   |  | ain - 5G Emis                                                                                   |                |                      |        |
| ſ                                     | 2 Manufacturer:<br>Manufacturer:<br>Model:<br>Tracking No.:<br>Project No.:<br>Reginning Clock Time:<br>Recording Interval:<br>Total Sampling Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | Gas Meter<br>Cubic Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ++      | -+-     | 683.821  | +         | +       | +       |          | -       | 691.180     | +                        | 694.320 | -        |         | 697.475<br>Cop Coc |                  | -              | ┼╌      | 702.705 | $\left  \cdot \right $ | -       | . /     | 706.898 | -           |     |  |    |        |   |  | 0003 (Dual Tr                                                                                   |                |                      |        |
|                                       | Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Elapsed Ga<br>Time Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | +       | 20 68    |           | +       | 60 68   |          | +       | 20 0%       | -                        | 120 69  | $\vdash$ | -       | 150 69             | +                | +-             | +-      | 200 70  |                        |         |         | · .     | 77 1001 MAV |     |  |    |        |   |  | HISS-G ON F                                                                                     | 0.140.1-350    |                      |        |
| Ĺ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i<br>i                           | EIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         | <u> </u> | ·  •      |         | ę       |          |         |             |                          | =       | 1        | -       | -                  | -   <sup>2</sup> | -1 <sup></sup> | Ĩ       | 5       | 2                      | -1      | 2       | 1 5     | fav.        |     |  |    |        |   |  | Contra                                                                                          | 50             |                      |        |

OMNt-Test Laboratories, Inc.

. Construction

Party Second

.

#### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

| · Client Name: | SBI         | <br>         | Equipment                               | Numbers | :   |   |     | Run #:   | 2        |
|----------------|-------------|--------------|-----------------------------------------|---------|-----|---|-----|----------|----------|
| Model:         | Monaco 2008 | <br>         | 1                                       |         | 1   |   |     | Train #: | A        |
| · .            | 338-F-68-3  | <br>         | 1 - A - A - A - A - A - A - A - A - A - |         |     |   |     | Date:    | 12/12/07 |
| Tracking No :  |             | 1161         |                                         |         |     |   |     |          |          |
|                |             |              |                                         |         | • • | • | · · |          |          |
|                |             | <del>.</del> |                                         |         |     |   |     |          |          |

| Sample Component      | Reagent | Filter # or |           | Weights  | -              |
|-----------------------|---------|-------------|-----------|----------|----------------|
|                       |         | Probe #     | Final, mg | Tare, mg | Particulate, m |
| A. Front filter catch | Filter  | 5           | · 119.1   | 104.2    | 14.9           |
| B. Rear filter catch  | Filter  | 6           | 124.1     | 123.2    | 0.9            |
| C. Probe catch        | Probe   | 4 .         | 188081.5  | 188081.5 | 0.0            |

Total Particulate, mg :

15.8

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 16 1. Marga

Date: 1-21-08

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

ß

lundon diset

Land Constant And State

. .

-Introduction

a support success

#### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

| Client Name:       | SBI              |      | Equipment N                           | Jumbers:                              |             |            | Run #:   | 2               |
|--------------------|------------------|------|---------------------------------------|---------------------------------------|-------------|------------|----------|-----------------|
| , Model:           | Monaco 2008      | ·    |                                       |                                       |             |            | Train #: | B               |
| Project No.:       | 338-F-68-3       |      |                                       |                                       |             |            | Date:    | 12/12/07        |
| Tracking No.:      |                  | 1161 |                                       | · · · · · · · · · · · · · · · · · · · |             |            | •        |                 |
|                    |                  | · ·  |                                       |                                       | . :         |            | . •      |                 |
| 5                  | Sample Component |      |                                       | Reagent                               | Filter # or |            | Weights  | ·····           |
|                    |                  |      |                                       |                                       | Probe #     | Final, mg  | Tare, mg | Particulate, mg |
| A. Front filter ca | itch             |      |                                       | Filter                                | 7           | 138.7      | 122.1    | 16.6            |
| B. Rear filter cat | tch              | -    |                                       | Filter                                | .8          | 127.2      | 126.2    | 1.0             |
| C. Probe catch     |                  |      |                                       | Probe                                 | 5           | 197388.4   | 197387.6 | 0.8             |
|                    |                  |      | · · · · · · · · · · · · · · · · · · · | L.,                                   | L           | <u>_</u> _ |          | <u>.</u>        |

Total Particulate, mg :

18.4

Train 2 Lab 4 - 4 7

15

0 F

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 1/ 1. Marga

Date: 1-21-08

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

Page 1 of 1

PMN Lateries, Beaverton, OR Phone (503) 643-3788

q Page N Tracking #: \_1161 Run #: STOVE TEMPERATURE TEST DATA - METHOD 5G Project #: \_338-F-68-3\_ K. Morguer Test Crew: Client/Model: SBI / Monaco 2008\_ Date: 12-12-07

OMNI Equipment ID #:

|          |        | ÷      | Coal Bed: |        |        |                   |          |       | Actual:   |          |
|----------|--------|--------|-----------|--------|--------|-------------------|----------|-------|-----------|----------|
|          |        |        | Data:     | Ш<br>О |        | Range: 2,2-2.6    | 2.2-2.6  |       | Coal Bed: | N<br>N   |
|          | Delta  | Stack  |           |        | TE     | TEMPERATURES (oF) | URES (ol |       |           | Not User |
|          | Weight | Draft  | Ambient   | Top    | Bottom | Back              | Left     | Right | Flue      | Catatvet |
| 1        |        | -,085  | 77        | 804    | 337    | 287               | 291      | レナス   | 520       | L .      |
|          | 10     | - ,075 | 78        | 813    | 352    | 328               | 332      | 294   | 451       |          |
|          | 0,8    | - ,073 | 79        | 064    | 349    | 345               | 357      | 326   | 2717      |          |
|          | 0,7    | -,070  | 79        | 442    | 349    | 607               | 373      | 24/1  | 2/24      |          |
|          | ó,6    | -,070  | 79        | 674    | 350    | 453               | 383      | 359   | 404       |          |
|          | 0.4    | -,065  | 80        | 619    | 354    | 496               | 39/      | 37/   | 275       |          |
| _        | 4      | -1065  | K 70 79   | Sel    | 358    | 525               | 392      | 370   | NA.       |          |
| ••       |        |        |           |        |        |                   |          | 5     |           |          |
|          |        |        |           |        |        |                   | -        |       |           |          |
|          |        | -      |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        |                   |          |       | -         | _        |
|          |        |        |           |        |        |                   |          |       |           | -        |
| <u> </u> |        |        |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        | •                 |          |       |           |          |
| <b> </b> |        |        |           |        |        |                   |          |       |           | >        |
| ·        |        |        |           |        |        |                   |          |       |           |          |
|          |        |        |           |        |        |                   |          |       |           |          |

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G).xls, Effective date: 08/07/2000

Technician signature:

Page 1 of 1

12-12-07

Date:

|                                                                                       |                                                                                                                                                                                                           | FUEL DATA                                                                                                                                                                            | •                                 |                                                                                             |                                            |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|
| •                                                                                     |                                                                                                                                                                                                           | •                                                                                                                                                                                    |                                   | •<br>• • • • • •                                                                            |                                            |
| lient: <u>SBI</u>                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                      |                                   |                                                                                             |                                            |
| 10del: <u>Monaco 2008</u>                                                             | Tracking #- 1161                                                                                                                                                                                          |                                                                                                                                                                                      |                                   |                                                                                             |                                            |
| roject #: $338-F-68-3$<br>ate: $12/12/07$                                             | 7 Test Crew:                                                                                                                                                                                              | K. Margan                                                                                                                                                                            | Rı                                | ın#: <b>2</b>                                                                               |                                            |
| MNI Equipment ID #:                                                                   |                                                                                                                                                                                                           | /                                                                                                                                                                                    |                                   |                                                                                             |                                            |
| UEL LOAD PREPARI                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                      |                                   | · •                                                                                         |                                            |
| UEL: DOUGLAS-FI<br>IMENSIONAL LUME                                                    | R SPECIES, UNTRE.<br>BER.                                                                                                                                                                                 | ATED, AIR-DRIED, STAI                                                                                                                                                                | NDARD GRADE (                     | OR BETTER,                                                                                  |                                            |
|                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                      |                                   | . <u> </u>                                                                                  |                                            |
|                                                                                       | MOISTIDE                                                                                                                                                                                                  | PRE-BURN FUEL<br>CONTENT (METER                                                                                                                                                      |                                   | · · ·                                                                                       |                                            |
| CALIBRATION:                                                                          | Cal Value $(1) = 12$                                                                                                                                                                                      | %         Actual Reading           %         Actual Reading                                                                                                                          | 12.40                             | · · ·                                                                                       |                                            |
|                                                                                       | Cal Value $(2) = 22$                                                                                                                                                                                      | % Actual Reading _                                                                                                                                                                   | 22.0                              |                                                                                             |                                            |
|                                                                                       | Length                                                                                                                                                                                                    | Readings                                                                                                                                                                             |                                   | Type<br>zx4                                                                                 |                                            |
| 1 2 -                                                                                 | ft<br>ft                                                                                                                                                                                                  | 19,1 19,5                                                                                                                                                                            | 20,3                              | 2×4                                                                                         |                                            |
| 3                                                                                     | ft                                                                                                                                                                                                        |                                                                                                                                                                                      |                                   | · · · · · · · · · · · · · · · · · · ·                                                       |                                            |
| Length of cut piec                                                                    | es: <b>8@ 9.5</b> inches                                                                                                                                                                                  | Pre-Burn Fu                                                                                                                                                                          | el Average Moistu                 | e: 19.63./                                                                                  |                                            |
| . –                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                      |                                   |                                                                                             |                                            |
| Time (clock): <u>10</u>                                                               | :00 Room Temp                                                                                                                                                                                             | perature (F): 75 In                                                                                                                                                                  | nitials: <u>/</u>                 | · · ·                                                                                       |                                            |
|                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                      |                                   |                                                                                             |                                            |
|                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                      |                                   |                                                                                             |                                            |
|                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                |                                   | · · · · · · · · · · · · · · · · · · ·                                                       |                                            |
|                                                                                       |                                                                                                                                                                                                           | TEST FUEL                                                                                                                                                                            |                                   |                                                                                             | ·<br>· · · · · · · · · · · · · · · · · · · |
| FUEL TYPE AND A                                                                       |                                                                                                                                                                                                           | 4 2 4                                                                                                                                                                                | ×4 Z                              |                                                                                             |                                            |
|                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                      | -                                 | <b>3.8</b> (2×4)                                                                            |                                            |
| CALCULATED LOA                                                                        | D WEIGHT:                                                                                                                                                                                                 | 4 2 4                                                                                                                                                                                | -                                 | <b>3.8</b> (2 × 4)<br><u>6.9</u> (4 × 4)<br>10.7 Total                                      |                                            |
|                                                                                       | ND WEIGHT:                                                                                                                                                                                                | 4 4<br>ACTUAL LOA                                                                                                                                                                    | D WEIGHT:                         | <u>6.9</u> (4 ×4)                                                                           |                                            |
| CALCULATED LOA                                                                        | ND WEIGHT:                                                                                                                                                                                                | 4 2 4                                                                                                                                                                                | D WEIGHT:                         | <u>6.9</u> (4 ×4)                                                                           |                                            |
| CALCULATED LOA                                                                        | AD WEIGHT:<br>TH: <b>/2.75</b> <sup>//</sup><br>MOISTURE (                                                                                                                                                | 4 4<br>ACTUAL LOA                                                                                                                                                                    | D WEIGHT:<br><br>DRY BASIS)       | <u>6.9</u> (4 ×4)                                                                           |                                            |
| CALCULATED LOA                                                                        | ND WEIGHT:<br>TH: <b>/2.75<sup>///</sup></b><br>MOISTURE (<br>E                                                                                                                                           | 4 <u>2</u> 4<br>ACTUAL LOA<br><br><u>CONTENT (METER I</u><br><u>READINGS</u>                                                                                                         | D WEIGHT:<br><br>DRY BASIS)<br>TY | 6.9 (4 k4)<br>10.7 Total                                                                    |                                            |
| CALCULATED LOA                                                                        | AD WEIGHT:<br>TH: <u>/2.75</u> "<br>MOISTURE (<br>ZE<br><u>2.(.1</u><br><u>2.1.0</u>                                                                                                                      | $4 \underline{2} 4$ $A CTUALLOA$ $-$ $CONTENT (METER I)$ $READINGS$ $21.5 2.1.1$                                                                                                     | D WEIGHT:<br>DRY BASIS)<br>TY     | 6.9 (4 k4)<br>10.7 Total                                                                    |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br><u>PIEC</u><br>1                                | AD WEIGHT:<br>TH: <u>/2.75</u> <sup>//</sup><br>MOISTURE (<br><u>2.(.1</u><br><u>2.1.0</u><br><u>19.4</u>                                                                                                 | $4 \underline{2} 4$ $ACTUALLOA$ $CONTENT (METER I)$ $READINGS$ $21.5 21.1$ $21.7 21.1$                                                                                               | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>k4<br><u>k4</u><br>(x4                                   |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br><u>PIEC</u><br>1                                | AD WEIGHT:<br>TH: <u>/2.75</u> "<br>MOISTURE (<br>ZE<br><u>2.(.1</u><br><u>2.1.0</u>                                                                                                                      | $4 \underline{2} 4$ $ACTUALLOA$ $CONTENT (METER I)$ $READINGS$ $21.5 2.1.1$                                                                                                          | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>k4<br>k4                                                 |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br><u>PIEC</u><br>1                                | AD WEIGHT:<br>TH: <u>/2.75</u> <sup>//</sup><br>MOISTURE (<br><u>2.(.1</u><br><u>2.1.0</u><br><u>19.4</u>                                                                                                 | $4 \underline{2} 4$ $ACTUALLOA$ $CONTENT (METER I)$ $READINGS$ $21.5 21.1$ $21.7 21.1$                                                                                               | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>k4<br><u>k4</u><br>(x4                                   |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br><u>PIEC</u><br>1                                | AD WEIGHT:<br>TH: <u>/2.75</u> <sup>//</sup><br>MOISTURE (<br><u>2.(.1</u><br><u>2.1.0</u><br><u>19.4</u>                                                                                                 | $4 \underline{2} 4$ $ACTUALLOA$ $CONTENT (METER I)$ $READINGS$ $21.5 21.1$ $21.7 21.1$                                                                                               | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>k4<br><u>k4</u><br>(x4                                   |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br><u>PIEC</u><br>1                                | AD WEIGHT:<br>TH: <u>/2.75</u> <sup>//</sup><br>MOISTURE (<br><u>2.(.1</u><br><u>2.1.0</u><br><u>19.4</u>                                                                                                 | $4 \underline{2} 4$ $ACTUALLOA$ $CONTENT (METER I)$ $READINGS$ $21.5 21.1$ $21.7 21.1$                                                                                               | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>k4<br><u>k4</u><br>(x4                                   |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8            | AD WEIGHT:<br>TH: <u>/2.75</u> <sup>//</sup><br>MOISTURE (<br><u>2.(.1</u><br><u>2.1.0</u><br><u>19.4</u>                                                                                                 | $4 \underline{2} 4$ $ACTUALLOA$ $CONTENT (METER I)$ $READINGS$ $21.5 21.1$ $21.7 21.1$                                                                                               | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>k4<br><u>k4</u><br>(x4                                   |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | AD WEIGHT:<br>TH: <u>/2.75</u> <sup>//</sup><br>MOISTURE (<br><u>2.(.1</u><br><u>2.(.1</u><br><u>2.1.0</u><br><u>19.4</u><br><u>2.1.4</u><br><u></u>                                                      | $4 \ 2 \ 4$ <u>ACTUAL LOA</u> <u>ACTUAL LOA</u> <u>CONTENT (METER I</u> <u>READINGS</u> <u>21,5</u> <u>21,1</u><br><u>21,7</u> <u>21,1</u><br><u>22,2</u> <u>20,5</u><br><u>19,4</u> | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4                   |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | $\frac{D \text{ WEIGHT:}}{\text{MOISTURE}}$ $\frac{12.75}{\text{MOISTURE}}$ $\frac{2.1.1}{19.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ | $4 \underline{2} 4$ $ACTUAL LOA$ $CONTENT (METER I)$ $READINGS$ $21.5 2.1.1$ $21.7 21.1$ $22.5 19.4$ $22.5 19.4$ $22.5 19.4$ $22.5 19.4$ $22.5 19.4$                                 | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4 |                                            |
| CALCULATED LOA<br>FUEL PIECE LENGT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | $\frac{D \text{ WEIGHT:}}{\text{MOISTURE}}$ $\frac{12.75}{\text{MOISTURE}}$ $\frac{2.1.1}{19.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ $\frac{19.44}{21.4}$ | $4 \ 2 \ 4$ <u>ACTUAL LOA</u> <u>ACTUAL LOA</u> <u>CONTENT (METER I</u> <u>READINGS</u> <u>21,5</u> <u>21,1</u><br><u>21,7</u> <u>21,1</u><br><u>22,2</u> <u>20,5</u><br><u>19,4</u> | D WEIGHT:                         | 6.9 (4 k4)<br>10.7 Total<br>(PE<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4<br>*4                   |                                            |

Control No. P-SFB-0006 (Woodstove Fuel Load Information).doc, Effective date: 04/18/2007

A VALUE AND A VALUE AND A

- Anna Andre

ana casa ang

kon elemente e elemente e elemente elem

Cardon control

Contraction of the

Contraction of the

Page 1 of 1 4 - 18 OF 4 - 47

OMNI-Test Laboratori€ Beaverton, OR

| Run Notes | 3 |
|-----------|---|
|-----------|---|

Client: <u>SBI</u> Model: Monaco 2008 Project #: 338-F-68-3 Tracking #: 1161 Run #: 2 Test Crew: K. Morgan

Date: 12-12-07

OMNI Equipment ID'#(s):

#### PREBURN

DESCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)

°C.

PRIMARY:

Gauged 0,030"

| SECONDARY: | FIXED - to PRIMO |
|------------|------------------|
| TERTIARY:  | <u>N/</u> 4      |
| FAN:       | ON-High          |

#### PREBURN SETTINGS AND ACTIVITIES

| TIME    | AIR (THERMO) <u>CHANGES</u><br>PRIMARY/SECONDARY/TERTIARY | FAN<br>SETTING<br>CHANGE | ADD<br>FUEL<br>+ WT. | ADD<br>FUEL<br>- WT. | RAKE<br>COAL | COMMENT  |
|---------|-----------------------------------------------------------|--------------------------|----------------------|----------------------|--------------|----------|
| £<br>60 | TEST SETTING                                              |                          |                      |                      | X            | Levelled |
|         |                                                           |                          |                      |                      |              |          |

#### TEST

TEST FUEL CONFIGURATION SKETCH START UP PROCEDURES (INDICATE VIEW ANGLE) BYPASS: N/A FUEL LOADING Loaded by SO Sec. DOOR: Asar antil 4.5 min PRIMARY AIR: Full open until somin Abruptly Closed to test setting FRONT -> ut 50 min NONE OTHER: DESCRIBE OR SKETCH TEST SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCIBLE) SECONDARY: TANKOM With PRIMARY PRIMARY: TERTIARY: Same a above ON- Hive FAN: 1. Morge Technician signature: Date: 12-12-07 Page 1 of 1 4 - 19 OF 4 - 47

Control No. P-SFAK-0006 (Run Notes).doc, Effective date: 05/08/2007

Lange Street

(reference) .

.

Supplemental Data EPA 5G/5H

| Client:                               | <u>SBI</u>          | n an | • • •      |                                        | •                                     | •<br>•<br>•     |                                       |  |
|---------------------------------------|---------------------|------------------------------------------|------------|----------------------------------------|---------------------------------------|-----------------|---------------------------------------|--|
| Model:                                | <u>Monaco 20</u>    | 08                                       | ,          |                                        |                                       | • •             |                                       |  |
| Project #                             | #: <u>338-F-68</u>  | 3-3                                      | Tracking   | #: <u>1161</u>                         |                                       |                 | . •                                   |  |
|                                       | 12-12-07            |                                          |            | Run #                                  |                                       |                 | ·                                     |  |
| Test Cre                              | ew: K. W            | NorgAN                                   | Start Tir  | ne: 12:18                              | Stop Time:_                           | 16:18           |                                       |  |
|                                       | quipment #          |                                          |            | · · ·                                  | · .                                   |                 | · · · · · · · · · · · · · · · · · · · |  |
| Gas Ana                               | alvzer Train        | Leak Check                               | •          | ·                                      |                                       |                 | · · ·                                 |  |
|                                       | tack:               | Lean oncon                               |            | ution Tunne                            | (Method 50                            | 2 Optu):        |                                       |  |
|                                       | Initial:            | I                                        | Di         |                                        | nitial:                               | s Oniy).        |                                       |  |
|                                       |                     |                                          | `          |                                        |                                       | 1               | . · · ·                               |  |
| Calibratio                            | ons: Span (         | Gas CO <sub>2</sub> :                    | -<br>N/A 0 | 2. N/A                                 | CO: N/A                               | /<br>_CO₂(DŢ∕): | NA                                    |  |
|                                       |                     | 2                                        |            | <u> </u>                               | <u> </u>                              |                 | <u>.</u>                              |  |
|                                       | N <sub>2</sub> Span | N <sub>2</sub> Span                      | N₂ Span    | N <sub>2</sub> Span                    | N <sub>2</sub> Span                   | N₂ Span         | N <sub>2</sub> Span                   |  |
| Time                                  |                     |                                          |            | 1                                      |                                       | ( · · · ·       |                                       |  |
| O <sub>2</sub>                        | • •                 |                                          |            | In                                     | · · · · · · · · · · · · · · · · · · · |                 |                                       |  |
| CO <sub>2</sub>                       |                     |                                          | N/         | H.                                     |                                       |                 |                                       |  |
| СО                                    |                     |                                          |            |                                        |                                       |                 |                                       |  |
| CO <sub>2</sub> (DT)                  |                     |                                          |            |                                        |                                       |                 |                                       |  |
| Stack Dia                             | ameter (incl        | nes):                                    | la,0"      | •<br>•                                 |                                       |                 | · · · · · · · · · · · · · · · · · · · |  |
|                                       |                     |                                          |            | Final:                                 | 150                                   |                 |                                       |  |
| Scale Au                              |                     |                                          |            | Post Te                                |                                       | · · ·           |                                       |  |
| Induced I                             | Draft:              |                                          |            | moke Captu                             |                                       |                 |                                       |  |
| Pitot Tub                             | e Leak Test         | t: Pre: 🥒                                |            | <u>, e.</u> Po                         |                                       | 3.1" will       |                                       |  |
| +                                     |                     |                                          |            | es: Date: _/2                          |                                       |                 | /                                     |  |
|                                       |                     |                                          |            |                                        |                                       | · · · ·         | <u> </u>                              |  |
| · · · · · · · · · · · · · · · · · · · |                     | Init                                     | al         | Mid                                    | dle                                   | End             | ling                                  |  |
| Pb (in/                               | Hg)                 | 79                                       | 16 29.780  | 81                                     | 14 29.86 0                            | 29.98 0         |                                       |  |
| Room Ter                              | np (°F)             | 79                                       | · · · · ·  | ୫/                                     | •                                     |                 |                                       |  |
| Technicia                             | n signature         | : 16.                                    | 1. Moren   | r je<br>F                              | )ate: /2                              | -12-07          |                                       |  |
|                                       |                     |                                          |            | ······································ | · · · · · · · · · · · · · · · · · · · | 1601            |                                       |  |
|                                       |                     |                                          | •          |                                        |                                       |                 |                                       |  |

Control No. P-SFAO-0007 (Supplemental Data EPA 5G).doc, Effective date: 05/08/2007

Page 1 of 1 4 - 20 0F 4 - 47 Model: Monaco 2008 Stove Builder International 1700, Léon-Harmel Québec (Québec), Canada G1N 4R9

Contract of Contract of

.

UNSATO VÁRIA I

Contraction of

antices where

Weighting and provided

......

Put ------

a na banda nagigi

-II (2-2-5-5 Envel

Run 3

4-21 of 4-47

i sanan ka

-

and a second

### Wood Heater Test Data - EPA Method 5G

| Manufacturer:<br>Model:<br>Project No.:<br>Tracking No.:<br>Run:<br>Test Date:                                                                           | Monaco 2008<br>338-F-68-3<br>1161<br>3                          |                                                                    |                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                          |                                                                 |                                                                    |                                                                    |
| Burn Rate                                                                                                                                                | 1.37 kg/hr dry                                                  |                                                                    |                                                                    |
| Average Tunnel Temperature<br>Average Gas Velocity in Dilution Tunnel - vs<br>Average Gas Flow Rate in Dilution Tunnel - Qsd                             | 117 degrees Fahrenheit<br>13.4 feet/second<br>8362.4 dscf/hour  |                                                                    |                                                                    |
| Average Delta p<br>Average Delta H<br>Total Time of Test                                                                                                 | 0.052 inches H20<br>0.00 inches H20<br>170 minutes              |                                                                    |                                                                    |
| L                                                                                                                                                        | AVERAGE                                                         | J<br>SAMPLE TRAIN 1                                                | SAMPLE TRAIN 2                                                     |
| Total Sample Volume - Vm<br>Average Gas Meter Temperature<br>Total Sample Volume (Standard Conditions) - Vmstd                                           | 18.66 cubic feet<br>78 degrees Fahrenheit<br>18.0 dscf          | 17.53 cubic feet<br>78 degrees Fahrenheit<br>16.9 dscf             | 19.79 cubic feet<br>79 degrees Fahrenheit<br>19.1 dscf             |
| Total Particulates - mn<br>Particulate Concentration (dry-standard)<br>Particulate Emission Rate<br>Adjusted Emissions                                   | 0.00023 grams/dscf<br>1.88 grams/hour<br><b>3.08 grams/hour</b> | 3.9 mg<br>0.00023 grams/dscf<br>1.93 grams/hour<br>3.13 grams/hour | 4.2 mg<br>0.00022 grams/dscf<br>1.84 grams/hour<br>3.02 grams/hour |
| Difference from Average<br>7.5% of the average emission rate<br>Weighted Average Emission Rate Limit<br>7.5% of the weighted average emission rate limit | 0.23<br>4.10 grams/hour<br>0.31                                 | 0.06 grams/hour                                                    | 0.06 grams/nour                                                    |
|                                                                                                                                                          | F                                                               | esults Are Acceptab                                                | le                                                                 |

Run 3

4 7

0F 4 -

22

| 20                                 |                                                     |                                                 | "Hg                                          | 3.9                                                    | 4.2                    | 1                               | 4                 | t In.             | 0                 | 2      | 80      | \$2    | 12     | 52     | 80             | 22     | 75     | 75     | 22     | 75     | 20     | 88          | 8      | 5          | 5            |        | 1.9    |                 |
|------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------|---------------------------------|-------------------|-------------------|-------------------|--------|---------|--------|--------|--------|----------------|--------|--------|--------|--------|--------|--------|-------------|--------|------------|--------------|--------|--------|-----------------|
| Signature/Date: K J. Marga 1-21-08 |                                                     | 0.1963 ft2                                      | cfm@                                         |                                                        |                        | Stack                           |                   | <u>н</u>          | H2O               | 020.0- | -0.080  | -0.085 | -0.085 | -0.085 | -0.080         | -0.075 | -0.075 | -0.075 | -0.075 | -0.075 | -0.070 | -0.068      | -0.065 | -0.065     | -0.063       | -0.060 | 090.0- | 0.073           |
| (Morg-                             | 140.4                                               | 11                                              |                                              | Fuel Moisture (dry basis %):<br>Total Particulate (1): | Total Particulate (2): |                                 |                   | sr Amhient        | _                 | 81     | 80      | 18     | 82     | 81     | 82             | .82    | 81     | 81     | 18     | 81     | 81     | 80          | 80     | 80         | 8            | 62     | -79    |                 |
| ate: K/                            | Intial Tunnel Flow:<br>Average Tunnel Flow:         | Tunnel Area:                                    | Check (2)                                    | Moisture (<br>Total P.                                 | Total P.               |                                 |                   | - Impinger        |                   |        |         |        |        |        |                |        |        |        |        |        |        |             |        |            |              |        |        | #DIV/01 #DIV/01 |
| gnature/D                          | Intial T<br>Average                                 | Tunnel Area:<br>Post-Test Leak Check (1)        | Post-Test Leak Check (2):                    |                                                        | "Hg                    |                                 |                   | Impinger          | exit (1)          |        |         |        |        |        |                |        |        |        |        |        |        |             |        |            |              |        |        | #DIV/01         |
| S                                  | ,                                                   | Post                                            |                                              | +)`ì                                                   | - <sup>30,21</sup> "Hg | •                               |                   | Filter            | 3                 | 78     | 82      | 82     | 82     | 82     | 82             | 83     | 8      | 84     | 84     | 84     | 85     | 84          | 84     | 84         | 83           | . 83   | 82     | 82.83           |
|                                    | ole                                                 |                                                 |                                              | 11                                                     | 30.26                  | Ľ.                              |                   |                   | Ξ                 | 79     | 18      | 80     | 80 .   | 80     | · 80           | 80     | - 81   | 81     | 81     | 81     | 82     | 81          | 81     | 18         | 81           | 80     | . 80   | 80.56           |
| . 11                               | 29.00 lb/lb-mole<br>28.56 lb/lb-mole                | 4.00 percent<br>-0.128 "H2O                     |                                              | egin Middle                                            | 30.22                  | e Data o                        |                   | Stack             |                   | 354    | 480     | 505    | 527    | 526    | 495            | 463    | 440    | 424    | 420    | 417    | 386    | 368         | . 354  | 345 .      | 331          | 321    | 315    |                 |
| SRI 046 47                         |                                                     | 4.0                                             | 0.84                                         | Begin                                                  | 30.14                  | mocrafur                        |                   | Average           | Surface           | 487.6  | 537.0   | 547.0  | 547.8  | 557.0  | 539.4          | 530.0  | 522.0  | 518.2  | 518.0  | 522.8  | 508.0  | 496.4       | 489.0  | 481.8      | 470.2        | 461.0  | 451.4  | 36              |
| i Module                           | MW(dry):<br>MW(wet):                                | mel H2O:<br>nel Static:                         | Pitot Tube Cp:                               | r ractor.<br>Pressure:                                 |                        | Wood Heater Temperature Data oF |                   | Catalyst          | EXIL              |        |         |        |        |        |                |        |        | •      |        |        |        |             |        |            |              |        |        |                 |
| PM Control Module                  | Dilution Tunnel MW(dry):<br>Dilution Tunnel MW(wet) | Dilution Tunnel H2O:<br>Dilution Tunnel Static: | Pitot Tube Cp:                               | Barometric Pressure:                                   |                        | H pooM                          |                   | Firebox           | Kight             | 421    | 412     | 406    | 408    | 421    | 424            | 441    | 438    | 440    | 442    | 446    | 445    | 439         | 434    | 427        | 413          | 401    | 391    |                 |
|                                    | Dilu<br>Dilu                                        |                                                 |                                              |                                                        |                        |                                 |                   | Firebox .         | Lett              | 433    | 428     | 414    | 419.   | 435    | 441            | 448    | 449    | 447    | 450    | 454    | 450    | 443         | 435    | 428        | 419          | 410    | 401    |                 |
|                                    |                                                     | "H2O<br>of                                      |                                              |                                                        |                        |                                 |                   | Firebox           | Back              | 636    | 631 5   | 609    | 602    | 609    | 619            | 614    | 622    | 634    | 642    | 644    | 647    | 648         | 647    | 641        | 630          | 621    | 605    |                 |
|                                    | Pt.8                                                | 0.048                                           |                                              |                                                        |                        |                                 | -                 | Firebox           | Bottom            | 401    | 416     | 410    | 398    | 387    | 381            | 383    | 382 .  | 379    | 378    | 373    | 374    | 373         | 377    | 378        | 383          | 383    | 382    |                 |
|                                    | Pt.7                                                | 0.050 120                                       |                                              |                                                        |                        |                                 | $\vdash$          | ×                 | dor               | 547    | 798     | 896    | 912 -  | 933    | 832            | 764    | 719    | 169    | 678    | 697    | 624    | 579         | 552    | 535        | 506          | 490    | 478    |                 |
|                                    | Pt.6                                                | 0.055                                           |                                              |                                                        |                        | ght, lb                         | ╞                 | Weight Chorace    | ciralige          |        | -1.9    | -1.2   | -1.3   | . 1'1- | -0.8           | -0.6   | -0.5   | -0.5   | -0.4   | -0.5   | -0.3   | -<br>-<br>- | -0.2   | -0.2       | -0.2         | -0.2   | -0.1   |                 |
|                                    | e Data,<br>Pt.5                                     | 0.050                                           |                                              |                                                        |                        | Fuel Weight, Ib                 | H                 | Scale<br>Dandinin | -                 | 10.3   | 8.4     | 7.2    | 5.9    | 4:8    | 4.0            | 3.4    | 2.9    | 2.4    | 2.0    | 21 S   | 77     | 6.0         | 0.7    | <b>C</b> 0 | 0.3          | 0.1    | 0.0    |                 |
|                                    | Velocity Traverse Data<br>Pt.3 Pt.4 Pt.5            | 0.058                                           |                                              |                                                        |                        | -                               | Pro Rate          | _                 | (3)               |        | 103     | 00     | 107    | 97     | 66             | 100    | 104    | 8      | 101    | 102    | 101    | 6           | 001    | 3          | 100          | 100    | 102    | 100.82          |
|                                    | Velocity<br>Pt.3                                    | 0.055                                           |                                              |                                                        |                        |                                 | ro Rate F         | (10%)             | Ξ                 |        | 104     | 104    | 109    | 96     | 102            | 66     | 103    | 0      | 100    | 103    | 00     | 77          | 66     | <u>8</u>   | 100          | 100    | 99     | 100.84 1        |
|                                    | Pt.2                                                | -                                               |                                              |                                                        |                        |                                 | Dilution Pro Rate | Tunnel            | đ                 | 0.053  | 0.050   | 0.050  | .050   | 0.050  | 0.050          | 0.050  | 050    | 0.053  | 0.053  | 0.050  | 0.000  |             | 0.033  | 5c0.0      | 0.053        | 0.053  | 0.053  | 0.052 10        |
|                                    | $ $ $\vdash$                                        | 0.050                                           | umbers:                                      |                                                        |                        |                                 | Dilution D        |                   | d                 |        |         | +      | +      |        |                |        |        |        |        | 116    | +      | +           | 100    | +          | -            |        | 101    | 117.40 0.       |
|                                    | . 22                                                | Initial dP<br>Initial Temp.                     | OMNI Equipment Numbers:                      |                                                        |                        |                                 | Meter Vac.        |                   | -                 | 0      | 0       | 0      | -      | 0      | -<br>-         |        |        | •      |        |        |        |             |        |            | -            |        | 0      |                 |
| l                                  |                                                     | In It                                           | OMNI E                                       |                                                        |                        |                                 | Meter Vac. Me     | In. Hg.           | 0                 | -      | -       |        | , .    | _      |                |        | -      |        |        |        |        |             |        |            | -            | 0      | 0      |                 |
|                                    |                                                     |                                                 |                                              |                                                        |                        | ing Data                        | Meter Mete        |                   | +                 |        | _       | 6      | -      |        | +              | -      |        |        | _      | _      |        |             | 0 ~    |            | $\downarrow$ | _      |        | 5               |
|                                    |                                                     |                                                 |                                              |                                                        |                        | Particulate Sampling Data       | Meter Me          |                   | +                 | _      | +       | 8/ 8/  | -      | +      | +              |        | 18 18  | +      | 6/ 8/  | 78 70  | ╉      | ╀           | -      | +          | +            | 77 78  | +      | 77.67 78.67     |
|                                    | •                                                   |                                                 |                                              |                                                        |                        | Particula:                      | -                 | dH (2)            |                   | -      | +       | 0.00   | +      |        |                | +      | nn:n   | -      | 0.0    | -      | +      | +-          | +      | +          | -            | +      | 0.00   | 0.00            |
|                                    |                                                     |                                                 | min                                          | nin                                                    |                        |                                 |                   | dH (1) Hp         |                   | +      | 0.0     |        | +      | +      | ╋              | ┢      | 0.0    | +-     |        | +      | +      | ╈           | +      | +          |              | +      | +      | 0.00            |
|                                    |                                                     |                                                 | 1                                            |                                                        |                        |                                 | Sample            | -tim              | (7)               |        | 0.12    | •      | 0.12   | 0.11   | T              | ╧      | 0.12   |        | 1      |        | +      | t           |        | ╈          | ╈            | 1      | 1      | 0.12            |
| _                                  | Monaco 2008<br>1161                                 | 538-1-08-3<br>12-Dec-07                         | 19:43<br>10                                  |                                                        |                        |                                 |                   | Rate, cfm 3       | (II)<br>711111111 |        | 0.10    | 0.10   | 71.0   | 010    | , 010<br>, 010 | 010    | 010    | 010    | 010    | 0.10   | 0.10   | 010         | 010    | 010        | 0.10         | 0.10   | 01.0   | 0.10            |
| Manufacturer: SBI                  |                                                     | 10 E                                            |                                              |                                                        |                        |                                 |                   | eet               | (7)               | 8      | /1/.010 |        |        |        |                | ╇      | -      |        |        | +      | _      |             | +      | +          | +            |        | +      | 19.788 (        |
| 3 Manufi                           | Tracki                                              | Te:<br>Te:                                      | Beginning Clock Jime:<br>Recording Interval: | Total Sampling Time:                                   |                        | ł                               |                   | Cubic Feet   Cub  | ╉                 | +      | +       | +      | +      | +-     | -              | ╈      | +-     | +      |        | +      | +      | 1           | +      | +-         | +            | +      | ╈      | -               |
| :u                                 |                                                     |                                                 | Beg:                                         | To                                                     |                        |                                 | _                 |                   | +                 | +      | 100.000 |        | +      | +-     | +-             | ╈      | +      | -      |        | +      | -      | ┢           | +      | ┢          | -            |        |        | otal 17.526     |
| Run:                               |                                                     |                                                 |                                              |                                                        |                        |                                 | - Elapsed         | Time              |                   |        |         | 2 6    |        | 2      | 8.09           | 02     | 808    | 88     | 202    | 110    | 120    | 130         | 140    | 150        | 071          | 201    | Ĭ      | Avg/Total       |

Page 1 of 1

Control No. P-SSU-0003 (Dual Train - 5G Emission Calculations) xls, Effective date: 10/19/2004

Wood Heater Test Data - EPA Method 5G

Lassistered

by senter and

.....

OMNI-Test Laboratories, Inc.

Companya and

second of the form

a began a barrow of the

-Waterson again

An par vice and

And the second se

ATTAIN STATE

e operation to overale

#### Final Laboratory Report - Method 5G Dual Train **Dilution Tunnel Particulate Calculations**

| Client Name:       | SBI                                   |          | Equipment N | Jumbers: |             | Run #:    | 3            |                |
|--------------------|---------------------------------------|----------|-------------|----------|-------------|-----------|--------------|----------------|
| Model:             | Monaco 2008                           |          |             |          |             |           | <br>Train #: | A              |
| Project No.:       | 338-F-68-3                            | · · ·    |             |          |             | Date:     | 12/12/07     |                |
| Tracking No.:      |                                       | 1161     |             |          |             | -         | ····         |                |
|                    |                                       | ·<br>• · |             |          |             |           |              |                |
| S                  | Sample Component                      |          |             | Reagent  | Filter # or |           | Weights      |                |
|                    |                                       |          |             |          | Probe #     | Final, mg | Tare, mg     | Particulate, m |
| A. Front filter ca | itch                                  |          | -           | Filter   | 9           | 108.2     | 104.8        | 3.4            |
| B. Rear filter cat | ich                                   |          |             | Filter   | . 10        | 117.9     | 117.5        | 0.4            |
| C. Probe catch     | · · · · · · · · · · · · · · · · · · · |          |             | Probe    | 3           | 188255.9  | 188255.8     | 0.1            |

Total Particulate, mg :

3.9

Train 1 - 47

24

0F 4

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 1h J. Mon

Date: 1-21-08

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

-Managerica

.

a strand a strand a strand a strand a strand a strand a strand a strand a strand a strand a strand a strand a s

#### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

| Client N | ame:  | SBI         | -<br>-                                | Equipment Numbers: | -       | Run #:   | 3        |
|----------|-------|-------------|---------------------------------------|--------------------|---------|----------|----------|
| М        | odel: | Monaco 2008 | · · · · · · · · · · · · · · · · · · · |                    |         | Train #: | B        |
| 5        |       | 338-F-68-3  | -                                     |                    |         | Date:    | 12/12/07 |
| Tracking | No.:  |             | 1161                                  |                    | · · · · |          |          |

| Sample Component      | Reagent |         |           | Weights  |                |  |  |  |
|-----------------------|---------|---------|-----------|----------|----------------|--|--|--|
|                       |         | Probe # | Final, mg | Tare, mg | Particulate, m |  |  |  |
| A. Front filter catch | Filter  | 11      | 124.7     | 121.0    | 3.7            |  |  |  |
| B. Rear filter catch  | Filter  | 12      | 125.5     | 125.0    | 0.5            |  |  |  |
| C. Probe catch        | Probe   | 6       | 188122.8  | 188122.8 | 0.0            |  |  |  |

Total Particulate, mg :

4.2

Train 2

25

1 -

7

| Component             | Equations:                               | <u> </u> |
|-----------------------|------------------------------------------|----------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |          |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |          |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |          |

Analyst: 16 1. Morga

Date: 1-21-08

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

|                |                                   | of   |                                  |            |                      |                    | 5<br>2<br>2   | 2'2         | Net Den              | Catalyst    |         |      |       |      |       |       |       |   |   |   |   |    |     |    |    |    |    |    |    |     |         |                        |
|----------------|-----------------------------------|------|----------------------------------|------------|----------------------|--------------------|---------------|-------------|----------------------|-------------|---------|------|-------|------|-------|-------|-------|---|---|---|---|----|-----|----|----|----|----|----|----|-----|---------|------------------------|
|                |                                   | Page | <b>.</b>                         | <u>ب</u>   |                      | -                  | Actual.       | Coal Bed    |                      | Flue        |         | Sos  | 534   | 539  | 493   | 135   | 354   | - |   |   |   |    |     |    |    |    |    |    |    | -   |         | 12-12-07               |
|                | 56                                | •    | Tracking # 1161                  |            |                      |                    |               |             |                      | Right       | 162     | 329  | 361   | 394  | 424   | 434   | 421   |   |   |   |   |    |     |    |    |    |    |    |    |     |         | Date:                  |
|                | TEMPERATURE TEST DATA - METHOD 5G | ·    | Trackin                          |            |                      | ,                  |               | 211-2,5     | TURES (oF)           | Left        | 346     | 379  | 405   | 429  | Huft  | 445   | 433   |   |   |   |   |    |     |    |    |    |    |    |    |     |         |                        |
|                | ATA - N                           | ·    | ې<br>بې                          |            |                      | .<br> .<br> .      |               | Range:      | TEMPERA <sup>-</sup> | Back        | the for | 468  | 494   | SZD  | 554   | 611   | 636   |   |   |   |   |    |     |    |    |    |    |    |    |     |         | ~~~~                   |
|                | TEST D                            |      | 338-F-68-3                       | ·          |                      |                    |               |             |                      | Bottom      | 295     | 316  | 326   | 336  | 350   | 569   | 104   |   |   |   |   |    |     |    |    |    |    |    |    |     | / / ./M | . J. More              |
|                | RATURE                            |      | Project #:                       | Morgan     |                      |                    |               | <br>0       |                      |             | 829     | 865  | 933   | 947  | 843   | 704   | 547   |   |   |   |   |    |     |    |    |    |    |    |    |     |         | re://                  |
|                | TEMPER                            |      |                                  | Ý          |                      |                    | Coal Bed.     | Data:       |                      | Ambient     | 100     | A I  | 201   | 85   | 28    | 28    | 81    |   |   | - |   |    |     |    |    |    |    |    |    |     |         | l echnician signature: |
|                | STOVE .                           |      | co 2008                          | Test Crew: |                      | :                  |               | i           |                      |             | -,085   | cent | 2001- | 1021 | -1080 | -,070 | -,070 |   |   |   |   |    |     |    |    |    |    |    |    |     |         | l echnicia             |
|                | •                                 |      | Client/Model: SBI / Monaco 2008_ | N          | nt ID #:             |                    |               | :<br>-<br>- |                      | Inveigni    |         | 1.2  |       | 1    | 0.1   | 0.4   | 2.0   |   |   |   |   |    |     |    |    |    |    |    |    |     |         |                        |
| Lab 1:28, 2388 |                                   |      | /Model: S                        | 12-2-07    | OMNI Equipment ID #: |                    | <u>א</u><br>ב |             | Moish#               | a di second | 2.9     |      |       |      |       |       | 7.7   |   |   |   | - |    |     |    |    |    |    |    |    |     |         | •                      |
| OR             |                                   |      | Client                           | Date:      | INMO                 |                    | Preburn       | I est       | Timo                 |             |         | 20   | 30    | 4    |       |       |       |   | 3 |   | 0 | 20 | ကို | 40 | 50 | 60 | 20 | 80 | 66 | AVG | -       |                        |
| Beaverton      |                                   |      |                                  |            |                      | -<br>-<br><br><br> |               | і.          | : ·.                 |             | •       | -    |       | :    |       |       |       |   |   |   |   |    |     |    | ·  |    |    |    |    |     | . *     |                        |

{

(

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G).xls, Effective date: 03/07/2000

- 4 7 0 F 4 26

Page I of I

OMNI-Test Laboratories, Ind Beaverton, OR

a de parte de la se

Postar Alexandra

Pow Zysta Douba

and a second 
FUEL DATA

| Client: <u>SBI</u>                                                                                                      | ·<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                                               |                                                                                             | . <b>.</b>                       |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|
| Model: Monaco 2008                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                                               |                                                                                             |                                  |
| Project #: <u>338-F-68-3</u><br>Date: <u>12 (2-07</u><br>OMNI Equipment ID #:<br>FUEL LOAD PREPARE<br>FUEL: DOUGLAS-FIF | Tracking # 1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . •                                                                                                         |                                                                                                                                                               |                                                                                             |                                  |
| Date: 12-17-07                                                                                                          | Test Crown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K. Margare                                                                                                  |                                                                                                                                                               | D #.                                                                                        | 2                                |
| MNI Fauinment ID #:                                                                                                     | Itst Clew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Contragent                                                                                                |                                                                                                                                                               | Kun #:                                                                                      | ,<br>                            |
|                                                                                                                         | DDV. 11 Mars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AI AIL DE                                                                                                   | DADE                                                                                                                                                          |                                                                                             | <u> </u>                         |
|                                                                                                                         | DDI. <u>N. MOR</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TED AND DOLED                                                                                               | TANDARD OD                                                                                                                                                    |                                                                                             | בו ביו ה                         |
| UEL: DOUGLAS-FIF                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TED, AIR-DRIED, S                                                                                           | IANDARD GR                                                                                                                                                    | ADE OR BET                                                                                  | iek,                             |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                         |                                                                                             |                                  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRE-BURN FUE                                                                                                | Ĺ                                                                                                                                                             |                                                                                             |                                  |
|                                                                                                                         | MOISTURE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONTENT (METER                                                                                              | DRY BASIS                                                                                                                                                     | )                                                                                           |                                  |
| CALIBRATION:                                                                                                            | Cal Value $(1) = 12\%$<br>Cal Value $(2) = 22\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual Readi                                                                                                | ng 12.6                                                                                                                                                       |                                                                                             | · · ·                            |
|                                                                                                                         | Cal value $(2) - 22\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Actual Read                                                                                                 | ng 2210                                                                                                                                                       |                                                                                             |                                  |
| Piece                                                                                                                   | Length / 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 Readings                                                                                                  |                                                                                                                                                               | Туре                                                                                        |                                  |
| 1                                                                                                                       | <u>8</u> ft /4 <u>7</u> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.9                                                                                                        | 19.1                                                                                                                                                          | <u>Type</u>                                                                                 |                                  |
| 2                                                                                                                       | <u>_ength</u> /9,<br><u>8</u> ft /2 <u>/8</u><br>ft<br>ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |                                                                                                                                                               |                                                                                             | - '                              |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             | ·                                                                                                                                                             |                                                                                             |                                  |
| Length of cut piece                                                                                                     | s: 809.5 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pre-Burn                                                                                                    | Fuel Average M                                                                                                                                                | loisture: 19,                                                                               | 10%                              |
| ті                                                                                                                      | ula -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                             |                                                                                                                                                               |                                                                                             |                                  |
| Time (clock): <u>//</u>                                                                                                 | 40 Room Tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rature (F): <u>/&gt;</u>                                                                                    | Initials:                                                                                                                                                     | /~                                                                                          |                                  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                               |                                                                                             |                                  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                               |                                                                                             |                                  |
|                                                                                                                         | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                                                               |                                                                                             |                                  |
| 4                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                                                                                                               |                                                                                             |                                  |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEST FUEL                                                                                                   |                                                                                                                                                               |                                                                                             |                                  |
| FUEL TYPE AND AN                                                                                                        | 10UNT: 2 <b>X</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEST FUEL<br>2                                                                                              | 4×4 Z                                                                                                                                                         |                                                                                             |                                  |
| FUEL TYPE AND AN<br>CALCULATED LOAN                                                                                     | 10UNT: 2 X4<br>D WEIGHT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEST FUEL 2 ACTUAL L                                                                                        | 4 <b>火</b> 4 <u>∠</u><br>OAD WEIGHT:                                                                                                                          | 3,2                                                                                         | (2 × 4)                          |
| FUEL TYPE AND AN<br>CALCULATED LOAD                                                                                     | 10UNT: 2 X4<br>2 WEIGHT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEST FUEL 2 ACTUAL L                                                                                        | 4¥4 <u>Z</u><br>OAD WEIGHT:                                                                                                                                   | 3,2                                                                                         | $(2 \times 4)$<br>$(4 \times 4)$ |
| FUEL TYPE AND AN<br>CALCULATED LOAN<br>FUEL PIECE LENGT                                                                 | 10UNT: 2 X4<br><u>2 WEIGHT:</u><br>H: <b>13 D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEST FUEL 2 ACTUAL L                                                                                        | 4¥4 <u>Z</u><br>.0AD WEIGHT:                                                                                                                                  | 3,2<br>7,1<br>10,3                                                                          | (2 × 4)<br>(4 × 4)<br>Total      |
| FUEL TYPE AND AN<br>CALCULATED LOA<br>FUEL PIECE LENGT                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEST FUEL<br>ACTUAL L<br>ONTENT (METER                                                                      |                                                                                                                                                               | 1013                                                                                        | (2 × 4)<br>(4 × 4)<br>Total      |
| FORE FIRE FERGI                                                                                                         | MOISTURE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>ONTENT (METER –</u>                                                                                      |                                                                                                                                                               | 1015                                                                                        | (2 × 4)<br>(4 × 4)<br>Total      |
| FUEL TYPE AND AN<br>CALCULATED LOAD<br>FUEL PIECE LENGT<br>PIECE                                                        | MOISTURE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •<br>•                                                                                                      |                                                                                                                                                               | 1013                                                                                        | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE                                                                                                                   | MOISTURE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONTENT (METER -<br>READINGS                                                                                 | - – DRY BASIS)                                                                                                                                                | TYPE                                                                                        | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1                                                                                                              | MOISTURE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>ONTENT (METER -</u><br><u>READINGS</u><br>                                                               | <u> DRY BASIS)</u><br>9.3                                                                                                                                     | <u>TYPE</u><br><u>z × 4</u>                                                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE                                                                                                                   | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -<br><u>READINGS</u><br><u> </u>                                                              | - – DRY BASIS)                                                                                                                                                | TYPE                                                                                        | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1                                                                                                              | MOISTURE CO<br>20.4<br>23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ONTENT (METER -<br><u>READINGS</u><br><u>18, 8</u> <u>1</u><br><u>19,8</u> <u>2</u><br><u>21,7</u> <u>2</u> | DR Y BA SIS)<br>9.3                                                                                                                                           | <u>TYPE</u><br><u>z x 4</u><br><u>z x 4</u>                                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE                                                                                                                   | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -<br><u>READINGS</u><br><u> </u>                                                              | <u> DRY BASIS)</u><br><u>9. 3</u><br>0.1<br>2.4                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>2 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE                                                                                                                   | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -<br><u>READINGS</u><br><u> </u>                                                              | <u> DRY BASIS)</u><br><u>9. 3</u><br>0.1<br>2.4                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>2 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1                                                                                                              | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -<br><u>READINGS</u><br><u> </u>                                                              | <u> DRY BASIS)</u><br><u>9. 3</u><br>0.1<br>2.4                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>2 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1                                                                                                              | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -<br><u>READINGS</u><br><u> </u>                                                              | <u> DRY BASIS)</u><br><u>9. 3</u><br>0.1<br>2.4                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>2 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                           | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -<br><u>READINGS</u><br><u> </u>                                                              | <u> DRY BASIS)</u><br><u>9. 3</u><br>0.1<br>2.4                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>2 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                | MOISTURE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONTENT (METER -         READINGS                                                                            | <u>9.3</u><br>0.1<br>2.4<br>7.4                                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                | MOISTURE C<br>20,4<br>23,8<br>21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ONTENT (METER -         READINGS                                                                            | <u>9.3</u><br>0.1<br>2.4<br>7.4                                                                                                                               | <u>TYPE</u><br><u>2 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>0                                                           | $\frac{z \sigma.4}{23.8}$ 21.1 19.4 VERALL TEST FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONTENT (METER -<br>READINGS<br>                                                                             | <u>7. 3</u><br><u>7. 3</u><br><u>0.1</u><br><u>2. 4</u><br><u>7. 4</u><br><u>7. 4</u><br><u>8. A VERA GE</u> : <u>-</u>                                       | <u>TYPE</u><br><u>2 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u><br><u>20.72</u> | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                | $\frac{z \sigma.4}{23.8}$ 21.1 19.4 VERALL TEST FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONTENT (METER -         READINGS                                                                            | <u>7. 3</u><br><u>7. 3</u><br><u>0.1</u><br><u>2. 4</u><br><u>7. 4</u><br><u>7. 4</u><br><u>8. A VERA GE</u> : <u>-</u>                                       | <u>TYPE</u><br><u>2 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u>                                 | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>0                                                           | $\frac{20.4}{23.8}$ $\frac{21.1}{19.4}$ $\frac{21.1}{19.4}$ $\frac{23.8}{21.1}$ $\frac{21.1}{19.4}$ $\frac{23.8}{21.1}$ $\frac{21.1}{19.4}$ $\frac{23.8}{21.1}$ $\frac{21.1}{19.4}$ $\frac{23.8}{21.1}$ $\frac{21.1}{19.4}$ $\frac{23.8}{21.1}$ | ONTENT (METER -         READINGS         19.8       1         21.7       2         22.4       15            | <u>7. 3</u><br><u>9. 3</u><br><u>0.1</u><br><u>2. 4</u><br><u>7.4</u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u> | <u>TYPE</u><br><u>2 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u><br><u>20.72</u> | (2 × 4)<br>(4 × 4)<br>Total      |
| PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>0                                                           | $\frac{z \sigma.4}{23.8}$ 21.1 19.4 VERALL TEST FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONTENT (METER -         READINGS                                                                            | <u>7. 3</u><br><u>9. 3</u><br><u>0.1</u><br><u>2. 4</u><br><u>7.4</u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u> | <u>TYPE</u><br><u>2 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u><br><u>4 × 4</u><br><u>20.72</u> | lotal                            |

Page 1 of 1 4 - 27 0 F

OF 4 - 47

Control No. P-SFB-0006 (Woodstove Fuel Load Information).doc, Effective date: 04/18/2007

| PRIMARY/SECONDARY/TERTIARY       CHANGE       + WT.       - WT.       COAL         Ø       Test setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                          | Taatlaharatari                                  |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|-------------------------------------------------|-----------------|
| Client: <u>SBI</u><br>Model: <u>Monaco 2008</u><br>Project #: <u>338-F-68-3</u><br>Tracking #: <u>1161</u><br>Run #: <u>3</u> Date: <u>12-12-07</u><br>Test Crew: <u>K. Morgan</u><br>OMNI Equipment ID #(s): <u>PREBURN</u><br>DESCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW:<br>(SETTINGS MUST BE ACCURATE AND REPRODUCABLE)<br>PRIMARY: <u>SECONDARY: <u>TANDOM</u> - <i>with - PA</i><br/><i>INDEX EO w</i> r<sup>A</sup> +772<sup>-4</sup>/<sub>7</sub>/<sub>7</sub><br/><i>Di Ameter Daill</i> bit,<br/>PREBURN SETTINGS AND ACTIVITIES<br/><u>TIME</u> <u>AIR (THERMO) CHANGES</u> FAN: <u>ADD</u> <u>ADD</u> <u>RAKE</u> <u>COMMI</u><br/><i>O</i> <u>Test setting</u> <u>AIR (THERMO) CHANGES</u> <u>FAN:</u> <i>w</i>. <i>Adjust</i><br/><i>do</i> <u>Test setting</u> <u>AIR (THERMO) CHANGES</u> <u>FAN:</u> <i>ADD</i> <u>ADD</u> <u>ADD</u> <u>RAKE</u> <u>COMMI</u><br/><i>do</i> <u>Test setting</u> <u>AIR (THERMO) CHANGES</u> <u>FAN:</u> <i>w</i>. <i>Adjust</i><br/><i>do</i> <u>Test setting</u> <u>AIR (THERMO) CHANGES</u> <u>FAN:</u> <i>ADD</i> <u>ADD</u> <u>ADD</u> <u>ADD</u> <u>Advist</u> <i>w</i>. <i>Adjust</i><br/><i>do</i> <u>Test setting</u> <u>AIR (THERMO) CHANGES</u> <u>FAN:</u> <i>ADD</i> <u>ADD</u> <u>ADD</u> <u>ADD</u> <u>ADD</u> <u>Advist</u> <i>w</i>. <i>Adjust</i><br/><i>AIR</i> (THERMO) <u>CHANGES</u> <u>FAN:</u> <i>ADD</i> <u>ADD</u> <u>ADD</u> <i>w</i>. <i>Adjust</i><br/><i>Advist w</i>. <i>Adjust</i><br/><i>Advist w</i>. <i>Adjust</i><br/><i>Advist w</i>. <i>Adjust</i><br/><i>Advist w</i>. <i>Adjust</i><br/><i>BYPASS:</i> <u><i>M/A</i></u><br/>FUEL LOONFIGURATION SKETCH<br/>(NDICATE VIEW ANGLE) <u>BYPASS: <i>M/A</i></u><br/>FUEL LOADDING <u>Loaded</u> <i>by</i> <u>55 second</u></u> |                                                      |                          | n, OR                                           |                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | n Notes                  | R                                               |                 |
| Run #: 3       Date: $12-13-07$ Test Crew: K. Morgan       OMNI Equipment ID #(s):         DESCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW:         (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)         PRIMARY:       SECONDARY: $TANDOM - With - R$ INDEXED $0 \text{ of } A + 772^{-4} \text{ //} A$ DI Ameter       Deltition         PREBURN SETTINGS AND ACTIVITIES         TIME       AIR (THERMO) CHANGES<br>PRIMARY/SECONDARY/TERTIARY         FAN: $0 \text{ ADD } + 164 \text{ //} ADD$ PREBURN SETTINGS AND ACTIVITIES         TIME       PRIMARY/SECONDARY/TERTIARY         Go       Test setting         37 $0 \text{ of } - RAKE + WT WT. + WT.$                                                                                                                                                        |                                                      |                          | : <u>Monaco 2008</u><br>et #: <u>338-F-68-3</u> | Model<br>Projec |
| PREBURN         DESCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW:         (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)         PRIMARY:       SECONDARY: TANDOM - With - fr         INDEXED       with + ++2*/L         INDEXED       with + ++2*/L         DIAMACHIC DRILL       territary:         PREBURN SETTINGS AND ACTIVITIES         PREBURN SETTINGS AND ACTIVITIES         TIME       PRIMARY/SECONDARY/TERTIARY         SETTING       ADD         AIR (THERMO) CHANGES       FAN         HARY:       COAL         COMMIC       WIT         WIT       WIT         PREBURN SETTINGS AND ACTIVITIES         TIME       PRIMARY/SECONDARY/TERTIARY         SETTING       ADD         ARKE       COMMIC         O       TEST SETTING         TEST FUEL CONFIGURATION SKETCH       TEST         INDICATE VIEW ANGLE)       TEST         MAR       FUEL LOADING         BYPASS:       M/A         FUEL LOADING       Fuel LOADING         BYPASS:       M/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 12-12-07                 | crew: <u>K. Morgan</u> Date: <u></u>            | Run #<br>Test C |
| (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)         PRIMARY:         SECONDARY:         TANDEXED         INDEXED         INDEXECTION         PREBURN SETTINGS AND ACTIVITIES         IME         IME         PREBURN SETTINGS AND ACTIVITIES         IME         IME         PREBURN SETTINGS AND ACTIVITIES         IME         ON- High         IME         PREBURN SETTINGS AND ACTIVITIES         IME         IME         IME         IME         IME         Image: Second<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                          |                                                 |                 |
| INDEXED       with #172"/k         INDEXED       with #172"/k         DIAMETER       Deall bit,         FAN:       ON-HIGH         PREBURN SETTINGS AND ACTIVITIES         IMDEXED       PREBURN SETTING FUEL         PREBURN SETTING       FUEL         PREBURN SETTING       FUEL         PREBURN SETTING       ADD         PREBURN SETTING       FUEL         PREBURN SETTING       K         PREBURN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                          | NGS MUST BE ACCURATE AND REPI                   | (SETTI          |
| FAN:       ON-HIGH         PREBURN SETTINGS AND ACTIVITIES         Image: Primary/secondary/tertiary         FAN       ADD         PRIMARY/Secondary/tertiary         FAN       ADD         Fuel       Fuel         Primary/secondary/tertiary         Change       + WT.         Primary/secondary/tertiary         Fan       ADD         Fuel       Fuel         COAL       COMMI         Primary/secondary/tertiary      wt.         Primary/secondary/secondary/tertiary      wt.         Primary/secondary/secondary/tertiary      wt.         Primary/secondary/secondary/tertiary      wt.         Primary/secondary/secondary      wt.         Primary      wt.         Primary      wt.         Primary      wt.         Primary <t< td=""><td>SECONDARY: TANDOM - WITH - PRIMA</td><td>1</td><td>RY:</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SECONDARY: TANDOM - WITH - PRIMA                     | 1                        | RY:                                             |                 |
| PREBURN SETTINGS AND ACTIVITIES         TIME       AIR (THERMO) CHANGES<br>PRIMARY/SECONDARY/TERTIARY       FAN<br>SETTING<br>CHANGE       ADD<br>FUEL<br>+ WT.       ADD<br>FUEL<br>COAL       RAKE<br>COMMI<br>COAL       COMMI<br>COAL         0       Test setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TERTIARY: NONE                                       |                          | INDEXED with 172" K<br>Drameter Drill bit.      |                 |
| TIME       AIR (THERMO) <u>CHANGES</u><br>PRIMARY/SECONDARY/TERTIARY       FAN<br>SETTING<br>CHANGE       ADD<br>FUEL<br>+ WT.       ADD<br>FUEL<br>-WT.       RAKE<br>COAL       COMMI<br>COAL         Ø       Test setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FAN: <u>ON-HIGH</u>                                  |                          |                                                 |                 |
| TIME       AIR (THERMO) <u>CHANGES</u><br>PRIMARY/SECONDARY/TERTIARY       SETTING<br>CHANGE       FUEL<br>+ WT.       FUEL<br>- WT.       COAL       COMMI<br>COAL         Ø       Test setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CTIVITIES                                            | INGS AND A               | PREBURN SET                                     |                 |
| 37     60     x     Heights       TEST FUEL CONFIGURATION SKETCH<br>(INDICATE VIEW ANGLE)     TEST<br>START UP PROCEDURES<br>M/A<br>FUEL LOADING Loaded by 35 Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JEL FUEL COAL COMMENT                                | SETTING   F              | PRIMARY/SECONDARY/TERTIARY                      | ТІМЕ            |
| TEST FUEL CONFIGURATION SKETCH     START UP PROCEDURES       (INDICATE VIEW ANGLE)     BYPASS: <u>N/A</u> FUEL LOADING Loaded by 35 Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X Adjubt<br>X levelled                               |                          | Test setting                                    | 37              |
| TEST FUEL CONFIGURATION SKETCH     START UP PROCEDURES       (INDICATE VIEW ANGLE)     BYPASS: <u>N/A</u> FUEL LOADING Loaded by 35 Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | <u> </u>                 |                                                 |                 |
| PRIMARY AIR: Full open for S.O MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DADING Loaded by 35 seconds.<br>ASAR FUR 3,0 minutes | BYPAS<br>FUEL L<br>DOOR: | •                                               |                 |
| FRONT→<br>FRONT→<br>OTHER: None<br>None<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | setting at 5,0 min.                                  | OTHER                    | FRONT ->                                        |                 |
| DESCRIBE OR SKETCH TEST SETTINGS BELOW:<br>(SETTINGS MUST BE ACCURATE AND REPRODUCIBLE)<br>PRIMARY:<br>SECONDARY: <u>TANDOM WILL PRIMARY</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SECONDARY: TANOOM With PRIMARY                       | DW:                      | S MUST BE ACCURATE AND REPRODUCIBLE             | (SETTING        |
| ] TERTIARY: NONE<br>SAME AS ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TERTIARY: NONE                                       |                          | A Amaren                                        |                 |
| FAN: ON - High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =AN: <u>ON - High</u>                                |                          | SAME AS ABOVE                                   |                 |
| H.07 Technician signature: 1/ 1. Morg Date: 12-13-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: 12-12-07                                       | ture: <u> </u>           | Technician sign                                 | 4.07            |

| OMNI<br>Beaverto | Laborato | rið, lic. |      |      |    |
|------------------|----------|-----------|------|------|----|
|                  | <br>     | Supple    | emei | ntal | Da |

and a second 
esen frankry da

lasy cogénera su

:

100 C

to see to see a

|                      |                   | Supple                | emental          | Data EP            | A 5G/5H             |                                     |                     |
|----------------------|-------------------|-----------------------|------------------|--------------------|---------------------|-------------------------------------|---------------------|
| Client: S            | <u>BI</u>         | ÷.                    | · .              |                    |                     |                                     |                     |
| Model: <u>M</u>      | <u>Monaco 20</u>  | 08                    | •                |                    | ·<br>·              |                                     |                     |
| Project#             | : <u>338-F-68</u> | 3-3                   | Tracking         | #: 1161            |                     |                                     | · .                 |
|                      | 2-12-07           |                       |                  | •                  | Boot                | h:                                  |                     |
| Test Crev            | N: H. Mor         | ma/                   | Start Tir        | ne: 19:43          | Stop Time:          | 22:33                               |                     |
|                      |                   | (s):                  |                  |                    |                     |                                     | ·<br>·              |
|                      |                   |                       |                  |                    |                     |                                     |                     |
| · .                  |                   | Leak Check            | •                |                    |                     |                                     |                     |
|                      | ack:              |                       |                  |                    | l (Method 50        | .,                                  |                     |
|                      | Initial:          | - ALA                 |                  | lr                 | nitial:/            | 1                                   |                     |
|                      | Final:            | N/IT                  | · /              | F                  | inal: <u>///</u>    | <u>,</u><br>CO <sub>2</sub> (DT): _ | 1                   |
| Calibratio           | ns: Span (        | Gas CO <sub>2</sub> : | <u>_N/A</u> 0    | 2: <u>N/A</u>      | CO: <u>N/A</u>      | _CO <sub>2</sub> (DT): _            | <u> N/A</u>         |
|                      | N₂ Span           | N <sub>2</sub> Span   | N₂ Span          | N₂ Span            | N <sub>2</sub> Span | N <sub>2</sub> Span                 | N <sub>2</sub> Span |
| Time                 |                   |                       |                  | ,                  |                     |                                     |                     |
| O <sub>2</sub> .     |                   |                       | . / /            | 1                  |                     |                                     |                     |
| CO <sub>2</sub>      |                   |                       | N//              | 1                  | · · ·               | ····                                |                     |
| CO                   |                   |                       |                  |                    |                     |                                     |                     |
| CO <sub>2</sub> (DT) |                   |                       |                  |                    |                     |                                     | ········            |
| Stack Dia            | meter (incl       | nes):                 | 6.0              |                    |                     |                                     |                     |
|                      | •                 | Initial:              |                  | Final:             | < 50                |                                     |                     |
|                      |                   | Pretest:              |                  |                    |                     |                                     |                     |
| Induced D            |                   |                       |                  | moke Captu         |                     |                                     | <u>.</u> .          |
| Pitot Tube           | Leak Tes          | t: Pre:               |                  |                    |                     | 3,1 " w. C.                         |                     |
|                      | . · ·             |                       |                  |                    |                     | Initials: /                         | 2                   |
|                      |                   | L                     |                  |                    |                     |                                     |                     |
|                      |                   | Init                  | ial              | Mid                | ldle                | End                                 | ling                |
| Pb (in/ŀ             | lg)               | -St /                 | 4 30.14 cr       | 811                | C 30.22 CF          | 79                                  | 1C 30.26 C          |
| Room Terr            | np (°F)           | 81                    |                  | 81                 |                     | 79                                  | . • •               |
| Techniciar           | n signature       | : <i>I</i> L.         | 1. Moran         | - E                | Date: <u>/2</u>     | -12-07                              | 1                   |
|                      |                   |                       |                  |                    |                     |                                     |                     |
|                      | •                 | · · ·                 |                  |                    |                     |                                     | •                   |
| Control No. P-S      | SFAO-0007 (Su)    | oplemental Data E     | PA 5G) doc, Effe | ctive date: 05/08/ | 2007                | Pa                                  | ge 1 of 1           |

Model: Monaco 2008 Stove Builder International 1700, Léon-Harmel Québec (Québec), Canada GIN 4R9

Senderbergeward

overse Multiple

(constraint)

Date of Markowski

Lago de composió

4140/07/02/04/04

West States

ACT IN A REPORT OF

The set of the spectra

aparter sector a da

and a second 
EATS/ANNOUND IN AND

Run 4

4-30 of 4-47

destroyed to

.

Management of

A CONTRACTOR

## Wood Heater Test Data - EPA Method 5G

|                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Manufacturer:                                                                            | SBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                                                                  |
| •                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                   |                                                                                                                  |
| Model:                                                                                   | Monaco 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | and the second |
| Project No.:                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | · .                                                                                                              |
| Tracking No.:                                                                            | 1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · .                                   |                                                                                                                  |
| Run:                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . · · · ·                             | · · · ·                                                                                                          |
| Test Date:                                                                               | 12/13/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · |                                                                                                                  |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                                                                                                                  |
|                                                                                          | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>,</b>                              |                                                                                                                  |
| Burn Rate                                                                                | 1.19 kg/hr dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                  |
|                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                  |
| Average Tunnel Temperature                                                               | 117 degrees Fahrenheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                                  |
| Average Gas Velocity in Dilution Tunnel - vs                                             | 13.0 feet/second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                                                                  |
| Average Gas Flow Rate in Dilution Tunnel - Qsd                                           | 8153.2 dscf/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                                                                  |
| Average Delta p                                                                          | 0.049 inches H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                                                                  |
| Average Delta H                                                                          | 0.00 inches H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                  |
| Total Time of Test                                                                       | 190 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                     |                                                                                                                  |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                     |                                                                                                                  |
|                                                                                          | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE TRAIN 1                        | SAMPLE TRAIN 2                                                                                                   |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                  |
| Total Sample Volume - Vm                                                                 | 20.96 cubic feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.70 cubic feet                      | 22.23 cubic feet                                                                                                 |
| Average Gas Meter Temperature                                                            | 79 degrees Fahrenheit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79 degrees Fahrenheit                 | 80 degrees Fahrenheit                                                                                            |
| Total Sample Volume (Standard Conditions) - Vmstd                                        | 20.3 dscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.1 dscf                             | 21.4 dscf                                                                                                        |
| Total Particulates - mn                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 mg                                  | 4.4 mg                                                                                                           |
| Particulate Concentration (dry-standard)                                                 | 0.00021 grams/dscf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00021 grams/dscf                    | 0.00021 grams/dscf                                                                                               |
| Particulate Emission Rate                                                                | 1.69 grams/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.71 grams/hour                       | 1.67 grams/hour                                                                                                  |
| Adjusted Emissions                                                                       | 2.82 grams/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.84 grams/hour                       | 2.79 grams/hour                                                                                                  |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>,                                | · .                                                                                                              |
| Difference from Average                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03 grams/hour                       | 0.03 grams/hour                                                                                                  |
| 7.5% of the average emission rate                                                        | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                  |
| Weighted Average Emission Rate Limit<br>7.5% of the weighted average emission rate limit | 4.10 grams/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                  |
| a so to the weighted average emission rate limit                                         | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                     | ·                                                                                                                |
|                                                                                          | · F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Results Are Acceptab                  | le                                                                                                               |
|                                                                                          | New generation of the second s |                                       |                                                                                                                  |

Control No. P-SSU-0001 (Dual Train - SG Emission Calculations).de, Effective date: 4/29/2

Page 1 of 1

Run 4

|                              |                               |                          |                          |                      |                           |                                               |                                                        |                        |   |                                  |                     |              |         |         |         |          |         |         |         |         |         |         |         |         |           |         |         | ,       |         |         |         |         |             |
|------------------------------|-------------------------------|--------------------------|--------------------------|----------------------|---------------------------|-----------------------------------------------|--------------------------------------------------------|------------------------|---|----------------------------------|---------------------|--------------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|-------------|
| Similar 1. 1. 1. 1. 1. 1. 28 | filsec .                      | sefm                     | scfm                     | ft2                  | 0@5 cfm@"Hg               | .001@5 cfm@"Hg                                | 21.43                                                  | 4.4                    |   | Stack                            | ,                   | HZO          | -0.075  | -0.080  | -0.085  | -0.085   | -0.085  | -0.083  | -0.075  | -0.078  | -0.075  | -0.070  | -0.070  | -0.073  | -0.070    | -0.065  | -0.063  | -0.060  | -0:060  | -0.060  | -0.055  | -0.055  | 1200-       |
| 6194 1                       | 12.97                         |                          |                          | 0.1963 ft2           | 0@5                       | .001@5                                        | basis %):<br>ulate (1):                                | ulate (2):             |   |                                  |                     | Ambient      | 8       | 79      | 80      | 81       | 80      | 82      | 82      | 82      | 82      | 82      | 82      | 82      | 82        | 82      | 81      | 81      | 81      | 81      | 81      | 81      |             |
| 14 1.11                      | locity-                       | el Flow:                 | nel Flow:                | Area:                | teck (1):                 | eck (2): _                                    | Fuel Moisture (dry basis %):<br>Total Particulate (1): | Total Particulate (2): |   |                                  |                     | exit (2)     |         |         |         |          |         |         |         |         |         |         |         |         |           |         |         |         |         |         |         |         |             |
| oto:Doto:                    | Tunnel Velocity               | Intial Tunnel Flow:      | Average Tunnel Flow:     | Tunnel Area:         | Post-Test Leak Check (1): | Post-Test Leak Check (2):                     | Fuel Mo                                                | <sup>g</sup> H"        |   |                                  |                     | exit (1)     | _       |         |         |          |         |         |         |         |         |         |         | _       |           |         |         |         |         |         |         |         | #DIV/01 #   |
| Cion.                        | nair.                         |                          | Ā                        |                      | Post-Te                   | Post-Te                                       | (2)<br>Avergoe                                         | 30.28 "                |   |                                  | F                   | (2)          | +       | 85      | . 98    | 85       | 84      | 84      | 84      | 83      | 82      | 82      | 81      | 82      | 81        | 81      | 83      | 83      | 84      | 83      | 84      | 84      | 82.10 #     |
|                              |                               |                          |                          |                      |                           |                                               | 0.974<br>Fnd                                           | 1                      |   |                                  |                     |              | ) 18    | 84      | 84 -    | 81       | 80      | 80      | 79      | 78      | 78      | 78      | 78      | 78      | 74        | 11      | 81      | 82      | 83      | 83      | 83      | 83      | 80.25       |
|                              |                               | 29.00 lb/lb-mole         | 28.56 lb/lb-mole         | percent              | "H2O                      | :                                             | .(I)<br>Middle                                         | 30.31                  |   | Data, oF                         |                     | Stack        | 323     | 462     | 500     | 522      | 535     | 509     | 468     | 439     | 414     | 401     | 402     | 406     | 372       | 349     | 332     | 322     | 315     | 302     | 301     | 293     |             |
|                              | SBI 046.47                    | 29.00                    | 28.56                    | 4.00 F               | -0.115 "H2O               | 0.84                                          | 0.975 (1)<br>Reatin M                                  | 30.29                  | 1 | perature                         |                     | Surface      | 455.4   | 505.0   | 524.0   | 538.8    | 547.4   | 550.0   | 525.8   | 516.6   | 507.0   | 498.4   | 499.2   | 505.4   | 485.0     | 469.4   | 454.8   | 445.2   | 439.0   | 432.4   | 425.4   | 414.2   | Ę           |
|                              | PM Control Module: SBI 046.47 | fW(drv):                 | fW(wet):                 | nel H2O:             | el Static:                | Pitot Tube Cp:                                | / Factor:                                              | -                      | 1 | Wood Heater Temperature Data, oF |                     | Exit         |         |         |         |          |         | ,       |         |         |         |         |         |         |           |         |         |         |         |         |         |         |             |
|                              | M Control                     | Dilution Tunnel MW(dry): | Dilution Tunnel MW(wet): | Dilution Tunnel H2O: | Dilution Tunnel Static:   | Pitot 7                                       | Meter Box Y Factor:<br>Barometric Pressure             |                        |   | Wood H                           |                     | Right        | 394     | 390     | 387     | 393      | 404     | 422     | 434     | 433     | 432     | 429     | 428     | 432     | 433       | 421     | 406     | 395     | 384     | 374     | 366     | 356     |             |
|                              | đ.                            | Dilutio                  | Dilutio                  | D                    | Dih                       |                                               | Z ₽                                                    | , i                    |   |                                  | ⊢                   | Left F       | 415     | 407     | 400     | 410      | 423     | 435     | 435     | -       |         | 429 4   | _       | _       | 424 .     | 416 4   |         | _       | 392 3   |         |         |         |             |
|                              | 2                             |                          |                          |                      |                           |                                               |                                                        | .                      |   | -,                               |                     |              |         |         |         | $\vdash$ |         | _       |         |         |         | -       |         |         | _         |         |         | 399     |         | 386     | 380     | 371     |             |
|                              |                               | Γ                        | Π                        |                      | <u>ٿ</u>                  |                                               |                                                        |                        |   |                                  |                     |              | 563     | 552     | 525     | 531      | 564     | · 602   | 616     | 624     | 626     | 624     | 620     | 612     | . 611     | 608     | 598     | 588     | 581     | 572     | 559     | 540     |             |
|                              |                               |                          | - Pt.8                   | 0.050                | 110                       |                                               |                                                        |                        |   |                                  | Link.               | Bottom       | 374     | 388     | 381     | 371      | 361     | 359     | 356     | 354     | 354     | 352     | 349     | 346     | 346       | 347     | 347     | 348     | 350     | 354     | 357     | 357     | 111111      |
|                              |                               |                          | Pt.7                     | 0.048                | 110                       |                                               |                                                        |                        |   |                                  | Dischau             | Top          | 531     | 788     | 927     | 986      | 985     | 932     | 788     | 739     | 169     | 658     | 668     | 707     | 611       | 555     | 516     | 496     | 488     | 476     | 465     | 447     |             |
|                              |                               |                          | Pt.6                     | 0.050                | 112                       |                                               |                                                        |                        |   | ight, lb                         | Whicht              | Change       |         | -1.5    | -1.2    | -1.3     | -1.1-   | -0.9    | -0.6    | -0.5    | -0.4    | -0.4    | -0.4    | -0.5    | -0.2      | -0.2    | -0.2    | -0.2    | -0.2    | -0.1    | -0.1    | -0.1    | XIIIII      |
|                              |                               | e Data                   | PL5                      | 0.048                | 114                       |                                               |                                                        |                        |   | Fuel Weight, lb                  | Casla               | Reading      | 10.1    | 8.6     | 7.4     | 6.1      | 5.0     | 4.1     | 3.5     | 3.0     | 2.6     | 2.2     | 1.8     | 13      | 1.1       | 0.9     | 0.7     | 0.5 -   | 0.3     | 0.2     | 0.1     | 0.0     |             |
|                              |                               | Velocity Traverse Data   | Pt.4                     | 0.045                | 114                       |                                               |                                                        |                        |   |                                  | Pro. Rate           | (%01)        |         | 104     | 102     | 106      | 104     | 103     | 103     | 101     | 103 -   | 101     | 001     | 97      | 100       | 66      | 66      | 66      | 66      | 66      | 66      | 98      | 1001        |
|                              |                               | Velocit                  | Pt.3                     | 0.048                | 116                       |                                               |                                                        |                        |   |                                  | Pro. Rate Pro. Rate | (10%)        |         | 101     | 101     | 105      | 104 -   | 104     | 104     | 101     | 104     | 102     | 100     | 97      | 8         | 98      | 66      | 98      | 66      | 100     | 96      | 100     | 00 20       |
|                              |                               |                          | Pt.2                     | 0.048                | 118                       |                                               |                                                        |                        |   |                                  | ation               | Tunnel       | 0.048   | 0.048   | 0.048   | 0.045    | 0.048   | 0.048   | 0.048   | 0.050   | 0.048   | 0.048   | 0.050   | 0.053   | 0.050     | 0.050   | 0.050   | 0.050   | 0.050   | 0.048   | 0.050   | 0.050   | -           |
|                              |                               |                          | Pt.1                     | 0.043                | 120                       | -                                             | nuipers:                                               |                        |   |                                  |                     | Tunnel       |         | 130     | 135     |          |         | -       |         | 1       |         | 1       | 1       | .       |           |         |         |         | -       | 102     |         | 100     | 116.66      |
|                              |                               |                          | 24                       |                      | nitial Temp.              |                                               | OMINI Equipment Numbers:                               |                        |   |                                  | ų,                  | In. Hg.      | (7) O   | 0       | 0       | 0        | . 0     | 0       | , o     | 0       | 0       | 0       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       |             |
|                              |                               |                          |                          | ų :                  | Initi                     | 11010                                         |                                                        |                        |   |                                  | _                   |              |         |         | _       | _        |         |         |         | _       |         |         |         |         | +         |         |         |         |         |         |         | _       | THAT III    |
|                              |                               |                          |                          |                      |                           |                                               |                                                        |                        |   | ng Data                          | 2                   | h.Hg.        | _       | 0       | 0       | 0        |         | 0       | 0       |         |         |         |         | _       | -         | _       | _       | 0       |         | •       |         | 0       |             |
|                              |                               |                          |                          |                      |                           |                                               |                                                        |                        |   | e Samplii                        | 4                   | oF oF        | +       | 78 79   | 78 79   |          |         |         |         | -       | _       | -       |         |         | -         | -       | +       |         | •       | 79 80   | •       | 79 - 80 | 50 70 55    |
|                              |                               |                          |                          |                      |                           |                                               |                                                        |                        |   | Particulate Sampling Data        | Orifice Me          |              | 0.00    | 0.00    |         |          |         |         |         | +       | -       | -       | -       | +       | +         | +       | -+      | +       | -       | -       |         | 0.00 75 | 0.00 78.50  |
|                              |                               |                          |                          |                      |                           |                                               | min.                                                   |                        |   | Η                                | Orifice   O         | P (1) HP     | 0:00    | 0.00 0  | 0.00    | -+       | -+      | +       | +       | +       | +       |         |         | -       | ┥         | -       |         | ┥       | -       |         |         | 0.00    | 0 000       |
|                              |                               |                          |                          |                      |                           |                                               |                                                        |                        |   |                                  | -                   | Rate, cfm    |         | 0.12    |         | +        | ┥       | -       | +       | ┥       |         | 1       |         |         | +         |         |         | -       |         |         |         | 0.12    | 012         |
|                              |                               | Monaco 2008              |                          | -68-3                | c-07                      |                                               |                                                        |                        |   |                                  |                     | Rate, cfm Ra |         | _       |         | -+       | -       |         | -       |         |         | -       |         |         | -         | +       | +       |         | +       | -       | -       | +       |             |
|                              | er: SBI                       | •                        | с т                      | сц.                  | 1                         | 16: 12:22                                     |                                                        |                        |   |                                  |                     |              |         | 0.10    |         |          | -       | -       | 4       |         | _       | +       | _       | _       | -         |         | -       | -       | _       | -       |         | 0.11    | 010         |
|                              | Manufacturer:                 | Model:                   | Tracking No.:            | Project No.:         | lest Date:                | Beginning Clock Time:<br>Dataceling Internal: | Total Sampling Time:                                   |                        |   |                                  | _                   | Cubic Feet   | 736.984 | 738.165 | 739.312 | 740.475  | 741.650 | 742.815 | 743.990 | 745.165 | 746.340 | 747.500 | 748.675 | 749.845 | 20.1c/    | 752.195 | 753.370 | 754.540 | 755.715 | 756.870 | 758.045 | 759.210 | 22.226      |
| 4                            | Ň                             |                          | L                        |                      |                           | Beginning                                     | Total San                                              |                        |   |                                  | Gas Meter           | Cubic Feet   | 725.130 | 726.150 | 727.155 | 728,175  | 729.215 | 730.260 | 731.305 | 732.350 | 733.400 | 734,440 | 735.485 | 736.530 | CI.C.1.51 | 738.605 | 739.650 | 740.685 | 741.730 | 742.760 | 743.770 | 744.831 | 107.61      |
| Run:                         |                               |                          |                          |                      |                           | •                                             |                                                        |                        |   |                                  | _                   | Time .       | 0       |         | -       |          | ╉       | -+      | 60      | +       | ╈       | +       | -       |         | +         |         | -       | +       | +       | +       | ┽       | 190 7   | Avg/Total 1 |
| -                            | 1                             |                          |                          |                      |                           |                                               |                                                        |                        | L |                                  | ш'<br>              |              | Lļ      |         | •       |          |         |         |         |         |         |         |         |         |           |         |         |         |         | -       |         | -       | Ave         |

4-32 054-47

Run 4

Page 1 of 1

Control No. P-SSU-0003 (Dual Train - 5G Emission Calculations) xls, Effective date: 10/19/2004

Wood Heater Test Data - EPA Method 5G

Contraction of

OMNI-Test-Laboratories, Inc.

Linotomood

(and second

.

Series and

- Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna - Anna

#### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

| Client Name:       | SBI              | Equipment 1 | Numbers: |             |           | Run #:   | 4               |
|--------------------|------------------|-------------|----------|-------------|-----------|----------|-----------------|
| Model:             | Monaco 2008      | •           |          |             |           | Train #: | A               |
| Project No .:      | 338-F-68-3       |             | • •      |             |           | Date:    | 12/13/07        |
| Tracking No.:      | 1161             |             |          |             |           | -<br>-   |                 |
| · · · · ·          |                  |             |          |             |           |          |                 |
| 5                  | Sample Component |             | Reagent  | Filter # or |           | Weights  | • 、             |
|                    |                  |             |          | Probe #     | Final, mg | Tare, mg | Particulate, mg |
| A. Front filter ca | atch             |             | Filter   | E146        | 125.4     | 122.1    | 3.3             |
| B. Rear filter ca  | tch              |             | Filter   | E144        | 127.0     | 126.8    | 0.2             |
| C. Probe catch     |                  |             | Probe    | 28          | 114738.9  | 114738.4 | 0.5             |

Total Particulate, mg :

4.0

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 1/ 1. Morgan

Date: 1-21-08

and the second

Activity (Carlor)

Same and

.

-----

#### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

|               |             |      |                                       |       |          | • '      |
|---------------|-------------|------|---------------------------------------|-------|----------|----------|
| Client Name:  | SBI         | -    | Equipment Numbers:                    |       | Run #:   | 4        |
| Model:        | Monaco 2008 |      | · · · · · · · · · · · · · · · · · · · | · · · | Train #: | В        |
| Project No.:  | 338-F-68-3  |      |                                       |       | Date:    | 12/13/07 |
| Tracking No.: | ····        | 1161 |                                       |       |          |          |
|               | -           |      |                                       |       |          |          |

| Sample Component      | Reagent | Filter # or |           | Weights  |                 |
|-----------------------|---------|-------------|-----------|----------|-----------------|
|                       |         | Probe #     | Final, mg | Tare, mg | Particulate, mg |
| A. Front filter catch | Filter  | E145        | 125.3     | 121.4    | 3.9             |
| B. Rear filter catch  | Filter  | E143        | 118.3     | 118.3    | 0.0             |
| C. Probe catch        | Probe   | 38          | 114143.0  | 114142.5 | 0.5             |

Total Particulate, mg :

4.4

| Component             | Equations:                               | ····· 1 |
|-----------------------|------------------------------------------|---------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |         |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |         |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |         |

Analyst: 12 1. Morge

Page 1 of 1

Date: 1-21-08

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

4-34 OF 4-47

Train 2.

0000 Caselon, a cafetral STOVE TEMPERATURE TEST DATA - METHOD 5G Beaverton, OR Phone (503) 643-3788

|                 | IL N           | TEMPERATURES (0F) | TEMPERA' |                         |                 | Stack      | Delta     | Fue                             | -                |
|-----------------|----------------|-------------------|----------|-------------------------|-----------------|------------|-----------|---------------------------------|------------------|
| Annotation anno | Coal Bed: Z. ( | Range: 211-215    | Range:   | = 0                     | Data:           |            |           |                                 | Test             |
|                 | Actual:        |                   |          |                         | Coal Bed:       | -          |           | reburn [k]                      | Ъ<br>Б<br>Г<br>С |
|                 |                |                   |          |                         |                 |            |           |                                 |                  |
|                 | -              |                   |          |                         | •               |            | ent ID #: | OMNI Equipment ID #:            | IMO              |
|                 | Run #: 🧹       | R                 |          | ( city                  | Crew: K. Mongra | _ Test Cre |           | Date: 12-13-07                  | Date             |
|                 | 1161           | Tracking #:1161   | -F-68-3  | Project #: _338-F-68-3_ | G.              | co_2008    | BI / Mona | Client/Model: SBI / Monaco 2008 | Clie             |
| 1.1             | rage of        |                   |          |                         |                 |            |           |                                 |                  |

| Preburn | Ľ<br>Z |        |           | Coal Bed.             |                  |            |                   |                      |       | Actual:   |          |
|---------|--------|--------|-----------|-----------------------|------------------|------------|-------------------|----------------------|-------|-----------|----------|
| est     |        |        |           | Data:                 | = 0              |            | Range:            | 21-25                |       | Coal Bed: | Ň        |
| i       | Fuel   |        | Stack     |                       |                  |            | TEMPERATURES (oF) | <sup>-</sup> URES (o |       |           |          |
| ime     | Weight | Weight | Draft     | Ambient               | Тор              | Bottom     | Back              | Left                 | Right | Flue      | Gatalvet |
| 0       | 710    |        | -,085     | 78                    | 921              | 28 2       | 337               | 280                  | Z 4/6 | 536       |          |
| 9       | 5.8    | 1,2    | -,080     | 77                    | 951              | 12         | 363               | 315                  | 283   | 486       |          |
| 20      | 4.8    | 01     | - 083     | 78                    | 984              | 310        | 389               | 338                  | 309   | 498       |          |
| 30      | 3,8    | 110    | -,080     | - 79                  | 555              | 320        | 431               | 364                  | 225   | 500       |          |
| 40      | 2.9    | 0.9    | -,080     | 20                    | 848              | 334        | 465               | 389                  | 368   | >877      |          |
| 50      | 2.4    | 015    | -,075     | 80                    | 745              | 350        | 510               | 407                  | 369   | 077       |          |
| 60      | 2.(    | 510    | -,075     | \$0                   | 531              | 374        | 563               | 4/15                 | 394   | 222       |          |
| 70      |        | -      |           |                       |                  |            |                   |                      |       |           |          |
| 80      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 90      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 00      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 10      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 20      |        |        |           |                       |                  |            |                   |                      |       |           | +        |
| 30      |        | -      |           |                       |                  | -          |                   |                      |       |           |          |
| 40      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 50      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 60      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 70      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 80      |        |        |           |                       |                  |            |                   |                      |       |           |          |
| 90      | -      |        |           |                       |                  |            |                   |                      |       |           |          |
| AVG     |        |        |           |                       |                  |            |                   |                      |       |           |          |
|         |        |        | Technicia | Technician signature: | j.               | 1 111      |                   |                      | 1     | , j       |          |
|         |        |        |           | יו כולומית            | <u>; - / (c)</u> | Tu litora- |                   | 1                    | uate: | 12-13-01  |          |

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G) xis, Effective date: 08/07/2000

OMNI-Test Laboratories, Ing Beaverton, OR

distant and a

Contraction of the

angementered and

ALCONDUCTION DE

Conservation of the

Party and Indi

FUEL DATA

| Client: <u>SBI</u>                                    |                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                             |            |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|------------|
| Model: Monaco 2008                                    | · ·                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                             |            |
| Project #: <u>338-F-68-3</u>                          | Tracking #: <u>1161</u>                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                             |            |
| Date: <u>12-13-07</u>                                 |                                                                                                                                         |                                                                                                                | * :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Run #:                                                     |                             |            |
| OMNI Equipment ID #:                                  |                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                             |            |
| UEL LOAD PREPARI                                      |                                                                                                                                         | /                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                             |            |
| UEL: DOUGLAS-FI<br>DIMENSIONAL LUME                   | R SPECIES, UNTREA<br>ER.                                                                                                                | TED, AIR-DRIED.                                                                                                | ), STANDARD C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRADE OR BET                                               | TER,                        |            |
|                                                       | ······                                                                                                                                  | PRE-BURN FL                                                                                                    | JEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                      | ·                           | . <i>.</i> |
|                                                       | MOISTURE (                                                                                                                              | CONTENT (METH                                                                                                  | ER – – DRY BAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SIS)                                                       |                             |            |
| CALIBRATION:                                          | Cal Value $(1) = 12\%$<br>Cal Value $(2) = 22\%$                                                                                        | 6 Actual Re<br>6 Actual Re                                                                                     | ading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                   |                             |            |
|                                                       | $\operatorname{Car} \operatorname{Value}(2) = 22 \operatorname{V}$                                                                      |                                                                                                                | aunig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                          |                             |            |
|                                                       | Length                                                                                                                                  | Readings                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{\underline{Type}}_{\underline{x}}$             | iL                          |            |
| 1 2                                                   | <u>-8 ft19</u><br>ft29                                                                                                                  | 7.1 <u>19.9</u><br>1.2 <u>23</u> 5                                                                             | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                             |            |
| 3                                                     | <u>4</u> ft <u>23</u>                                                                                                                   | 5,1 22,4                                                                                                       | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | <u> </u>                    |            |
| T II C / T                                            | 90975 .                                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 1                           |            |
| ·                                                     | es: 8@9.75 inches                                                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | •                           |            |
| Time (clock): _0                                      | Room Tempe                                                                                                                              | erature (F):7                                                                                                  | 5_ Initials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                         |                             |            |
| •                                                     |                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | -                           |            |
|                                                       | ·                                                                                                                                       |                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                             |            |
|                                                       |                                                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                             |            |
|                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                   | TEST FUEL                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                          |                             |            |
| FUEL TYPE AND A<br>CALCULATED LOA<br>FUEL PIECE LENGT | MOUNT: 2 × 4<br><u>D WEIGHT:</u><br>H: <b>/3.0</b> * '                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>IT: <u>3.2</u><br>619<br>                             | (2 x 4)<br>(4 x 4)<br>Total |            |
|                                                       | H:/3.0 */                                                                                                                               |                                                                                                                | 4×4 <u>2</u><br>L LOAD WEIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 619<br>10.1                                                | (4 🗶 4)                     |            |
|                                                       | TH: <u>/3.0</u> *'<br>MOISTURE C                                                                                                        | Z-<br>ACTUA                                                                                                    | 4×4 <u>2</u><br>L LOAD WEIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 619<br>10.1                                                | (4 🗶 4)                     |            |
| FUEL PIECE LENGI                                      | Ή: <u>/3.</u> ο"<br><u>MOISTURE C</u><br><u>E</u>                                                                                       | Z-<br>ACTUA<br>ONTENT (METE<br>READINGS                                                                        | 4 x 4<br>L LOAD WEIGH<br>RDRY BAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                   | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | TH: <u>/3.0</u> *'<br>MOISTURE C                                                                                                        | Z-<br>ACTUA<br>-<br>ONTENT (METE                                                                               | 4×4 <u>2</u><br>L LOAD WEIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                   | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>Z 0.5<br>Z (1 7                                             | $4 \times 4 $ $2$<br>L LOAD WEIGH<br>R DRY BAS<br>23.1<br>23.1<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $   \begin{array}{r}                                     $ | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>18.6</u><br><u>18.1</u>                                                                     | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>20.5                                                        | 4 x 4 2<br>L LOAD WEIGH<br><u>R – – DRY BAS</u><br>23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                   | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>Z 0.5<br>Z (19                                              | $4 \times 4 $ $2$<br>L LOAD WEIGH<br>R DRY BAS<br>23.1<br>23.1<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $   \begin{array}{r}                                     $ | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>Z 0.5<br>Z (19                                              | $4 \times 4 $ $2$<br>L LOAD WEIGH<br>R DRY BAS<br>23.1<br>23.1<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $   \begin{array}{r}                                     $ | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>Z 0.5<br>Z (19                                              | $4 \times 4 $ $2$<br>L LOAD WEIGH<br>R DRY BAS<br>23.1<br>23.1<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $   \begin{array}{r}                                     $ | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>Z 0.5<br>Z (19                                              | $4 \times 4 $ $2$<br>L LOAD WEIGH<br>R DRY BAS<br>23.1<br>23.1<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $   \begin{array}{r}                                     $ | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | Z<br>ACTUA<br>ONTENT (METE<br>READINGS<br>Z 110<br>Z 0.5<br>Z (19                                              | $4 \times 4 $ $2$<br>L LOAD WEIGH<br>R DRY BAS<br>23.1<br>23.1<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $   \begin{array}{r}                                     $ | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | H: <u>/3.0</u> "<br><u>MOISTURE C</u><br><u>E</u><br><u>18.6</u><br><u>18.1</u><br><u>26.7</u>                                          | 2.<br>ACTUA<br>ONTENT (METE<br>READINGS<br>21:0<br>20:5<br>21:7<br>22:5                                        | $4 \times 4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r}                                     $   | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | $\frac{3.6}{2}$ $\frac{18.6}{18.1}$ $\frac{18.6}{21.7}$ $\frac{18.1}{21.4}$ $\frac{18.1}{21.4}$ $\frac{18.1}{21.4}$ $\frac{18.1}{21.4}$ | 2.<br>ACTUA<br>ONTENT (METE<br>READINGS<br>21:0<br>20:5<br>21:7<br>22:5                                        | $4 \times 4$ 2<br>L LOAD WEIGH<br>R = -DRY BAS<br>23.1<br>23.1<br>23.1<br>23.8<br>URE A VERAGE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r}                                     $   | (4 🗶 4)                     |            |
| FUEL PIECE LENGT                                      | TH: $/3.0$ "<br>MOISTURE C<br>E<br>18.6<br>18.1<br>21.7<br>21.4<br>DVERALL TEST FUEN<br>/1120 R                                         | Z-<br>ACTUAL<br>ONTENT (METE<br>READINGS<br>Z 1:0<br>20.5<br>Z 1:7<br>Z2.5<br>L LOAD MOISTU<br>oom Temperature | $4 \times 4 \underline{2}$ $L \text{ LOAD WEIGH}$ $R DRY BAS$ $23.1$ $23.1$ $23.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3.8$ $3$ |                                                            | (4 x4)<br>Total             |            |
| FUEL PIECE LENGT                                      | $\frac{3.6}{2}$ $\frac{18.6}{18.1}$ $\frac{18.6}{21.7}$ $\frac{18.1}{21.4}$ $\frac{18.1}{21.4}$ $\frac{18.1}{21.4}$ $\frac{18.1}{21.4}$ | Z-<br>ACTUAL<br>ONTENT (METE<br>READINGS<br>Z 1:0<br>20.5<br>Z 1:7<br>Z2.5<br>L LOAD MOISTU<br>oom Temperature | $4 \times 4$ 2<br>L LOAD WEIGH<br>R = -DRY BAS<br>23.1<br>23.1<br>23.1<br>23.8<br>URE A VERAGE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | (4 x4)<br>Total             |            |

Page 1 of 1 4 = 3 6 0 F 4

- 4 7

Control No. P-SFB-0006 (Woodstove Fuel Load Information).doc, Effective date: 04/18/2007

OMNI-Test Laboratorie Beaverton, OR

| Run | • | No | tes |
|-----|---|----|-----|
|     |   |    |     |

| Client: <u>SBI</u>           |
|------------------------------|
| Model: Monaco 2008           |
| Project #: <u>338-F-68-3</u> |
| Tracking #: <u>1161</u>      |
| Run #: <u>4</u>              |
| Test Crew: K. Mongan         |
| OMNI Equipmont ID #(a):      |

Date: 12-13-07

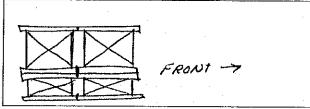
JVINI Equipment ID #(s):

PREBURN

DESCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)

C.

PRIMARY:


DRilled INDEX used as a gauge = 9/64 (.141")

|           | SECONDARY: | TANDOM    | with | Primas                                 |
|-----------|------------|-----------|------|----------------------------------------|
|           |            | an Contra | »l·  |                                        |
|           | TERTIARY:  | NONE      |      |                                        |
| ч. х<br>н | FAN:       | ON - H    | ligh | ······································ |

PREBURN SETTINGS AND ACTIVITIES

| TIME     | AIR (THERMO) <u>CHANGES</u><br>PRIMARY/SECONDARY/TERTIARY | FAN<br>SETTING<br>CHANGE | ADD<br>FUEL<br>+ WT. | ADD<br>FUEL<br>- WT. | RAKE<br>COAL | COMMENT   |
|----------|-----------------------------------------------------------|--------------------------|----------------------|----------------------|--------------|-----------|
| 18<br>60 | TEST setting                                              |                          |                      |                      | k            | -Levelled |
|          |                                                           |                          |                      |                      |              |           |

TEST FUEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)



DESCRIBE OR SKETCH TEST SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCIBLE) PRIMARY:

SAME AS ABOVE

TEST START UP PROCEDURES **BYPASS:** NIA FUEL LOADING Loaded by 40 Sconops AJAR UNTIL Smin, 5 sec. DOOR: PRIMARY AIR: Full open UNTIL S.O MIN -ABRUPTLY ADJUSTED to test setting AT 5.0 MINUtes OTHER: NONE

SECONDARY: TANDOM with PRIMARY TERTIARY: NONE

FAN:

ON- High

Technician signature:

1. Morge

Date: 12-13-07

Control No. P-SFAK-0006 (Run Notes).doc, Effective date: 05/08/2007

Page 1 of 1 4 - 3 7 0 F 4 - 4 7

|                      |                     | Supple                | emental  | Data EP/                              | 4 5G/5H                       |                         | -                                      |
|----------------------|---------------------|-----------------------|----------|---------------------------------------|-------------------------------|-------------------------|----------------------------------------|
| Client:              | SBI                 |                       |          |                                       |                               |                         |                                        |
|                      | Monaco 20           | 08                    |          |                                       |                               | ·                       |                                        |
|                      | #: <u>338</u> -F-68 |                       | Tracking | #: 1161                               |                               |                         |                                        |
| Date:                | 12-13-07            |                       |          | Run #:                                | 4 Bootl                       | ו:                      |                                        |
|                      |                     |                       |          | ne: <u>12:22</u>                      |                               |                         |                                        |
|                      |                     |                       |          |                                       |                               |                         | ~.                                     |
|                      |                     |                       |          |                                       | · .                           |                         |                                        |
|                      | alyzer Train        | Leak Check            |          | · -                                   |                               |                         |                                        |
|                      | Stack:              | -                     |          | ution Tunnel                          |                               | 5,                      |                                        |
|                      | Final:              | N/A                   |          | ir                                    | nitial:<br>inal: <i>N/A</i>   |                         |                                        |
| Calibrat             | ions: Span i        | Gae CO.:              |          | F<br>2: <u>N/A</u>                    | $\frac{1}{100} \frac{1}{100}$ |                         | . d. e                                 |
| Ganbrat              |                     | 0as 00 <sub>2</sub> . |          | 2 <u>~/ n</u>                         | CO. N/R                       | CO <sub>2</sub> (DT): _ | <u>N/A</u>                             |
| ·                    | N₂ Span             | N <sub>2</sub> Span   | N₂ Span  | N <sub>2</sub> Span                   | N <sub>2</sub> Span           | N <sub>2</sub> Span     | N <sub>2</sub> Spa                     |
| Time                 |                     |                       |          |                                       |                               |                         |                                        |
| O <sub>2</sub>       |                     |                       |          | /                                     |                               |                         |                                        |
| CO <sub>2</sub>      |                     |                       | NI       | 1                                     |                               | c                       |                                        |
| CO                   |                     |                       | 10/1     | · · · · · · · · · · · · · · · · · · · |                               |                         |                                        |
| CO <sub>2</sub> (DT) |                     |                       |          |                                       |                               |                         |                                        |
| Stack D              | iameter (incl       | hes).                 | 6.0      |                                       |                               |                         | ·····                                  |
|                      |                     |                       |          | <br>Final:                            | 150                           |                         |                                        |
|                      | •                   |                       |          | Post Te                               |                               |                         |                                        |
|                      |                     |                       |          | moke Captu                            |                               |                         |                                        |
|                      |                     |                       |          | <u> </u>                              |                               |                         | —                                      |
|                      |                     |                       |          | <br>es: Date:                         | 2                             |                         | <br>Z                                  |
|                      |                     | •<br>••               |          |                                       |                               |                         |                                        |
|                      |                     | Init                  | ial      | Mid                                   | dle                           | Enc                     | ling                                   |
| Pb (ir               | n/Hg)               | 30.29 GF              |          | 30.31 CT                              |                               | 30.25 CT-               |                                        |
| Room Te              | emp (°F)            | 70                    | 80 25    | 52                                    | 2                             | 8                       | 1                                      |
| Technici             | an signature        | 11.                   | Mora     | · · ·                                 | Date:                         | 2-13-07                 |                                        |
|                      | J                   |                       | 1        | E                                     |                               | <u>~ 13 01</u>          | ······································ |

1

utoo o de torre

Department of

Construction of the

And the state of the second se

towards would

- Section of the

the second second

Sec. and the second

A NUMBER OF A DESCRIPTION

-A STRATE OF STRATEGY (STRATEGY (ST

# Run 5

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Omnisr\users\Testing\SBI - Stove Builder International\338-5-68-3 Monaco 2008\338-F-68-3 4-39 of 4-47

OMNI-Test Laboratories, Inc.

## Wood Heater Test Data - EPA Method 5G

Manufacturer: SBI Model: Monaco 2008 Project No.: 338-F-68-3 Tracking No.: 1161 Run: 5 Test Date: 12/13/07

Average Tunnel Temperature Average Gas Velocity in Dilution Tunnel - vs Average Gas Flow Rate in Dilution Tunnel - Qsd

Average Delta p Average Delta H Total Time of Test

Burn Rate

Contraction of

Contraction of the

Sector Sector

Margaret Street

164 degrees Fahrenheit 14.5 feet/second 8375.9 dscf/hour

2.52 kg/hr dry

0.056 inches H20 0.00 inches H20

100 minutes

AVERAGE

SAMPLE TRAIN 1

#### SAMPLE TRAIN 2

| Total Sample Volume - Vm<br>Average Gas Meter Temperature<br>Total Sample Volume (Standard Conditions) - Vmstd                                           | 10.91 cubic feet<br>79 degrees Fahrenheit<br>10.5 dscf          | 10.06 cubic feet<br>79 degrees Fahrenheit<br>9.7 dscf              | 11.76 cubic feet<br>80 degrees Fahrenheit<br>11.3 dscf             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Total Particulates - mn<br>Particulate Concentration (dry-standard)<br>Particulate Emission Rate<br>Adjusted Emissions                                   | 0.00030 grams/dscf<br>2.50 grams/hour<br><b>3.89 grams/hour</b> | 2.7 mg<br>0.00028 grams/dscf<br>2.33 grams/hour<br>3.68 grams/hour | 3.6 mg<br>0.00032 grams/dscf<br>2.67 grams/hour<br>4.11 grams/hour |
| Difference from Average<br>7.5% of the average emission rate<br>Weighted Average Emission Rate Limit<br>7.5% of the weighted average emission rate limit | 0.29<br>4.10 grams/hour<br>0.31                                 | 0.22 grams/hour                                                    | 0.22 grams/hour                                                    |

### **Results Are Acceptable**

No. P-SSU-0001 (Dual Train - 5G Emission Calculations) als, Effective date: 4/29/2003

Run 5

| LuterDaue, <i>KMMbog.</i> 1/21/08<br>LuterDaue, <i>KMMbog.</i> 1/21/08<br>tial Tunnel Velocity. 14.46<br>fial Tunnel Flow.<br>1414 stefene.<br>Tunnel Area:<br>Tunnel Area:<br>Tunne | Stack<br>H2O<br>-0.099<br>-0.098<br>-0.098<br>-0.083<br>-0.083<br>-0.083<br>-0.083<br>-0.083<br>-0.083<br>-0.083<br>-0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R<br>B                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $n_{pr}^{2} = 1/2$<br>$n_{pr}^{2} = 1/2$<br>$n_{p$                                                                                           | Ambient<br>83<br>84<br>84<br>84<br>84<br>84<br>84<br>84<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · ·                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |
| Signature/Date: MMM<br>Tunnel Valocity:<br>Intial Tunnel Flow<br>Average Tunnel Flow<br>Tunnel Atex<br>Post-Test Leak Check (2)<br>Post-Test Leak Check (2)<br>(2) Fuel Motivare (d)<br>(3) Fuel Motivare (d)<br>(4) Puel Pariti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #DJVV0i #DJVV0i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |
| Signe<br>I<br>AAA<br>Avenge<br>Avenge<br>Avenge<br>30.19 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Filter     Ir       (2)     e       81     (2)       86     86       87     87       87     83       86     83       83     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84     84       84<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |
| 0.973<br>0.0573<br>0.0573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Filter         (1)           81         81           83         83           84         83           85         83           81         83           82         83           81         83           81         83           82         83           81         81           81         81           81         81           81         81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                               |
| 006,47<br>2900 b0h-mole<br>2300 b0h-mole<br>400 percent<br>0.0157 1120<br>0.0175 (10<br>0.012<br>30,19<br>0.02<br>30,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data, oF<br>Stack<br>583<br>669<br>669<br>730<br>733<br>733<br>733<br>741<br>515<br>541<br>541<br>541<br>541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average<br>Surface<br>562.4<br>562.4<br>609.0<br>609.4<br>642.2<br>653.2<br>6612.2<br>584.0<br>612.2<br>22.0<br>584.0<br>612.2<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>585.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>585.0<br>584.0<br>585.0<br>584.0<br>585.0<br>584.0<br>585.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0<br>584.0000000000000000000000000000                |                                                                                               |
| PM Control Module: SBI 046,47<br>ution Tunnel MW(ary): 22000<br>Dilution Tunnel MW(vet): 232.56<br>Dilution Tunnel SH20: -0.155<br>Prior Tube Cp: 0.84<br>Moter Box Y Factor: 0.975<br>Baronetric Pressure: Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wood Hcater Temperature Data, of<br>ebox         Wood Hcater Temperature Data, of<br>surface         Stack         Stack           right         Exit         Surface         Stack         583           H1         563.4         583         730           66         603.0         667         573           18         642.2         730           46         603.4         541           48         603.4         541           48         603.4         541           33         584.0         672         551           34         633.0         511         22         671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |
| PM Control Module.<br>Dilution Turnel MW(ety).<br>Dilution Turnel MW(ees).<br>Dilution Turnel H20.<br>Dilution Turnel Stata:<br>Pitor Tube Co.<br>Meter Box Y Factar:<br>Barometric Pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wood H<br>Firebox<br>466<br>466<br>468<br>556<br>556<br>556<br>556<br>556<br>558<br>538<br>538<br>538<br>538<br>538<br>538<br>538<br>538<br>538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |
| Dilutio<br>Dilutio<br>Dilutio<br>Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Firebox<br>439<br>464<br>1 Lath<br>1 1<br>464<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |
| 20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |
| Wood Heater Test Data - EPA Method 5G<br>$\frac{Velocity Traverse Data}{2}$ Pr4 Pr3 Pr4 Pr3 Pr4 Pr5 Pr6 Pr3 Pr4 Pr3 Pr3 Pr3 Pr4 Pr3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | xx         Firebox           656         658           675         675           737         711           737         737           737         737           739         737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n an Anna Anna Anna<br>An Anna Anna Anna An                                                   |
| A Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Firebox<br>462<br>462<br>462<br>463<br>433<br>433<br>433<br>433<br>433<br>433<br>433<br>433<br>433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |
| EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firebox         Firebox           Top         334           954         1059           946         766           713         711           711         711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                               |
| t Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel Weight Ib           Scale         Weight Ib           Rading         Change           1113         Marge           1113         24           35         2.4           35         2.4           35         -1.4           12         -0.6           01         -0.5           01         -0.5           01         -0.5           01         -0.5           01         -0.5           01         -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                               |
| velocity Traverse Data<br>Velocity Traverse Data<br><u>rea</u> <u>Pit4</u> <u>res</u><br>163 162 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Page 1 of 1                                                                                   |
| Heate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pro. Rate<br>(10%)<br>(20%)<br>(20%)<br>(20%)<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(100<br>(10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |
| Veloc<br>163<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pro. Rate<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(10%)<br>(1 |                                                                                               |
| W W 1035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dilution           dP           dP           0.057           0.055           0.055           0.055           0.055           0.055           0.055           0.055           0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |
| <u>Pt1</u><br>0.058<br>163<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dilution           Tunnel           Temp.           178           178           183           183           183           183           184           173           185           173           181           181           183           183           184           173           181           136           163.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |
| Pr.1           Initial dP         0.058           Initial dP         0.058           MNU Equipment Numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mater Vac.<br>In. Hg.<br>(2)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mpiling Dafa Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Particulare Sampling Data<br>Orifice Meter Meter Meter<br>Aff (2) (1) (2) In<br>000 79 80<br>000 79 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Š                                                                                             |
| min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ortifice<br>dH (1)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                         | late: 10/19/2                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Rate, cfm (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s, Effective c                                                                                |
| SBI<br>Monaco 2008<br>1161<br>1384-66-3<br>1384-66-3<br>1364-67<br>13-Dec-07<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ltculations), xl                                                                              |
| de :<br>de :<br>rer<br>re:<br>re:<br>re:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Emission Ce                                                                                   |
| OMNI-Test Laboratories, Inc.<br><u>Rani: 5</u><br>Manufacturer:<br>Tradoting No.<br>Project No.<br>Project No.<br>Recording Inferration<br>Recording Inferration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Class         Case         Case <thcase< th="">         Case         Case         <th< th=""><th>ual Train - 5G</th></th<></thcase<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ual Train - 5G                                                                                |
| set Labora<br>5<br>Recimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gas Meter<br>(1)<br>745.000<br>745.000<br>745.000<br>749.055<br>751.065<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.070<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.0700<br>753.07000<br>755.07000<br>755.07000<br>755.0700<br>755.070000000000                                                                                                                                                                                                                                                                                  | ng) 2000-NS(                                                                                  |
| OMNI-Te<br>Ran:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elapsed<br>Time<br>0<br>20<br>20<br>20<br>40<br>60<br>60<br>90<br>90<br>90<br>90<br>90<br>AvgTtail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Centrol No. P-SS1U-0003 (Dual Train - 60 Emission Cabuatitoria) x6, Effective date: 1019/2004 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>nan - and dark tak tak kata kata kata an</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ප්                                                                                            |

· Reconstruction

logared - log-

Internet Internet

Lipage and

Constanting Constanting

Rumbetken

4-41 OF 4-47

OMNI-Test Laboratories, Inc.

processory of the

Concession of the second

and a second second

Lucian and south

Entransmission

## Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

| Client Name: SBI                      | Equipment 1                              | Numbers:     |               |                                       | Run #:                                | 5-           |
|---------------------------------------|------------------------------------------|--------------|---------------|---------------------------------------|---------------------------------------|--------------|
| Model: Monaco 2008                    | ·                                        |              |               | · · · · · · · · · · · · · · · · · · · | Train #:                              | Α.           |
| Project No.: 338-F-68-3               |                                          |              |               |                                       | Date:                                 | 12/13/07     |
| Tracking No.:                         | 1161                                     |              | · ·           | · .                                   | •                                     |              |
| · · · · · · · · · · · · · · · · · · · |                                          |              |               |                                       |                                       |              |
| Sample Component                      |                                          | Reagent      | Filter # or   |                                       | Weights                               |              |
|                                       |                                          |              | Probe #       | Final, mg                             | Tare, mg                              | Particulate, |
| A. Front filter catch                 |                                          | Filter       | 13            | 112.3                                 | 109.8                                 | 2.5          |
| B. Rear filter catch                  |                                          | Filter       | 14            | 122.8                                 | 122.7                                 | 0.1          |
| C. Probe catch                        |                                          | Probe        | 7             | 199908.5                              | 199908.4                              | 0.1          |
|                                       | · · · · · · · · · · · · · · · · · · ·    |              | •             |                                       |                                       |              |
|                                       |                                          |              |               | Total Part                            | iculate, mg :                         | 2.7          |
|                                       |                                          |              |               |                                       |                                       |              |
| Component                             |                                          | Equations:   |               | <del></del>                           | · · · · · · · · · · · · · · · · · · · |              |
| A. Front filter catch                 |                                          |              | Tare (mg) =   | Particulate, m                        | ġ                                     | · · · ·      |
| B. Rear filter catch                  |                                          |              |               | Particulate, m                        |                                       |              |
| C. Probe catch                        |                                          | Final (mg) - | Tare (mg) $=$ | Particulate, mg                       | <u>z</u>                              |              |
|                                       |                                          |              |               |                                       |                                       |              |
|                                       | • •                                      |              |               |                                       | · .                                   |              |
| · .                                   |                                          | 1.           |               |                                       |                                       |              |
|                                       | Analyst:                                 | /L_///       | rigan         | Date:                                 | 1-21-08                               |              |
|                                       |                                          |              | V             |                                       |                                       |              |
| •                                     |                                          |              |               |                                       |                                       | · . ·        |
|                                       |                                          |              |               |                                       |                                       |              |
|                                       |                                          |              | 1             |                                       |                                       | -<br>        |
|                                       |                                          |              |               |                                       |                                       |              |
|                                       | 3                                        |              |               | •                                     |                                       | · · · ·      |
|                                       |                                          |              |               |                                       |                                       |              |
|                                       |                                          |              |               |                                       |                                       | · · ·        |
|                                       |                                          |              |               |                                       | · · · · ·                             |              |
|                                       | а. — — — — — — — — — — — — — — — — — — — |              |               | •••                                   |                                       |              |
|                                       |                                          |              |               | · · ·                                 |                                       |              |
|                                       |                                          | · · · · ·    |               |                                       |                                       |              |
|                                       |                                          | · ·          |               |                                       |                                       | · .          |
|                                       |                                          |              |               | н н<br>х т                            |                                       | · · · · ·    |

Page 1 of 1

OMNI-Test Laboratories, Inc.

101119-1-10-00-00-0

the second second

.

### Final Laboratory Report - Method 5G Dual Train Dilution Tunnel Particulate Calculations

| Client Name:  | SBI         | Equipment Numbers: | ÷ .                                    | Run #:   | 5 -      |
|---------------|-------------|--------------------|----------------------------------------|----------|----------|
| Model:        | Monaco 2008 |                    | ······································ | Train #: | В        |
| Project No.:  | 338-F-68-3  |                    | · · · ·                                | Date:    | 12/13/07 |
| Tracking No.: | 1161        |                    |                                        | -        |          |

| Sample Component      | Reagent | Filter # or | Weights    |          |                 |
|-----------------------|---------|-------------|------------|----------|-----------------|
|                       |         | Probe #     | Final, mg  | Tare, mg | Particulate, mg |
| A. Front filter catch | Filter  | 15          | 126.7      | 123.8    | 2.9             |
| B. Rear filter catch  | Filter  | 16          | 126.7      | 126.3    | 0.4             |
| C. Probe catch        | Probe   | 8           | . 199095.0 | 199094.7 | 0.3             |

| Component             | Equations:                               |
|-----------------------|------------------------------------------|
| A. Front filter catch | Final (mg) - Tare (mg) = Particulate, mg |
| B. Rear filter catch  | Final (mg) - Tare (mg) = Particulate, mg |
| C. Probe catch        | Final (mg) - Tare (mg) = Particulate, mg |

Analyst: 1. 1. Morga

Date: 1-21-08

Total Particulate, mg :

3.6

Document Control No. P-SSX-0003, Effective Date: 8/7/2006

MNN Laberies, Enclares, Beaverton, OR Phone (503) 643-3788

STOVE TEMPERATURE TEST DATA - METHOD 5G

.

201-923/94 Tells

j

| Page of | Tracking #: _1161     | Run #: S            |
|---------|-----------------------|---------------------|
|         | Project #:338-F-68-3  | Margan              |
|         | Nonaco 2008           | Test Crew: <u>K</u> |
|         | Client/Model: SBI / N | Date: /2-/3-07      |

| #             |  |
|---------------|--|
| $\Box$        |  |
| <br>Equipment |  |
| OMN           |  |

| Fuel         Delta         Stack         Data           Weight         Weight         Draft         Ambient         Tor           12:7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fuel         Data: $U = TEMPERATURES (oF)$ Coal Bed.           e         Weight         Derita         Stack         TEMPERATURES (oF)         Coal Bed.           0 $12.7$ $7.7$ $obo$ $81$ $4.22$ $77$ $50c$ $255$ $208$ $445$ 0 $7.7$ $7.7$ $2.72$ $277$ $247$ $245$ $254$ 0 $7.7$ $1.77$ $2.05$ $818$ $277$ $444$ $351$ $247$ $245$ $294$ 0 $8.7$ $1.7$ $316$ $256$ $296$ $245$ $596$ $296$ 0 $8.7$ $1.46$ $377$ $416$ $356$ $497$ $556$ $596$ $596$ $596$ $596$ $596$ $596$ $596$ $516$ $516$ $516$ $516$ $617$ $526$ $596$ $596$ $596$ $596$ $596$ $596$ $596$ $596$ $596$ $500$ $517$ $416$                                                                                                                                                                                                                                                                                                                                    | rrepurn<br>Taet | <u>×</u> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        | Coal Bed: |        |        |        |          |              | Actual:   | 1<br>1   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|--------|--------|--------|----------|--------------|-----------|----------|
| Fuel         Delta         Stack         TEMPERATURES (oF)           Weight         Weight         Draft         Ambient         Top         Bottom         Back         Left         Right         Flue           /// // // // // // // // // // // // //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fuel         Delta         Stack         TEMPERATURES (oF)           Weight         Weight         Draft         Ambient         Top         Bottom         Back         Left         Right         Flue           /// // // // // // // // // // // // //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ด               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        | vata:     | Η<br>Ο |        | Range: | 2,3-2,   |              | Coal Bed: | V · V    |
| Weight         Draft         Ambient         Top         Bottom         Back         Left         Right         Flue $12.1$ $1.3$ $040$ 81 $4.22$ $77$ $506$ $255'$ $208$ $4.35'$ $1.1'$ $1.3$ $040$ 81 $422$ $77'$ $247$ $242$ $242'$ $245'$ $255'$ $208$ $4.35'$ $247'$ $242'$ $245'$ $25'$ $420'$ $260'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$ $56'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight         Draft         Ambient         Top         Bottom         Back         Left         Right         Flue $12.17$ $060$ 81 $422$ $77$ $506$ $255$ $208$ $435$ $11.7$ $1.3$ $060$ 81 $422$ $77$ $247$ $247$ $247$ $247$ $242$ $742$ $11.7$ $1.3$ $065$ 80 $348$ $273$ $384$ $272$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $247$ $242$ $245$ $247$ $242$ $242$ $242$ $242$ $242$ $242$ $242$ $247$ $212$ $212$ $420$ $251$ $4120$ $516$ $560$ $561$ $561$ $513$ $611$ $583$ $4162$ $612$ $4123$ $513$ $6133$ <th></th> <th>Euel<br/>F</th> <th>Delta</th> <th>Stack</th> <th></th> <th></th> <th>TE</th> <th>MPERAT</th> <th>rures (o</th> <th></th> <th></th> <th>Net User</th>                                                                                                                                                                   |                 | Euel<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Delta  | Stack  |           |        | TE     | MPERAT | rures (o |              |           | Net User |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e<br>E          | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weight | Draft  | Ambient   | Тор    | Bottom | Back   | Left     |              | Flue      | Catatva  |
| /4 $   3$ $065$ $80$ $348$ $247$ $351$ $267$ $24/2$ $9,7$ $   7$ $073$ $81$ $707$ $347$ $217$ $247$ $267$ $8.L$ $   5$ $080$ $81$ $707$ $347$ $316$ $226$ $6.7$ $   5$ $080$ $82$ $818$ $377$ $444$ $357$ $316$ $266$ $6.7$ $   6$ $090$ $82$ $974$ $420$ $555$ $407$ $370$ $351$ $5.1$ $    6$ $096$ $83$ $834$ $482$ $555$ $407$ $370$ $371$ $3.1$ $    6$ $096$ $83$ $834$ $482$ $555$ $409$ $398$ $3.1$ $    0$ $086$ $83$ $834$ $482$ $555$ $409$ $398$ $3.1$ $   0$ $086$ $83$ $834$ $462$ $610$ $493$ $610$ $710$ $710$ $710$ $710$ $710$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /4 $   3$ $065$ $80$ $348$ $247$ $351$ $247$ $247$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $267$ $266$ $261$ $117$ $316$ $286$ $294$ $491$ $251$ $114$ $352$ $316$ $352$ $316$ $352$ $316$ $352$ $316$ $352$ $316$ $316$ $352$ $316$ $116$ $492$ $555$ $407$ $351$ $4162$ $4162$ $4162$ $4162$ $4162$ $4162$ $4162$ $4162$ $4162$ $4162$ $4161$ $4161$ $110$ $086$ $83$ $834$ $4162$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $416$ $41$                                                                                                                                                                                                                                                                                                                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -,040  | 81        | 724    | 197    | 306    | 235      | 00<br>0<br>N | 435       |          |
| 9,7 $i,7$ $-i073$ $8.1$ $4/58$ $273$ $386$ $274$ $267$ $8.2$ $i.5$ $-i080$ $8.1$ $707$ $347$ $417$ $316$ $286$ $6.7$ $i.5$ $-i080$ $8.1$ $8.2$ $8.8$ $3.77$ $441$ $737$ $354$ $5.1$ $1.6$ $-i090$ $8.2$ $950$ $401$ $487$ $370$ $351$ $3.1$ $1.4$ $-i070$ $8.7$ $947$ $487$ $379$ $354$ $3.1$ $1.4$ $-i070$ $8.7$ $934$ $420$ $555$ $409$ $374$ $3.1$ $1.6$ $-i080$ $8.3$ $8.34$ $462$ $610$ $430$ $376$ $3.1$ $1.0$ $-i080$ $8.3$ $8.34$ $462$ $610$ $430$ $376$ $3.1$ $1.0$ $-i080$ $8.3$ $8.34$ $4.62$ $610$ $4.30$ $5.52$ $4.94$ $2.11$ $1.0$ $-i080$ $8.34$ $4.62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3    | 065    | 80        | 348    | 249    | 125    | 267      | 242          | 345       |          |
| $8:L$ $1:5$ $080$ $81$ $707$ $347$ $417$ $357$ $346$ $L_1$ $1:5$ $080$ $8_2$ $8_26$ $401$ $487$ $357$ $346$ $5.1$ $1.4$ $070$ $8_2$ $986$ $401$ $487$ $357$ $354$ $3.1$ $1.4$ $070$ $8_2$ $984$ $462$ $555$ $409$ $354$ $2.17$ $1.4$ $070$ $8_2$ $834$ $462$ $610$ $354$ $441$ $2.17$ $1.0$ $086$ $8_3$ $834$ $462$ $610$ $4720$ $354$ $79$ $2.17$ $1.0$ $086$ $8_3$ $834$ $462$ $610$ $4720$ $354$ $709$ $2.110$ $086$ $8_3$ $8_34$ $462$ $610$ $4720$ $536$ $2.10$ $1.02$ $1.02$ $1.02$ $1.02$ $1.02$ $1.02$ $1.02$ $2.10$ $1.02$ $1.02$ $1.02$ $1.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8:1 $(:5$ $080$ $8(1$ $707$ $347$ $411$ $351$ $286$ $L7$ $1.5$ $085$ $82$ $818$ $377$ $444$ $357$ $316$ $286$ $3.1$ $1.6$ $085$ $82$ $818$ $377$ $444$ $357$ $316$ $354$ $3.1$ $1.4$ $-1.690$ $87$ $819$ $480$ $555$ $449$ $357$ $314$ $3.1$ $1.6$ $-1.090$ $87$ $819$ $480$ $555$ $499$ $470$ $354$ $3.1$ $1.0$ $-1.090$ $87$ $834$ $462$ $4167$ $4167$ $516$ $354$ $3.1$ $1.0$ $-1.090$ $87$ $835$ $834$ $461$ $720$ $351$ $3.1$ $1.0$ $-1.090$ $87$ $835$ $441$ $720$ $351$ $3.1$ $1.0$ $-1.020$ $87$ $835$ $4167$ $516$ $526$ $3.1$ $1.0$ $-1.020$ <                                                                                                                                                                                                                                                                                                                                                                              | 2               | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7    | -,073  | 8         | 458    | 262    | 386    | 794      | 267          | 420       |          |
| $L_{17}$ $I.5$ $085$ $82$ $816$ $377$ $444$ $737$ $351$ $5.1$ $I.6$ $090$ $82$ $950$ $401$ $487$ $370$ $351$ $441$ $-351$ $3.7$ $I.6$ $090$ $82$ $954$ $420$ $555$ $407$ $351$ $-108$ $3.7$ $I.0$ $088$ $83$ $834$ $462$ $010$ $-439$ $-341$ $-361$ $2.17$ $I.0$ $088$ $83$ $834$ $462$ $010$ $439$ $441$ $-361$ $2.17$ $I.0$ $088$ $83$ $834$ $462$ $010$ $497$ $361$ $-108$ $1.0$ $088$ $83$ $834$ $462$ $010$ $-108$ $994$ $-1000$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ $994$ <td><math>L_1</math> <math>I_1S</math> <math>-2095</math> <math>82</math> <math>818</math> <math>371</math> <math>414</math> <math>337</math> <math>341</math> <math>S_1</math> <math>I_1L</math> <math>-1090</math> <math>82</math> <math>950</math> <math>412</math> <math>412</math> <math>412</math> <math>335</math> <math>3.1</math> <math>I_1L</math> <math>-1090</math> <math>82</math> <math>833</math> <math>634</math> <math>442</math> <math>412</math> <math>412</math> <math>412</math> <math>335</math> <math>3.1</math> <math>I_1D</math> <math>-1090</math> <math>833</math> <math>834</math> <math>442</math> <math>412</math> <math>412</math> <math>412</math> <math>335</math> <math>3.1</math> <math>I_1D</math> <math>-1090</math> <math>833</math> <math>834</math> <math>442</math> <math>335</math> <math>341</math> <math>3.1</math> <math>I_1D</math> <math>-1090</math> <math>833</math> <math>834</math> <math>4162</math> <math>412</math> <math>412</math> <math>335</math> <math>3.1</math> <math>I_1D</math> <math>-1090</math> <math>833</math> <math>834</math> <math>4162</math> <math>412</math> <math>312</math> <math>1.10</math> <math>-1090</math> <math>833</math> <math>834</math> <math>4162</math> <math>412</math> <math>312</math> <math>312</math> <math>1.10</math> <math>-1090</math> <math>812</math> <math>818</math> <math>327</math> <math>310</math> <math>312</math> <math>1.10</math> <math>-100</math> <math>812</math> <math>321</math> <math>310</math> <math>312</math> <math>312</math> <math>312</math><td>ဗ္ဂ</td><td>2.8</td><td>/.9/</td><td>-,080</td><td>8(</td><td>709</td><td>747</td><td>417</td><td>316</td><td>286</td><td>504</td><td></td></td> | $L_1$ $I_1S$ $-2095$ $82$ $818$ $371$ $414$ $337$ $341$ $S_1$ $I_1L$ $-1090$ $82$ $950$ $412$ $412$ $412$ $335$ $3.1$ $I_1L$ $-1090$ $82$ $833$ $634$ $442$ $412$ $412$ $412$ $335$ $3.1$ $I_1D$ $-1090$ $833$ $834$ $442$ $412$ $412$ $412$ $335$ $3.1$ $I_1D$ $-1090$ $833$ $834$ $442$ $335$ $341$ $3.1$ $I_1D$ $-1090$ $833$ $834$ $4162$ $412$ $412$ $335$ $3.1$ $I_1D$ $-1090$ $833$ $834$ $4162$ $412$ $312$ $1.10$ $-1090$ $833$ $834$ $4162$ $412$ $312$ $312$ $1.10$ $-1090$ $812$ $818$ $327$ $310$ $312$ $1.10$ $-100$ $812$ $321$ $310$ $312$ $312$ $312$ <td>ဗ္ဂ</td> <td>2.8</td> <td>/.9/</td> <td>-,080</td> <td>8(</td> <td>709</td> <td>747</td> <td>417</td> <td>316</td> <td>286</td> <td>504</td> <td></td>                                                                                                                                                                                                     | ဗ္ဂ             | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /.9/   | -,080  | 8(        | 709    | 747    | 417    | 316      | 286          | 504       |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4               | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5    | -,085  | 28        | 818    | 317    | 444    | 337      | 316          | 560       |          |
| 3.1       1.4       -1.070       87       470       555       409       398         2.1       1.0      088       83       534       445       141       141         1.1       1.0      088       83       534       445       555       409       398         1.1       1.0      088       83       534       446       430       555       409       398         1.1       1.0      088       83       534       446       430       555       409       398         1.1       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1     1.4    070     83     994     430     555     409     398       2.1     1.0    088     83     834     462     610     430     534       1.1     1.0    088     83     834     462     610     439     398       1.1     1.0    088     83     834     462     610     439     398       1.1     1.0    088     83     834     462     610     439     398       1.1     1.0    088     83     834     462     610     439     398       1.1     1.0    088     83     834     462     610     439     398       1.1     1.0    088     83     834     462     610     430       1.1     1.10     1.10     1.10     1.13     1.13     1.14       1.1     1.10     1.16     1.16     1.16     1.14       1.1     1.10     1.16     1.16     1.16     1.16       1.1     1.10     1.16     1.16     1.16     1.16       1.1     1.16     1.16     1.16     1.16     1.16       1.1     1.16     1.16     1.16   <                | 50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116    | -1090  | 28        | 950    | 101-   | 487    | 370      | 352          | 217       |          |
| 2.7     1.0    088     8.3     8.34     462     61L     4.39     44I       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1     1.0    08'8     8.3     8.34     4/6.2     61.L     4/3       1     1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1 </td <td>8</td> <td></td> <td>1.4</td> <td>-,090</td> <td>83</td> <td>466</td> <td>430</td> <td>555</td> <td>109</td> <td>398</td> <td>432</td> <td></td> | 8               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4    | -,090  | 83        | 466    | 430    | 555    | 109      | 398          | 432       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10     | 8,80'- | 83        | 834    | 794    | 616    | 62 M     | 1877         | 202       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              | 20        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
| 40         50         50         60         60         70         80         90         90         90         90         90         90         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              | -         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |           |        |        |        |          |              |           | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -      |           |        |        |        |          |              |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ś               | and the second se |        |        |           |        |        |        |          |              | :         |          |

.

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Method 5G).xls, Effective date: 08/07/2000

Page 1 of 1

7

OMNI-Test Laboratories, Int Beaverton, OR

in the second

Conception of the second

a shakararan ta

Source and the second

a substantia se

FUEL DATA

| Client: <u>SBI</u>                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| /lodel: Monaco 2008                                                                |                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| roject #: <u>338-F-68-3</u>                                                        | Tracking #: 1161                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    |                                                                                                                                                                                                                                                                                 | Run #: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MNI Equipment ID #:                                                                |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEL LOAD PREPARF                                                                   | DBY: K. Morgan                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEL: DOUGLAS-FII                                                                   | R SPECIES, UNTREATED, AIR-DRIED, STANDARD GRADI                                                                                                                                                                                                                                 | COP PETTEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IMENSIONAL LUMB                                                                    | ER.                                                                                                                                                                                                                                                                             | JOR DETTER,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · · · · · · · · · · · · · · · · · · ·                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | PRE-BURN FUEL                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CALIBRATION:                                                                       | MOISTURE CONTENT (METER DRY BASIS)Cal Value (1) = 12%Actual Reading 12.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | Cal Value $(2) = 22\%$ Actual Reading <u>72.0</u><br>Actual Reading <u>72.0</u>                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ·.                                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | Length Readings                                                                                                                                                                                                                                                                 | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 2                                                                                | $\frac{4}{7} ft = \frac{22.7}{21.9} = \frac{21.9}{21.1}$                                                                                                                                                                                                                        | 2 ×4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                                                                                  | ft                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    |                                                                                                                                                                                                                                                                                 | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Length of cut piece                                                                | s: <u>8@9,81</u> <sup>5</sup> inches Pre-Burn Fuel Average Moist                                                                                                                                                                                                                | ure: 21.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Time (clock): /7                                                                   | 102 Room Temperature (F): 75 Initials: 1/2                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ······ (•(••••••)                                                                  | Room remperature (r) mittais                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    |                                                                                                                                                                                                                                                                                 | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                              |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | TEST FUEL                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FUEL TYPE AND AN                                                                   | 40UNT: 2×4 <u>2</u> 4×4 <u>2</u>                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | A C C A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CALCULATED LOAD                                                                    | D WEIGHT: ACTUAL LOAD WEIGHT:                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                    | H: $13.0''$                                                                                                                                                                                                                                                                     | <u>5.8</u> (2 ×4)<br>(4 ×4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                    | H: <u>13.0''</u>                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | H: $\underline{13.0''}$<br>MOISTURE CONTENT (METER DRY BASIS)                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FUEL PIECE LENGT                                                                   | H: H:                                                                                                                                                                                                                                                                           | (4 ×4)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                    | H: H:                                                                                                                                                                                                                                                                           | <u>3.8</u> (2 ×4)<br>(4 ×4)<br><u>///3</u> Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FUEL PIECE LENGT                                                                   | H: <u>13.0</u><br><u>MOISTURE CONTENT (METER DRY BASIS)</u><br><u>READINGS</u>                                                                                                                                                                                                  | (4 ×4)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FUEL PIECE LENGT                                                                   | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS $3$<br>22.4 $20.3$ $23.1$                                                                                                                                                                          | (4 ×4)<br>///3 Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FUEL PIECE LENGT                                                                   | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.1$ $23.1$                                                                                                                                                      | (4 ×4)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FUEL PIECE LENGT                                                                   | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $///3$ Total $CYPE$ $2 \times 4$ $2 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FUEL PIECE LENGT                                                                   | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FUEL PIECE LENGT                                                                   | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FUEL PIECE LENGT                                                                   | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FUEL PIECE LENGT                                                                   | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FUEL PIECE LENGT<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FUEL PIECE LENGT.<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10      | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4 $20.3$ $23.123.1$ $2(.2$ $7.2,3$ $23.122.0$ $21.7$ $2.3.121.4$ $23.1$ $22.4$                                                                                                               | $(4 \times 4)$ $///3$ Total $CYPE$ $2 \times 4$ $4 \times 4$ $4 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FUEL PIECE LENGT.<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10      | H: $13.0''$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4' $20.3$ $23.123.1$ $21.2$ $72.322.0$ $21.12$ $2.3.1$                                                                                                                                                    | $(4 \times 4)$ $///3$ Total $CYPE$ $2 \times 4$ $4 \times 4$ $4 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FUEL PIECE LENGT<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>O' | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>READINGS<br>2.14 $20.3$ $23.122.4$ $20.3$ $23.121.4$ $21.2$ $72.322.0$ $21.2$ $23.121.4$ $23.1$ $22.4$                                                                                                        | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FUEL PIECE LENGT.<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10      | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>READINGS<br>2.14 $20.3$ $23.122.4$ $20.3$ $23.121.4$ $21.2$ $72.322.0$ $21.2$ $23.121.4$ $23.1$ $22.4$                                                                                                        | $(4 \times 4)$ $///3$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FUEL PIECE LENGT<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>O' | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>READINGS<br>2.14 $20.3$ $23.122.4$ $20.3$ $23.121.4$ $21.2$ $72.322.0$ $21.2$ $23.121.4$ $23.1$ $22.4$                                                                                                        | $(4 \times 4)$ $(4 \times 4)$ Total $CYPE$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FUEL PIECE LENGT<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>O' | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>E READINGS<br>22.4 $20.3$ $23.123.1$ $2(.2$ $7.2,322.0$ $21.2$ $7.2,321.4$ $23.1$ $22.4$ $1URALL TEST FUEL LOAD MOISTURE A VERAGE: 22NERALL TEST FUEL LOAD MOISTURE A VERAGE: 17.4Room Temperature (F): 75 I$ | $(4 \times 4)$ $///3$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$ |
| FUEL PIECE LENGT<br>PIECE<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>O' | H: $13.0^{\prime\prime}$<br>MOISTURE CONTENT (METER DRY BASIS)<br>READINGS<br>2.14 $20.3$ $23.122.4$ $20.3$ $23.121.4$ $21.2$ $72.322.0$ $21.2$ $23.121.4$ $23.1$ $22.4$                                                                                                        | $(4 \times 4)$ $///3$ Total $CYPE$ $2 \times 4$ $2 \times 4$ $4 \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Control No. P-SFB-0006 (Woodstove Fuel Load Information).doc, Effective date: 04/18/2007

Page 1 of 1 4 - 45 0F 4 - 47

OMNI-Test Laboratorie Beaverton, OR

| Run |
|-----|

| Client: <u>SBI</u>           |
|------------------------------|
| Model: Monaco 2008           |
| Project #: <u>338-F-68-3</u> |
| Tracking #: 1161             |
| Run #: 5                     |
| Test Crew: K. Morgan         |
| OMANIE Frankling and ID III  |

Date: 12-13-07

OMNI Equipment ID #(s):

## PREBURN

DESCRIBE OR SKETCH AIR OR THERMOMSTAT SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCABLE)

C.

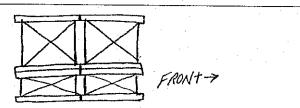
PRIMARY:

Full OPEN

| SECONDARY: | Fully OPEN |
|------------|------------|
| TERTIARY:  | NONE       |
| FAN:       | ON-High    |

PREBURN SETTINGS AND ACTIVITIES

| TIME | AIR (THERMO) <u>CHANGES</u><br>PRIMARY/SECONDARY/TERTIARY | FAN<br>SETTING<br>CHANGE | ADD<br>FUEL<br>+ WT. | ADD<br>FUEL<br>- WT. | RAKE<br>COAL                          | COMMENT   |
|------|-----------------------------------------------------------|--------------------------|----------------------|----------------------|---------------------------------------|-----------|
| Ð    | <u></u>                                                   |                          |                      |                      | · · · · · · · · · · · · · · · · · · · | -Levelled |
| 70   |                                                           |                          | • <u>•</u>           |                      | X                                     | -Leonneol |
|      |                                                           |                          |                      |                      | ÷                                     |           |
|      |                                                           |                          | i                    |                      |                                       | İ         |
|      |                                                           |                          |                      |                      |                                       |           |


TEST

**BYPASS:** 

DOOR:

FUEL LOADING Loaded

TEST FUEL CONFIGURATION SKETCH (INDICATE VIEW ANGLE)



DESCRIBE OR SKETCH TEST SETTINGS BELOW: (SETTINGS MUST BE ACCURATE AND REPRODUCIBLE) PRIMARY:

SAME AS ABOVE

AJan 3.0 min. PRIMARY AIR: - NO ADJUSTMENT NONE OTHER: -SECONDARY: Fully Open NONE TERTIARY:

FAN:

11 1. Morgi

ON - Hist

Date: 12-13-07

START UP PROCEDURES

Technician signature:

Control No. P-SFAK-0006 (Run Notes).doc, Effective date: 05/08/2007

Page 1 of 1 4 - 4 6 0 F 4 - 4 7

OMNI-Test Laboratories, ....c. Beaverton, OR

and an environ

lagaro gyrataly

Construction of the second

.....

.

......

# Supplemental Data EPA 5G/5H

| Client:              | <u>SBI</u>           |                       |                     | ·<br>·                                |                     |                                       |                     |
|----------------------|----------------------|-----------------------|---------------------|---------------------------------------|---------------------|---------------------------------------|---------------------|
| Model:               | Monaco 20            | <u>08</u>             |                     |                                       |                     |                                       |                     |
| Project              | #: <u>338-F-68</u>   | <u>3-3</u>            | Tracking            | #: <u>1161</u>                        | • • · ·             | . *                                   |                     |
| Date: _,             | 12-13-07             |                       |                     | Run #:                                | 5 Booth             | ו:                                    |                     |
| Test Cr              | ew: K. Mon           | MAN                   | Start Tin           | ne: <u>18:44</u>                      | Stop Time:          | 20:24                                 |                     |
| OMNI E               | quipment #           | (s):                  |                     |                                       |                     |                                       |                     |
|                      |                      | -                     |                     |                                       | 10 a.<br>1          |                                       |                     |
|                      | alyzer Train         | Leak Check            |                     |                                       | •<br>•<br>•         |                                       |                     |
| . <u>S</u>           | Stack:               |                       |                     | ution Tunnel                          | (Method 5G          | Gonly):                               | · ·                 |
|                      | Initial:             | NA                    |                     |                                       | nitial:             |                                       |                     |
|                      | Final:<br>ions: Span | NA                    | /                   | FI                                    | inal: <u>////</u>   |                                       | . /                 |
| Calibrat             | ions: Span           | Gas CO <sub>2</sub> : | <u></u> AO;         | 2: <u>N/A</u>                         | CO: <u>N/A</u>      | CO <sub>2</sub> (DT): _               | N/A                 |
|                      |                      |                       |                     |                                       |                     |                                       |                     |
|                      | N <sub>2</sub> Span  | N <sub>2</sub> Span   | N <sub>2</sub> Span | N <sub>2</sub> Span                   | N <sub>2</sub> Span | N <sub>2</sub> Span                   | N <sub>2</sub> Span |
| Time                 |                      |                       |                     |                                       | . <u>.</u>          |                                       | -                   |
| O <sub>2</sub>       |                      |                       |                     |                                       |                     |                                       | -                   |
| CO <sub>2</sub>      |                      |                       | N /H                |                                       |                     |                                       |                     |
| CO                   |                      |                       | /                   |                                       |                     |                                       |                     |
| CO <sub>2</sub> (DT) | ·                    |                       | ·                   |                                       |                     | -                                     |                     |
| Stack D              | iameter (incl        | hes):                 | 6,0                 |                                       |                     | ÷.,                                   |                     |
|                      | city (ft/min):       |                       |                     | ,                                     | 250                 |                                       |                     |
|                      | udit (lbs):          |                       |                     |                                       |                     |                                       |                     |
|                      | Draft:               |                       |                     |                                       |                     | 0                                     |                     |
|                      | pe Leak Tes          |                       |                     |                                       |                     |                                       |                     |
|                      | e Cleaned F          |                       |                     |                                       |                     |                                       |                     |
|                      |                      |                       |                     | · · · · · · · · · · · · · · · · · · · |                     | · · · · · · · · · · · · · · · · · · · | · · ·               |
|                      |                      | Init                  | ial                 | Mid                                   | ldle                | Enc                                   | ling                |
| Pb (ir               | n/Hg)                | 30.2                  | 200                 | 30.1                                  | 9 CT                | 30.1                                  | 5 47                |
| Room Te              | emp (°F)             | 83                    |                     | 86                                    | ·                   | 83                                    | 5                   |
| Taahaisi             | an signature         | . 1/1.                | M                   | · · · · ·                             |                     | · · · ·                               |                     |
| rechnici             | an signature         | . <u> 16 1. </u>      | 101 gm              | L                                     | Date: <u>/2 - /</u> | 5-01                                  |                     |
|                      |                      |                       |                     |                                       |                     |                                       |                     |

Control No. P-SFAO-0007 (Supplemental Data EPA 5G).doc, Effective date: 05/08/2007

Page 1 of 1

i i Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative Socializzative So

-----

CONTRA LUSICIANS

and a source of the second

to energy of the second second second second second second second second second second second second second se

. Marina di Kanada kana da a yaag watayoo ta k

Conditional Condition

and the state of the state of the state of the state of the state of the state of the state of the state of the

a de la companya de l

CONTRACT CONTRACTOR

-----

in the second

# **Section 5**

# **Sampling Procedures and Test Results**

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \Omnisrvlusers\Testing\SBI - Stove Builder International\338-S-68-3 Monaco 2008\338-F-68-3 5-1 of 5-8

#### INTRODUCTION

Stove Builder International retained *OMNI* to perform U.S. Environmental Protection Agency (EPA) certification testing on the Monaco 2008 wood stove. The Monaco 2008 wood fireplace insert is a non-catalytic, radiant-type room heater. The firebox is constructed of mild steel. The usable firebox volume was measured to be 1.5 cubic feet. The stove is vented through a 6-inch diameter flue collar located at the top of the unit.

The testing was performed at Stove Builder International facilities in Québec, Canada. The unit was logged in on December 7, 2007, then assigned and labeled with *OMNI* ID #1161. *OMNI* representative Ken Morgan conducted the certification testing and completed all testing by December 13, 2007. The EPA was notified of the testing dates in a letter dated November 21, 2007. A testing contract, including provisions for Random Compliance Audit (RCA) testing, has been signed by Claude Paré of Stove Builder International and is on file at *OMNI*'s testing facility.

The Monaco 2008 wood fireplace insert was tested in accordance with the U.S. EPA 40 CFR Part 60, Subpart AAA – Standard of Performance for Residential Wood Heaters (Appendix A, Methods 28 and 5G). Particulate emissions were measured using a Method 5G sampling train consisting of two filters (front and back). The weighted average emissions of the four test runs included in the results indicate a particulate emission level of 4.4 grams per hour. An extra run (Run #5) was performed to throw out an outlyer. Test runs were conducted in each of three burn rate categories (0.80-1.25 kg/hr, 1.25-1.90 kg/hr, and maximum). Emissions for each of their individual test runs did not exceed the cap. The Monaco 2008 results are within the emission limit of 7.5 grams per hour for non-catalytic affected facilities manufactured on or after July 1, 1990, or sold at retail on or after July 1, 1992.

The wood heater was sealed after completion of testing in compliance with the EPA regulation as follows:

- "DO NOT TAMPER" labels were placed on the door and on all other openings.
- Plastic material sealed with "DO NOT TAMPER" labels and tape was wrapped around the unit.
- The unit was sealed in a wood box constructed for the unit and secured with steel banding.
- "DO NOT TAMPER" labels were placed on all outer surfaces of the box.

This report is organized in accordance with the EPA-recommended outline and is summarized in the Table of Contents immediately preceding this report. The results in this report are limited to the item submitted.

.

.....

|  | Table ' | 1.1 – | Particulate | Emissions |
|--|---------|-------|-------------|-----------|
|--|---------|-------|-------------|-----------|

| Run | Burn Rate<br>(kg/hr dry) | Method 5G Emissions<br>(g/hr) |
|-----|--------------------------|-------------------------------|
| 1   | 0.95                     | 6.64                          |
| 3   | 1.37                     | 3.08                          |
| 4   | 1.19                     | 2.82                          |
| 5   | 2.52                     | 3.89                          |

|     | Room Temperature<br>(°F) |       | erature Barometric Pressure<br>(Hg) |       | Air Velocity<br>(ft/min) |       |
|-----|--------------------------|-------|-------------------------------------|-------|--------------------------|-------|
| Run | Before                   | After | Before                              | After | Before                   | After |
| 1   | 78                       | 79    | 30.17                               | 30.10 | <50                      | <50   |
| 3   | 81                       | 79    | 30.14                               | 30.26 | <50                      | <50   |
| 4   | 80                       | 81    | 30.29                               | 30.25 | <50                      | <50   |
| 5   | 83                       | 83    | 30.22                               | 30.15 | <50                      | <50   |

5-3 of 5-8

en marine en marine en

Concernance of

Church Vice Instance

i dente de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de

and the other second

NAS JANSANG

.

| Run | Pretest Fuel Weight (Starting weight in Ibs) | Pretest Moisture<br>(Dry basis - %) | Coal Bed Weight<br>(lbs) |
|-----|----------------------------------------------|-------------------------------------|--------------------------|
| 1   | 5.5                                          | 19.7                                | 2.2                      |
| 3   | 7.0                                          | 19.1                                | 2.2                      |
| 4   | 7.0                                          | 23.2                                | 2.1                      |
| 5   | 12.7                                         | 21.7                                | 2.7                      |

### Table 1.3.1 - Fuel Measurement and Crib Description Summary - PRETEST

Table 1.3.2 – Fuel Measurement and Crib Description Summary – TEST

| Run | Test Fuel<br>Wet Basis<br>(lbs) | Firebox<br>Volume<br>(ft <sup>3</sup> ) | Fuel Loading<br>Density Wet Basis<br>(lbs/ft <sup>3</sup> ) | Fuel Moisture<br>Content Dry<br>(%) | Piece<br>Length<br>(in) | 2x4s<br>Used | 4x4s<br>Used |
|-----|---------------------------------|-----------------------------------------|-------------------------------------------------------------|-------------------------------------|-------------------------|--------------|--------------|
| 1   | 9.8                             | 1.5                                     | 6.53                                                        | 21.7                                | 13                      | 2            | 2            |
| 3   | 10.3                            | 1.5                                     | 6.87                                                        | 20.7                                | 13                      | 2            | 2            |
| 4   | 10.1                            | 1.5                                     | 6.73                                                        | 21.4                                | 13                      | 2            | 2            |
| 5   | 11.3                            | 1.5                                     | 7.53                                                        | 22.1                                | 13                      | 2            | 2            |

5-4 of 5-8

1.42.6226

(Wein Street

and we have a second second

|     |                         | Average Dilution Tunnel Gas Measurements |                         |                     |  |
|-----|-------------------------|------------------------------------------|-------------------------|---------------------|--|
| Run | Length of Test<br>(min) | Velocity<br>(ft/sec)                     | Flow Rate<br>(dscf/min) | Temperature<br>(°F) |  |
| 1   | 230                     | 13.31                                    | 141.8                   | 104.0               |  |
| 3   | 170                     | 13.36                                    | 139.4                   | 117.4               |  |
| 4   | 190                     | 12.97                                    | 135.9                   | 116.7               |  |
| 5   | 100                     | 14.46                                    | 139.6                   | 163.7               |  |

### Table 1.4 – Dilution Tunnel Gas Measurements and Sampling Data Summary

Table 1.5 - Heater Operation Data (Average Temperature Data)

| Run                                                                                     | Beginning Surface<br>Temperature Average <sup>a</sup> | Ending Surface<br>Temperature Average <sup>a</sup> | Surface Delta T <sup>b</sup> |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------|--|--|--|
| . 1                                                                                     | 430.6                                                 | 383.0                                              | 48                           |  |  |  |
| 3                                                                                       | 487.6                                                 | 451.4                                              | 36                           |  |  |  |
| • 4                                                                                     | 455.4                                                 | 414.2                                              | 41                           |  |  |  |
| 5                                                                                       | 562.4                                                 | 584.0                                              | 22                           |  |  |  |
| a. All temperatures are in degrees F.                                                   |                                                       |                                                    |                              |  |  |  |
| b. Represents the difference between beginning and ending average surface temperatures. |                                                       |                                                    |                              |  |  |  |

OMNI-Test Laboratories, Inc. Certification Test Report dated January 2008: \\Omnisr\users\Testing\SBI - Stove Builder International\338-S-68-3 Monaco 2008\338-F-68-3

, interesting

Countral States with

esoregywarnen

.

hadydrien Sast

- -----

Principle and

| Run | Combustion Air (in)              | Fuel Added                                          | Fuel Removed | Time (min) |
|-----|----------------------------------|-----------------------------------------------------|--------------|------------|
| 1   | Fully Closed                     | 5.5 lbs at start; no addition;<br>coal bed 2.2 lbs  | 0.0          | 60         |
| 3   | Indexed with 0.188"<br>Drill Bit | 7.0 lbs at start; no addition;<br>coal bed 2.2 lbs  | 0.0          | 60         |
| 4   | Indexed with 0.141"<br>Drill Bit | 7.0 lbs at start; no addition;<br>coal bed 2.1 lbs  | 0.0          | 60         |
| 5   | Fully Open                       | 12.7 lbs at start; no addition;<br>coal bed 2.7 lbs | 0.0          | 70         |

Table 1.7 – Run Data

| Run | Average Dry<br>Burn Rate<br>(kg/hr) | Initial (Induced)<br>Draft<br>(H <sub>2</sub> O) | Primary Air<br>Setting<br>(in)   | Run Time<br>(min) | Average<br>Draft<br>(H <sub>2</sub> O) |
|-----|-------------------------------------|--------------------------------------------------|----------------------------------|-------------------|----------------------------------------|
| 1   | 0.95                                | 0                                                | Fully Closed                     | 230               | -0.063                                 |
| 3   | 1.37                                | 0                                                | Indexed with<br>0.188" Drill Bit | 170               | -0.073                                 |
| 4   | 1.19                                | 0                                                | Indexed with<br>0.141" Drill Bit | 190               | -0.071                                 |
| 5   | 2.52                                | 0                                                | Fully Open                       | - 100             | -0.089                                 |

Certification Test Report dated January 2008: \\Omnisrv\users\Testing\SBI - Stove Builder International\338-S-68-3 Monaco 2008\338-F-68-3

------

1210000000000

Construction of

Construction of

100 June 100

.

. . . .

### Table 1.8 – Test Configurations

| Run        | Five-Minute Startup                                                                                                                                                                                                                                                                                                                       | Combustion Air                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|            | <u>Bypass</u> : N/A.<br><u>Fuel Loading</u> : Loaded by 45 seconds.<br><u>Door</u> : Ajar for 4 minutes, 40 seconds.                                                                                                                                                                                                                      |                                   |
| - <b>1</b> | <u>Primary Air</u> : Fully open for 5.0 minutes, then abruptly closed to test setting.<br><u>Other</u> : None.                                                                                                                                                                                                                            | Fully Closed                      |
|            | <u>Secondary</u> : Fully closed.<br><u>Tertiary</u> : N/A.<br><u>Fan</u> : On high.                                                                                                                                                                                                                                                       |                                   |
|            | <u>Bypass</u> : N/A.<br><u>Fuel Loading</u> : Loaded by 35 seconds.<br><u>Door</u> : Ajar for 3.0 minutes.                                                                                                                                                                                                                                |                                   |
| 3          | <u>Primary Air</u> : Fully open for 5.0 minutes, then abruptly adjusted to test setting.<br><u>Other</u> : None.                                                                                                                                                                                                                          | Indexed with<br>0.188'' Drill Bit |
|            | <u>Secondary</u> : Tandem with primary.<br><u>Tertiary</u> : None.<br><u>Fan</u> : On high.                                                                                                                                                                                                                                               |                                   |
| 4          | <u>Bypass</u> : N/A.<br><u>Fuel Loading</u> : Loaded by 40 seconds.<br><u>Door</u> : Ajar for 3 minutes, 5 seconds.<br><u>Primary Air</u> : Fully open for 5.0 minutes, then abruptly adjusted to test<br>setting.<br><u>Other</u> : None.<br><u>Secondary</u> : Tandem with primary.<br><u>Tertiary</u> : None.<br><u>Fan</u> : On high. | Indexed with<br>0.141" Drill Bit  |
| 5          | Bypass: N/A.<br><u>Fuel Loading</u> : Loaded.<br><u>Door</u> : Ajar for 3.0 minutes.<br><u>Primary Air</u> : No adjustment.<br><u>Other</u> : None.<br><u>Secondary</u> : Fully open.<br><u>Tertiary</u> : None.<br><u>Fan:</u> On high.                                                                                                  | Fully Open                        |

Martines and

- Anno Arda

-----

Conservation of the

.

### TEST RESULTS AND DISCUSSION

A total of five test runs were performed on the Monaco 2008 wood stove. Four test runs were conducted in the following categories and included in the weighted average emission level results: two in the 0.80 to 1.25 kg/hr dry category; one in the 1.25 to 1.90 kg/hr dry category; and one at maximum.

The weighted particulate emission level was measured to be 4.4 g/hr.

The proportionality results for all four test runs were acceptable. Quality check results for each test run are presented in Section 2 of this report.