

TEST REPORT

SCOPE: EMISSIONS, EFFICIENCY AND OUTPUT

FUEL: EPA TEST FUEL (CRIBS)

TEST STANDARD: EPA

MODEL: DESTINATION 1.5-I WOOD INSERT

<u>Notice to reader</u>: Our Destination 1.5-I wood insert was tested as part of our CW2500 firebox. Therefore, the CW2500 is referenced throughout the attached test report.

REPORT NUMBER: 100968863MTL-003 REPORT DATE: August 27, 2013

EVALUATION CENTER

Intertek Testing Services NA Inc. 1829, 32nd Avenue Lachine, Québec H8T 3J1

RENDERED TO

Stove Builder International Inc 250 Rue de Copenhague St-Augustin-de-Desmaures, QC G3A 2H3

PRODUCT EVALUATED: MODEL CW2500 SOLID FUEL ROOM HEATER

Report of Testing Model CW2500 Wood Fuel Room Heater Insert for compliance as an "Affected Facility" with the applicable requirements of the following criteria: EPA Method 28 "Certification and Auditing of Wood Heaters" and EPA Method 5G "Determination of Particulate Matter Emissions from Wood Heaters".

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

I.	INTRODUCTION I.A. PURPOSE OF TEST I.B. LABORATORY I.C. DESCRIPTION OF UNIT I.D. REPORT ORGANIZATION	4 4 4
II.	SUMMARIZATION II.A PRETEST INFORMATION II.B INFORMATION LOG II.C SUMMARY OF INFORMATION II.D SUMMARY OF OTHER DATA	5 5 5
III.	PROCESS DESCRIPTION III.A TEST SET UP DESCRIPTION III.B AIR SUPPLY SYSTEM	8
IV.	SAMPLING SYSTEM IV.A SAMPLING LOCATIONS IV.A.1 DILUTION TUNNEL IV.B. OPERATIONAL DRAWINGS IV.B.1 STACK GAS SAMPLE TRAIN IV.B.2 DILUTION TUNNEL SAMPLE SYSTEM	8 9 9 9
V.	SAMPLING METHODS V.A. PARTICULATE SAMPLING	11 11
VI.	QUALITY ASSURANCE VI.A. INSTRUMENT CALIBRATION VI.A.1 DRY GAS METERS VI.A.2 STACK SAMPLE ROTAMETER VI.A.3 GAS ANALYZERS VI.B. TEST METHOD PROCEDURES VI.B.1 LEAK CHECK PROCEDURES VI.B.2 TUNNEL VELOCITY/FLOW MEASUREMENT VI.B.3 PM SAMPLING PROPORTIONALITY	11 11 11 12 12 12 12 12
VII.	CONCLUSION VII.A RESULTS & OBSERVATIONS	13 13

Appendices

- Appendix A: List drawings
- Appendix B: Operation Manual
- **Appendix C:** Pre-Burn Documentation
- Appendix D: Calibrations
- Appendix E: Pictures
- Appendix F: Test data

I. INTRODUCTION

Intertek Testing Services NA (Intertek) has conducted testing for (Stove Builder International Inc, on model CW2500 Solid Fuel Room Heater, to evaluate all applicable performance requirements included in EPA Method 28 "Certification and auditing of wood heaters" and Method 5G "Determination of particulate matter emissions from wood heaters."

I.A PURPOSE OF TEST

The test was conducted to determine if the unit is in accordance with U.S EPA requirements under 40 CGR 60 SUBPART AAA, NSPS for Residential Wood Heaters. This evaluation was conducted from June 25 to June 28, 2013.

I.B LABORATORY

The test on the CW2500 Solid Fuel Room Heater was conducted at the SBI Laboratory located at 250 Rue de Copenhague, St-Augustin-de-Desmaures QC. G3A 2H3. The laboratory elevation is 213 feet above sea level. The test was conducted by Claude Pelland, P.Eng.

I.C DESCRIPTION OF UNIT

The model CW2500 Solid Fuel insert Room Heater is constructed of carbon HR and CR steel . The outer dimensions are 16 3/4-inches deep, 21 43/64-inches high, and 26 5/16-inches wide. The unit has a front loading door with a viewing glass.

(See product drawings.)

Proprietary drawings and manufacturing methods are on file at Intertek in Lachine, Quebec

I.D REPORT ORGANIZATION

This report includes summaries of all data necessary to determine compliance with the regulations. Raw data, calibration records, intermediate calculations, drawings, specifications and other supporting information are contained in appendices to this report.

II. SUMMARY

II.A PRETEST INFORMATION

A sample was submitted to Intertek directly from the client. The sample was not independently selected for testing. The test unit was handed to the Intertek representative at SBI laboratory located in St-Augustin-de-Desmaures, Quebec on June 25th, 2013. The unit was inspected upon Arrival on testing site and found to be in good condition. The unit was set up following the manufacturer's instructions without difficulty.

Following assembly, the unit was placed on the test stand and instrumented with thermocouples in the specified locations. Prior to beginning the emissions tests the unit was operated for a minimum of 10 hours at high-to-medium burn rates to break in the stove. The unit was found to be operating satisfactory during this break-in. The 10 plus hours of pre-burning were conducted during 95 consecutive R & D runs performed by the manufacturer immediately preceeding the dates of the testing reflected in this report. The fuel used for the break-in process was dimensional Douglas Fir lumber.

Following the pre-burn break-in process the unit was allowed to cool. The unit's chimney system and laboratory dilution tunnels were cleaned using standard wire brush chimney cleaning equipment. On June 21st, 2013 the unit was set-up for testing.

II.B INFORMATION LOG

TEST STANDARD

From June 25th, 2013 through to June 28th, the unit was tested for EPA emissions.

Deviation from Standard Method

No deviations from the standards were performed, however, only the applicable sections from each standard were used during all testing.

II.C SUMMARY OF TEST RESULTS

RUN #1 (June 25, 2013) Air control was fully opened and was set at full closed position at 5 minutes. Burn time was 190 minutes for a burn-rate of 1,05 kg/h. The fuel was loaded by 40 seconds and the door was left partially opened and closed by 125 seconds. The blower was off for the full duration of the test. This run was invalidated as the proportionality was not maintained within acceptable limits.

RUN #2 (June 26, 2003) Air control was fully opened and closed at 5 minutes. Burn time was 200 minutes for a burn-rate of 0,977 kg/h. The fuel was loaded by 40 seconds and the door was left partially opened and closed by 125 seconds. The blower was off for the first 30 minutes of the test and at minimum speed for the reminder of the test.

RUN #3 (June 26 , 2013) Air control was fully opened. Burn time was 100 minutes for a burn-rate of 2,20 kg/h. The fuel was loaded by 45 seconds and the door was closed by 55 seconds. The blower was off for the first 30 minutes of the test and at minimum speed for the reminder of the test.

RUN #4 (June 27, 2013) Air control was fully opened and closed at 5 minutes. Burn time was 200 minutes for a burn-rate of 0,997 kg/h. The fuel was loaded by 80 seconds and the door was left partially opened and closed by 125 seconds. The blower was off for the first 30 minutes of the test and at minimum speed for the reminder of the test.

RUN #5 (June 27, 2013) Air control was fully opened and set to 1/3 (flat bar 1/2") at 4 minutes. Burn time was 150 minutes for a burn-rate of 1,348 kg/h. The fuel was loaded by 45 seconds and the door was closed by 50 seconds. The blower was off for the first 30 minutes of the test and at minimum speed for the reminder of the test.

RUN #6 (June 28, 2013) Air control was fully opened and closed at 5 minutes. Burn time was 190 minutes for a burn-rate of 1,029 kg/h. The fuel was loaded by 60 seconds and the door was left partially opened and closed by 145 seconds. The blower was off for the full duration of the test.

II.D SUMMARY OF OTHER DATA

	EIVIISSIUN	3				
Run Number	Test Date (mm/dd/yyyy)	Burn Rate (kg/hr)	Emission Rate (g/hr)	Adjusted Emission Rate (g/hr)	Heating Efficiency (% HHV)	Heating Efficiency (% LHV)
1 ^{*1}	06/25/2013	1.050	3.09	4.64	65.2	70.4
2	06/26/2013	0.977	1.49	2.54	65.0	70.2
3	06/26/2013	2.200	1.79	2.94	61.9	66.9
4	06/27/2013	0.997	1.51	2.56	63.4	68.5
5	06/27/2013	1.348	1.34	2.32	64.6	69.9
6 ^{*2}	06/28/2013	1.029	1.86	3.06	61.6	66.6

EMISSIONS

*1: Run 1 not retained for Emission calculation purposes based on the proportionality not maintained within acceptable limits.

*2: Run 6 was conducted as a fan confirmation test and is therefore not included in the weighted average.

WEIGHTED AVERAGE CALCULATION

Test No.	Burn Rate	(E) Average Emission Rate g/hr	Heat Output (Btu/hr)	Probability	(K) Weighting Factor	(KxE)
2	0.977	2.540	11780.86	0.3561	0.3769	0.9592
4	0.997	2.560	12022.03	0.3769	0.2966	0.7607
5	1.348	2.320	16254.45	0.6526	0.5591	1.2966
3	2.200	2.940	26528.07	0.9360	0.3474	1.0237
				Totals:	1.57992	4.0401
			Weighted	average em	ission rate:	2.5572

TEST FACILITY CONDITIONS

	Room	Room	Baro.	Baro.	R.H.	R.H.	Air	Air
Run	Temp.	Temp	Pres.	Pres.	к.п. %	к.п. %	Vel.	Vel.
Run	°F	°F	In. Hg	In. Hg	before	after	Ft/min	Ft/min
	before	after	before	after	Delote	allei	before	after
1		Data	not retai	ined for	Emissio	on calcu	lation	
2	83.34	80.43	29.91	29.85	78	81	<50	<50
3	81.4	83.62	29.91	29.91	81	91	<50	<50
4	78.39	79.37	29.85	29.88	93	82	<50	<50
5	78.66	89.3	29.91	29.9.1	84	86	<50	<50
6	73.50	81.17	29.76	29.68	93	93	<50	<50

DILUTION TUNNEL FLOW RATE MEASUREMENTS AND SAMPLING DATA (5G-3)

()	· U -U)							
Run	Burn Time	Velocity	Volumetric Flow Rate	Total Temp.		ume nple		culate i (mg)
No.	(min)	(ft/sec)	(dscf/min)	(°R)	1	2	1	2
1	190	7.54	141.188	562.9	28.825	27.923	10.7	10.0
2	200	7.45	141.451	558.5	30.685	31.087	5.5	5.4
3	100	7.89	133.545	625.3	15.117	14.930	3.2	3.5
4	200	7.35	139.098	559.4	30.635	30.031	5.7	5.3
5	150	7.58	139.145	577.4	22.776	23.376	3.9	3.5
6	190	7.34	139.152	556.4	29.066	29.125	6.4	6.6

	Sample	Ratios	Total Emis	ssions (g)	%	% Deviation
Run No.	Train 1	Train 2	Train 1	Train 2	Deviation	or 7.5% of 7.5 grams*
1	930.650	960.710	9.958	9.607	1.49	1.87
2	921.957	910.040	5.071	4.914	1.30	0.88
3	883.409	894.488	2.827	3.131	4.23	3.33
4	908.095	926.379	5.176	4.910	2.19	1.50
5	916.406	892.890	3.574	3.125	5.56	3.44
6	909.614	907.788	5.822	5.991	1.19	0.97

DILUTION TUNNEL DUAL TRAIN PRECISION

*= As described in Method 5G-3 section 16.2.5

GENERAL SUMMARY OF RESULTS

Run No.	Burn Rate (kg/hr)	Change In Surface Temp (°F)	Initial Draft (in/H ₂ O)	Run Time (min)	Average Draft (in/H ₂ O)
1	1.050	-29.00	0.035	190	0.047
2	0.977	22.44	0.035	200	0.045
3	2.200	85.96	0.060	100	0.072
4	0.997	63.54	0.040	200	0.047
5	1.348	98.06	0.050	150	0.059
6	1.029	-2.32	0.035	190	0.049

III. PROCESS DESCRIPTION

III.A TEST SET-UP DESCRIPTON

A standard 6" diameter single wall pipe and insulated chimney system was installed to 15' above floor level. The unit controls were set to the lowest setting during the test.

III.B AIR SUPPLY SYSTEM

Combustion air enters at front of the firebox through an opening at the top of the firebox. This air is controlled by a sliding damper, which covers the inlet hole. The lever is located just above the door. All gases exit through the 68" flue

IV. SAMPLING SYSTEMS

IV.A. SAMPLING LOCATIONS

Particulate samples are collected from the dilution tunnel at a point 23 feet from the tunnel entrance. The tunnel has two elbows and two mixing baffles in the system ahead of the sampling section. The first 10 feet of the sampling

section is a 10 inches diameter pipe and the remaining is made of an 8 inches diameter pipe. Tunnel velocity pressure is determined by a standard Pitot tube located 48 inches from the beginning of the sampling section. The dry bulb thermocouple is located six inches downstream from the Pitot tube. Tunnel samplers are located 48 inches downstream of the Pitot tube and 36 inches upstream from the end of this section.

Stack gas samples are collected from the steel chimney section 8 feet \pm 6 inches above the scale platform. (See Figure 1)

Exhaust Blower 10'Mixing baffles 10 Inch pipe 12' Tube ñį 망망 Tunnel dry bub Flue teno e probe Stack sample probe S Tunnel Sample Probes Baffle 0.0 ò Damper cale

IV.A.(1) DILUTION TUNNEL

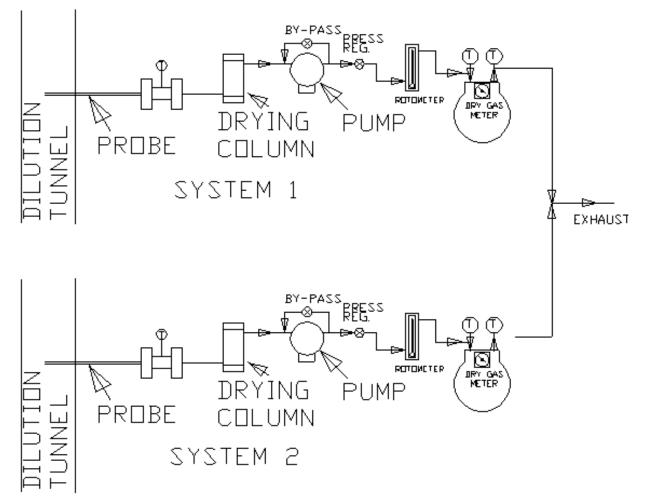


Figure 2

V. SAMPLING METHODS

V.A. PARTICULATE SAMPLING

Particulates were sampled in strict accordance with EPA Method 5G-3. This method uses two identical sampling systems with Gelman A/E 61631 binder free, 47-mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run.

VI. QUALITY ASSURANCE

VI.A. INSTRUMENT CALIBRATION

VI.A. (1). DRY GAS METERS

At the beginning and conclusion of the test program, the dry gas meters were checked against Intertek's standard reference dry gas meter. Three runs were made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix D.

An integral part of the post test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressurizing the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated annually by an external recognized calibration agency

VI.A.(2). STACK SAMPLE ROTAMETER

The stack sample rotometer is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotometer in series with one of the dry gas meters for 10 minutes with the rotometer at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

VI.A.(3). GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a five-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

VI.B. TEST METHOD PROCEDURES

VI.B.(1). LEAK CHECK PROCEDURES

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pre-test and post-test leak checks are conducted with a vacuum of 5 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During these tests, there was typically no vacuum

VI.B.(2). TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.

VI.B.(3). PM SAMPLING PROPORTIONALITY (5G-3)

Proportionality was calculated in accordance with EPA Method 5G-3. The data and results are included in Appendix C.

VII. CONCLUSION

These tests demonstrate that this unit is an affected facility under the definition given in the regulation. The weighted average emission rate of 2.55 g/hr has been achieved.

VII.A RESULTS AND OBSERVATIONS

The Model CW2500 Solid Fuel insert has been found to be in compliance with the applicable performance and construction requirements of the following criteria: EPA Method 28 "Certification and auditing of wood heaters" and Method 5G Determination of particulate matter emissions from wood heaters."

INTERTEK TESTING SERVICES NA

per Reported by:

Claude Pelland, P.Eng. **Test Engineer**

Reviewed by:

John D. Voorhees

John Voorhees, Operations Manager.

Appendix C: Pre-Burn Documentation

.

Date: June 4th, 2013 Frimary control setting: Categorie 2

238.20.9 315.5 83.11 100.2 314.261.9 323.6 76.22 76.33 89.47 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 76.11 89.49 89.41 76.11 89.49 89.41 89.41 89.41 76.11 89.49 89.41 89.41 89.41 89.41 89.41 89.41 89.41 89.41 89.41 89.41 89.41 89.41 89.41 76.49 86.31 76.49 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 86.31 76.40 87.41 76.40 87.41		250.9	261.1	340.7	261.1 340.7 79.73 102	102.1		282 275.0	250.8	76.07	75 98	76.95	14 24	76.03		0.033	to our
318.3 388.9 392.4 64.51 96.95 314 25.1 56.35 16.96 76.35 76.36 86.37 76.34 85.97 76.35 0.051 404.1 238.7 232.7 86.45 113.7 56.05 338.6 234.7 76.36 86.37 76.34 85.97 76.32 0.061 404.1 252.2 86.4 113.7 56.05 238.17 76.59 85.31 76.49 86.31 76.43 0.061 474.1 252.1 36.1 26.05 23.44 21.44 76.75 76.79 85.31 76.67 0.061 376.1 48.11 113.2 55.3 124.1 124.7 77.41 76.35 76.75 0.063 376.1 48.11 81.12 104.5 31.12 21.14,7 77.41 76.35 76.76 0.063 376.1 48.1 104.5 31.12 21.14,7 77.41 76.31 85.41 76.77 0.063				315.5	83.31	100.2			323.6	76.42	76.13	80 08	70 52	RS Of	76,06	500 U	01.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				292,4	84,51	98,95			340,5	76,73	76,33	83.47	76.17	82,86	76.15	0.051	1.52
484.1 259.9 315.1 84.4 113.7 434.7 260.5 2.44 7.17 76.59 85.71 76.49 86.11 76.45 0.067 502.1 212.2 334.5 83.4 1112.2 555.3 313.4 71.65 76.59 87.76 76.65 0.063 494.9 276.4 366.1 84.11 112.2 555.3 313.4 71.65 76.79 87.76 76.65 0.063 370.2 230.1 44.8 84.7 30.45 314.4 71.75 76.91 87.76 76.65 0.063 370.6 44.6 39.64 49.67 30.44 71.47 76.91 87.76 76.95 0.063 370.6 413.2 81.66 95.66 31.4 33.14 77.41 76.91 87.76 76.91 0.063 370.1 413.2 81.06 76.91 87.91 76.91 87.91 76.91 0.063 370.1 380.1 31.10		3'1	288,7	292,7	86,53	105,8	348,6	243,9	339,7	76,96	76,46	84,57	76,34	83.97	76.32	0.062	6.51
502.1 262.2 364.5 85.42 115.9 505.4 281.5 $77,17$ $76,07$ $87,5$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,57$ $76,67$ $70,67$		4,1	259,9	325,2	84,4	113,7	434,7	260,5			76,59	85,21	76,49	86,31	76,45	0,067	5,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2'1	262,2	361,5	83,42	115,9	\$05,4	281,5	222,5	11,17	76,67	5'18	76,59	87,76	76,55	0,067	3,64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6,9	276,4	396,1	86,11	112,2	525,3	303,4	216,2	77,25	76,79	87,63	76,67	87,77	76,62	0,063	2,59
323.9 301.6 42.4.1 B3.19 99.46 456.7 32.4.1 11.07 $77,47$ $76,91$ 85.38 $76,76$ 84.7 $76,79$ $0,049$ 300.6 310.1 413.2 82.77 39.46 456.2 354.4 123.4 $77,49$ $76,96$ 84.58 $76,79$ $0,049$ 255.1 311.7 413.2 82.77 96.07 360.6 315.4 123.49 $77,49$ $76,96$ 84.58 $76,97$ $0,049$ $0,043$ 256.3 310.405.5 86.6 95.86 313.10 123.79 $177,47$ $77,10$ $81,97$ $76,97$ $81,37$ $76,99$ $0,043$ 271.9 300.1 389.1 85.67 310.2 320,17 $77,47$ $77,19$ $81,38$ $76,97$ $76,97$ $76,97$ $76,97$ $76,97$ $70,41$ 271.9 380,11 380,12 227,9 77,71 77,19 $81,46$ 77,01 $77,97$ $77,97$ 7	14:11 371	6,2	290,1	418,7	82,78	104,5	488,7		2,915 916	77,34	76,82	86,55	76,69	86,24	76,66	0,056	2
300.6 310.1 0.21 0.64 9.64 39.1 322.9 123.4 77.49 76.96 84.58 76.79 0.043 235.1 311.2 413.1 82.78 96.07 360.6 315.4 123.4 77.49 77.96 81.96 76.97 0.043 276.5 310.4 56.07 360.6 315.4 124.9 77.49 77.92 81.26 76.92 0.043 276.5 300.1 389.1 80.51 227.9 77.79 81.06 76.97 60.43 0.043 270.4 382.1 81.49 331.1 305.1 177.47 77.10 81.96 76.97 0.043 279.4 370.1 85.61 91.46 310.1 227.9 77.76 81.96 76.91 77.91 0.043 256.5 287.6 77.57 77.16 81.96 77.51 77.91 77.91 77.91	14:21 32	3,9	301,6	424,1	81,15	99,46	436,2	324,1	216,7	11/11	76,91	85,38	76,76	84,7	76,75	0,049	1,69
285.1 311,2 413,1 8,7,1 96,07 360,6 315,4 124,9 77,40 77,40 87,7,12 81,14 76,87 0,043 276,9 310,405,5 86.6 95,86 331,2 305,1 227,9 77,41 77,03 81,05 76,92 81,35 76,91 0,041 276,3 300,1 389,1 85,62 94,45 331,2 305,1 277,9 77,41 77,03 81,05 76,91 0,041 256,3 300,1 389,1 85,62 94,45 312,9 30,2 229,1 77,41 77,03 81,61 76,91 0,041 256,5 287,6 310,1 293,5 229,13 77,71 81,65 76,91 0,041 256,5 287,6 77,71 81,66 76,93 81,31 77,01 81,01 256,5 277,9 77,71 81,66 76,91 77,11 77,01 81,01 77,11 77,01 81,01 77,11	14:31 30	9'0	310,2			98,47	1'16E	322,9	223,8	24.47	76,96	84,58	76,84	83,88	76,79	0,045	1,5
276.9 310.405.5 86.6 95.86 343.310,9 228.77,32 77,03 81,05 76,85 65,82 0,042 271.9 305.397,4 82.8 93,49 331,2 306,1 277,9 77,41 77,08 81,65 76,91 0,041 256.3 300,1 389,1 85,62 94,45 332,9 301,2 279,9 77,47 77,12 81,61 76,97 82,33 76,91 0,041 256.5 287,5 377,9 300,1 389,1 85,62 91,49 331,1 293,5 279,1 77,47 77,12 81,61 76,97 0,041 256.5 287,5 777,5 77,16 81,61 77,10 81,01 77,10 81,01 77,01 0,041 256.5 287,5 77,75 77,12 81,45 77,12 81,45 77,12 81,41 77,01 0,041 256.5 77,75 77,12 81,45 77,12 81,45 77,12 0,041 <td>14:41 28</td> <td>5,1</td> <td>311,2</td> <td>413,2</td> <td></td> <td>95,07</td> <td>360,6</td> <td>315,4</td> <td>224,9</td> <td>61'11</td> <td>77,00</td> <td>\$1,74</td> <td>76,92</td> <td>83,14</td> <td>76,87</td> <td>0,043</td> <td>1,33</td>	14:41 28	5,1	311,2	413,2		95,07	360,6	315,4	224,9	61'11	77,00	\$1,74	76,92	83,14	76,87	0,043	1,33
Z71.9 305 397.4 8.28 93.4.9 331.1 305.1 277.9 77.48 87.8 76.91 6.041 266.3 300.1 389.1 85.62 94.45 332.9 301.2 229.1 77.47 77.12 87.61 76.91 0.041 266.3 300.1 389.1 85.62 94.45 322.9 301.2 229.1 77.47 77.12 87.61 76.97 87.32 76.99 0.041 266.3 300.1 389.1 85.62 94.45 330.2 299.3 227.9 77.5 87.53 77.01 0.04 266.5 287.5 277.9 77.56 77.79 87.45 77.01 0.04 266.5 287.6 77.56 77.79 87.46 77.71 87.05 77.01 0.04 265.5 279.1 299.5 225.6 77.56 77.26 87.05 77.11 0.09 245.4 346.7 73.01 81.4 77.26 87.32 </td <td>14:51 270</td> <td>6'9</td> <td></td> <td>310 405,5</td> <td>86,6</td> <td>95,86</td> <td></td> <td>275</td> <td>N</td> <td>2E,77 82</td> <td>77,03</td> <td>81,05</td> <td>76,85</td> <td>82,6</td> <td>76,82</td> <td>0,042</td> <td>1,13</td>	14:51 270	6'9		310 405,5	86,6	95,86		275	N	2E,77 82	77,03	81,05	76,85	82,6	76,82	0,042	1,13
256,3 300,1 389,1 85,62 94,45 322,9 301,2 229,1 77,47 77,12 82,61 76,97 82,32 76,99 0,041 256,3 234,5 382,49 92,67 316,6 297,3 227,9 77,5 77,16 82,53 77,01 0,04 256,5 287,6 372,9 84,24 92,91 310,1 293,5 226,5 77,96 82,46 77,01 0,04 256,5 287,6 372,9 84,24 92,91 310,1 293,5 226,5 77,96 82,46 77,01 0,04 256,5 287,6 77,56 77,26 82,46 77,01 82,66 0,041 256,5 279,1 289,2 225,6 77,56 77,28 82,11 77,06 0,039 245,3 279,1 81,45 77,16 81,46 77,19 81,48 77,15 0,005 235,4 77,46 77,28 77,21 81,46 77,27 </td <td></td> <td>1,9</td> <td></td> <td>305 397,4</td> <td>82,8</td> <td>93,49</td> <td>331,2</td> <td>305,1</td> <td>227,9</td> <td>17,41</td> <td>77,08</td> <td>87.8</td> <td>76.92</td> <td>82,35</td> <td>1691</td> <td>0,041</td> <td>1,01</td>		1,9		305 397,4	82,8	93,49	331,2	305,1	227,9	17,41	77,08	87.8	76.92	82,35	1691	0,041	1,01
263,8 234,5 382,8,49 92,67 315,6 297,3 17,5 77,16 82,53 77,04 81,2 77,01 0,04 256,5 287,6 372,9 346,7 32,9 346,7 77,06 82,43 77,01 0,03 256,5 287,6 372,9 346,7 32,9 340,1 293,5 226,5 77,54 77,19 82,46 77,01 77,01 0,03 245,3 279,1 362,6 83,67 91,9 301,3 289,2 225,4 77,58 81,46 77,19 81,46 77,11 0,039 245,3 279,1 362,6 291,3 301,3 289,2 225,4 77,58 81,46 77,19 81,46 77,11 0,039 235,4 279,4 77,38 81,2 77,11 81,98 77,15 0,035 235,4 244,1 333,3 83,19 20,16 279,1 219,5 77,16 77,19 81,48 77,15 0,035 231,4 244,1 333,3 82,19 77,31 81,46 <t< td=""><td></td><td>6,3</td><td>300,1</td><td>389,1</td><td>85,62</td><td>94,45</td><td>322,9</td><td>301,2</td><td>229,1</td><td>TA, TT</td><td>77,12</td><td>82,61</td><td>76,97</td><td>82.32</td><td>76.99</td><td>0.041</td><td>0,81</td></t<>		6,3	300,1	389,1	85,62	94,45	322,9	301,2	229,1	TA, TT	77,12	82,61	76,97	82.32	76.99	0.041	0,81
Z56,5 287,6 372,9 84,24 92,91 310,1 295,5 77,54 77,19 82,45 77,09 82,11 77,06 0,039 245,3 279,1 362,6 83,67 91,9 301,3 289,2 225,4 77,58 77,22 82,38 77,14 82,05 77,11 0,039 245,3 279,1 362,6 301,3 289,2 225,4 77,58 77,22 82,38 77,11 0,039 235,9 264,8 346,7 83,52 91,9 301,3 289,2 219,5 77,58 77,38 82,42 77,15 0,035 235,4 254,1 333,3 83,19 90,88 289,3 281,5 77,46 77,38 82,05 77,15 0,035 231,6 254,1 215,9 77,46 77,31 81,92 77,26 0,035 231,6 345,7 313,9 82,46 77,27 81,96 77,27 0,035 231,6 244,1 77,37 81,96 77,37 81,97 77,27 0,035		3,8	234,5		382	92,67	316,6	297,3	227,9	217.5	77,16	82,53	77,04	82,2	10,77	0.04	0.68
245,3 279,1 362,6 83,67 91,9 301,3 289,2 225,4 77,58 77,22 81,38 77,14 82,05 77,11 0,039 235,9 244,8 346,7 83,52 91,48 289,3 281,2 219,5 77,65 77,28 82,2 77,19 81,81 77,15 0,035 231,5 244,8 346,7 83,52 91,48 289,3 281,2 219,5 77,65 77,38 82,2 77,15 0,035 231,5 244,1 333,3 63,19 90,88 279,6 275,1 215,9 77,16 81,95 77,26 0,035 220,6 244,7 77,11 77,37 81,95 77,27 0,035 217,2 207,6 77,46 77,46 77,39 81,91 77,27 0,035 217,2 207,6 77,46 77,39 81,94 77,27 0,033 217,2 207,6 77,46 77,49 81,94 77,27 0,033 217,2 207,6 77,46 77,49 81,91 <		5'9	287,6	372,9		92,91	310,1	298,5	226,5	77,54	91,17	82,46	77,09	82,11	77,06	0,039	0,49
235,9 246,8 346,7 83,52 91,48 289,3 281,2 219,5 77,58 82,2 77,19 81,82 77,15 0,035 231,6 254,1 333,3 83,19 90,88 279,6 275,1 215,9 77,48 77,33 82,18 77,26 81,68 77,22 0,035 231,6 254,1 333,3 83,19 90,88 279,6 275,1 215,9 77,48 77,33 81,98 77,22 0,035 223,6 243,7 313,6 82,43 90,48 279,1 215,4 77,71 77,33 81,95 77,23 0,035 223,6 243,7 313,6 77,28 90,46 77,27 0,035 217,2 237,4 307,6 84,91 90,35 261,8 263,8 207,6 77,41 81,9 77,27 0,033 217,2 237,4 307,6 84,91 90,36 261,7 263,8 207,6 77,41 81,9 77,27 0,033 217,2 237,4 307,6 84,91 90,36		E'S	279,1	362,6		91,9	E'10E	289,2	225,4	77,58	77,22	82,38	77,34	82,05	11.11	0,039	65.0
231.6 254,1 333,3 63.19 90,68 279,6 275,1 215,9 77,68 77,33 82,18 77,26 81,63 77,22 0,035 223.6 24-6,7 319,0 62,43 30,16 276,1 215,9 77,48 77,33 81,95 77,23 81,95 77,25 0,035 223.6 24-6,7 34,6 77,71 77,71 77,73 81,95 77,29 81,99 77,20 0,034 217,2 237,5 307,6 84,01 90,355 261,8 263,8 207,6 77,66 77,39 81,91 77,27 0,033 217,2 237,4 307,6 84,91 90,36 261,7 263,8 207,6 77,41 01,9 77,3 81,46 77,27 0,033 217,2 237,4 307,6 77,47 17,41 01,9 77,3 0,033		53	264,8	346,7		91,48	289,3	281,2	219,5	77,65	77,28	82,2	77,19	81,82	77,15	0,035	0,25
229,6 249,7 319,8 82,83 30,18 269,6 268,2 210,4 77,71 77,37 81,95 77,29 81,39 77,25 0,034 217,2 237,5 307,6 84,01 90,35 261,8 263,8 207,6 77,66 77,39 01,91 77,31 81,46 77,27 0,033 217,2 237,4 307,6 84,91 90,36 261,7 263,8 207,6 77,67 77,41 01,9 77,3 81,45 77,27 0,033		3	254,1	333,5		90,88	9'6ZZ	275,2	215,9	77,68	77,33	82,18	77,26	81,68	77,22	0,035	0,13
217,2 237,5 307,6 84,01 90,35 261,8 263,8 207,6 77,66 77,39 81,91 77,31 81,46 77,27 0,033 217,2 227,4 307,4 307,6 77,57 0,033		3.6	243,7	9'6TE		90,18	269,6	268,2	210,4	11211	75,77	81,95	82'11	81,39	11,26	0,034	20'0
217,2 237,4 307,6 84,91 90,36 261,7 263,8 207,6 77,67 77,41 81,9 77,3 81,45 77,27 0,033	22.	17	5'152	307,6		90,35	261,8	263,8	207,6	77,66	77,39	16'18	TE'LL	81,46	77,27	0,033	60'0-
	16:21 213	7,2	237,4	307,6		90,36	261,7	263,8	207,6	19'11	77,41	81,9	E'11	81,45	72,77	0,033	-0,1

Date: June 5th, 2013

Primary control setting: Categorie 2

The second se						2		A STATEMENT AND ALL	and the second second	A DECK OF A	TANK I TIM	ALL DOWN	ALL DOUDLES	NU MICH IN	THUNKI -	Innlemn
15:57	248,2	272,9	363,8	73,39	94,46	271,6	254,6	155,3	77,81	21,77	78,81	77,57	4172,5	17,57	0,038	8,58
10:01		297,5	L'LEE	783	95,19	3/167	245,1	9115	77,86	77,81	83,21	77,66	4173	17,64	0'04	7,78
16:17	273,5	292,2	306,9	85,18	95,35	288,4	232,9	324,3	78,05		78 83,79	77,38	417	5 77,86	0,046	7,19
16:27		311 292,7	305,6	82,25	96,03	6'228	232,3	m	124 78,17	78,113	84,51	78,03	4177,6	78,01	0,049	6,31
16:37	446,3	249,6	320,8	82,81	108,5	358,7	242,4	226,1	78,26	78,2	85,71	78,13	4180		0,065	5,14
16:47	495,6	252,8		350 83 09	115,3	161,3		265 206,8	78,3	78,25	82,58	78,19	4182,1	78,19	0,069	3,76
16:57		266,2		381 82,16	111,8	507,8	288,8	202,9	78,35	78,3	88,52	78,27	4183.7	78,21	0,054	2,64
17:07		265,1	405,6	81,82	105,3	484,9		309 206,7	78,36	78,32	87,83	78,27	4184,8	78,25	0,057	1.99
17:17	339,6	308,6	410,1	80,4	100,3	133,1	315,1	212,7	78,26	78,26	86,72	78,24	4185.7	78.2	0,051	1.69
17:27	307,6	322,4	407,1	82,41	98,04	392,4	312,7	219,3	78,26	78,27	85,6	78,25	4186,3	78,21	0,046	1.46
17:37	239,5	60	325 403,5	80,6	16'56	362,6	310,2	224,5	18'3I	78,28	84,93	78,25	4186.6	78.24	0.044	1.29
17:47		275 320,3	396,8	81,58	94,89	m	40 306,5	227,2	78,25	78,28	84,4	78,23	4186.7	78.22	0.043	1.13
17:57	265,2	311,7	384,5	82,35	19'86	\$22,9	300,6	226,3	78,29	78,27	88,95	78,26	4187	78,21	10'0	0,98
18:07	260,1	305,6		374 79,77	92,2	311,5	1,295,1	N	225 78,28	78,26	83.52	78.26	4187.1	78.25	0.04	0.84

0.67	0.51	0.37	0.25	0.14	0.04	-0,06	-0,07
0.04	0.039	6600	0,035	0,035	0.034	0,033	6000
78.72	18,23	78,2	78, 18	78, 14	78,16	78,12	78,1
E.787.5	4187.5	4187,5	4387,6	4187,7	1,7315	4187,8	4187,8
78.24	78,25	78,21	78,21	78,19	78,15	78,16	78,14
83.4	83,28	11,68	16,58	82,73	82,57	82,4	82,4
78.26	78,25	78,23	78,18	78,18	78,19	78,13	78,16
		78,23	78,27	78,18	78,22	78,18	78,17
225		222,1	218,6	213,5	207,6	201,8	201,8
231.3	3/282	234,6	1,972	270,7	262,2	253,5	253,5
2 304.1	208,9	7,93,7	284,8	274,1	263,5	253,2	253,1
6	31,6	105,82	75,02	89,65	89,5	10'68	89,06
80,02	79,65	79,97	80,47	80,83	81,6	81,69	81,71
365,3	358,3	351,4	342,7	330,7	316,9	302,7	302,7
298,8	290,4	2,81,5	270,8	5 259,8	249,1	238,6	238,5
18:17 256,2	18-27 252,6	18:37 245,4		18:57 220		9:17 212,2	

Date: June 10th, 2013 Primary control setting: Categorie 3

55	380.9	389.5	89.5 447.9	76.74	1377		417.0	171 205 5	THE THE TREAM TO THE TREAM	76.7	77 64	70.00	C.DEA	Louispin/
14,49	592,6	423.4	432.7	75,59	135.1	456.8		400.3	76.93	76.84	92.46	76.67	0.076	75
59	643,4			62'11	142,4	556,6	354,1	414.9	77.31	77.22	96.85	77.08	0.082	5.59
8	669,6	-	422 462,4	23,62	145,4	613,8	365,6	411,7	77,45	77,39	99,25	17.17	0.083	3.7
51	5,00,3	368,5	497,5	83,41	-1	36 602,8	3.84,8		236 77,6	1217	11/86	77,44	0,075	2,36
R	464,7	361,1	522,3	15'88	120,9	5	536 397,7	269,9	77,75	11.71	94,73	3/11	0,063	1,82
39	406,2	353,2	514,1	82,25	112,6	459,9	392,3	257,6	77,83	77,8	91,56	17,69	0,058	1,59
49	1,776		355 491,7	80,4	1,701	408,3	376,9	251,7	78,06	78,01	89,39	6"11	0,055	1.39
65	356,6	355,3	468,8	78,82	204,3	376,5	361,7		248 78,33	18,27	88,39	78,16	0,053	1,19
60	342,2	350,2	446,5	15'44	302,5	354,5	340,5	244,1	78,47	78,4	87,67	76,31	C,052	95'0
10	328,7	342,4	426,1	76,58	100,7	338,7	-	338 239,8	78,54	78,49	86,38	78,38	0,05	0,78
23	315,7	328,4	406,5	75,87	59,2		324 3	A,285,758	78,62	78,56	86,31	78,49	0,040	0,57
68	307,7	317,6	389,3	75,31	58,13	3115	m	316 230,4	78,65	78,63	85,98	78,55	0,047	O,35
49	295,6	306,4	371,9	74,86	97,15	299,5	905,9	225,3	78,75	78,72	85,75	78,65	0,046	0,19
59	288,6	297,2	355,4	74,41	96,24	288,4	296,6	219,8	78,76	26'84	85,49	78,69	0,045	
6	275,9	287,8	339,6	73,98	30'56	277,3	14	288 215,5	78,81	78,8	85,17	78,75	0,042	-0,18
60	275.8	7877	399.6	72 07	DC DC	0 515	4	100 140 0	10 01		01 10	10.40	0.000	

Date: June 11th, 2013 Primary control setting: Categorie 3

(IPI)							14		
Puid	9,61	8,32	6,67	5,07	3,72	2.67	8	1.62	1.4.1
EI DRAFT ::	0,052	1/0/0	0,075	0,077	0,076	0,071	0,064	0,059	0.066
IN DOM INL	75,24	76,35	76,58	75,74	76,86	76,95	77,02	77,08	21.12
TI PROBE TI	10'11	88,4	91,42	92,75	53,52	92,7	15'05	89,04	87.75
A DGM OU'	76,31	76,44	76,63	76,84	76,94	17,03	27,09	77,13	77 17
TL PROBE TE	27,27	86,79	89,34	67,12	51,77	91.54	50,12	88,48	86.8
EI DMG OU	76,41	76,4	76,63	76,8	76,94	17,04	51,77	12,17	77.26
BI DWG INFI	6 76,49	76,87	77,19	77,42	9 77,58	7,77	27,74	61'11	77.81
LE FIREBOX	E	420,4	421,6	407,8	23	263,3	253,7	249,2	245.2
TO FIREBOX	340,7	324,3	320,9	332,3	57 350,9	367,8	11 379,2	381,5	372.4
N THREBOX	1/18E	339,2	486,2	556,8	15	552,2	68 51	461,2	409.6
CILDER DUTIO	118,9	123,4	129,3	133,8	131,2	126,5	=	3117,6	105.9
HEBOX B/ HREBOX BI AMBIANT : DILL	75,45	72,48	73,95	76,1	117'61	78,34	78,53	78,13	78 76,62
B/ HREBOX	471.9	440,8	426,7	445,9	471,8	488,7	497,6	12 494,5	4
FIREBOX	390,7	509 419,4		396,8	12	1,155	137,3	15 A	171 340.9
s PLUE:	0.56 365,7			11:26 605,2	11:36 572,6	1:46 534,6	11:56 463,7	2:06 4	2:16 3

1,22	1,02	0,83	0,64	0,5	0,35	0,2	0,05	-0,08	-0,08	
0,052	0,05	0,049	20000	0,045	0,043	0,044	0,042	0,042	0,042	
77,26	21,77	4 77,16	77,12	77,13	77,12	77,14	77,15	77,23	77,22	
85,66	84,45	80	83,66	83,02	82,78	82,64	82,51	82,19	82,2	
31,18	77,22	77,17	21,17	77,15	77,18	77,16	77,23	77,22	77,26	
85,57	84,65	83,93	83,27	82,91	82,6	82,22	82,09	82,19	82,24	
77,28	77,29	12,77	77,26	77,28	12,17	77,26	1E'11	77,34	77,36	
66'11	61,77	77,66	77,62	77,61	77,62	77,64	69'11	317,76	37,78	
22	235,6	232,7	230,1	225,7	5 219.7	213,7	207,7	201,9	201,9	
1 357	341,4	328,2	317,6	306,7	2	284,5	276,2	270,7	270,6	
371	345,7	329,6	\$16,3	301.2	287,5	275,6	265,4	257,3	257,2	
102,3	1001	98,48	96,79	95,36	94,49	93,47	92,79	92,33	92,38	
74,97	74,67	74,25	73,61	74,86	74,86	74,47	74,18	73,95	73,99	
455,1	431,7	411,9			358,7	342,8	327,8	313,8		
2/202	324,8	318,4	307	~	2,83,5	275,2	266,9	1,922 259,1	259	
12:26 346,6	12:36 331,5	12:46 321,8	12:55 304,8	13:05 293,3	13:15 282,7	13:25 275,1	13-35 268,1	Ĩ	13:46 264,9	

Date: June 12th, 2013 Primary control setting: Categorie 2

		S	2										a la
174,3	174,3	ſ			624 76,9	78,82	79,77	78,65	78.94	78,64	10000	0,034	8,73
307,2	307,2	08			SI, 67 SIE	78,83	19'28	78,76	85,18	78,74	0,001	0,042	3,76
300,3	300,3	-00	10		79,97	79,04	85,06		79 84,64	78,98		0 0,052	7,04
165,1	165,1	121	2		14,67	79,18	86,34	79,16	86,34	79,14		0 0,064	5,76
460,4	460,4	-	73.1	226,2	79,8	62'62	88,16	79,23	88,44	52,97	0,001	0,069	4,33
		14,3	296,3		25,67	65,97	85'58	79,35	18,83	29,3	0,002	990'0	EO/E
		11	217.2		20,07	19,51	66'59	29/45	89,24	79,44	0,002	90'0	2,16
		52,9	327,4		80,08	19,57	88,09	79,49	60'10	79,48	0,001	0,052	1,71
		6,10	324,5		80,15	19'61	87,03	79,52	86,18	79,51	0,003	0,047	1,47
		55,8	E'LTE		80,14	79,65	86,07	79,56	85,29	79,55	0,001	0,045	1,3
345,2	345,2	25	111.4		211 80,18	79,63	85,43	79,59	84,65	79,57	0,003	0,043	1,11
		33,4	306,7		80,14	79,68	85,06	79,62	84,06	79,57	0,003	0,041	6'0
93,33 326,6		26,6	303,1	217,8	80,07	79,65	84,85	79,59	83,76	79,56	0,002	140'0	0,75
		20,8	299,9		80,01	59'61	84,59	79,59	83,62	79,57	0,002	0,042	0,57
		13,5	295,2		80,05	79,68	84,29	79,61	83,36	79,61	100'0	0,04	0,4
90,66 303,3			288.7		80,03	79,67	84,11	79,64	83,11	79,62	0,001	0,04	0,24
		19,3			20.02	29,63	83,83	79,59	82,81	79,6	0,004	0,039	0,12
28	28		10.5		acres .				11.10	and the second	a man	2000	-0.01
1 28		294 294 83,9	281,7 274,3		76'67 201	29,63	83,72	79,59	82,55	19,54	Thn'n	n'nav	

Date: June 17th, 2013 Primary control setling: Categorie 2

emps FLUE	X BV FIREBOD	X RI AMBIANT	: DILUTION	T RIREBOX T	CHREBOX	LE FIREBOX	BK DWG INT	E DMG OU	TL PROBE TL	EN DGM OU	TL PROBE T	EN DGM INL	ET DRAFT:	Poids(Ubl)
5:32 248,1	344,8	246,3 344,8 70,53 9	1'65	268,9	27	7 239,8	76,2	76,07	77,16	75,9	76,43	75,87	0,031	8.99
15:42 232,1	318,9	75,34	\$2,13	2695	1/151	2'662	76,52	76,16	81.6	76,05	81,39	76,01	0,036	8,48
5:52 213,5	E'182	77,85	38,76	263,2	237,3	310,4	76,83	76,35	31.61	76,29	66'08	76,26	0,035	8,14
6:02 294,5	263,6	80,58	98,45	358,8	221,9	308,4	77,11	76,35	8197	76.51	8152	76,47	0,049	7,59

Break-in period in R8/30/2013

Break-in period in R3/30/2013	
Break-in period in	R&/30/2013
Break-in period i	5
	Break-in period

6,54	5,26	3,96	2,9	2,29	1,94	1.73	1.54	1,37	1,16	6670	0,8	0,63	0.48	0.31	0,18	0,04	-0,07	-0,08
0,058	0,062	0,066	0,061	0,055	0,05	0,045	ENO.0	0,042	0,04	0/04	0,039	0,039	0,037	0,037	0,035	0,034	0,034	0,034
76,6	76,75	76,86	76,95	77,09	77,16	77,24	77,3	77,34	77,41	77,45	77,52	77,5	77,56	177,6	77,6	77.7	17.7	777,69
11,58	85,25	86,98	87,54	86,65	85,51	84,32	83,35	82,8	82,11	81,77	81,55	81.37	81,22		\$1,02	6'08	30,81	55,03
76,67	76,78	76,93	77,02	77,15	77,22	77,31	77,32	77,38	77,44	77,49	77,56	77,55	77,58	77/62	77,62	17.77	77.71	69'11
83,05	84,53	85,93	86,57	85,83	84,85	84,12	83,52	82,88	82,51	82,3	82.18	82,05	9618	1118	81,74	81.41	81.27	81.25
76,7	76,82	76,95	70,77	77,2	77,28	77,39	77,45	77,49	78 77,55	78 77,59	77,64	77,63	11,67	77,69	77,71	77,7%	77,82	61.TT
67'LL ST2	77,45	77,61	17,72	77,84	77,88	19,17	66'11	77,95	56		78,03	77,98	78,02	78,05	78,1	89 73,14	78,14	78,12
~		E,781	186,9	188,8	188,8	190,3	6'161	193,2	-	1,961	196,6	E(961	195,4	103,5	192,8	-	185,7	1,281
220,3	240,7	268,6	295,5	315,9	321,8	320,3	317,6	312,7	307,4	302,1	296,4	8/057 64	285,2	280,5	274,8	265,7	258,7	258,6
296,4	378,9	12 457,9	494,5	473,6	426,2	386,3	354,8	334,4	320,9	312,5	305,8	22	2007	283,2	274,6	263,5	255,2	255,2
100,7	107,1	1	1,001	103,7	58'66	96,8	54,52	92,49	91,45	11/05	30,25	89,46	19/88	38,04	38,08	87,04	36,72	86,74
70,97	197 81,41	\$1,24	80,74	80,31	79,56	80,32	78,71	75,69	75,62	75,26	74,58	74,259	73,95	73,38	75,M	74,08	73,93	73,98
264,9		334,5	369.1	393,9	401,9	400,6	393,3	384,5	376,4	370,3	364,5	357,2	348,4	339,9	330,4	317,6	6 306,3	306,2
215,3	219	236,9	257,3	277,5	288,3	288,3	286,1	286,1	284,8	280,8	276,9	272,2	265,5	259,8	253,1	242,7	0 236	235,9
16:12 378,2	16:22 431,3	16:32 476,8	16:42 438,9	16:52 376,4	17.02 336,1	17-12 302,5	17-22 286,4	17:32 275,5	27:42 268,7	17:52 263,5	18:02 200,9	1812 253,1	18-22 246,4	18:32 240,8	18:42 230,7	18:52 222,1	19:02 220	19:02 219,8

Date: June 18th, 2013 Primary control setting: Categorie 2

15,23 15,33 257,4															in the second se
	250 295,7	362,9	75,35	96,39	295,2	E'00E	275,4	78,49	78,44	79,95	78,27	78,5	78,29	0,036	9,73
		320	336 78,62	96,13	302,6	284,3	347,4	78,8	78,54	83.94	78,42	83,43	78,41	0,042	9,16
		8,01E	78,98	56,03	'n	321 265,3	353,4	79,08	78,71	84.94	78,61	84,25	78,6	0,051	8,37
		312,8	79,66	108,7	2'06E	262,4	341.6	16,97	78,88	\$6,58	78,82	86,09	78,78	0,065	6.92
16,03 489		339,2	81,3	2,911	460,3	281,7		13, P9, 51	79,01	88,39	78,95	16,78	78,92	0,066	5,49
		365,3	86,41	116,1	512,6		302 214,6	65'64	79,07	89,57	79,02	10,68	78,95	0,068	4.17
	276,2	392,7	87,37	112,8	522,2	322,3	206,3	79,67	79,12	89,54	79,03	10/68	78,99	0,064	3,15
		414,8	85,19	106,7	494,2	334,8	202,7	79,74	79,19	86,98	11'64	87,85	79,08	0,056	2,45
m	349 303,8	421,5	82,72	102,1	443,6	337,65	202,6	79,84	79,26	87,84	91,97	86,78	79,14	0,052	
	1,2 316,4	419,4	81,87	58,09	1,661	332,6		204 75,88	79,32	86,75	42'61	12'59	79,2	0,046	1.75
3 294,6		412,3	78,6	55,45	362,4	323,7	205,5	79,86	79,35	16'58	62(61	84,85	79,24	0,044	1.55
	282	603,3	27,75	84,78	338,2	314,7	207,2	79,82	79,35	85,03	16,67	34,11	22,07	0,042	1,38
		393,8	17,67	92,42	322,2	305,9	208,8	7,67	20,320	84,51	79,28	35,55	79,26	0,042	1,22
3 265,9		384,7	76,55	91,16	310,9		298	209 79,5	79,3	84,01	79,15	\$2.98	71,97	1100	104
	260	376,1	75,65	90,34	9,10E	291,3	208.5	79,52	79,29	83,67	79,15	\$2,72	79,16	0,039	0,85
17,53 253,9	1,482 6,	368,6	75,83	89,74	294,8	285,2		208 79,54	79,81	83,42	31,67	\$2,58	91,97	0,039	0.68
		359,5	75,03	88,78	286,3	278,2	204,3	79,48	79,27	AL,E8	79,14	\$2,23	79,14	0,037	0,54
			350 73,46	87,99	E'1/2		271 200,7	79,47	79,25	83,05	79,14	\$1,95	79,14	0,036	0,4
		340,6	73,37	87,24	268,5		264 196,7	79,41	79,19	82,74	79,08	81,74	80,97	0,035	0,28
		329,6	72,52	85,46	2/12	255,2	191,9	79,35	79,15	82,51	50,03	\$1,44	70,07	0,034	0,19
18,43	206 225,5	316,6	21,76	84°3	245,2	243,7	184,9	75,97	79,14	82,15	79,02	\$1,07	79,02	0,032	0,1

Q										
	-0.05	-0,05			Poids(LbI)	9.27	8.95	8.46	777	
0.03	0.027	0,028			ET DRAFT :	0,032	CEO.0	0.042	0.05	-
10.97	78,55	78,99			A DGM INL	39,98	80.15	80.45	80.67	and an
11,03 97	30.46	15'08			FIREBOX TX FIREBOX LE FIREBOX BI DMG INLET DMG OUTL PROBE TEN. DGM OUTL PROBE TEN. DGM INLET DRAFT	80,16	84,21	14.27	85.08	
17		78,96			UD MD G M OU	80,03	80,2	80,48	80.69	
81,85	81,5	81,51			TL PROBE TE	81,57	85,04	85,44	86.09	
79,12	29,09	11,97			ETDMG OU	80,13	80,26	80,55	80.74	
79,34	79,34	79,34			BI DWG INT	80,22	80,57	\$6'08	81,18	
2,772	168,1	168,1			LE FIREBOX	245,7	309,1	314,7	306,3	
231,6	218,9	218 218,8			TIC FIREBOX	278,7	257,8	2,755 237,2	226,7	
232,5	218,1	2			N T FIREBOX	258,2	253,9	RJ	282,8	
83,21	82,46	82,43			T: DILUTIO	101,6	50,75	10/16	59,65	
301 70,16	19'69	45'69			FIREBOX B/ FIREBOX RI AMBIANT : DILUTION 1	70,59	96 75,4	76,35	62'11	Contraction of the second
n	281,2	281,1		rie 2	By FIREBOX	252 328,3	N	57 264,6	248,7	-
Z12,B	199,3	199,2	m	ng: Catego	FIREBOX	22	268,1	N	252,2	
193,2	182,1	182,2	Diste: June 19th, 2013	Primary control setting: Categorie 2	FLUE:	15:32 257,6	15:42 215,8	15:52 252,3	16:02 312,2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18,53	19,03	19,03	Distecture	Primary	Temps	153	150	154	16:0	1 2 7

15:32 257,6		252 323.3	70.59	101.6	268.2	278.7	7457	60 DD	90.13	51 52	en na	PU 16	2682 2787 2457 80.25 Multi 2157 20.02 Multi 2582	0.000	
15:42 215,8	268.1		296 75.4	50.75	263.9	257.8	1.005	20157	96.08	SE hd	colon	DT'no	00'er	servin	100
15.52 252,3		257 264,6	76,35	10.48		2.755 237.2	314.7	20.94	80.55	95.64	BU ER	11/10	11/00	CPUU	040
16:02 312,2	252,2	248,7	92,77	58,65	282.8		306.3	8118	80.74	86.04	DAY LON	AS DR	20102	300	247
16:12 444,6	219,8	264,4	80,13	110,2	6'0EE	233,4	200,9	81,45	20,97	87,93	80.94	87.46	508	0.064	65
16:22	485 224,2	301,6	79,67	315,8	433,2	256,9	158,5	81,59	81,07	1'06	81.04	89.56	80.99	0.005	5.06
16:32 487,8	240,2	340,2	82,54	116,4	487,6		284 134,5	81,72	81,21	91,32	31,16	50,41	\$1,12	0.066	3.77
16:42 442,4		259 376,9	84,34	112,4	496,5	305,9	184,1	81,78	81,31	91.46	\$1,14	90,12	81,19	0.063	282
16:52 379,5	276,8	401,9	84,16	106,2	468,5	320,7	185,3	81,79	81,4	90,48	81.29	88.97	81,27	0.055	2.19
17:02 342,2	287,9	409,9	81,86	102,1	418,8	325,1	187,9	81,8	81,44	89,32	31,35	87,76	1E.18	0.05	181
17:12 316,3	298,2	407,8	80,84	59,02	384,6	323,2	192,4	81,74	81,49	88,4	81,36	86,72	EE'18	0.048	157
17:22 298,4	301,3	399,3	19,4	19'95	355,9	317,1	196,1	81,49	81,4	86,84	81,13	85,66	81,17	0,045	1.36
17:32 287,3	1(00E	391,2	77,85	94,84	335,9	311,1	199,1	81,34	81,28	85,91	81,02	85,04	81,08	0,043	1.19
17:42 278,1	295,5	384,6	76,89	93,55	322,1	305,7	201,3	81,29	81,27	85,35	30,96	84,61	81.04	0.042	1.01
17.52	272 203,6	378,6	75,53	32,55	312,7	300,5	202,6	81,16	81,18	84,113	16'08	84,19	80,94	0,041	0,82
18:02 266,8	283,2	370,8	74,98	91,65	304,5	295,4	202,5	81,1	81,12	84,52	80,8	84,03	69708	0,041	0,64
18:12 260,6		276 362,9	74,59	65'06	2,792	250,6		202 80,96	81,03	34,4	80,74	83,76	80.82	0.04	0.49
18:22 255,6		269 355,3	75,18	190,61	290,8	286,7	200,9	\$1,02		11/12 13	18'08	83,69	\$8,08	0,04	0.36
18:32 251,4	262,1	347,3	74,51	83,68	284,1	281.7	199,4	81.01	80.94	84,24	17.08	83,55	80.78	0,030	0.2
18:42	246 255,2	339,3	73,59		89 277,6	276,2	3,721	6'08	68'08	34,12	89'08	83.47	12'08	0,037	0.07
18:52 244,8	249,6		330 73,47	91,98	272,7	271,8	194,7	16'08	18,087	34,19	20,67	83.42	69.08	0.037	-0.09
18:52 245,2	249.5	329,9	73,49	89,16	272.6	271,8	194,7	80.93	80.89	84.2	\$0.65	85 30	80.71	0.038	-000

Break-In period in R8/30/2013

Appendix D: Calibrations

2

DIGITAL MEASUREMENT METROLOGY LABORATORY

A division of DIGITAL MEASUREMENT METROLOGY INC. 26 Automatic Road, Unit 4 Brampton, ON, Canada L6S SN7 TEL. (985) 790-9400 FAX. (985) 790-9266 Internet: www.dmm.ca E-mail. service@dmm.ca L-A-8 Accredited Cert# L1048-1 Calibration, Testing & Dim Insp

Units: kg

CALIBRATION CERTIFICATE

Description:	WEIGH	TSET	Calibration Date:	9/9/2011	Certificate:	51464
Asset Number:	SBI-190	V191	Property of:	SBI ST-AUC	JUSTIN	
Serial/Model Number:	N/A		Address:	250. De Cor	enhagee, Doors 10-12	2
Manufacturer:	TROEM	NER.	City/Prov/PC:	St-Augustin	de-Desmaures OC G	3A 2H3
Instrument Capacity:	5 kg to	10 kg	Country:	Canada		
Procedure:	CP34G		Method Used:	COMPARIS	ON	
Room Humidity:	39.95	Room Temp: 19.6 °C	Conformance Std	s: ISO/IEC	17025 2005	

CALIBRATION DATA

Asset #	Std/Nominal	As Found	As Left	Min	Max	Tolerance In Out	Tolerance	
381-190	5	5 0004	5.0004	4.9995	5.0005	~	± 0.13 g	
SBI-191	10	10.0006	10.0006	8.999	10.001	-	± 0.14 g	
and the second se				the second				

Remarks:

insported, cleaned and tosted using the mfg's opecs and procedures, customer's, national & international standards, or new procedure design. Measurement uncertainty is not considered when deciding camptance to the tolerance or specs. It is up to the user to make a judgment of conformity to the limits shown.

	CALIBRATION STA	NDARD(S) USED		Received Condition:
Traceable No. 41454	Asset Number DMML-2356075	Calibration Date 05-Oct-10	Date Due 05-Oct-11	In toterance.
1430567	DMML-21669	11-Jui-08	11-Jul-13	
1430567	DMML-21701	11-Jul-08	11-Jul-13	

Weights are accurate to class F tolerance.

Estimated measurement uncertainty is, at minimum, an accuracy ratio of 4:1, unless otherwise stated.

Reported uncertainties represent a 95 % confidence level assuming a normal distribution, with a coverage factor of k=2.

This calibration was performed in the lab and is traceable to the International System of Units (SI Units) through NIST or NRC. This report is covered by our accreditation.

Calibration of the instrument expires on September 09, 2012

The results shown above relate to the above calibrated instrumencequipment only. Copyright of this Certificate is owned by the issuing laboratory and may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

TECHNICIAN

ri Ridde

QUALITY APPROVAL

Christopher Riddle

END OF REPORT

Nana Mantey

Page 1 of 1

Certificale # 51454

METTLER TOLEDO

METTLER-TOLEDO, LLC

1900 Polaris Pkwy Columbus, OH 43240 1-800-METTLER

Mass Calibration Certificate

Customer Name:	Sbi	City:	Saint-Augustin-De-Dema
Address:	250 Rue Copenhague	State / Province:	QC
Purchase Order:	34985	Zip / Postal Code:	G3A 2H3
Measurement and Te	st Equipment Identification		
Serial Number:	B316239338	Date Received:	4/17/2013
Manufacturer:	Mettler-Toledo	Condition:	Excellent
Asset number:		Tolerance Class:	OIML E2
Environmental Co	onditions		
Temperature:	20.430 °C	Relative Humidity:	47.680 %RH
Barometric Pressure:	988.9080 hPa	Air Density:	1.1688 kg/m ³

This certificate is issued in accordance with the conditions granted by A2LA under Certificate number 1788.01, which is based on ISO/IEC17025. A2LA has assessed the measurement capability of the laboratory and its traceability to recognized national standards. All uncertainties in this certificate are reported at a 95% (k=2) confidence factor.

This certificate may not be partially reproduced, except with prior written permission of the issuing laboratory and A2LA.

Calibration Date:

04/17/2013

Next Calibration Due:

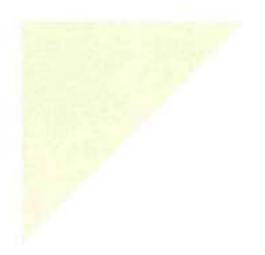
04/16/2014

Calibration Technician: Kathy Weatherbie

Signature: Vin

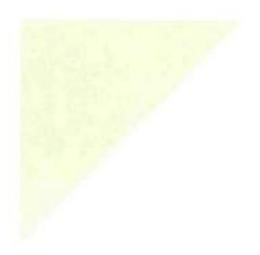
04/18/2013

Metrology Specialist


Date

Cert # 1788.01

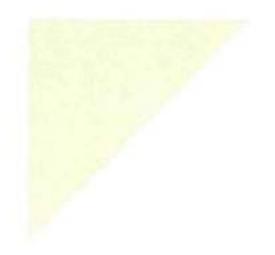
Page 1 of 5


As Found Data

Nominal Value&Suffix	Serial Number	True Mass (g)	Conv. Mass (g)	Uncertainty (mg, k = 2)	Tolerance (mg)	Density (g/cm³)	
100 mg	(B316239338)	0.1000032436	0.1000031492	0.0017	0.016	7.95	

As Left Data

Nominal	Serial	True Mass	Conv. Mass	Uncertainty	Tolerance	Density
Value&Suffix	Number	(g)	(g)	(mg, k = 2)	(mg)	(g/cm³)
100 mg	(B316239338)	0.1000032436	0.1000031492	0.0017	0.016	7.95



Comparators Used

#	Equipment Used	Serial Number	Equipment Type	Calibration Due
#6	: a5XL	B010016731	Automated Mass Comparator	08/31/2013

Comments

No Remarks

Definitions

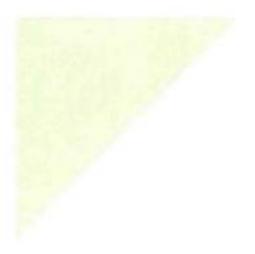
Nominal Value - The value as labeled on the weight or defined by shape in accordance with OIML R111 for milligram weights. The number within the parentheses after the nominal value is the serial number of the set to which the weight belongs.

True Mass - The mass value of the weight if measured in a vacuum.

Conventional Mass - For a mass at 20 °C, "Conventional Mass" is the mass of a reference standard of density 8000 kg/m³ which it balances in air with a density of 1.2 kg/m³. This value should be referenced when testing the accuracy of a weighing device using any of the nominal values contained in this certificate. The As Found results will equal the As Left in cases where no adjustment or replacement was required.

Uncertainty - All Uncertainty values are reported at 95% confidence level (k=2). The uncertainty value does not include a component for the affects due to magnetism.

Tolerance - The acceptable range of deviation (positive and negative) from the nominal value, including the uncertainty, as defined by ASTM and OIML for the respective classes.


Density - The assumed density of the material used by the manufacturer.

Calibration Process - The METTLER TOLEDO procedure used to obtain the measurement results. All procedures are based on SOPs as defined in NIST Handbook 145. The same process is used to obtain the As Found and As Left results.

OOT - The As Found measurement result combined with the uncertainty exceeded the tolerance for the specified weight class.

A - Weight was adjusted after As Found testing to within the appropriate tolerance class.

R - The received weight was replaced due to an out of tolerance condition and the weight was not adjustable or the weight for this nominal value was missing.

METTLER-TOLEDO, LLC

1900 Polaris Pkwy Columbus, OH 43240 1-800-METTLER

METTLER TOLEDO

Mass Calibration Certificate

This certificate may not be partially reproduced, except with prior written permission of the issuing laboratory and A2LA.

Calibration Date:

04/09/2013

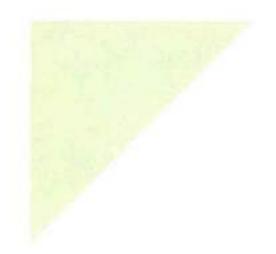
Next Calibration Due:

04/15/2014

Calibration Technician: Kathy Weatherbie

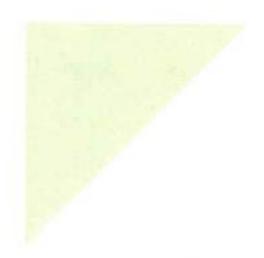
Signature: Nin y luca

04/16/2013


Metrology Specialist

Date

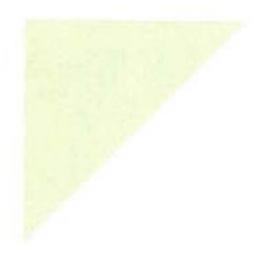
Page 1 of 5


As Found Data

Nominal Value&Suffix	Serial Number	True Mass (g)	Conv. Mass (g)	Uncertainty (mg, k = 2)	Tolerance (mg)	Density (g/cm³)	
200 g	(B316238717)	200.001163	200.000974	0.035	3.0	7.95	
10 g	(B316238717)	10.0000725	10.0000630	0.0078	0.20	7.95	

As Left Data

Nominal Value&Suffix	Serial Number	True Mass (g)	Conv. Mass (g)	Uncertainty (mg, k = 2)	Tolerance (mg)	Density (g/cm³)
200 g	(B316238717)	200.001163	200.000974	0.035	3.0	7.95
10 g	(B316238717)	10.0000725	10.0000630	0.0078	0.20	7.95



Comparators Used

#	Equipment Used	Serial Number	Equipment Type	Calibration Due
#11	: a200XL	B010016733	Automated Mass Comparator	08/31/2013

Comments

No Remarks

Definitions

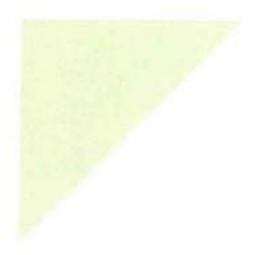
Nominal Value - The value as labeled on the weight or defined by shape in accordance with OIML R111 for milligram weights. The number within the parentheses after the nominal value is the serial number of the set to which the weight belongs.

True Mass - The mass value of the weight if measured in a vacuum.

Conventional Mass - For a mass at 20 °C, "Conventional Mass" is the mass of a reference standard of density 8000 kg/m³ which it balances in air with a density of 1.2 kg/m³. This value should be referenced when testing the accuracy of a weighing device using any of the nominal values contained in this certificate. The As Found results will equal the As Left in cases where no adjustment or replacement was required.

Uncertainty - All Uncertainty values are reported at 95% confidence level (k=2). The uncertainty value does not include a component for the affects due to magnetism.

Tolerance - The acceptable range of deviation (positive and negative) from the nominal value, including the uncertainty, as defined by ASTM and OIML for the respective classes.


Density - The assumed density of the material used by the manufacturer.

Calibration Process - The METTLER TOLEDO procedure used to obtain the measurement results. All procedures are based on SOPs as defined in NIST Handbook 145. The same process is used to obtain the As Found and As Left results.

OOT - The As Found measurement result combined with the uncertainty exceeded the tolerance for the specified weight class.

A - Weight was adjusted after As Found testing to within the appropriate tolerance class.

R - The received weight was replaced due to an out of tolerance condition and the weight was not adjustable or the weight for this nominal value was missing.

AIR LIQUIDE

CERTIFICAT D'ANALYSE

MONTREAL SPECIALTY GAS PLANT 11201 RAY LAWSON MONTREAL QC H1J 1M6

. .

. .

Client: QUEBEC 2230 BOUL, CHAREST O, STE-FOY QUEBEC QUEBEC G1N 2G3 CANADA

Date d'anaiyse: 25/11/2010 Code de produit: SPG-2MX0000729 Qualité: CERTIFIE Taille: 7 Raccord de sortie du robinet:CGA 350

 No de série:
 C0010195A

 No d'ordre de fabrication:
 10-SGM-3862

 Pression:
 10125 kPa (15°C)

 1500 psi (21°C)
 1500 psi (21°C)

 Volume:
 0,739 m3

 Date d'expiration:
 25/11/2013

700

19.1

1140

17.61

2.5

A. Spitter H.

120

1.145

6.54

. . .

COMPOSANTS	CONCENTRATION	RÉSULTAT D'ANALYSE
MONOXYDE DE CARBONE	1 % molatre**	0,996 % molaire
AZOTE	BALANCE	BALANCE

1.2 Analyse réalisée par. SAMIA AMRANI B.Sc.

÷4.

METHODE D'ANALYSE:

1.1611

42.4

24

11.64

1.1

-

La méthode d'anoiyse est basée sur le principe de la chromatographie de pliase gazeuse comme décrit dans les Instructions d'Opérations de Air Liquice Coreda. Solon les becoins on choisi préferentiellement en détecteur FID du TCD sivet une colonne capitaire du une rolenne rempte.

PRÉCISION ANALYTIQUE.

Les spécifications pour les concentrations rapponieus sont +/- 2% pour les constituants en cancentration supérieure à 0.5% et +/- 5% pour les constituants en concentration inférieure 0.5%. Saur indication contrains, la précision d'anaixe est indicade en pourcentrage du constituant. Dans cantains des les valeure pouvent change, en fonction de la nature, du namere et de la cuncentration des constituants de métange.

www.airliquide.ca

والهرفانية المحادث

Page 1 de 1 C10-SGM-3862-1 08/04/2011

CERTIFICAT D'ANALYSE

MONTREAL SPECIALTY GAS PLANT 11201 RAY LAWSON MONTREAL QC H1J 1M6

Client: QUEBEC 2230 BOUL CHAREST O. STE-FOY QUEBEC QUEBEC G1N 2G3 CANADA

Date d'analyse:	03/07/2009
Code de produit:	SPG-2MX0008101
Qualité:	CERTIFIE
Taille:	7AL
Raccord de sortie du n	obinet:CGA 580

No de série:	S-990055-E
No d'ordre de fabrica	tion: 09-SGM-2059
Pression:	13500 kPa (15°C)
and the second	2000 psi (21°C)
Volume:	1,0 m3
Date d'expiration:	03/07/2012

15.2

1.2. 13.97

> 1.1

> > 94.1

21

1. 1.

.

1185 3 2.48 12

用品 流行

SERVE

1996.52

1 1 H.

B. S. B. A. Barrell, M. B. Barrell, M. B. Barrell, M. Barrell, M.

27.0

· These states - - - -

COMPOSANTS

1.12

5.000

117.1

1200

* 1 **********

2998 14 2 1994

ST 6 1 1 10 22

£.,

COMPOSANTS	CONCENTRATION NOMINALE:	RÉSULTAT D'ANALYSE
DIOXYDE DE CARBONE	20 % motaire	19,8 % molaire
AZOTE	BALANCE	BALANCE

Ana Dar (Nound nau REDERIC GAGNON B.Sc.

METHODE D'ANALYSE:

La méthode d'analyse ost basés sur le principe de la chromatographie en phase gazouse comme décrit dans les Instructions d'Opérations de Air Liquide Carada. Selon les besolins on choisi préférentiellement un détenieur FID ou TCD avec une colonne capitalité ou une colonne remaine.

PRECISION ANALYTIQUE:

and - with

Los spécifications pour les concentrations rapportees sont: +/. 2% pour les constituants en concentration supérieure à 0.5% et +/. 5% pour les constituants en concentration supérieure à 0.5% et +/. 5% pour les constituants en concentration supérieure à 0.5% et +/. 5% pour les constituants en concentration supérieure à 0.5% et +/. 5% pour les constituants en peuvent changer en fonction de la nature, du nersière et de la concentration des constituants du mélange.

www.airliquide.ca

2110 (05/03) 82.

Page 1 de 1 C09-SGM-2059-1 08/04/2011

Claude Paré

De:	Douglas, Rob [Robert.Douglas@nrc-cnrc.gc.ca]
Envoyé:	26 avril 2011 17:45
A:	"john.voorhees@interlek.com"
Cc:	Claude Paré
Objet:	NMI standards and ISO 17025 MRA recognition

Dear John Voorhees,

M. Claude Paré, a Lab Technician with Stove Builder International Inc. (250, rue de Copenhague Saint-Augustin-de-Desmaures Québec, Canada, G3A 2H3) has asked me to contact you with documentation for their use, by telephone, of our National Research Council (NRC) talking clock as a reference standard in the calibration of stopwatches for the measurement of (SI) time intervals.

Our NRC talking clock announces the official time for Canada, either as NRC Eastern Daylight Time = UTC(NRC) - 4h, or

as NRC Eastern Standard Time = UTC(NRC) - 5h, depending on the season. These are defined identities, and this style of a verbal announcement from a National Institute of Metrology (NMI) has, in my long experience, never before required further documentation in the context of stopwatch calibration for time intervals. The start of the "beep" following each announcement is triggered by the UTC(NRC) signal. The UTC(NRC) signal is internationally compared in the highest level comparison amongst NMIs, primarily by continuous GPS measurements, sampled and verified every 5 days and published each month in the CIPM Key comparison CCTF-K(01.UTC:

http://kcdb.blpm.org/AppendixB/KCDB ApB result.asp?cmp idv=617&cmp cod=CCTF-

K001.UTC&search=1&cmp cod search=&page=1&met idy=8&bra idy=0&epo idy=0&cmt idy=0&ett idy org=0&cou c od=0 .

UTC(NRC), and time intervals derived from this time scale, are recognized

http://kcdb.bipm.org/AppendixC/TF/CA/TF_CA.pdf internationally by the signatories of the CIPM MRA:

http://www.bipm.org/en/cipm-mra/participation/signatories.html - in my opinion, this is the very highest and widest level of ISO 17025 recognition, and I must confess to being surprised by M. Paré's request.

I recommend this national standard widely for stopwatch calibration in Canada, for use within the uncertainties revealed by variations in repeated measurements that can quantify the overall variation from all the important sources of uncertainty (delay variations on the telephone network, reaction time variation, and the variation of the chronometer's rate). Thus I would be grateful if you would clarify for me what documentation about this standard you or your assessor believe is appropriate to meet the requirements of an ISO 17025 assessment.

Dr. Rob Douglas

Principal Research Officer	: Agent de recherches principal
Frequency and Time	: Fréquence et temps
Institute for National Measurement Standards	: Institut des etalons nationaux de mesure
National Research Council Canada	: Conseil national de recherches Canada
M-36, 1108	: M-36, 1108
1200 Montreal Road	: 1200 chemin Montréal
Ottawa, Canada KIA 0R6	: Ottawa, Canada KIA 0R6
Tel: (613) 993-5186	: Tál: (613) 993-5186
Fax: (613) 952-1394	: Tálácopieur: (613) 952-1394
rob.douglasfnrc-cnrc.gc.ca	: rob.douglas@nrc-cnrc.gc.ca
Government of Canada	: Gouvernment du Canada

Date: 2/8/2013

Equipment:	SBI-232	Temperature:	72 F
Accuracy:	0.01	R.H.:	19%
Reference:	Horloge parlante		

S.D.	0.00	%	
R.M.U.	0.00	%	
O.M.U	0.00	%	
	Ave A.D.	0.00	%
Standard	Reading	A.D.	
84360.0	84360.0	0.00	
	-		_

Clarka -

Technician: Claude Paré

Date: 2/8/2013

Equipment:	SBI-235	Temperature:	72 F
Accuracy:	0.01	R.H.:	19%
Reference:	Horloge parlante		

0.00 0.00 Ave A.D.	% % 0.00	%
Ave A.D.		ec.
and the second se	0.00	95
Reading	A.D.	
84360.0	0.00	
	84360.0	84360.0 0.00

Clarka -

Technician: Claude Paré

Temperature: R.H.: Equipment: SBI-199 & SBI-200 T1 (Flue) Annurado: 0.1 Accuracy: Reference: 58H096

s.p.	0.01	*		
R.M.U.	0.14	*		
D.M.U	1.74	*		
Concernance of the second	Ave A.D.	0.86	*	
standerd	Reading	A.D.		
70.0	69,40	0.86		
0.07	69.40	0.86		

ц.,	20
DV.	*
15	UN1

S.D.	0.00	读	
R.M.U.	0.07	×	
D.M.U	0.81	30	
	Ave A.D.	0.40	*
tandard	Reading	AD.	
150.0	149.40	0.40	
150.0	149.40	0.40	

.0.	0.00	%	
R.M.U.	0.03	*	
0.M.U	0.47	*	8
	Ave A.D.	0.23	2R
Standard	Reading	A.D.	
300.0	299.30	0.23	
300.0	299.30	0.23	

s.D.	000	28	
K.M.U.	0.02	*	
0.M.U	0.24	*	
	Ave A.D.	0.12	*
Standard	Reading	A.D.	
500.0	09/669	0.12	
500.0	699.40	0.12	

Vinent Relet

S.D.	0.00	ĸ	
R.M.U.	0.01	*	
O.M.U	0.16	*	
	Ave A.D.	0:08	×
Standard	Reading	AD.	
750.0	749.40	0.08	
750.0	749.40	0.08	

* *	
*	
0,04	38
A.D.	
	1249.40 0.05 1249.50 0.04

Equipment: SBI-199 & SBI-200 T2 (ambiant) 0.1 Accuracy: Reference:

581-096

Temperature: R.H.:

			8			
8	*	*	0.33	A.D.	0.37	0.23
0000	0.13	1/20	Ave A.D.	Reading	74.72	67.47
S.D.	R.M.U.	0.M.U	100	Standard	75.0	75.0

	La		
R.M.U.	20'0	*	
0.M.U	0.49	*	
	Ave A.D.	0.23	×
tandard	Reading	AD.	
150.0	149,60	0.27	
150.0	145.70	0.20	

	n'n	R	
c.	0.03	*	
	0.24	×	
	Ave A.D.	0.12	*
Standard	Reading	A.D.	
300.0	299.70	0.10	
300.0	299.60	0.13	

S.D.	0.00	*	
R.M.U.	0.02	*	
0.M.U	0.05	*	
	Ave A.D.	0.02	×
Standard	Reading	A.D.	
500.0	499.30	0.02	
\$00.0	499.30	0.02	

Vincent Peletier

2.0.	0.00	8	
R.M.U.	10.0	S.	
0.M.U	0.14	R	
Second Second	Ave A.D.	0.07	8
Standard	Reading	A.D.	
750.0	749.50	0.07	
750.0	749.50	0.07	

S.D.	00'0	*	
R.M.U.	0.01	*	
0.M.U	0.07	*	
a second and	Ave A.D.	0.04	8
Standard	Reading	A.D.	
1250.0	1249.40	0.05	
1250.0	1249.70	0.02	

the subsequences of the	COL TOO & COL TOO	
Equiponent:	NU2400 NO 007100	
	T3 (Dilution tunnel)	Temperature:
Accuracy:	0.1	R.H.:
Reference:	SBI-096	

S.D.	0.00	28	
R.M.U.	0.13	*	
0.M.U	0.72	*	
	Ave A.D.	0.33	35
Standard	Reading	A.D.	
75.0	74.74	0.35	
75.0	74.76	0.32	

5.D.	00/0		
R.M.U.	0.07	*	
0.M.U	0.49	*	
	Ave A.D.	0.23	25
Standard	Reading	A.D.	
150.0	145,60	0.27	
150.0	145.70	0.20	

5.0.	00.00	×	
R.M.U.	0.03	8	
O.M.U	0.21	R	
	Ave A.D.	0.10	*
Standard	Reading	A.D.	
300.0	299.70	0.10	
300.0	299.70	01.0	

S.D.	0000	*	
R.M.U.	0.02	*	
0.M.U	60'0	*	
	Ave A.D.	0.04	×
Standard	Reading	A.D.	
500/0	499.80	0.04	
500.0	499.80	0.04	

Minist Reliet

0.0	0.00	*	
8.M.U.	0.01	8	
0.M.U	0.08	8	1
10000	Ave A.D.	0.04	x
Standard	Reading	A.D.	
750.0	749.70	0.04	
750.0	749.70	0.04	

S.D.	0000	<i>it</i>	
R.M.U.	0.01	*	
0.M.U	0.02	*	
	Ave A.D.	10/0	%
Standard	Reading	A.D.	
1250.0	1249,90	10.0	
1250.0	1249.90	10.0	

Temperature: R.H.: SBI-139 & SBI-200 T4 (Firebox top) 0.1 SBI-036 Equipment: Accuracy: Reference:

S.D.	0.01	8	
R.M.U.	0.13	2	
O.M.U	1.35	*	
	Ave A.D.	0.66	×
Standard	Reacting	A.D.	
75.0	74.50	0.67	
75.0	74.51	0.65	

S.D.	000	2	
R.M.U.	0.07	24	
0.M.U	0.68	*	
	Ave A.D.	0.33	×
Standard	Reading	A.D.	
150.0	149.50	0.33	
150.0	149.50	0.33	

	and	1	
R.M.U.	0.03	*	
0.M.U	0.34	R	
A	Ave A.D.	0.17	*
Standard R	Reading	A.D.	
300.0	299.50	0.17	
300.0	299.50	0.17	

S.D.	0.00	*	
R.M.U.	0.02	×	
U.M.O	0.15	*	
	Ave A.D.	0.08	*
Standard	Reading	A.D.	
500.0	499.60	0.08	

Vincent Peleit

S.D.	0.00	W.	
R.M.U.	0.01	*	
0.M.U	0.14	*	
	Ave A.D.	0.07	R
Standard	Reading	A.D.	
250.0	749.50	0.07	
750.0	749.50	0.07	

S.D.	0.00	×	
R.M.U.	0.01	*	
D.M.U	10.07	*	
	Ave A.D.	0.04	28
Standard	Reading	A.D.	
1250.0	1249.50	0.04	
1250.0	1249,60	0.03	

6/20/2013 Deter

The second se	1	
Equipment	58-1199 & 581-200	
	T5 (Firebox back)	Temper
Accuracy:	0.1	R.M.:
Reference:	SBI-D96	

17	24
ij	
eratur	

72 F

S.D.	00'0	*		1
R.M.U.	0.13	*		
0.M.U	0.28	×	1100	
	Ave A.D.	0.04	26	
Standard	Reading	A.D.		
75.0	74.97	0.04		Т
75.0	74.97	0.04		

	12
2	- 22
5	10

0.	0000	×	
R.M.U.	0.07	2	
D.M.U	0.30	*	
	Ave A.D.	0.13	25
tandard	Reading	A.D.	
150.0	145,80	0.13	
150.0	145.60	0.13	

S.D.	00'0	32	
R.M.U.	0.03	×	
0.M.U	0.15	×	
	Ave A.D.	0.07	*
Standard	Reading	A.D.	
300.0	239,80	0.07	
300.0	299.80	0.07	

S.D.	0.00	×	
R.M.U.	0.02	*	
0.M.U	0.09	*	
	Ave A.D.	0.04	*
Standard	Reading	A.D.	
\$00.0	499.30	0.04	
500.0	499.30	0.04	

Vincent Pelletter

10.0	*	
0.10	x	
LD.	0.05	×
ing	A.D.	
49.60	0.05	
49.70	0.04	
	Ave A.D. Reading 749.60 749.70	

	00.0	2	
R.M.U.	0.01	*	
D.M.U	0.06	×	
	Ave A.D.	0.03	*
Standard Re	Reading	A.D.	
1250.0	1249.70	0.02	
1250.0	1249.60	0.03	

Equipment:	5BI-199 & 5BI-200	
	T6(Firebox right)	Temper
Accuracy:	1.0	R.H.:
Reference:	581-096	

1	ŝ
inperature:	7
	- 23

				I
5.0.	10'0	R		
R.M.U.	0.13	*		
O.M.U	1.53	x		
	Ave A.D.	0.75	R	
Standard	Reading	A.D.		
75.0	74.44	0.75		
75,0	74.43	0.76		
				Г

10.	18
12	2

c	1.50
7	- 40 S
۰.	v
	LO LO

S.D.	00'00	*	
R.M.U.	0.07	×	
0.M.U	0.81	*	
No. of	Ave A.D.	0,40	26
Standard	Reading	A.D.	
150.0	149.40	0.40	
150.0	149.40	0.40	

3R 3	
3	
R	
0.20	8
A.D.	
0.20	
0.20	
	0.20

S.D.	0000	8	
R.M.U.	0.02	8	
O.M.U	0.20	×	
	Ave A.D.	0.10	*
Standard	Reading	A.D.	
500.0	499.50	0.10	
500.0	459.50	0.10	

Vincent Petieter

S.D.	00'0	×	
R.M.U.	0.01	8	
0.M.U	0.16	8	
1000	Ave A.D.	0.08	*
Standard	Reading	AD.	
750.0	749.40	0.08	
750.0	749.40	0.08	

		100	
R.M.U.	0.01	*	
0.M.U	0.08	*	
	Ave A.D.	0.04	8
Standard	Reading	A,D.	
1250.0	1249.50	0.04	
1250.0	1249.50	0.04	

Date: 6/20/2013

Equipment: S81-199 & 581-200 T7 (Firebox left) T Accuracy: 0.1 R Reference: S81-096

Temperature: R.H.:

Π				П		
			×			
*	*	*	0.72	A.D.	0.72	0.72
10.0	0.13	1.45	Ave A.D.	Reading	74.46	74.46
S.D.	R.M.U.	D.M.D	No. Notes	Standard	75.0	75.0

72 F 54%

5.D.	0.00	R	
R.M.U.	0.07	*	
0.M.U	0.81	*	
	Ave A.D.	0.40	*
Standard	Reading	A.D.	
150.0	149.40	0.40	
150.0	149.40	0.40	

	00'00	*	
R.M.U.	0,03	æ	
O.M.U	0.37	×	
	Ave A.D.	0.18	35
standard	Reading	A.D.	
300.0	299.50	0.17	
300.0	299.40	0.20	

5.D.	00'0	*	
R.M.U.	0.02	R	
0'W'D	0,20	%	
	Ave A.D.	01.10	18
Standard	Reading	A.D.	
500.0	499.50	0.10	
500.0	499.50	0.10	

Vincent Pelleter Vincent Pelletier

S.D. 0.00 % 75 75.0.0.00 % 75 750.0 0.01 % 75 750.0 745.0.008 % 75 750.0 745.40 0.08 75 750.0 745.40 0.08 750.0 745.40 0.08

5.0.	0.00	*	
R.M.U.	10.0	8	
0.M.U	0.08	8	
	Are A.D.	0.04	×
Standard	Reading	A.D.	
1250.0	1249.50	0.04	
1250.0	1249.50	0.04	

Date: 6/20/2013

Equipment:	561-199 & 581-200		
	T3 (Dilution tunnel)	Temperature:	
Accuracy:	0.1	R.M.:	
Reference:	S61-096		

TO'D	R	
0.13	3R	
1.50	2	
re A.D.	0.74	se.
ading	A.D.	
74.45	0.73	
74,44	0.75	
	0.13 1.50 Ave A.D. Reacling 74.45 74.45	

-	10
2	5
	-,

10	000	*	
R.M.U.	10.07	54	
D.M.U	0.81	*	
	Ave A.D.	0:40	×
standard	Reading	A.D.	
150.0	149.40	0/10	
150.0	149.40	01.0	

0.03	8	
0.37	×	
A.D.	0.18	24
Reading	A.D.	
04/662	0.20	
05.9950	71.0	
	Ave A.D. Reading 299.40 299.50	A.D.

3.0.	0000	*	
RIMUU	0.02	*	
O.M.U	0.20	8	
	Ave A.D.	0.10	*
Standard	Reading	A.D.	
500.0	499.50	0,10	
500.0	499.50	0.10	

Vinent Relet

5.D.	0.00	*	
R.M.U.	0.01	28	
0.M.U	0.16	×	
- 10 to 20	Ave A.D.	0.03	8
Standard	Reading	A.D.	
750.0	749.40	0.08	
750.0	745.40	0.08	

S.D.	00'00	*	
R.M.U.	0.01	*	
O.M.U	0.07	*	
	Ave A.D.	0.04	8
Standard	Reading	A.D.	
1250.0	1249.50	0.04	
1250.0	1245.60	0.03	

Dute: 6/20/2013

Equipment: SBI-199 & SBI-200 T9 (DGM inlet 1) Temperature: Accuracy: 0.1 R.H.: Reference: SBI-096

R.M.U. 0.13 % R.M.U. 0.13 % O.M.U 0.66 % Ave A.D. 0.30 Standard Reading A.D. 75.0 74.75 0.32 75.0 74.79 0.28
--

72.F 54%

t

Τ

T

5.0.	000	R.	
R.M.U.	0.07	*	
0.M.U	0.42	*	
	Ave A.D.	0.20	×
Standard	Reading	A.D.	
150.0	149.70	0.20	
150.0	149.70	0.20	

S.D.	0.00	8	
R.M.U.	0,03	×	
O.M.U	0.15	×	1
	Ave A.D.	0.07	36
Standard	Reading	A.D.	
300.0	299.80	20.0	
300.0	299,80	0.07	

R.M.U.	000	*	
	0.02	*	
O.M.U	0.09	8	1
Ave	Ave A.D.	0.04	R
Standard Rea	ding	A.D.	
500.0	499.80	0.04	
500.0	499.80	0.04	

Vincent Pelletier

5.D.	00.00	×	
R.M.U.	10.01	*	
0.M.U	0.08	*	
5000	Ave A.D.	0.04	R
Standard	Reading	A.D.	
750.0	745,70	0.04	
750.0	749.70	0.04	

*	
*	
0.02	28
AD.	
0.02	
0.02	
	0.02

Equipment: 581-199 & S81-200 T10 (DGM outlet 1) Accuracy: 0.1

70 6

Temperature: R.H.:

SBI-096

Accuracy: Reference:

			x			
38	38	*	0.36	A.D.	0.36	0.36
00'0	0.13	0.77	Ave A.D.	Reading	74,73	74.73
S.D.	R.M.U.	0.M.U		Standard	75.0	75.0

s,	18
1	54

0000	×	
0.07	*	
0.42	*	
e A.D.	0.20	*
ading	A.D.	
149.70	0.20	
149.70	0.20	
	0.07 0.42 Ave A.D. Reading 149.70	- AD

%	
*	
0.12	2
A.D.	
07.0	
0.13	
	01.0

5.D.	0000	*	
A.M.U.	0.02	ķ	
0.M.U	0.15	*	
10-500	Ave A.D.	0.07	8
Standard	Reading	A.D.	
500.0	499.60	0.08	
500.0	499.70	0.06	

Unit Reliet

S.D.	0.00	2	
RMU.	10.0	8	
O.M.U	0.12	×	
	Ave A.D.	0.06	38
Standard	Reading	A.D.	
750.0	749.50	10.0	
750.0	749.60	50.0	

S.D.	0.00	*	
R.M.U.	0.01	*	
D.M.D	0.07	×	
	Ave A.D.	0.03	×
Standard	Reading	A.D.	
1250.0	1249.60	0.03	
1250.0	1249,60	0.03	
10000			

L

Equipment: SB-199 & SB-200 T11 (Probe temperature 1) Temperature: Accuracy: 0.1 8.H.:

SBI-096 Accuracy: Reference:

5.0,	0000	*	
R.M.U.	0.13	*	
O.M.U	0.53	*	
101 - 10 K	Ave A.D.	0.23	зe
Standard	Reading	A.D.	
75.0	74.89	51.0	
75.0	74.77	0.31	

S.D.	0000	*	
R.M.U.	0.07	×	
D.M.U	0.24	*	
	Ave A.D.	0.10	*
standard	Reading	AD.	
150.0	149.90	0.07	
150.0	149.80	0.13	

1010	0000	8	
R.M.U.	0.05	*	
O.M.U	0.12	*	An est
	Ave A.D.	0.05	8
Standard	Reading	A.D.	
300.0	299.90	0.03	
300.0	299.80	0.07	

S.D.	0000	8	
R.M.U.	20/0	8	
O.M.U	0.06	*	
	AWE A.D.	0.02	18
Standard	Reading	A.D.	
500.0	499.90	0.02	
500.0	499.90	0.02	

Vincent Pelletter

S.D.	0,00	×	
R.M.U.	10'0	×	
0.M.U	0.07	*	
0.000	Ave A.D.	0.03	36
Standard	Reading	A.D.	
250.0	749.80	0.03	
750.0	749.70	0.04	

2.0.0	0.00	8	
R.M.U.	10.0	%	
0.M.U	0.02	×	
	Ave A.D.	0.01	*
Standard	Reading	A.D.	
1250.0	1250.00	0.00	
1250.0	1249.80	0.02	

581-199 & 581-200 T12 (DGM inlet 2) 1.0 SBI-096 Equipment: Accuracy: Reference:

Temperature: R.H.:

ĸ 0.35 0.35 888 A.D. 0.00 0.13 0.74 Ave A.D. Reading 74.74 75.0 Standard S.D. R.M.U.

72.F 54%

0	0000	*	
N.M.U.	0.07	*	
0.M.U	0.42	*	
	Ave A.D.	0.20	R
tandard	Reading	A.D.	
150.0	149.70	0.20	
150.0	145.70	0.20	

5.D.	0.00	8	
R.M.U.	0.03	×	
O.M.U	0.21	%	
	Ave A.D.	0.10	*
Standard	Reading	A.D.	
300.0	299.70	0.10	
300.0	299.70	01.0	

5.D.	000	*	
R.M.U.	0.02	24	
O.M.U	0.09	*	
	Ave A.D.	0.04	N
Standard	Rending	A.D.	
500.0	499.80	0.04	
200.0	499.80	0.04	

Vinest Relet

x	
*	
0.04	R
A.D.	
0.04	
0.04	
A.D. fing 49.70	

38

A.D.

Standard

* * * 2000

0.00 0.01 Ave A.D. Reading

5.D. R.M.U. O.M.U

0.02

1249.80

1250.0

0.02

E102/02/9 Date:

Temperature: R.H.: Equipment: 58-139 & 581-200 T13 (DGM outlet 2) Accuracy: 0.1 SBI-096 Accuracy: Reference;

28 6.53 % % % 0.55 A.D. 0.01 0.13 1.14 Ave A.D. Reading 74.57 75.0 Standard 5.0. R.M.U. O.M.U

72 F

	1.0
5	95
	ŝ

	-	ø	
1		c	
£.	-	4	

S.D.	000	*	
R.M.U.	0.07	×	
0.M.U	0.68	*	
	Ave A.D.	0.33	8
Standard	Reading	AD.	
150.0	149.50	0.33	
150.0	149.50	0,33	

S.D.	0.00	8	
R.M.U.	0.03	38	
O.M.U	0.31	*	
	Ave A.D.	0.15	8
Standard	Reading	A.D.	
300.0	239.50	0.17	
300.0	299.60	0.13	

S.D.	00/0	12	
R.M.U.	0.02	R	
0.M.U	0.16	×	
	Ave A.D.	0.08	28
Standard	Reading	A.D.	
500.0	459.60	0.08	
500.0	459.60	0.08	

Vinest Relet

	000	r,	
R.M.U.	0.01	*	
0.M.U	0.16	*	
	Ave A.D.	0.08	%
Standard	Reading	A.D.	
750.0	749.40	0.08	
750.0	749.40	D.08	
none -	The start	ann	

S.D.	00'0	*	
R.M.U.	0.01	8	
0.M.U	0.08	*	
	Ave A.D.	0.04	8
Standard	Reading	A.D.	
1250.0	1249.50	10'0	
1250.0	1249.50	0.04	

Equipment: SB-199 & SBI-200 T14 (Probe temperature 2) Temperature: Acturacy: 0.1 R.H.: S8I-096 Accuracy: Reference:

5,D,	0.00	*	
R.M.U.	0.13	×	
0.M.U	0.72	*	
	Ave A.D.	EC.0	×
Standard	Reading	A.D.	
75.0	74.75	0.33	
75.0	74.75	0.33	

ы.,	20
-	v
7	S

R.M.U.	0.07	*	
D.M.U	0.36	76	
	Ave A.D.	0.17	*
tandard	Reading	AD.	
150.0	149.80	0.13	
150.0	149.70	0.20	

0.03		
	¢	
15	×	
	0.07	8
leading	A.D.	
08.0	0.07	
0.80	0.07	
	6.02 299.80 299.80	A.D.

S.D.	0,00	*	
R.M.U.	20/0	R	
O.M.U	0.09	8	
	Ave A.D.	0.04	*
Standard	Reading	A.D.	
200.0	499.80	0.04	
500.0	499,80	0.04	

Vincent Pelletter

S.D.	00'0	26	
R.M.U.	0.01	x	
0.M.U	0.08	*	
1000	Ave A.D.	0.04	8
Standard	Reading	A.D.	
750.0	749.70	0.04	
750.0	749.70	0.04	

s.D.	0.00	%	
R.M.U.	0.01	×	
U.M.O	0.05	*	
	Ave A.D.	0.02	*
Standard	Reading	A.D.	
1250.0	1249.70	0.02	
1250.0	1249.70	0.02	

Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer:	American Meter Company
Model:	DTM-200A
Serial Number:	90R054300
	Average Gas Meter y Factor 0,983
Calibration Date:	07-02-13
Calibrated by:	Vincent Polletier
Calibration Frequency:	6-month
Next Calibration Due:	12-31-13
Instrument Range:	1,000 cfm
Standard Temp.:	75 oF
Standard Press.:	29,92 "Hg
	32.24 "Hg

Previous Calibration Comparision

Date	25-juin-13	Acceptable	
		Deviation (5%)	Deviation
y Factor	0,977	0,04885	0,006
Acceptance	Ace	eptable	ñ

Acceptable y Dev	iation	0,04885
Maximum y Devis	ition	0.002
Acceptance	Acee	ptable

	Reference	e Standard *	
Standard	Model	Standard Test	Meter
Calibrator	S/N	02C056244	
	Calib. Date	31-mri-13	
	Calib. Value	1,0000	y factor (ref

Calibration Parameters	Run I	Run 2	Run 3
Vacuum (*Hg)	0,00	0.00	0,00
dH (*H2O)	0,00	0.00	0,00
Initial Reference Meter	118,834	124,049	129,112
Final Reference Meter	124,049	129;112	134,177
Initial DGM	\$44,651	849,958	855,107
Final DGM	\$49,958	855,107	860,274
Temp. Ref. Meter (*F), Tr	76,4	72,6	77.6
Temperature DGM (°F), Td	78,0	77,6	78,2
Time (Minutes)	32,0	32,0	32,0
Net Volume Ref. Meter, Vr	5,215	5,063	5,065
Net Volume DGM, Vd	5,307	5,149	5,167
Gas Meter y Factor =	0,986	-0,983	0,981
Gas Meter y Factor Deviation (from avg.)	0,002	0,000	0,002
Orifice dH@	0,00	0,00	0,00
Orifice dHig: Deviation (from avg.)	0,000	0,000	0,000

where:

0,16584375

1. Deviation = [Average value for all runs - current run value]

2. y = [Vr x (y factor (ref)) x (Pb) x (Td + 460) / [Vd x (Pb + (dH / 13.6)) x (Tr + 460]

3. dH@ = 0.0317 s dH / (Pb (Td + 460)) s [(Tr + 460) s time) / Vr]*2

* Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

Thermal Metering System Calibration Y factor for Method 5G sampling

Manufacturer:	American Meter Company
Model:	DTM-200A
Serial Number:	98Z332226
Calibration Date:	Average Gas Meter y Factor 0,987
Calibrated by:	Vincent Pelletier
Calibration Frequency:	All of the second diversion of the second diversion of the
Next Calibration Due:	12-31-13
Instrument Range:	1,000 cfm
Standard Temp.:	75 oF
Standard Press .:	29,92 "Hg
Barometric Press.:	32,24 "Hg
Signature/Date:	Vinest Reliet 2010-07-21

Previous Calibration Comparision

Date	25-juin-13	Acceptable	
		Deviation (5%)	Deviation
y Factor	0,986	0,0493	0,001
Acceptance	Ace	eptable	i

Acceptable y Devi	ent Calibra ation	0.0493
Maximum y Devia	21.110	0,003
Acceptance	Acc	eptable

	Reference	e Standard *	
Standard	Model	Standard Test	Meter
Calibrator	S/N	02C056244	
	Calib. Date	31-mai-13	
	Calib. Value	1,0000	y factor (ref

Calibration Parameters	Run 1	Ren 2	Ren 3
Vacuum ("Hg)	0,00	0,00	0,00
dH ("H2O)	0,00	0.00	0.00
Initial Reference Meter	134,195	139,389	144,994
Final Reference Meter	139.389	144,994	150,064
Initial DGM	672,905	678,164	683,842
Final DGM	678,164	683,342	588,987
Temp. Ref. Meter (*F), Tr	77,4	78,2	78,0
Temperature DGM ("F), Td	78,4	71,A	77,8
Time (Minutes)	32,0	35,0	32,0
Net Volume Ref. Meter, Vr	5,194	5,605	5,070
Net Volume DGM, Vd	5,259	5,678	5,145
Gas Meter y Factor =	9,989	0,986	0,985
Gas Meter y Factor Deviation (from avg.)	0,003	0,001	0,002
Orifice dH@	0,00	0,00	0,00
Orifice dHig: Deviation (from avg.)	0,000	0,000	0,000

where:

0,16434375

1. Deviation = [Average value for all runs - current run value]

2. y = [Vr x (y factor (ref)) x (Pb) x (Td + 460) / [Vd x (Pb + (dH / 13.6)) x (Tr + 460]

3. dH@ = 0.0317 x dH / (Pb (Td + 460)) x [(Tr + 460) x time) / Vr]^2

* Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272

2013-06-20 Date:

Nitrogen

	Calibration gas	Results
8	%00'0	%00%
C02	0,00%	%00%0
02	0,00%	0,00%

Carbon Dioxide

	Calibration gas	Results
8	%00'0	0,28%
C02	19,80%	19,98%
02	0,00%	%00%0

Vincent Pellet

Ambiant air

Results	9500'0	0,00%	21,10%
	0	C02	02

Carbon monoxide

	Calibration gas	Results
8	%966%	0,98%
C02	0,00%	0,00%
02	%00'0	0,00%

CERTIFICATE OF NIST TRACEABLE CALIBRATION

Calibration Certificate No: 24761

Customer Information

Customer: SBI St-Augustin

Address : 250, De Copenhague Doors 11-12 Customer PO #: 24026 St-Augustin-de-Desmaures

Calibration Procedure Information

Procedure ID: GTP RH/Temp Cal

Revision #: 3

Revision Date: 9/14/2010

Graftel ID	Manufacturer	Madel #	Berlinde	CUL D
0401012204	A REAL POINT OF THE REAL PROPERTY OF THE REAL PROPE	Model #	Description	CAL Due
10198	Thunder Scientific	1200	Humidity Generator-Pressure	6/22/2011
10199	Thunder Scientific	1200	fumidity Generator-Temperature	6/22/2011
60030	Paroscientific	760-100A	Prosoure, 100 pola	8/24/2011
10160	HOBO	U12-011	Environment Monitor System	6/22/2011

Sensor	Information
C	

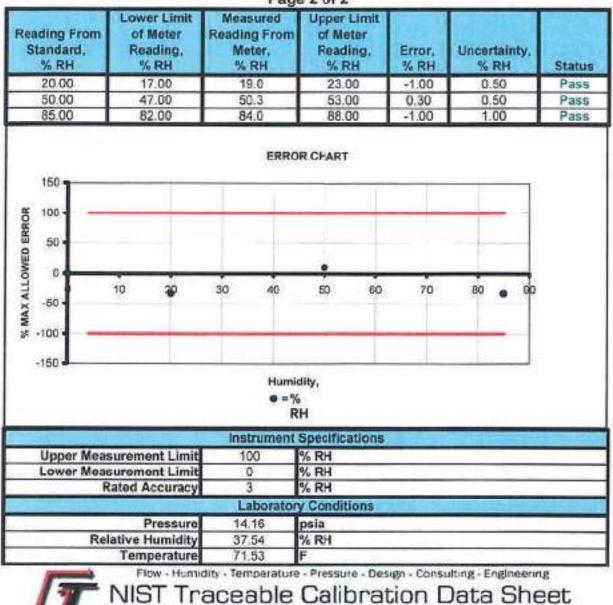
Manufacturer: AMPROBE	Descriptio	n: RH Met	ar .	Method Used: RH Chamber
Model #: TH-3	Rated Acc	uracy: ± 3	Difference	Accuracy Specified By: Amprobe
Instrument ID#: SBI-212	Range:	0 to 100	%RH	Condition: Acceptable
Serial #: 100906351				

Comments: Calibration Date: 03-24-2011

The instruments(s) listed on this contificate have been calibrated against standards traceable to the National Institue of Standards and Technology (NIST) or compared to nationally or internationally recognized consensus standards. The reported calibration uncertainty has a confidence level of 95% (K*2). A calibration uncertainty ratio of 4:1 was maintained unless required uncertainty support by analysis. Graftel, Inc. Quality Assurance System complies with applicable requirements of ISO/IEC-17025-2005, ANSU/ICSI, 2540-I-1994 and ISO 9002, 1994(E). All results contained within this certification relate only to item(s) calibrated. This certificate shall not be reproduced except in full and with the written consent of Graftel, Inc.

Performed By:

Date: 3-24-11


Scott Pickett Calibration Technician

Page 1 of 2

1.6

ATTACHMENT TO CALIBRATION CERTIFICATE 24761 AS FOUND CALIBRATION DATA

Page 2 of 2

Graftel, LLC. 870 Combridge Drive, Elk Grove Village, IL.80007 P. 847-364-2600 F. 847-364-2859

www.graftel.com

CERTIFICATE OF NIST TRACEABLE CALIBRATION

Calibration Certificate No: 24762

Customer Information

Customer: SBI St-Augustin

Address : 250, De Copenhague Doors 11-12 Customer PO #: 24026 St-Augustin-de-Desmaures

Calibration Procedure Information

Procedure ID: GTP RH/Temp Cal

Revision #: 3

Revision Date: 9/14/2010

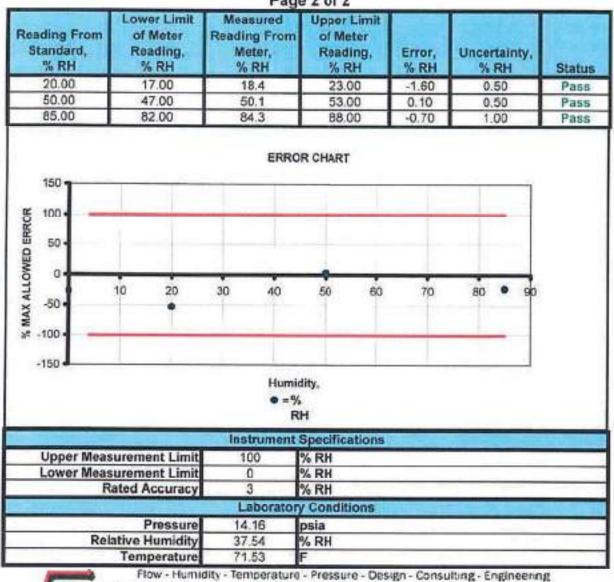
	<u>c</u>	alibration Star	idards Information		
Graftel ID	Manufacturer	Model #	Description	CAL Due	
10198	Thunder Scientific	1200	Humidity Generator-Pressure	6/22/2011	
10199	Thunder Scientific	1200	lumidity Generator-Temperatun	6/22/2011	
60030	Paroscientific	760-100A	Pressare, 100 psia	8/24/2011	
10160	HOBO	U12-011	Environment Monitor System	6/22/2011	

	Sensor Informat	ion	
Manufacturer: AMPROBE	Description: RH Me	ter	Method Used: RH Chamber
Model #: TH-3	Rated Accuracy: ± 3	Difference	Accuracy Specified By: Amprobe
Instrument ID#: SBI-213	Range: 0 to 100	%RH	Condition: Accentable
Serial #: 101004044	2000-2 8 0022 000580-1938-0		Continuon. Acceptable

Comments: Calibration Date: 03-24-2011

The instruments(s) listed on this certificate have been calibrated against standards traceable to the National Institute of Standards and Technology (NIST) or compared to nationally or internationally recognized consensus standards. The reported calibration uncertainty has a confidence level of 95% (K=2). A calibration uncertainty ratio of 4-1 was maintained unless required uncertainty support by enalysis. Graftel, Inc. Quality Assurance System complies with applicable requirements of ISO/IEC-17025-2005, ANSI/NCSL Z540-I-1994 and ISO 9002, 1994(E). All results contained within this certification relate only to item(s) calibrated. This certificate shall not be reproduced except in full and with the written consent of Graftel, Inc.

Performed By:


Scott Pickett Calibration Technician

Date: 3-24-11

Page 1 of 2

ATTACHMENT TO CALIBRATION CERTIFICATE 24762 AS FOUND CALIBRATION DATA

Page 2 of 2

NIST **Traceable Calibration Data Sheet** Graftel, LLC. 870 Combridge Drive, Elk Grove Village, IL 60007 P. 847-364-2600 F. 847-364-2899

www.graftel.com

As Found / As Left

Procedure (RUN): Low Pressure: CAL VER /Ruska 7250LP: Revision: 1.1.A

Page 1 of 2

	ST-AUSTIN-DE-DESMAURES, QC G3A 2H3			
Customer	STOVE BUILDER INTERNATIONAL INC. 250 RUE DE COPENHAGUE	<i>Environment</i> Temperature: Humidity:	23.3°C 38%RH	
<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer 2000-00 W80111CF89 SBI-024 Pressure Gauge	Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC13011280-W80111CF89 No In Tolerance 30-Jan-2013 30-Jan-2014	

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025:2005 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

STANDARDS

Instrument	Model	ID No./Serial No.	Traceability No.	Recall Date
Low Pressure Calibrator	Ruska 7250LP	PRE-CAL-05	1500138932/1500138934	20-Aug-2013

REMARKS:

Calibrated in vertical position.

Performed by:

nthony Morra Anthony Morra

Reviewed by:

Slava Peciurov

This report shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation.

Alpha Controls and Instrumentation, Suite 6, 361 Steelcase Rd. West, Markham, Ontario L3R 3V8 www.alphacontrols.com (800) 567-5585 Form: ROCI31 Rev 6

j.

As Found / As Left

Procedure (RUN): Low Pressure: CAL VER /Ruska 7250LP: Revision: 1.1.A

Page 2 of 2

<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer 2000-00 W80111CF89 SBI-024 Pressure Gauge			Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1301 No In Tolera 30-Jan-2 30-Jan-2	2013	111CF8	9
Test Descripti	on	STD	UUT	Error	Tolerance	Units	P/F	Uncertainty
LOW PRESSUR	RE TEST							
0.0000 inH	20	0.0000	0.000	0.00000	±0.0100	inH2O	Pass	5.97e-004
0.0490 inH	20	0.0490	0.050	0.00100	±0.0100	inH2O	Pass	5.97e-004
0.0990 inH	20	0.0990	0.100	0.00100	±0.0100	inH2O	Pass	5.97e-004
0.1490 inH	20	0.1490	0.150	0.00100	±0.0100	inH2O	Pass	5.97e-004
0.1990 inH	20	0.1990	0.200	0.00100	±0.0100	inH2O	Pass	5.97e-004
0.2510 inH	20	0.2510	0.250	-0.00100	±0.0100	InH2O	Pass	5.97e-004
0.1990 inH	20	0.1990	0.200	0.00100	±0.0100	inH2O	Pass	5.97e-004
0.1490 inH	20	0.1490	0.150	0.00100	±0.0100	inH2O	Pass	5.97e-004
0.0970 inH	20	0.0970	0.100	0.00300	±0.0100	inH2O	Pass	5.97e-004
0.0470 inH	20	0.0470	0.050	0.00300	±0.0100	inH2O	Pass	5.97e-004
0.0000 inH	20	0.0000	0.000	0.00000	±0.0100	inH2O	Pass	5.970-004
IND OF REPORT	*							

END OF REPORT

This report shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation.

As Found / As Left

Procedure (RUN): Low Pressure: CAL VER /Ruska 7250LP: Revision: 1.1.A

Page 1 of 2

Made by: Model: Serial No.: ID No.: Description:	Dwyer 2000-0DC W46QJM SBI-117 Pressure Gauge	Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC13011280-W46QJM No In Tolerance 30-Jan-2013 30-Jan-2014	
<u>Customer</u>	STOVE BUILDER INTERNATIONAL INC. 250 RUE DE COPENHAGUE	<u>Environment</u> Temperature: Humidity:	23.4°C 38%RH	
	ST-AUSTIN-DE-DESMAURES, QC G3A 2H3			

STATEMENT OF UNCERTAINTY: The reported expanded uncertainty of measurement is stated as the standard measurement uncertainty multiplied by the coverage factor K = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 percent. Alpha Controls certifies this instrument was calibrated on the date shown using standards traceable to NIST/NRC or accepted intrinsic standards and in compliance with ISO/IEC-17025/2005 and ANSI/NCSL Z540-1.

Any statement of compliance is made without taking measurement uncertainty into account and is based on UUT performance against required tolerance only. The customer must ensure equipment calibrated meets the intended use.

Tolerance is based on manufacturer specification if not stated otherwise. Calibration results relate to items calibrated only.

STANDARDS

Instrument	Model	ID No./Serial No.	Traceability No.	Recall Date
Low Pressure Calibrator	Ruska 7250LP	PRE-CAL-06	1500138932/1500138934	20-Aug-2013

REMARKS:

Calibrated in vertical position.

Performed by:

nthony Anthony Morra

Reviewed by:

Slava Peciurov

This report shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation.

As Found / As Left

Procedure (RUN): Low Pressure: CAL VER /Ruska 7250LP: Revision: 1.1.A

Page 2 of 2

<u>UUT</u> Made by: Model: Serial No.: ID No.: Description:	Dwyer 2000-0DC W46QJM SBI-117 Pressure Gauge			Calibration Report No.: Adjusted: Condition: Calibration Date: Calibration Due:	AC1301 No In Tolers 30-Jan-2	2013	MLØ8	
Test Descripti	ion	STD	UUT	Error	Tolerance	Units	P/F	Uncertainty
LOW PRESSUR	RE TEST						01-1	1.07121-0212-02
0.0000 iniH2	20	0.0000	0.000	0.00000	±0.0150	inH2O	Pass	5.97e-004
0,1020 inH	20	0.1020	0.100	-0.00200	±0.0150	inH2O	Pass	5.97e-004
0.2040 inH3	20	0.2040	0.200	-0.00400	±0.0150	inH2O	Pass	5.97e-004
0.3050 inH2	20	0.3050	0.300	-0.00500	±0.0150	inH2O	Pass	5.97e-004
0.3980 inH2	20	0.3980	0.400	0.00200	±0.0150	inH2O	Pass	5.97e-004
0.5000 inH2	20	0.6000	0.500	0.00000	±0.0150	InH2O	Pass	5.97e-004
0.3960 inH2	20	0.3960	0.400	0.00400	±0.0150	InH2O	Pass	5.97e-004
0.2950 inH2	20	0.2950	0.300	0.00500	±0.0150	InH2O	Pass	5.97e-004
0.1950 inH2	20	0.1960	0.200	0.00600	#0.0150	InH2O	Pass	5.979-004
0.0950 inH2	20	0.0950	0.100	0.00500	±0.0150	inH2O		5.97e-004
0.0000 inH2	20	0.0000	0.000	0.00000	±0.0150	inH2O	Pass	5.97e-004
	20	0.0950	0.100	0.00500	±0.0150	inH2O	Pass	

END OF REPORT

This report shall not be reproduced except in full without written approval of Alpha Controls and Instrumentation.

Rapport d'étalonnage No. CA0003-441-031413 Mettler Toledo Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-600-METTLER

METTLER TOLEDO

ISO 9001 Registered ANSI/NCSL Z540 Accrédité

Accrédité par l'American Association for Laboratory Accreditation (A2LA) CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client

ACCREDITED

Société ;	SBI Fabricant de poêles l	nternational inc.	
Adresse :	250, rue Copenhague		
VWe :	St-Augustin	État/Province :	Québec
Code postal :	G3A 2V1	Astea Customer ID:	C037589001001

Instrument

Constructeur :	Weightronix	Modele de terminal :	IND560
Modèle :	DSL-6060	# série du terminel:	00927386KL
No de série :	B00927386KL	# série de l'imprimant	N/A
Capacité :	500 kg		LAB
Résolution :	0,02 kg	Nbre de Divisions:	25000
Classe :	ш	Procédure utilizée :	Canadien
No./ID d'inventaire:	SBI-014		
Procédure:	l'A2LA, en vertu de la norm	is conformément aux conditions de e ISO/IEC 17025. A2LA a évalué la fes normes nationales reconnues.	

Date de calibrage :	14-mars-2013	Date, prochaine Cal.	31-mars-2014
Signataire autorisé (A2LA) :	Dany Careau	Signature:	ELECTRONIC SIGNATURE

Étalons de travail

Retracabilité:	Les poids de test utilisés	se référent au National I	nstitute of Standards and	1 Technology.
Jeu de poids no :	Traçabilité NIST No.;	Classe ASTM/OIML	Date d'étalonnage :	Dete proch. étalonnage
Kit Q	1367024	M1	23-avr-2012	23-avr-2013
55588	M11-0616	M1	27-mars-2012	27-mars-2013
MTP4	MT00346	F1	30-mars-2011	30-mars-2013

Version Logiciel : 4.5.1.0

Page 1 sur 3 © METTLER TOLEDO

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur. Rapport d'étalonnage No. CA0003-441-031413

METTLER TOLEDO

Résultats de mesure

La température :

22 °C

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

1	2
4	3

		Avant Réglage	Après Réglage
Poids Appliqués	Position	Valeur lue	Valeur lue
1: 100 kg	Position 1	99,98 kg	99,98 kg
2: 100 kg	Position 2	100,02 kg	100,02 kg
3: 100 kg	Position 3	100,02 kg	100,02 kg
4: 100 kg	Position 4	99,96 kg	100,00 kg
Erreur maximum :		0,06 kg	0,04 kg
Max Erreur Admissible	<i>z</i>	0,10 kg	0,1 kg

Linéarité

1			Avant réglas	76		
	Polds Appliqués	Valeur lue	Erre	ur -	Erreur admissible	Dans la Tolérance
Zero 1,00	0,00 kg	0,00 kg	0,00 kg	0 d	1 d	OUI
2,00	20,00 kg	20,00 kg	0,00 kg	0 d	2 d	OUI
3,00	40,00 kg	40,00 kg	0,00 kg	0 d	2 d	OUI
4,00	100,00 kg	100,02 kg	0,02 kg	1 d	5 d	OUI
Max 5,00	200,00 kg	200,04 kg	0,04 kg	2 d	5 d	oui

Méthode de substitution utilisée

			Aprés réglag	je -		
	Poids Appliqués	Valeur lue	Erre	ur	Erreur admissible	Dans le Tolérance
Zero 1,00	0,00 kg	0,00 kg	0,00 kg	ЬO	1 d	oui
2,00	20,00 kg	20,00 kg	0,00 kg	0 d	2 d	OUI
3,00	40,00 kg	40,00 kg	0,00 kg	0 d	2 d	OUI
4,00	100,00 kg	99,98 kg	-0,02 kg	14	5 d	out
Max 5,00	200,00 kg	200,00 kg	0,00 kg	bб	5 d	OUI

Méthode de substitution utilisée

Version Logiciel : 4.5.1.0

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur. Rapport d'étalonnage No. CA0003-441-031413

METTLER TOLEDO

Un réglage de la balance a été requis

Si non, les résultats "avant réglage" correspondent aux résultats tel que laissé.

III OUI	NON
---------	-----

100 00 00

Répétabilité

Delde another de .

ma	s appinques : 100,00 kg		12 C
	Chorgé	Vide	Lifférence
r	99,98 kg	0,00 kg	99,98 kg
2	99,98 kg	0,00 kg	99,98 kg
3	99,98 kg	0,00 kg	99,98 kg
	Errour maximale :	0,02 kg	1,0 d
	Tolérance :	0,10 kg	5 d

Incertitude

Mesure de l'incertitude = 0,012 kg

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matiére d'environnement au lieu d'étalonnage, d'incertitude induite par l'article en étalonnage et d'effets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

Aucune.

Version Logiciel : 4.5.1.0

Rapport d'étalonnage No. CA0003-448-031413 Mettler Toledo Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240

METTLER TOLEDO

ISO 9001 Registered ANSI/NCSL Z540 Accrédité

1-800-METTLER

Accrédité par l'American Association for Laboratory Accreditation (A2LA) CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client

Société :	SBI Fabricant de poêles International inc.		
Adresse :	250, rue Copenhague		
Ville ;	St-Augustin	État/Province :	Quebec
Code postal :	G3A.2V1	Astea Customer ID:	C037589001001

Instrument

Constructeur :	SARTORIUS	Modèle de terminal :	N/A
Modèle :	TE214S	# série du terminal:	N/A
No de série :	25851066	# série de l'imprimant	N/A
Capacité :	210 g		LAB
Résolution :	0,0001 g	Nbre de Divisions:	2100000
Classe :	1	Procédure utilisée :	Canadien
No./ID d'inventaire:	SBI-206		
Procédure:	l'A2LA, en vertu de la nom	nis conformément aux conditions de o ne ISC/IEC 17025. A2LA a évalué la des normes nationales reconnues.	

Date de calibrage :	14-mars-2013	Date, prochaine Cal.	31-mars-2014
Signataire autorisé (A2LA) :	Dany Careau	Signature:	ELECTRONIC SIGNATURE

Étalons de travail

Retracabilité:	Les poids de test utilisés	se référent au National I	nstitute of Standards and	Technology.
Jeu de poids no :	Traçabilité NIST No.;	Classe ASTM/OIML	Date d'étalonnage ;	Date proch. étalonnege
Kit Q	1367024	M1	23-avr-2012	23-avr-2013
55588	M11-0616	M1	27-mars-2012	27-mars-2013
MTP4	MT00346	F1	30-mars-2011	30-mars-2013

Version Logiciel : 4.5.1.0

Page 1 sur 3 © METTLER TOLEDO

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur.

Rapport d'étalonnage No. CA0003-448-031413

METTLER TOLEDO

Résultats de mesure

La température :

22 °C

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

6.	-
	4.)
C	D

_		Avant Réglage	Aprés Réglage
Paids Appliqués	Position	Valeur lue	Valeur lue
1: 50 g	Position 1	49,9998 g	50,0000 g
2: 50 g	Position 2	49,9998 g	50,0000 g
3: 50 g	Position 3	49,9999 g	50,0001 g
4: 50 g	Position 4	49,9998 g	50,0000 g
Erreur maximum :		0,0002 g	0,0001 g
Max Erreur Admissible :		0,0003 g	0,0003 g

Linéarité

			Avant réglag	pa .		
	Poids Appliqués	Valeur lue	Erre	w	Erreur admissible	Dans la Tolérance
Zero 1,00	0,0000 g	0,0000 g	0,0000 g	bd	1 d	oui
2,00	0,1000 g	0,1000 g	0,0000 g	0 d	1 d	oui
3,00	1,0000 g	1,0000 g	0,0000 g	0 đ	1 d	OUI
4,00	10,0000 g	9,9999 g	-0,0001 g	1 d	2 d	OUI
5.00	50.0000 g	49,9998 g	-0,0002 g	2 d	3 d	OUI
6,00	100,0000 g	99,9991 g	-0,0009 g	9 d	3 d	NON
Max 7,00	200,0000 g	199,9983 g	-0,0017 g	17 d	3 d	NON

Méthode de substitution utilisée

Version Logiciel: 4.5.1.0

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit privalable du laboratoire émetteur. Rapport d'étaionnage No. CA0003-448-031413

÷

METTLER TOLEDO

	Après réglage					
Zero 1,00	Poids Appliqués	Valeur lue	Valeur lue Erreur		Erreur admissible	Dens la Tolérance
	0,0000 g	0.0000 g	0.0000 g	0 d	1 d	OUI
2,00	0,1000 g	0,1000 g	0,0000 g	0 d	1 d	oui
3,00	1,0000 g	1,0000 g	0,0000 g	0 d	1 d	OUI
4,00	10,0000 g	10,0000 g	0,0000 g	0 d	2 d	oui
5,00	50,0000 g	50,0001 g	0,0001 g	1 đ	3 d	OUI
6,00	100,0000 g	100,0000 g	0,0000 g	0 d	3 d	OUI
Max 7,00	200,0000 g	200,0000 g	0,0000 g	0 d	3 d	OUI

Méthode de substitution utilisée

Un réglage de la balance a été requis

Si non, les résultats "avant réglage" correspondent aux résultats tel que laissé.

🗹 oui 🗌 NON

Répétabilité

old	s appliqués : 50,0000 g	1	
	Chargé	Vide	Différence
1	50,0000 g	0,0000 g	50 g
2	50,0001 g	0,0000 g	50,0001 g
3	50,0001 g	0.0000 g	50,0001 g
	Eneur maximale :	0,0001 g	1,0 d
	Tolérance :	0,0003 g	3d

Incertitude

Mesure de l'incertitude = 0,00023 g

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 95 %. Des dispositions doivent être prises en matière d'environnement au lisu d'étalonnage, d'incertitude induits par l'article en étalonnage et deffets indésirables causés par le transport du matériel d'étalonnage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC.

Remarques

Aucune.

Version Logiciel : 4.5.1.0

Page 3 sur 3 © METTLER TOLEDO

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur. Rapport d'étaionnage No. CA0003-447-031413 Mettler Toledo Service Business Unit Industrial 1900 Polaris Parkway Columbus, Ohio 43240 1-800-METTLER

METTLER TOLEDO

ISO 9001 Registered ANSI/NCSL 2540 Accrédité

Accrédité par l'American Association for Laboratory Accreditation (A2LA) CERT.CALIBRATION #1902.02

Certificat d'étalonnage

Client

Société :	SBI Fabricant de poèles International inc.			
Adresse :	250, rue Copenhague			
VWe :	St-Augustin	État/Province :	Québec	
Code postal :	G3A 2V1	Astee Customer ID:	C037589001001	

Instrument

Constructeur :	Chaus	Modèle de terminal :	N/A
Modèle :	FD15H	# série du terminal:	N/A
No de série :	B144397174	# série de l'imprimant	N/A
Capacité :	15000 g		LAB
Résolution :	1g	Nbre de Divisions:	15000
Classe :	ш	Procédure utilisée :	Canadien
No./ID d'inventaire:	S8I-222		
Pracédure:	l'A2LA, en vertu de la nom	nis conformément aux conditions de o ne ISO/IEC 17025. A2LA a évalué la des normes nationales reconnues.	

Date de calibrage :	14-mars-2013	Date, prochaine Cal	31-mars-2014
Signataire autorisé (A2LA) :	Dany Careau	Signature:	ELECTRONIC SIGNATURE

Étalons de travail

letracabilité:	Les poids de test utilisés	se référent au National I	nstitute of Standards and	i Technology.
Jeu de polds no :	Traçabilité NIST No.:	Classe //STM/OIML	Date d'étalonnage ;	Date proch. étalonnage
Kit Q	1367024	M1	23-aw-2012	23-avr-2013
55588	M11-0616	M1	27-mars-2012	27-mars-2013
MTP4	MT00346	F1	30-mars-2011	30-mars-2013

Version Logiciel : 4.5.1.0

Page 1 sur 3 © METTLER TOLEDO

Toute reproduction partielle du certificat est intendite, sous réserve du consentement écrit préalable du laboratoire ématteur. Rapport d'étalonnage No. CA0003-447-031413

METTLER TOLEDO

Résultats de mesure

La température :

22 °C

Les conditions ambiantes ont été vérifiées afin d'assurer l'exactitude de l'étalonnage.

Test de variation

2 [□]
3

7		Avant Réglage	Après Réglage
Poids Appliqués	Position	Valeur lue	Valeur lue
1: 5000 g	Position 1	4999 g	5000 g
2: 5000 g	Position 2	4999 g	5000 g
3: 5000 g	Position 3	4999 g	6000 g
4: 5000 g	Position 4	4999 g	5000 g
Erreur maximum :		1g	0 g
Max Erreur Admissible	:	5g	5 g

Linéarité

1	Avant réglage						
	Poids Appliqués	Valeur lue	Em	ear	Erreur admissible	Dans la Tolérance	
Zero 1,00	0 g	0 g	0 g	0 d	1 d	oui	
2,00	100 g	100 g	0 g	Dd	1 d	OUI	
3,00	1000 g	1000 g	0 g	0 d	2 d	OUI	
4,00	2000 g	2000 g	0 g	0 d	2 d	OUI	
5.00	5000 g	4999 g	-1 g	1 d	5 d	OUI	
6,00	10000 g	9998 g	-2 g	2 d	5 d	OUI	
Max 7,00	15000 g	14997 g	-3 g	3 d	5 d	oui	

Méthode de substitution utilisée

Version Logiciel : 4.5.1.0

Page 2 sur 3 © METTLER TOLEDO

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur. Rapport d'étalonnage No. CA0003-447-031413

÷

METTLER TOLEDO

	Aprés réglage						
	Poids Appliqués	Valeur lue	Em	eor	Erreur edmissible	Dans la Tolérance	
Zero 1,00	0 g	0 g	0 g	bß	1 d	OUI	
2,00	100 g	100 g	0 g	0 d	1 d	OUI	
3,00	1000 g	1000 g	0 g	0 d	2 d	oui	
4,00	2000 g	2000 g	0 g	0 d	2 d	oui	
5,00	5000 g	5000 g	0 g	0.d	5 d	OUI	
6,00	10000 g	10000 g	0 g	Dd	5 d	OUI	
Max 7,00	15000 g	15000 g	0 g	0 d	5 d	OUI	

Méthode de substitution utilisée

Un réglage de la balance a été requis

Si non, les résultats "avant réglage" correspondent aux résultats tel que laissé.

Répétabilité

sid	s appliqués : 5000 g		
	Charge	Vide	Différence
ŧ.	5000 g	0 g	5000 g
2	5000 g	0 g	5000 g
3	5000 g	0 g	5000 g
	Erreur maximale :	0 g	b 0,0
J.	Talérance :	5 g	5 d

Incertitude

Mesure de l'incertitude = 0,6 g

Les meilleures incertitudes représentent les incertitudes étendues selon un facteur de sécurité K=2 générant un niveau de confiance approximatif de 96 %. Des dispositions doivent être prises en matière d'environnement au licu d'étalennage, d'incertitude induite par l'article en étalennage et deffets indésirables causés par le transport du matériel d'étalennage. Ces facteurs pourraient entraîner une incertitude plus grande que le BMC,

Remarques

Aucune.

Version Logiciel : 4.5.1.0

Page 3 sur 3 © METTLER TOLEDO

Toute reproduction partielle du certificat est interdite, sous réserve du consentement écrit préalable du laboratoire émetteur. Certificate No: MT00346

METTLER TOLEDO

1900 Polaris Pkwy Columbus, OH 43240 1-800-METTLER

Customer Information

METTLER TOLEDO

Mass Calibration Certificate

Customer Name:	Mettler-Toledo QC	City:	Anjou
Address:	9280 Du Parcours	State / Province:	QC
		Zip / Postal Code:	H1J2Z1
Measurement and T	est Equipment Identification		
Serial Number:	MTP4	Date Received:	03/13/11
Manufacturer:	Troemner	Condition:	Good
Asset number:		Tolerance Class:	ASTM, OIML 6, F1
Environmental C	conditions		
Temperature:	20.436 °C	Relative Humidity:	49.887 %RH
Barometric Pressure	: 988.8998 hPa	Air Density:	1.1685 kg/m ²

The standards used to perform this calibration are traceable to NIST through METTLER TOLEDO traceability number; MT5061

This certificate is issued in accordance with the conditions granted by A2LA under Certificate number 1788.01, which is based on ISO/IEC17025. A2LA has assessed the measurement capability of the laboratory and its traceability to recognized national standards. All uncertainties in this certificate are reported at a 95% (k=2) confidence factor.

This certificate may not be partially reproduced, except with prior written permission of the issuing laboratory and A2LA.

Calibration Date:

03/30/2011

Next Calibration Due:

03/30/2013

Calibration Technician: Kathy \

Kathy Weatherbie

eluca 04/07/2011 Signature 1

Metrology Specialist

Date

Page 1 of 5

As Found Data

Nominal Value&Suffix		Serial Number	True Mass (g)	Conv. Mass (g)	Uncertainty (mg, k = 2)	Density (g/cm²)	
5 kg	×	(MTP4)	5000.0060	4999.9916	2.0	7.85	
5 kg		(MTP4)	5000.0232	5000.0089	2.0	7.85	
2 kg		(MTP4)	2000.00054	1999.99481	0.34	7.85	
1 kg		(MTP4)	999.998639	999.995772	0.065	7.85	
500 g		(MTP4)	499.999773	499.998340	0.044	7.85	
200 g		(MTP4)	199.999666	199.998992	0.020	7.85	
200 g		(MTP4)	200.000444	199.999871	0.020	7.85	
100 g	•	(MTP4)	100.000202	99.999915	0.018	7.85	
100 g		(MTP4)	100.000381	100.000094	0.018	7.85	
50 g		(MTP4)	49.9999113	49.9997680	0.0086	7.85	
20 g	*	(MTP4)	20.0000049	19.9999475	0.0054	7.85	
20 g		(MTP4)	20.0000019	19.9999446	0.0054	7.85	
10 g		(MTP4)	10.0000847	10.0000561	0.0045	7.85	
5 g		(MTP4)	5.0000688	5.0000545	0.0020	7.85	
2 g	•	(MTP4)	2.0000782	2.0000725	0.0015	7.85	
2 g		(MTP4)	2.0000555	2.0000498	0.0015	7.85	
1 g		(MTP4)	1.0000425	1.0000397	0.0015	7.85	
500 mg		(MTP4)	0.4999626	04999621	0.0011	7.95	
200 mg	•	(MTP4)	0.19997458	0.19997439	0.00085	7.95	
200 mg		(MTP4)	0.19908519	0.19998500	0.00085	7,95	
100 mg		(MTP4)	0.09999607	0.09999598	0.00084	7.95	
50 mg		(MTP4)	0.04999361	0.04999357	0.00069	7.95	
20 mg		(MTP4)	0.01998330	0.01997741	0.00061	2.70	
10 mg		(MTP4)	0.00994911	0.00994618	0.00062	2.70	

As Left Data

Nominal Value&Suffix		Serial Number	True Mass (g)	Conv. Mass (g)	Uncertainty (mg, k = 2)	Density (g/cm³)	
5 kg		(MTP4)	5000.0060	4999.9916	2.0	7.85	
5 kg		(MTP4)	5000.0232	5000.0089	2.0	7.85	
2 kg		(MTP4)	2000.00054	1999.99481	0.34	7.85	
1 kg		(MTP4)	999.998639	999.995772	0.065	7.85	
500 g		(MTP4)	499.999773	499.998340	0.044	7.85	
200 g	•	(MTP4)	199.999566	199.998992	0.020	7.85	
200 g		(MTP4)	200.000444	199.999871	0.020	785	
100 g	•	(MTP4)	100.000202	99.999915	0.018	7.85	
100 g		(MTP4)	100.000381	100.000094	0.018	7.85	
50 g		(MTP4)	49.9999113	49.9997680	0.0086	7.85	
20 g	•	(MTP4)	20.0000049	19.9999475	0.0054	7.85	
20 g		(MTP4)	20.0000019	19.9999446	0.0054	7.85	
10 g		(MTP4)	10.0000847	10.0000561	0.0045	7.85	
5 g		(MTP4)	5.0000688	5.0000545	0.0020	7.85	
2 g	•	(MTP4)	2.0000782	2.0000725	0.0015	7.85	
2 g		(MTP4)	2.0000555	2.0000498	0.0015	7.85	
1 g		(MTP4)	1.0000425	1.0000397	0.0015	7.85	
500 mg		(MTP4)	0.4999626	0.4999621	0.0011	7.95	
200 mg	•	(MTP4)	0.19997458	0.19997439	0.00085	7.95	
200 mg		(MTP4)	0.19998519	0,19998500	0.00065	7.95	
100 mg		(MTP4)	0.09999607	0.09999598	0.00084	7.95	
50 mg		(MTP4)	0.04999361	0.04999357	0.00069	7.95	
20 mg		(MTP4)	0.01998330	0.01997741	0.00061	2.70	
10 mg		(MTP4)	0.00994911	0.00994618	0.00062	2.70	

Comparators Used

	Equipment Used	Serial Number	Equipment Type	Calibration Due	
#6 ;	a5XL	B010016731	Automated Mass Comparator	06/30/2011	
1# :	a200XL	B010016733	Automated Mass Comparator	06/30/2011	
5# :	a1000	B010016732	Automated Mass Comparator	06/01/2011	
68 :	XP2004S	1129043681	Comparator	08/02/2011	
1# :	PR10003	1115413821	Comparator	08/16/2011	

No Remarks

Definitions

Nominal Value - The value as labeled on the weight or defined by shape in accordance with OIML R111 for milligram weights. The number within the parentheses after the nominal value is the serial number of the set to which the weight belongs.

True Mass - The mass value of the weight if measured in a vacuum.

Conventional Mass - For a mass at 20 °C, "Conventional Mass" is the mass of a reference standard of density 8000 kg/m" which it balances in air with a density of 1.2 kg/m". This value should be referenced when testing the accuracy of a weighing device using any of the nominal values contained in this certificate. The As Found results will equal the As Left in cases where no adjustment or replacement was required.

Uncertainty - All Uncertainty values are reported at 95% confidence level (k=2). The uncertainty value does not include a component for the affects due to magnetism.

Tolerance - The acceptable range of deviation (positive and negative) from the nominal value, including the uncertainty, as defined by ASTM and OIML for the respective classes.

Density - The assumed density of the material used by the manufacturer.

Calibration Process - The METTLER TOLEDO procedure used to obtain the measurement results. All procedures are based on SOPs as defined in NIST Handbook 145. The same process is used to obtain the As Found and As Left results.

OOT - The As Found measurement result combined with the uncertainty exceeded the tolerance for the specified weight class.

A - Weight was adjusted after As Found testing to within the appropriate tolerance class.

R - The received weight was replaced due to an out of tolerance condition and the weight was not adjustable or the weight for this nominal value was missing.

District de Québec

Measurement Mesures Canada

An Agency of Industry Canada

Canada

Un organisme d'industrie Ganada

1950, avenue d'Estimauville Québec: Québec: GTJ 0C4

Ni du jeu de politis	Emale 2012-04-23	Date de-priston 2013-04-23
Popostany Mettler-Toled		
2435 Satt, po		
Quèbec, Qc G	1P 3X2	
Provensions Sylvain Doyon		5 de HMuthoru 118 - 65 4 - 0001

CERTIFICAT DE DÉSIGNATION

Étatons gravimétriques

Je woussigné(e), étant autorisé(e) par le ministre d'industrie à exercer les pouvoirs du ministre d'industrie conformément à l'article 13 (1) de la Loi sur los poids et mesures.


1) certife par la présente que l'étalon ou jeu d'étalons a été étalonné conformément à la partie III du Règlement sur les poids et mesures et par rapport à un étalon de référence traçable aux étalons nationaux de mesure du Canada par une chaîne ininteriompue de comparaisons. (les étalons nationaux de mesures du Canada sont maintenus par l'Institut des étalons nationaux de mesures (IENM) du Conseil national de recherches du Canada), et

3) designe ledit etalon ou jeu d'étalons décris ci-dessous à titre d'étalon(s) (scal;aux):

Numero d'identifica	ation Va	sleur Nominale	Numero d'identificatio	n Vales	ir Nominale	Numero d'identification	YI YI	eut Nominale	Numéro d'identification	t V	aleur Nominale
Q118	20	kg	0128	20 k	g	Q138	20	kg	Q148	20	kg
2119	20	kg	2129	20 %	9	0139	20	kg	Q149	20	kg
0120	20	kġ	Q130	20 k	g	Q140	20	kg	0150	20	kg
2121	20	kg	Q131	20 k	g	0141	20	kg	0151	20	kg
0122	20	kg	0132	20 k	ġ	Q142	21	kg			
2123	20	kg	Q133	20 k	g	0143	20	kg			
2124	20	kg	Q134	20 k	g	Q144	20	kg			
2125	20	kg	Q135	20 k	g	Q145	20	kg			
0126	20	kg	0136	20 k	g	0146	20	kg			
2127	20	kg	Q137	20 k	a.	0147	20	kg		_	

District Certifië par Désignépar Titre du poste 28 (Lettres moulées Pancal Turgeon Gestionnaire de Guy Tessier district Nit du certificat d'àtaionnage (Signature) 1367024

Le droit d'auteur de ce certificat appartient à Mesures Canada et ne doit par être reproduit autrement qu'en totalité sans avoir préalablement obtenu l'autorisation écrite de Mesures Canada.

Canadä

Measurement Mesures Canada

An Agency of Industry Conado

Un organisme d'industrie Canada

District de Québec 1550, avenue d'Estimauville Duiblec, Quiblec, G1J 0C4

Canada

Ni du jeu de poits	2012-04-23	2013-04-23
Popretare Mettler-Toled	o L.L.C.	
Afelle 2435 Walt, po	rte 15	
Québec, Qc G	1F 3X2	
Sylvain Doyon		ko do teMyhone 118-654-0001

Canadä

CERTIFICAT DE DÉSIGNATION

Étalons gravimétriques

Je soussignit(e), etant autorise(e) par le ministre d'industrie à exercer les pouvoirs du ministre d'industrie conformement a l'article 13 (1) de la Loi aur les poids et mesures,

1) certifie par la présente que l'étalon ou jou d'étalons a été étalonné conformément à la partie III du Reglement sur les poids et mesures et par rapport à un étalon de référence traçable aux étalons nationaux de mesure du Canada par une chaîne inisterrompue de comparaisons (les étalons nationaux de mesures du Canada sont maintenus par l'Institut des étalons nationaux de mesures (IENM) du Conseil national de recherches du Canada), et

2) désigne tedit étalon ou jeu d'étalons décris ci-dessous à titre d'étalon(s) local(aux):

Numèro d'identificati	on: V	slear Nominale	Numiro didenti	fication 1/2	vieur Nominale	Numero d'identification	Valeur Nominale	Numéro d'identification	Valeur Nominale
Q101	20	kg	Q111	20	kg				
0102	20	kg	Q112	20	kg		_		
0103	20	kg	Q113	20	kg				
0104	20	kg	0114	20	kg				
0105	20	kg	0115	20	kg				
0106	20	kg	Q116	20	kġ				
0107	.20	kg			140				
9108	50	kg							
0109	20	kg							
2110	20	kg							

District 28	Centépar Pascal Turgeon	Désigné par (Lettres moulées) Guy Tespign	Dire du poste Gestionnaire de district
	Net du certificat d'étatorrage 1367024	(Signature)	
		XI	

Le droit d'auteur de ce certificat appartient à Mesures Canada et ne doit pas être reproduit autrement qu'en totalité sans avoir préalablement obtenu l'autorisation écrite de Mesures Canada.

IG28370F (2011/12). Page 1 de 1

r

Measurement Mesures Canada Canada An Agency of Un organism Industry Canada directorie C

Approval and Calibration Services Laboratory Standards Building 151 Turney's Pasture Driveway Ottawa, Ontario K1A 8C9 Un organisme d'industrie Canada Laboratoire des services

d'approbation et d'étaions	ağı
immouble des normes	
151, allée Tunney's Pastur	
Ottawa, Ontario	
K1A 0C9	

Certificate of Calibration and Designation

 the undersigned, being authorized by the Minister of Industry to exercise the power of the Minister of Industry pursuant to Section 13, sub-section 1 of the Weights and Memore Act.

1) hereby certify that the standard or set of standards has been calibrated in secondarses with Part III of the Weights and Measures Regulations in relation to a reference transfort traceable to the National Measurement Standards of Canada through an antroken chain of comparisons (the National Measurement Standards are maintained by the Institute of National Measurement Standards (INMS) of the National Research Council of Canada] and

2) designets the said standard or set of standards described below as local standard(s):

Document	Calibrated (YMD) - Elaionné (AMJ)
M11-0616	2012/03/27
Project/Applicant - Projet/Requérant	Receilbration - Date - de réélalonnage
CP-ML-11-0194	2013/03/27
Mettler-Toledo Inc.	
Owner - Propriétaire	
Mettler-Toledo Inc. 110-780 rue King Ouest, suite 22	20

Sherbrooke QC J1H 1R7

Certificat d'Étalonnage et de Désignation

Je, soussigné(e), étant autorisé(e) par le ministre d'Industrie à exercer les pouvoirs du ministre d'Industris conformément à l'article 13, paragraphe 1 de la Loi sur les poids et mesures,

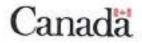
1) certifie par la présente que l'étalon ou jon d'étalons a été étalonné conformitment à la partie III du Béglament sur les poids et mesures et par support à un étalon de référence traçable aux étalons nationaux de mesures du Canada par une choise ininterrompoe de comparaisons (los étalons nationaux de mesures du Canada sont maintenas par l'Institut des étalons nationaux de mesures du Canada sont maintenas par l'Institut des étalons nationaux de mesures du Canada sont maintenas par l'Institut des étalons nationaux de mesures (IÉNM) du Conseil national de recherches du Canada), et

2) désigne ledit étalem ou jeu d'étalem éteris ci-dasseus à titre d'étalents) local(aux):

Seri Standard Manufi	icturer: Mettler-Tol ristics: Mettler Tol		No. Projet: CP-ML-11-0194 No. de série: 55588 Groupe d'étalons: Jeux de poids accrédités Fabricant: Mettler-Toledo Inc. Camctéristiques: Mettler Toledo Inc. 5kg a 100mg (2 X 5g) (Version:2008/12/10)			
PROCEDU	RE(S) USED	ISED SOFTWARE USED	PROCÉDUR	E(S) UTILISÉ(S)	LOGICIEL(S) UTILISÉ(S)	
MC-MA-CP-	001 ver, 7.0	.0 DTCS ver. 2.3.4	MC-MA-CP-00	liver.7.0	SECI ver. 23.4	
	STA	STANDARD(S) USED		ÉTAL	ON(S) UTILISÉ(S)	
Device	Certificate		Instrument	Certificat	Groupe d'étalons	
874017	M10-0001		874017	M10-0001	BM Étalons de masse - syst. mé	
ML88025	MI1-0082	0082 BM Metric Mass Standards	ML88025	M11-0082	BM Étalons de masse - syst. mé	
M358	B010-11M	0108 BM Metric Mass Standards	MS58	M11-0108	BM Étalons de masse - syst, mé	

	- Caller
Denis D'Aoust	Designated by: Ronald Peasley Date
Legal Metrologiat Métrologiste légal	Désigné par: Senior Engineer - Gravimetry

Copyright of this contificant is owned by Measurement Canada and may not be reproduced other than in hill except with the prior writes approval of Measurement Canada.


Le droit d'auteur de ce certificat appartient à Menuser Canada et se doit pas des reproduit surrement pl'an totalité aux avoir préclablement obteux l'autoritation écrite de Mesures Canada.

The Calibration Laboratory Americane Service (CLAS) of the National Research Council of Canada (NRC) has inserted and certified specific calibration trapabilities of this laboratory and tractability to the International System of Units (St) or to standards acceptable to the CLAS program. This conflicts of calibration is intend to acceptable to the canditions of certification guarded by CLAS and the conditions of neurodistation granted by the Standards Council, Neither CLAS not SCC gammite the acceptage of individual calibrations by accepted laboratories.

Le Service d'écaluation des informations d'etalonnage (CLAS) de Conseil national de recherches du Canada (CNRC) a évalue et certifié la capacité d'étalennage du laboratoire et la trapakéliet su Système international d'unités (SI) ou à des étalons acceptables selon la CLAS. Le présent certificat d'étalennage et délivré conforméniet aux conditions du certification du CLAS et aux conditions d'actréditation du Conseil contradien des normes (CCN). Le CLAS et la CCM se gatantitisent pas l'enactitude des étalennages individuels effensée por les înternations acceptables.

1 of / de 2

Measurement Mesures Canada Canada Un organisme An Agency of Industry Canada d'Industria Canada

Locument	Calibrated (YMD) - Balonné (AMJ)
M11-0616	2012/03/27
Project/Applicant - Projet/Requerant	Recelbration - Date - de réétalonnage
CP-ML-11-0194	2013/03/27
Mettler-Toledo Inc.	

VERIFICATION VALUES - VALEURS D'ESSAI

Identification Number Numéro d'identification

Nominal Value Valeur nominale

· · · · · · · · · · · · · · · · · · ·	
TM1	5 kg
TM2	5 kg
TMI	2 kg
TM2	2 kg
TM	1 kg
TMI	500 g
TM2	500 g
TM3	500 g
TM4	500 g
TMI	200 g
TM2	200 g
TM	100 g
A6	50 g
A5	20 g
A4	10 g
A3•	10 g
Al	5 g
A2•	5 g
TM•	2 g
TM	2 g.
489A	lg
	500 mg
	500 aig
	200 stg
	200 stig
	100 mg

NOTES:

All weights listed above were verified.

All values are expressed in conventional mass, as defined by the Organisation internationale de métrologie légale (OIML): "The conventional value of the result of weighing a body in air is equal to the mass of a standard, of convertionally chosen density (\$000 kg/m^3), at a conventionally chosen temperature (20°C), which balances this body at this reference in air of conventionally elsesen density (1.2 kain*31*

The applied standard tolerances see those established in Section 54 and not out in Schedule IV, Part III and IV of the Weights and Measures Regulations.

NOTES:

Totas les poids ei-haut merctionnés ont été étalonnés.

Toutes les valleurs sont exprimées en masse conventionnelle qui est définie par rorganisation internationale de métrologie légale (OIML) comme suit: "La valeur conventionnelle du résultat de l'action de peser un corps dans l'air est égale à la masse d'un étalon, de densité conventionnellement shoisie (\$000 kg/m*5), a une température choiste conventionnellement (20°C), qui permet d'équilibrer ce corps à cette température de référence dans l'air de densité choisis conventionnellement (1.2 kg/m*3).*

Les marges de tolérance appliquées cont établies à l'article 54 et décrites à l'annex IV. partie III et IV du Réglement sur les poids et mesures.

La mesure juste DOUR YOUS

2 of/ de 2 10100307+13-89

Ulrich Métrologie Inc. Ulrich Netrology Inc. 9012, Côle-de-Liesse Montrial (Québec) H&T 1A1 Tel. (514) 631-6653 Fax (514) 631-6122 Info@utrich.ca www.utrich.ca

ACCREDITATION

CALIBRATION CERTIFICATE

Certificate no.: 349496 Identification: SBI-096 Description: CALIBRA Size: TC K/J/T Manufacturer: OMEGA Model no.: CL23A Serial no.: T-256137

349496 SBI-096 CALIBRATOR, OMEGA CL23A TC K/J/T OMEGA CL23A T-256137

Calibration date:	January 21, 2013
Certificate issued:	January 31, 2013
Interval:	12 months
Due date:	January 21, 2014
Procedure no.;	MET/CAL
Environment:	CLAS Type 2 Laboratory
Temperature:	23 ± 2°C
Humidity:	35 - 55% RH
Metrologist:	BEN

Property of:	SBI
	250 RUE DE COPENHAGUE
	ST-AUGUSTIN-DE-DESMAURES, QC G3A 2H3

Approved by:

David Llorens, Quality Manager

This calibration certificate is insued in accordance with the applicable requirements of ISO/IEC 17023 and Ulrich Metrology's quality manual QM-68. Measurement results provided are irreveable to either the National Research Council Caunda (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signalory to the CIPM Matual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Caunda has an opiralence agreement.

CALIBRATION STANDARDS

See notes below.

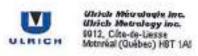
MEASUREMENT UNCERTAINTY

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

CALIBRATION DATA

See next page for measurement results.

Notes:


This certificate replaces certificate 347729. The DATA from 347729 is still valid and unchanged.

EQUIPMENT RECEIVED OUT OF SPECIFICATIONS.

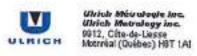
Failed multiple calibrator outputs.

ADJUSTED.

The Calibration Letration Associated Service (SLAS) of the Resident Research Device (SLAS) and the Research and the Relation of the Research and the Relation of the Relation

Tél. (614) 631-6653 Fax (614) 631-6122 into@ulrich.ca www.ulrich.ca

CALIBRATION DATA


347729
SBI-096
CALIBRATOR THERMOMETER
T-256137
Omega CL23A: 5520A-M

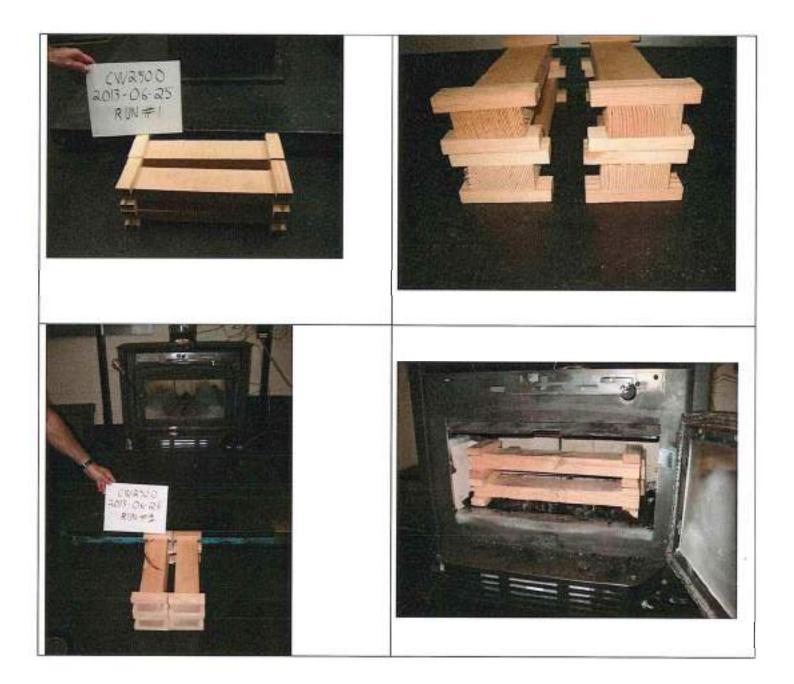
Result: FAIL Condition: AS-FOUND

Identification	Description		Manufacturer		Model no.	Cal. Date	Due Date
7870009	CALIBRATOR	3	FLUKE		5520A	2012/03/02	2013/03/02
MEASUREMENT	RESULTS (Per MET/CAL)						
MERCONLINE IT		TRUE	TEST	ACCEPTANCE	TTATES	PASS/	
PARAMETER		VALUE	RESULT	LOW	HIGH	PASS/ PAIL	TUR
Temperature me	asurements are perform	and by					
electrical sim	ulation.						
DISPLAY CALIBR							
	ts of the display illu	minate?					
Result of Oper	ator Evaluation					PASS	
THERMOMETER CA	LIBRATION						
K Type Thermoc	ouple						
-200.0degF			-200.7	-201.0	-199.0	PASS	1.7
-60.0degF			-60.4	-61.0	-59.0	PASS	3.1
-40.0degF			-40.4	-40.5	-39.5	PASS	1.5
32.0degF			31.5	31.5	32.5	PASS	1.7
1240.0degF			1239.5	1239.5	1240.5	PASS	1.1
1260.0degF			1259.5	1259.5	1260.5	PASS	1.1
2500.0degF			2499.3	2499.0	2501.0	PASS	1.4
J Type Thermoo	ouple						
-200.0degE			-200.5	-201.0	-199.0	PASS	2.1
~60.0degF			-60.2	-61.0	-59.0	PASS	3.5
-40.0degF			-40.3	-40.5	-39.5	PASS	1.7
32.0degF			31.6	31.5	32.5	PASS	2.0
1240.0degF			1239.5	1239.5	1240.5	PASS	1.6
1260.0degF			1259.5	1259.5	1260.5	PASS	1.6
1400.0degF			1399.5	1399.4	1400.6	PASS	1.8
T Type Thermood	ouple						
-200.0degF			-199.9	-201.0	-199.0	PASS	2.3
-60.0degF			-59.8	-61.0	-59.0	PASS	2.3
-40.0degF			-40.0	-40.5	-39.5	PASS	1.2
32.0degF			32.0	31.5	32.5	PASS	1.7
750.0degF			749.9	749.5	750.5	PASS	2.0
CALIBRATOR CAL	BRATION						
X Type Thermoco	suple						
-200.0degF			-199.2	-201.0	-199.0	PASS	1.7
Calibration Date for Certificat	No. 347729					Rivelin01	Page 1 of 2

ULRICH	Which Métrologie Inc. Which Metrology Inc. 9012, Cite-de-Lesse Motorial (Québec) HBT (A)	Tél. (514) 5314 Fax (514) 631- info@utich.ca www.ulrich.	0122				
-		TRUE	TEST	ACCEPTANC	E LIMITS	PASS/	
PARAMETER		VALUE	FESULT	LOW	HIGH	FAIL	TUR
-60.0degF			-59.6	-61.0	~59.0	PASS	3.1
-40.0degF			-39.5	-40.5	-39.5	PASS	1.5
32.0degF			32.3	31.5	32.5	PASS	1.7
1240.0deg			1239.6	1239.5	1240.5	PASS	1.1
1260.0deg	1F		1259.6	1259.5	1260.5	PASS	1.1
2500.0deg	F		2498.7	2499.D	2501.0	FAIL	1.4
J Type The	rnocouple						
-200.0degF			-199.6	-201.0	-199.0	PASS	2.1
-60.0degF			-59.9	-61.0	-59.0	PASS	3.5
-40.0degF			-39.8	-40.5	-39.5	PASS	1.7
32.0degF			32.0	31.5	32.5	PASS	2.0
1240.0deg	E'		1239.6	1239.5	1240.5	PASS	1.6
1260.0deg	E		1259.6	1259.5	1260.5	PASS	1.6
1400.0deg	F'		1399.3	1399.4	1400.6	FAIL	1.8
Type The	rmocouple						
-200.0degF	an a		-197.5	-201.0	-199.0	FAIL	2.3
-60.0degF			-59.9	-61.0	-59.0	PASS	2.3
-40.0degF			-39.8	-40.5	-39.5	PASS	1.2
32.0degF			31.9	31.5	32.5	PASS	1.7
750.0degF			749.6	749.5	750.5	PASS	2.0

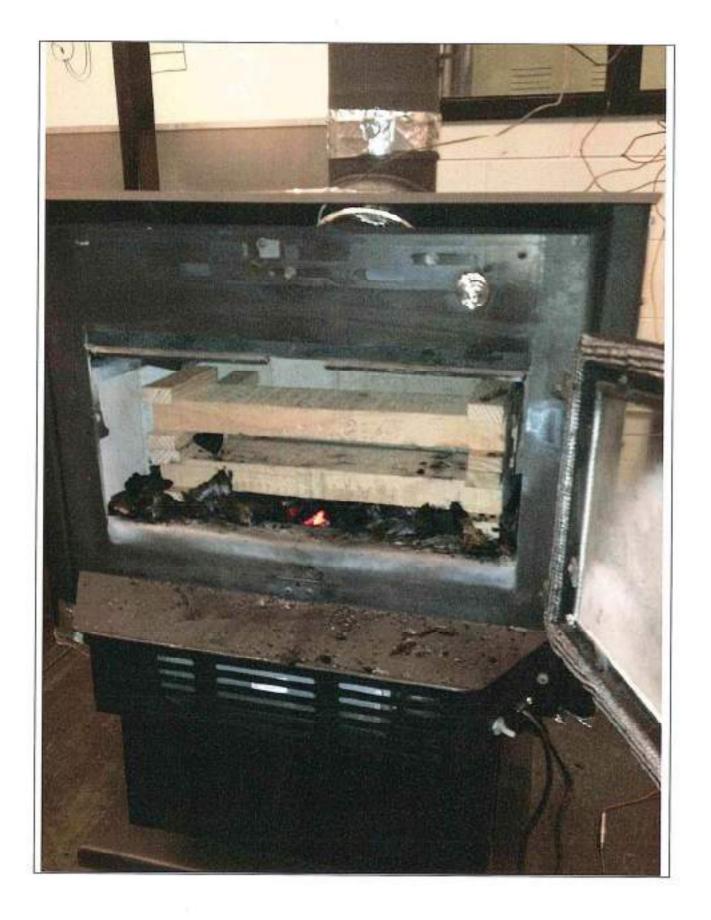
End of Test Data

Tê. (614) 031-0053 Fax (614) 031-0122 info@utrich.ca www.utrich.ca


CALIBRATION DATA

7870009 CALIBRATOR FLUKE 5520A 2	Cal. Date 012/03/02	
Procedure: Omega CL23A: 5520A-M CALIERATION STANDARDS Identification Description Manufacturer Model no. 0 7870009 CALIERATOR FLUKE 5520A 2	1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (19 1999 (199	
CALIBRATION STANDARDS Identification Description Manufacturer Model no. 0 7870009 CALIBRATOR FLUKE 5520A 2	1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (19 1999 (199	
Identification Description Manufacturer Model no. 0 7870009 CALIBRATOR FLUKE 5520A 2	1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (19 1999 (199	Due Date
Identification Description Manufacturer Model no. 0 7870009 CALIBRATOR FLUKE 5520A 2	1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (19 1999 (199	1990,000,000
	012/03/02	2013/03/02
MEASUBEMENT DESULTS (Des METRO 4)		
MEASUREMENT RESULTS (Per MET/CAL)		
DD D D D D D D D D D D D D D D D D D D	PASS/ FAIL	TOR
Temperature measurements are performed by		
electrical simulation.		
DISPLAY CALIBRATION		
Did all segments of the display illuminate?		
Result of Operator Evaluation	PASS	
THERMOMETER CALIBRATION		
K Type Thermocouple		
	PASS	1.7
	PASS	3.1
	PASS	1.5
1010 04440	PASS	1.7
1000 04-10	PASS	1.1
DEDO Odrem	PASS	1.1
	1000	
J Type Thermocouple		
CO Data D	PASS	2.1
10 04	PASS	3.5
	PASS	1.7
1940 Ddeep	PASS	2.0
1000 04	PASS	1.6
1400 0.0	PASS	1.8
F Type Thermocoupla		
200 Adapt	PASS	2.3
	PASS	2.3
46 Gdz - 6	PASS	1.2
AN ANNE CONTRACTOR	PASS	1.7
750 OdesP	PASS	2.0
CALIBRATOR CALIBRATION		
Type Thermocouple		
-200.0degF -199.6 -201.0 -199.0	PASS	1.7
alibration Data for Certificate No. 347729 B	trs801	Page 1 of 2

ULNICH	Which Métrologie Inc. Which Metrology inc. 9912, Côte-de-Liesse Motrièal (Duèbec) H8T 1Aj	Tél. (514) 5314 Fax (514) 5314 into@utrich.ca www.atrich.	0122				
		TRUE	TEST	ACCEPTANC	E LIMITS	PASS/	
PARAMETER		VALUE	RESULT	LOW	HIGH	FAIL	TOP
-60.0degF			-59.8	-61.0	-59.0	PASS	3.1
-40.0degF			-39.8	-40.5	-39.5	PASS	1.5
32.0degF			32.0	31.5	32.5	PASS	1.7
1240.0deg			1240.2	1239.5	1240.5	PASS	1.1
1260.0deg	jF		1260.3	1259.5	1260.5	PASS	1.1
2500.0deg	1F.		2500.6	2499.0	2501.0	PASS	1.4
J Type The	ermocouple						
-200.0deg1			-200.0	-201.0	-199.0	PASS	2.1
-60.0degF			-60.1	-61.0	-59.0	PASS	3.5
-40.0degF			-40.0	-40.5	-39.5	PASS	1.7
32.0degF			31.9	31.5	32.5	PASS	2.0
1240.0deg	μ. Έ		1240.3	1239.5	1240.5	PASS	1.6
1260,0deg	1F		1260.2	1259.5	1260.5	PASS	1.6
1400.0deg	J.F.		1400.1	1399.4	1400.6	PASS	1.8
I Type The	rmocouple						
-200.0degF			-200.5	-201.0	-199.0	PASS	2.3
-60.0degF			-50.3	-61.0	-59.0	PASS	2.3
-40.0degF			-40.0	-40.5	-39.5	PASS	1.2
32.0degF			31.9	31.5	32.5	PASS	1.7
750.0degE	N-1		750.0	749.5	750.5	PASS	2.0


End of Test Data

Appendix E: Pictures

Appendix F: Test data Run 1

Project Number:	0	0
Manufacturer:	SBI	
Model:	CW2500	
Sample ID Number:	0	
Test Date:	June 25, 2013	
Test Run Number:	1	

EPA Method 28

Pre Burn Data

Average Firebox Temp, *F 321.46

Coal Bed Range 1.8 to 2.2

Final Coal Bed Wt, lb 1.93

Interval T	10 ime		400		Tem	perature D	Data				8	1	
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	88,49	198,7	612,9	1575	507.7	577.3	471.1	877.1		0	2.12	0.89
1	10	85.9	121.5	385.4	517.5	512.3	582.7	465.0	653.5		-	2.61	0.19
2	20	. 64	109.0	309,6	456.2	493.5	512,7	437.1	526.8		1	2.61	0.02
3	30	82,62	104	28.2.7	409.7	470.8	466.5	402.9	482		0	2.53	0.08
4	40	82.23	.97.87	265.1	.176.4	447	430.2	372.9	445.8		1	2.46	0.07
5	50	76.19	08.37	251.0	349.T	424.1	399.9	348.2	418.3			2.15	0.11
6	60	73.59	94.91	235.1	326.9	404.8	374.7	326.7	396.2			2.23	0.12
7	70	73.t	53.73	225.7	309.4	388.8	354.7	- 306.0	377.2			2.07	0,16
8	80	76.5	52.41	216.2	294.8	375	338_8	293.8	360		6	1,97	0.10
9	90	72.32	101.8	230.7	285.3	364.3	328.2	285.8	343.7		1	1.83	0.04
10											1		
11													
12									1		Y		
13			1						D		1		-
14		S			C			3					
15											-		-
16													
17													-
18								8 - 9	1				0
19		-	0.00		0.000			S - 3	1		-		
20			0 8		8 8			24			-		
21		č	3 1 1		1 1			· · · · · · · · · · · · · · · · · · ·					
22													
23		1			6	-		-	-		-		1
24		8	-		3 3			8 <u></u>	-				-
25		1			1			-			-		-
26		-			1						0	-	-
27			3 8		2 - 2			-	-			-	
28											<u> </u>		1
29					1								
30			-		1	-					-		-

Intertek

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number;	0
Manufacturer:	SBI
Model:	CW2500
Sample ID Number:	0
Test Date:	June 25, 2013
Test Run Number:	+

Barometer, In. Hg	er, In. Hg	RH, %	cample	Sample Box Correction	ection (y)	on (y) Factors		Leak Check,	Leak Check, cfm @ in Hg		Maximur	Maximum Vacuum
Start	29.70		Me	Meter Box (A)		172.0		Train A	Train B	0.00	Train A	Train B
End	29.70		Me	Meter Box (B)	(8)	0.986		0.0025806	0.003@15		0.00	00'0
Durati	Duration of Test, Min	. Min	190				1					
							Particulate Sampling Data	ampling Data				
	Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Train A Proportional	Train B Proportional	Train A Vacuum. In-	Train B Vacuum In
Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	БН	ΡH
0	0.013	0.00	00'0	0,035	8.86	8.86	679,862	510.362	100.07	100.15	0.00	0.00
10	0.013	0.00	0.00	0:030	8,51	0.35	681.481	511.877	101.92	99.40	00'00'	00'0
20	0.013	0.00	00'0	0.035	8.20	0.31	683.090	513.380	100.99	98.33	0,00	00'0
30	0.013	00'0	0.00	01/0/0	7.69	0.51	684.655	514.845	98,58	96.18	0,00	0.00
40	0.013	0.00	00'0	0.040	7.28	0.41	686.292	516.435	102.95	104.24	0.00	00'0
50	0.013	00.0	00.00	0.060	6.22	1.06	687,942	518.040	104.78	106.25	0,00	00'0
60	0.013	00.0	0010	0.070	4.80	1.42	689.586	518.645	105.42	107.29	0.00	00'0
70	0.013	0.00	0.00	0.070	3,46	1.34	691.230	521.244	105.63	107.11	0.00	0.00
80	0.013	0,00	0.00	0.065	2.52	0.94	692.842	522.845	103.07	106.73	0.00	0.00
80	0.013	0.00	0.00	0.055	1,97	0.55	694.441	524.431	101.61	105.07	0.00	0.00
100	0.013	0.00	0.00	0.055	1,58	0.39	696.075	525.952	103.45	100.39	0.00	00'0
110	0.015	0.00	0.00	0.050.0	1.34	0.27	697.662	527.206	91.39	75.29	0.00	00'0
120	0.015	0.00	0.00	0.045	1,13	0.18	699.277	528.579	92.77	82.23	0.00	0.00
130	0.015	0.00	0.00	0.045	0.93	0.20	700.885	530.187	92.24	96.16	0.00	00.0
140	0.013	0.00	0.00	0.040	0.74	0.19	702.505	531.949	101.74	115.34	0.00	0.00
150	0.015	0.00	0.00	0.040	0,55	0.19	704.110	533.604	91,94	98.81	0.00	00.0
160	0.013	0.00	0.00	0,040	0.36	0.19	705.716	535.131	100.70	99.80	0.00	0.00
170	0.013	0.00	00.00	0.040	0,20	0.16	707.336	536,785	101.62	108.04	000	00.0

Test Engineer:

Date:

Intertek

TEST DATA EPA METHOD 5G-3

Gas Particulate Sampling Data

Project Number:	0
Manufacturer,	SBI
Model:	CW2500
Sample ID Number.	0
Test Date:	June 25, 2013
Test Run Number:	

Vacuum	Train B	0.00			Train B	Vacuum, In. Ha	0.00	00'0	Γ	
Maximum	Train A	0.00			Train A	Vacuum, In. Ha	0.00	0.00		
					Train B	Proportional Rate	92.39	103.89		
cfm @ in Hg	Train B	0.003@5			Train A	Proportional Rate	98.72	101.92		
Leak Check,	Train A	0.0025@5		ampling Data		Volume	538.200	539.792		Contraction of the local division of the loc
			1	Particulate Sa		Volume	708.912	710.540		
Factors	776.0	0.986				Loss	0.15	0.05		
(X) c	(V)	(8)			1	Weight	0.05	0.00		
Sample Box Correction	Meter Box (Meter Box (l	Draft	01010	01040		
Sample	Me	Me	190		0	Delta-H	00'0	00'0		
RH, %			Min		A LEAN	Delta-H	0.00	0.00		
In. Hg	29.70	-29.70	n of Test,		T.m.r.t	Delta-P	0,013	0.013		
Barometer,	Start	End	Duration	Γ		Time	180	190		

Test Engineer.

Date:

	100.15		Proportional	Rate (2)		99.40	98.33	96.18	104.24	106.25	107.29	107.11	106.73	105.07	100.39	75.29	82.23	96.16	115.34	98.81	99.80	108.04	92.39	103.89
	100.07		Proportional	Rate (1)		101.92	100.99	98.58	102.95	104.78	105.42	105.63	103.07	101.61	103.45	91.39	92.77	92.24	101.74	91.94	100.70	101.52	98.72	101.92
141.19	7.64		Tunnel	Velocity	7.378	7.366	7.347	7.376	7,368	7.443	7.519	7.537	7.503	7.458	7.431	8.113	8.094	8.083	7.373	8.071	7.362	7.358	7.355	7.351
STD Tunnel Flow:	27.907	STD	Sample Ft ³	(2)		1.440	1,428	1.392	1.510	1.523	1.523	1.516	1.518	1.503	1.442	1.188	1.301	1.523	1.669	1.568	1.447	1.567	1.340	1.508
STD TI	28.809	STD	Sample Ft ³	(1)		1.524	1.514	1.472	1.539	1.551	1.545	1.544	1.513	1.501	1.533	1.489	1.515	1.508	1.520	1.506	1.507	1.520	1.479	1.527
0.02791511 0.02881654	562.8765		Tunnet		558.98	557.12	554.31	558.71	557.54	568.9	580.5	583.4	578.1	571.2	567.1	563.3	560.6	559.16	558.28	557.4	556.57	565,97	555.55	554.84
VS (1) VS (2)			Tunnel Delta-	٩	0.013	0.013	D.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.015	0.015	0.015	0.013	0.015	0.013	0.013	0.013	0.013
	Codina	Average	Firebox	Temp																				347.82
		Average	Firebox	Temp	318.8	300.3	281.0	266.4	257.7	268.8	310.9	353.2	380.0	389.2	390.7	389.5	385.0	380.9	378.0	374.1	368.3	362.1	354.9	347.8
	190			Time	0	10	20	30	4	20	60	70	80	06	100	110	120	130	140	150	160	170	180	190

TEST FUEL DATA EPA METHOD 5G-3

Mar Sample II	t Number: nufacturer: Model: D Number: Test Date: n Number:	SBI CW2500 0 June 25, 2	2013	_		
the second s	on Referen	ice ID	18	30-463		
Set meter to Set Tempera Set pin setting	ture to 70F		12% 22%	12:0		
	PRE-B	URN FUE	PROP	ERTIES		1
Eq. ID No.		Time:	9:50	Temp., °F:	75	1
Piece No.	Length, In.	Weight, Lb.		isture, %, Dry		1
1	9.00	1.03	20.4	20.1	20,9	1
2	9.00	1.02	20.7	20.2	20.9	1
3	9.00	1.00	20.6	20.1	20.5	1
4	9.00	0,99	20.3	20.2	20.3	
5	17.00	1,54	20.4	19.8	20.2	
6	17.00	1,62	19,8	19,9	19.4	
7	17.00	1.77	20.9	20.1	20.9	1
8	17.00	1.78	21.1	19,8	20.9	1
9	17.00	1.77	21.0	20.3	20.9	1
10	-					
12	-					1
Total W	eight	12.5	Avera	age, %db	20.4	
Allowa	able Fuel L	oad Range	0	8.4	to	10.1
w. when		EST FUEL	LOAD	ROPERTIES	3	120192 11
Eq. ID No.:			Time:	11:00	Temp., °F:	75
Piece No.	Length, in.	Weigh 2x4	t, Lb. 4x4	Moist	ure, %, Dry	Basis
1	17.00	2.46		20.6	19,9	20.4
2	17,00	2.34	-	20.6	20.3	20.9
3	17.00	1,95		20,2	18.9	20.2
4	17.00	2.10		21,3	20.8	21.2
5			_			-
7						
8						
Tota	s	8.9	0.0	annun m		mmm
% of W		100	0			
Total weight		8.8		Average Mo	isture dry	20.4
Total weight		3.3		Average Mo	the state of the s	
I OLOH WOLDH	, ury, ng	0.0	T	Ave age MC	isture, wet	16.93

Test Engineer:_____

Date:

TEST RESULTS EPA METHOD 5G-3

Print Report

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 25, 2013 Test Run Number: 1

Dry Bum	Rate, kg/hr:	1.05	
Emissio	n-Rate, g/hr:	3.09	
Adjusted Emission	-Rate, g/hr:	4.64	
Duration of Test, Minutes	19	0	
Dry Gas Meter Standardization	Train A	Train B	
Dry Gas Meter Beginning Reading, ft ³ Dry Gas Meter Ending Reading, ft ³	679.862 710.54	510.362 539.792	
Barometric Pressure Correction Factor Dry Gas Meter Calibration Factors (y factors) Dry Gas Meter Temperature Factors Dry Gas Meter Delta H Correction Factors	0.993 0.977 0.969 1.000	0.993 0.986 0.969 1.000	
Dry Gas Mater STD Volume Sampled, ft ³	28.825	27.923	
Dillution Tunnel Flow / Volume			
Standardized Tunnel Flow, dscfm	141.	188	
Total Tunnel Volume, scf	26825	5.625	
Emission Caclulations	Train A	Train B	
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams	930.650 10.7 9.958	960.710 10.0 9.607	
Emission-Rate, g/hr Adjusted Emission Rates, g/hr	3.14 4.71	3.03 4.57	
Deviation, %	Train A	9% Train B	
Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	88.34 0.0025@5	89.85 0.003@5	
Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	21 84 67	4	
Fuel Properties			
Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Mcisture Content, % Wet-Basis Fuel Load Mcisture Content, % Ccal Bed Range, Ib. Actual Coal Bed, Lb.	8.8 20. 16.1 1.80 1.9	44 97 2.20	

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 25, 2013 Test Run Number: 1

Intertek Equipment No.'s SBI-206

	5	Sample Train	1-1		
Sample Component	Component	ID Number		Weight	s
ounple component	Component	ID NUMBER	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	1		117.7	
B - Rear Filter Catch	Filter	2		117.5	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			245	235.2	9.8
Probe & Filter Holder	Probe	26	139609.1	139808.2	0.9
			Total Parti	culate, mg	10.7

	5	Sample Train	1 - 2		
Sample Component	Component	ID Number		Weight	s
oample component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	3		116.3	
B - Rear Filter Catch	Filter	4		118.4	
C - Seal Set	O-Ring				
Total, A+B+C-Tares		7////////	244.6	234.7	9.9
Probe & Filter Holder	Probe	27	139892.0	139891.9	0.1
			Total Parti	culate, mg	10

Dillution Tunnel Yelocity Traverse EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 25, 2013 Test Run Number: 1

	Dilution	Tunnel		Tunnel Diamete
	Delta P In. H2O	Temp,"F	Square Root	Tunnel Static
A1	0.0100	101	0.1000	Contraction and Contract
A2	0.0125	101	0.1118	Tunnel Area
A3	0.0125	101	0.1118	A State of the second s
A4	0.0125	99	0.1118	Pitot Correction
A Center	0.0125	102	0.1118	
B1	0.0100	99	0.1000	Baro. Pressure
B2	0.0125	99	0.1118	
B3	0.0125	99	0.1118	Pitot Factor
B4	0.0100	99	0.1000	0.0000000000000000000000000000000000000
B Center	0.0125	99	0.1118	Initial Velocity
Averages	0.01175	99.899	0.1074	1
1 /		and the second second		Initial Elever

Tunnel Diameter	8.000	inches
Tunnel Static	-0.063	in. H2O
Tunnel Area	0.34907	F12
Pitot Correction	0.9604	factor
Baro. Pressure	29.70	
Pitot Factor	0.99	(0.99 for standard, 0.84 or Cal, For S-Type)
Initial Velocity	7.384	Ft/ Sec
Initial Flow	138.92	Ft3/min

SBI	CW2500
00.	0112000

Date	Time		со	C	O ₂		O ₂
25.06.2013	14:52:51	C1: CO	0.98 %	C2: CO2	1.63 %	C4: O2	19.89 %
25.06.2013	14:53:51	C1: CO	1.10 %	C2: CO2	1.51 %	C4: O2	17.85 %
25.06.2013	14:54:51	C1: CO	1.07 %	C2: CO2	1.49 %	C4: O2	16.60 %
25.06.2013	14:55:51	C1: CO	1.04 %	C2: CO2	1.57 %	C4: O2	17.90 %
25.06.2013	14:56:51	C1: CO	0.98 %	C2: CO2	1.69 %	C4: O2	17.85 %
25.06.2013	14:57:51	C1: CO	0.99 %	C2: CO2	1.70 %	C4: O2	17.76 %
25.06.2013	14:58:51	C1: CO	0.53 %	C2: CO2	0.52 %	C4: O2	19.11 %
25.06.2013	14:59:51	C1: CO	0.87 %	C2: CO2	1.16 %	C4: O2	19.24 %
25.06.2013	15:00:51	C1: CO	0.29 %	C2: CO2	0.10 %	C4: O2	19.15 %
25.06.2013	15:01:51	C1: CO	0.33 %	C2: CO2	0.30 %	C4: O2	20.19 %
25.06.2013	15:02:51	C1: CO	0.48 %	C2: CO2	2.56 %	C4: O2	19.66 %
25.06.2013	15:03:51	C1: CO	0.45 %	C2: CO2	3.28 %	C4: O2	17.61 %
25.06.2013	15:04:51	C1: CO	0.47 %	C2: CO2	4.49 %	C4: O2	15.30 %
25.06.2013	15:05:51	C1: CO	0.51 %	C2: CO2	2.29 %	C4: O2	16.18 %
25.06.2013	15:06:51	C1: CO	0.49 %	C2: CO2	1.36 %	C4: O2	18.45 %
25.06.2013	15:07:51	C1: CO	0.49 %	C2: CO2	1.32 %	C4: O2	18.78 %
25.06.2013	15:08:51	C1: CO	0.51 %	C2: CO2	1.38 %	C4: O2	18.75 %
25.06.2013	15:09:51	C1: CO	0.50 %	C2: CO2	1.36 %	C4: O2	18.73 %
25.06.2013	15:10:51	C1: CO	0.47 %	C2: CO2	1.48 %	C4: O2	18.48 %
25.06.2013	15:11:51	C1: CO	0.47 %	C2: CO2	1.59 %	C4: O2	18.21 %
25.06.2013	15:12:51	C1: CO	0.46 %	C2: CO2	1.52 %	C4: O2	17.71 %
25.06.2013	15:13:51	C1: CO	0.49 %	C2: CO2	1.75 %	C4: O2	18.42 %
25.06.2013	15:14:51	C1: CO	0.51 %	C2: CO2	1.79 %	C4: O2	17.52 %
25.06.2013	15:15:51	C1: CO	0.50 %	C2: CO2	1.74 %	C4: O2	18.24 %
25.06.2013	15:16:51	C1: CO	0.51 %	C2: CO2	1.84 %	C4: O2	18.32 %
25.06.2013	15:17:51	C1: CO	0.52 %	C2: CO2	1.93 %	C4: O2	18.19 %
25.06.2013	15:18:51	C1: CO	0.52 %	C2: CO2	2.00 %	C4: O2	18.15 %
25.06.2013	15:19:51	C1: CO	0.53 %	C2: CO2	1.92 %	C4: O2	18.17 %
25.06.2013	15:20:51	C1: CO	0.56 %	C2: CO2	1.85 %	C4: O2	18.28 %
25.06.2013	15:21:51	C1: CO	0.57 %	C2: CO2	1.81 %	C4: O2	18.32 %
25.06.2013	15:22:51	C1: CO	0.58 %	C2: CO2	1.74 %	C4: O2	18.35 %
25.06.2013	15:23:51	C1: CO	0.59 %	C2: CO2	1.70 %	C4: O2	
25.06.2013	15:24:51	C1: CO	0.64 %	C2: CO2	1.78 %	C4: O2	18.40 %
25.06.2013	15:25:51	C1: CO	0.66 %	C2: CO2	2.55 %		18.10 %
25.06.2013	15:26:51	C1: CO	0.58 %	C2: CO2	4.09 %	C4: O2	16.58 %
25.06.2013	15:27:51	C1: CO	0.64 %	C2: CO2	4.62 %	C4: O2	
25.06.2013	15:28:51	C1: CO	0.69 %	C2: CO2	3.93 %		15.54 %
25.06.2013	15:29:51	C1: CO	0.66 %	C2: CO2	3.58 %	C4: O2	16.35 %
25.06.2013	15:30:51	C1: CO	0.65 %	C2: CO2	2.05 %	C4: O2	
25.06.2013	15:31:51	C1: CO	0.65 %	C2: CO2	1.35 %		18.31 %
25.06.2013	15:32:51	C1: CO	0.66 %	C2: CO2	1.27 %	C4: O2	18.65 %
25.06.2013	15:33:51	C1: CO	0.68 %	C2: CO2	1.27 %	C4: O2	18.66 %
25.06.2013	15:34:51	C1: CO	0.72 %	C2: CO2	1.34 %	C4: O2	18.61 %
25.06.2013	15:35:51	C1: CO	0.71 %	C2: CO2	1.38 %	C4: O2	18.47 %
25.06.2013	15:36:51	C1: CO	0.69 %	C2: CO2	1.48 %	C4: O2	17.83 %

SBI	CW2500
501	0112300

25-Jun-13 Run #1

Date	Time		со	С	O ₂		O ₂
25.06.2013	15:37:51	C1: CO	0.66 %	C2: CO2	2.00 %	C4: O2	18.22 %
25.06.2013	15:38:51	C1: CO	0.65 %	C2: CO2	2.71 %	C4: O2	17.44 %
25.06.2013	15:39:51	C1: CO	0.63 %	C2: CO2	4.12 %	C4: O2	17.06 %
25.06.2013	15:40:51	C1: CO	0.64 %	C2: CO2	5.37 %		15.53 %
25.06.2013	15:41:51	C1: CO	0.67 %	C2: CO2	5.97 %	C4: O2	14.38 %
25.06.2013	15:42:51	C1: CO	0.68 %	C2: CO2	6.68 %	C4: O2	13.35 %
25.06.2013	15:43:51	C1: CO	0.79 %	C2: CO2	7.75 %	C4: O2	13.02 %
25.06.2013	15:44:51	C1: CO	0.86 %	C2: CO2	7.79 %	C4: O2	12.60 %
25.06.2013	15:45:51	C1: CO	0.86 %	C2: CO2	8.09 %	C4: O2	12.41 %
25.06.2013	15:46:51	C1: CO	0.98 %	C2: CO2	8.12 %	C4: O2	12.19 %
25.06.2013	15:47:51	C1: CO	1.07 %	C2: CO2	8.56 %	C4: O2	11.99 %
25.06.2013	15:48:51	C1: CO	1.04 %	C2: CO2	8.44 %	C4: O2	11.62 %
25.06.2013	15:49:51	C1: CO	1.10 %	C2: CO2	8.74 %	C4: O2	11.62 %
25.06.2013	15:50:51	C1: CO	1.04 %	C2: CO2	9.69 %	C4: O2	11.02 %
25.06.2013	15:51:51	C1: CO	1.01 %	C2: CO2	10.07 %	C4: O2	10.25 %
25.06.2013	15:52:51	C1: CO	0.94 %	C2: CO2	10.14 %	C4: O2	9.95 %
25.06.2013	15:53:51	C1: CO	0.85 %	C2: CO2	10.10 %	C4: O2	9.58 %
25.06.2013	15:54:51	C1: CO	0.80 %	C2: CO2	10.44 %	C4: O2	9.80 %
25.06.2013	15:55:51	C1: CO	0.80 %	C2: CO2	10.69 %	C4: O2	9.78 %
25.06.2013	15:56:51	C1: CO	0.81 %	C2: CO2	10.84 %	C4: O2	9.63 %
25.06.2013	15:57:51	C1: CO	0.85 %	C2: CO2	10.91 %	C4: O2	9.38 %
25.06.2013	15:58:51	C1: CO	0.81 %	C2: CO2	10.90 %	C4: O2	9.30 %
25.06.2013	15:59:51	C1: CO	0.77 %	C2: CO2	10.97 %	C4: O2	9.41 %
25.06.2013	16:00:51	C1: CO	0.71 %	C2: CO2	10.92 %	C4: O2	9.45 %
25.06.2013	16:01:51	C1: CO	0.71 %	C2: CO2	10.96 %	C4: O2	9.50 %
25.06.2013	16:02:51	C1: CO	0.73 %	C2: CO2	10.99 %	C4: O2	9.43 %
25.06.2013	16:03:51	C1: CO	0.78 %	C2: CO2	11.05 %	C4: O2	9.46 %
25.06.2013	16:04:51	C1: CO	0.76 %	C2: CO2	11.08 %	C4: O2	9.48 %
25.06.2013	16:05:51	C1: CO	0.74 %	C2: CO2	10.51 %	C4: O2	8.59 %
25.06.2013	16:06:51	C1: CO	0.77 %	C2: CO2	10.70 %	C4: O2	9.04 %
25.06.2013	16:07:51	C1: CO	0.71 %	C2: CO2	10.76 %	C4: O2	9.25 %
25.06.2013	16:08:51	C1: CO	0.63 %	C2: CO2	10.45 %	C4: O2	9.12 %
25.06.2013	16:09:51	C1: CO	0.62 %	C2: CO2	10.58 %	C4: O2	9.87 %
25.06.2013	16:10:51	C1: CO	0.61 %	C2: CO2	10.53 %	C4: O2	10.03 %
25.06.2013	16:11:51	C1: CO	0.59 %	C2: CO2	10.55 %	C4: O2	9.93 %
25.06.2013	16:12:51	C1: CO	0.58 %	C2: CO2	10.39 %	C4: O2	9.99 %
25.06.2013	16:13:51	C1: CO	0.56 %	C2: CO2	10.19 %	C4: O2	10.24 %
25.06.2013	16:14:51	C1: CO	0.53 %	C2: CO2	9.75 %	C4: O2	10.18 %
25.06.2013	16:15:51	C1: CO	0.51 %	C2: CO2	9.58 %	C4: O2	10.62 %
25.06.2013	16:16:51	C1: CO	0.49 %	C2: CO2	9.31 %	C4: O2	10.60 %
25.06.2013	16:17:51	C1: CO	0.47 %	C2: CO2	9.04 %	C4: O2	11.32 %
25.06.2013	16:18:51	C1: CO	0.43 %	C2: CO2	8.64 %	C4: O2	11.88 %
25.06.2013	16:19:51	C1: CO	0.45 %	C2: CO2	8.29 %	C4: O2	11.71 %
25.06.2013	16:20:51	C1: CO	0.47 %	C2: CO2	8.07 %	C4: O2	12.25 %
25.06.2013	16:21:51	C1: CO	0.45 %	C2: CO2	7.67 %	C4: O2	12.47 %

SBI	CW2500
00.	0

25-Jun-13

Run	#1
-----	----

Date	Time	(0	C	O ₂		O ₂
25.06.2013	16:22:51	C1: CO	0.43 %	C2: CO2	7.52 %	C4: O2	12.95 %
25.06.2013	16:23:51	C1: CO	0.45 %	C2: CO2	7.44 %	C4: O2	13.13 %
25.06.2013	16:24:51	C1: CO	0.44 %	C2: CO2	7.04 %	C4: O2	13.06 %
25.06.2013	16:25:51	C1: CO	0.41 %	C2: CO2	6.76 %	C4: O2	13.42 %
25.06.2013	16:26:51	C1: CO	0.42 %	C2: CO2	6.56 %	C4: O2	13.83 %
25.06.2013	16:27:51	C1: CO	0.41 %	C2: CO2	6.46 %	C4: O2	13.95 %
25.06.2013	16:28:51	C1: CO	0.40 %	C2: CO2	6.45 %	C4: O2	14.04 %
25.06.2013	16:29:51	C1: CO	0.42 %	C2: CO2	6.38 %	C4: O2	13.23 %
25.06.2013	16:30:51	C1: CO	0.44 %	C2: CO2	6.36 %	C4: O2	14.13 %
25.06.2013	16:31:51	C1: CO	0.44 %	C2: CO2	6.38 %	C4: O2	14.19 %
25.06.2013	16:32:51	C1: CO	0.44 %	C2: CO2	6.27 %	C4: O2	13.87 %
25.06.2013	16:33:51	C1: CO	0.45 %	C2: CO2	6.30 %	C4: O2	14.15 %
25.06.2013	16:34:51	C1: CO	0.44 %	C2: CO2	6.23 %	C4: O2	13.84 %
25.06.2013	16:35:51	C1: CO	0.42 %	C2: CO2	6.20 %	C4: O2	14.01 %
25.06.2013	16:36:51	C1: CO	0.42 %	C2: CO2	6.22 %	C4: O2	14.24 %
25.06.2013	16:37:51	C1: CO	0.40 %	C2: CO2	6.18 %	C4: O2	14.31 %
25.06.2013	16:38:51	C1: CO	0.40 %	C2: CO2	6.15 %	C4: O2	14.31 %
25.06.2013	16:39:51	C1: CO	0.40 %	C2: CO2	6.09 %	C4: O2	14.45 %
25.06.2013	16:40:51	C1: CO	0.42 %	C2: CO2	6.00 %	C4: O2	14.36 %
25.06.2013	16:41:51	C1: CO	0.40 %	C2: CO2	5.72 %	C4: O2	13.47 %
25.06.2013	16:42:51	C1: CO	0.46 %	C2: CO2	5.87 %	C4: O2	14.50 %
25.06.2013	16:43:51	C1: CO	0.50 %	C2: CO2	5.56 %	C4: O2	14.37 %
25.06.2013	16:44:51	C1: CO	0.52 %	C2: CO2	5.27 %	C4: O2	14.78 %
25.06.2013	16:45:51	C1: CO	0.49 %	C2: CO2	5.09 %	C4: O2	15.01 %
25.06.2013	16:46:51	C1: CO	0.49 %	C2: CO2	5.01 %	C4: O2	15.12 %
25.06.2013	16:47:51	C1: CO	0.50 %	C2: CO2	4.99 %	C4: O2	15.20 %
25.06.2013	16:48:51	C1: CO	0.50 %	C2: CO2	4.90 %	C4: O2	15.19 %
25.06.2013	16:49:51	C1: CO	0.55 %	C2: CO2	4.93 %	C4: O2	15.24 %
25.06.2013	16:50:51	C1: CO	0.54 %	C2: CO2	4.81 %	C4: O2	15.20 %
25.06.2013	16:51:51	C1: CO	0.54 %	C2: CO2	4.75 %		15.29 %
25.06.2013	16:52:51	C1: CO	0.56 %	C2: CO2	4.75 %	C4: O2	15.34 %
25.06.2013	16:53:51	C1: CO	0.56 %	C2: CO2	4.69 %		15.37 %
25.06.2013	16:54:51	C1: CO	0.57 %	C2: CO2	4.55 %		14.91 %
25.06.2013	16:55:51	C1: CO	0.61 %	C2: CO2	4.51 %	C4: O2	14.75 %
25.06.2013	16:56:51	C1: CO	0.63 %	C2: CO2	4.62 %	C4: O2	15.39 %
25.06.2013	16:57:51	C1: CO	0.64 %	C2: CO2	4.62 %		15.40 %
25.06.2013	16:58:51	C1: CO	0.61 %	C2: CO2	4.57 %		15.41 %
25.06.2013	16:59:51	C1: CO	0.59 %	C2: CO2	4.53 %	C4: O2	
25.06.2013	17:00:51	C1: CO	0.63 %	C2: CO2	4.50 %		15.40 %
25.06.2013	17:01:51	C1: CO	0.65 %	C2: CO2	4.50 %		15.39 %
25.06.2013	17:02:51	C1: CO	0.66 %	C2: CO2	4.45 %		15.19 %
25.06.2013	17:03:51	C1: CO	0.64 %	C2: CO2	4.32 %	C4: O2	
25.06.2013	17:04:51	C1: CO	0.65 %	C2: CO2	4.46 %		15.49 %
25.06.2013	17:05:51	C1: CO	0.64 %	C2: CO2	4.47 %		15.46 %
25.06.2013	17:06:51	C1: CO	0.65 %	C2: CO2	4.28 %	C4: 02	14.82 %

SBI	CW2500

25-Jun-13

Run #1

Date	Time		со	C	0 ₂		O ₂
25.06.2013	17:07:51	C1: CO	0.67 %	C2: CO2	4.45 %	C4: O2	15.38 %
25.06.2013	17:08:51	C1: CO	0.69 %	C2: CO2	4.43 %	C4: O2	15.48 %
25.06.2013	17:09:51	C1: CO	0.70 %	C2: CO2	4.49 %	C4: O2	15.53 %
25.06.2013	17:10:51	C1: CO	0.69 %	C2: CO2	4.42 %	C4: O2	15.47 %
25.06.2013	17:11:51	C1: CO	0.70 %	C2: CO2	4.46 %	C4: O2	15.33 %
25.06.2013	17:12:51	C1: CO	0.70 %	C2: CO2	4.46 %	C4: O2	15.47 %
25.06.2013	17:13:51	C1: CO	0.73 %	C2: CO2	4.52 %	C4: O2	15.45 %
25.06.2013	17:14:51	C1: CO	0.72 %	C2: CO2	4.41 %	C4: O2	15.19 %
25.06.2013	17:15:51	C1: CO	0.73 %	C2: CO2	4.53 %	C4: O2	15.47 %
25.06.2013	17:16:51	C1: CO	0.70 %	C2: CO2	4.45 %	C4: O2	15.42 %
25.06.2013	17:17:51	C1: CO	0.73 %	C2: CO2	4.45 %	C4: O2	15.45 %
25.06.2013	17:18:51	C1: CO	0.76 %	C2: CO2	4.48 %	C4: O2	15.51 %
25.06.2013	17:19:51	C1: CO	0.70 %	C2: CO2	4.25 %	C4: O2	14.35 %
25.06.2013	17:20:51	C1: CO	0.69 %	C2: CO2	4.40 %	C4: O2	15.27 %
25.06.2013	17:21:51	C1: CO	0.78 %	C2: CO2	4.02 %	C4: O2	15.72 %
25.06.2013	17:22:51	C1: CO	0.81 %	C2: CO2	3.86 %	C4: O2	15.90 %
25.06.2013	17:23:51	C1: CO	0.83 %	C2: CO2	3.78 %	C4: O2	15.56 %
25.06.2013	17:24:51	C1: CO	0.85 %	C2: CO2	3.83 %	C4: O2	15.88 %
25.06.2013	17:25:51	C1: CO	0.88 %	C2: CO2	3.81 %	C4: O2	15.77 %
25.06.2013	17:26:51	C1: CO	0.90 %	C2: CO2	3.81 %	C4: O2	15.85 %
25.06.2013	17:27:51	C1: CO	0.90 %	C2: CO2	3.72 %	C4: O2	15.91 %
25.06.2013	17:28:51	C1: CO	0.93 %	C2: CO2	3.76 %	C4: O2	15.88 %
25.06.2013	17:29:51	C1: CO	0.92 %	C2: CO2	3.67 %	C4: O2	15.92 %
25.06.2013	17:30:51	C1: CO	0.93 %	C2: CO2	3.62 %	C4: O2	16.01 %
25.06.2013	17:31:51	C1: CO	0.92 %	C2: CO2	3.36 %	C4: O2	15.19 %
25.06.2013	17:32:51	C1: CO	0.98 %	C2: CO2	3.52 %	C4: O2	16.03 %
25.06.2013	17:33:51	C1: CO	0.98 %	C2: CO2	3.54 %	C4: O2	16.10 %
25.06.2013	17:34:51	C1: CO	0.97 %	C2: CO2	3.48 %	C4: O2	16.03 %
25.06.2013	17:35:51	C1: CO	0.98 %	C2: CO2	3.44 %	C4: O2	16.04 %
25.06.2013	17:36:51	C1: CO	1.00 %	C2: CO2	3.44 %	C4: O2	16.03 %
25.06.2013	17:37:51	C1: CO	1.00 %	C2: CO2	3.44 %	C4: O2	16.09 %
25.06.2013	17:38:51	C1: CO	1.00 %	C2: CO2	3.43 %	C4: O2	16.11 %
25.06.2013	17:39:51	C1: CO	1.00 %	C2: CO2	3.43 %	C4: O2	16.14 %
25.06.2013	17:40:51	C1: CO	1.01 %	C2: CO2	3.39 %	C4: O2	15.96 %
25.06.2013	17:41:51	C1: CO	1.03 %	C2: CO2	3.36 %		16.05 %
25.06.2013	17:42:51	C1: CO	1.05 %	C2: CO2	3.37 %	C4: O2	
25.06.2013	17:43:51	C1: CO	1.09 %	C2: CO2	3.21 %		16.07 %
25.06.2013	17:44:51	C1: CO	1.11 %	C2: CO2	3.17 %	C4: O2	16.30 %
25.06.2013	17:45:51	C1: CO	1.10 %	C2: CO2	3.11 %	C4: O2	
25.06.2013	17:46:51	C1: CO	1.08 %	C2: CO2	3.05 %		16.03 %
25.06.2013	17:47:51	C1: CO	1.04 %	C2: CO2	2.99 %		15.92 %
25.06.2013	17:48:51	C1: CO	1.11 %	C2: CO2	3.09 %	C4: O2	16.32 %
25.06.2013	17:49:51	C1: CO	1.12 %	C2: CO2	3.07 %		
25.06.2013	17:50:51	C1: CO	1.11 %	C2: CO2	2.97 %	C4: O2	16.33 %
25.06.2013	17:51:51	C1: CO	1.12 %	C2: CO2	3.00 %	C4: O2	16.43 %

Date	Time	со)	СС	02		O ₂
25.06.2013	17:52:51	C1: CO	1.13 %	C2: CO2	3.00 %	C4: O2	16.42 %
25.06.2013	17:53:51	C1: CO	1.14 %	C2: CO2	2.92 %	C4: O2	16.44 %
25.06.2013	17:54:51	C1: CO	1.11 %	C2: CO2	2.72 %	C4: O2	15.66 %
25.06.2013	17:55:51	C1: CO	1.13 %	C2: CO2	2.95 %	C4: O2	16.38 %
25.06.2013	17:56:51	C1: CO	1.21 %	C2: CO2	2.96 %	C4: O2	16.44 %
25.06.2013	17:57:51	C1: CO	1.20 %	C2: CO2	2.98 %	C4: O2	16.41 %
25.06.2013	17:58:51	C1: CO	1.25 %	C2: CO2	2.89 %	C4: O2	16.40 %
25.06.2013	17:59:51	C1: CO	1.27 %	C2: CO2	2.85 %	C4: O2	16.49 %
25.06.2013	18:00:51	C1: CO	1.22 %	C2: CO2	2.86 %	C4: O2	16.48 %
25.06.2013	18:01:51	C1: CO	1.24 %	C2: CO2	2.87 %	C4: O2	16.47 %
25.06.2013	18:02:51	C1: CO	1.29 %	C2: CO2	2.79 %	C4: O2	16.43 %
25.06.2013	18:03:51	C1: CO	1.26 %	C2: CO2	2.54 %	C4: O2	15.89 %
25.06.2013	18:04:51	C1: CO	1.36 %	C2: CO2	2.36 %	C4: O2	16.67 %
25.06.2013	18:05:51	C1: CO	1.41 %	C2: CO2	2.03 %	C4: O2	15.36 %
25.06.2013	18:06:51	C1: CO	1.34 %	C2: CO2	2.06 %	C4: O2	16.94 %
25.06.2013	18:07:51	C1: CO	1.35 %	C2: CO2	2.06 %	C4: O2	17.00 %
25.06.2013	18:08:51	C1: CO	1.32 %	C2: CO2	2.03 %	C4: O2	16.98 %
25.06.2013	18:09:51	C1: CO	1.29 %	C2: CO2	1.91 %	C4: O2	16.26 %
25.06.2013	18:10:51	C1: CO	1.37 %	C2: CO2	2.02 %	C4: O2	17.08 %
25.06.2013	18:11:51	C1: CO	1.37 %	C2: CO2	1.93 %	C4: O2	17.16 %
25.06.2013	18:12:51	C1: CO	1.36 %	C2: CO2	1.92 %	C4: O2	17.15 %
25.06.2013	18:13:51	C1: CO	1.32 %	C2: CO2	1.94 %	C4: O2	17.21 %
25.06.2013	18:14:51	C1: CO	1.20 %	C2: CO2	2.21 %	C4: O2	17.17 %
25.06.2013	18:15:51	C1: CO	1.17 %	C2: CO2	2.28 %	C4: O2	17.04 %

25-Jun-13 Run #1

SBI

CW2500

Appendix F: Test data Run 2

Project Number:	0	
Manufacturer:	SBI	
Model:	CW2500	
Sample ID Number:	0	
Test Date:	June 26, 2013	
Test Run Number:	2	

EPA Method 28 Pre Burn Data

Coal Bed Range 1.8 to 2.1

Average Firebox Temp, *F 278.52

Final Coal Bed WL ib 2.14

1	ime	_			Tem	perature D	ata						
and a second second	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Cstalyst Cutlet	Flue	Fuel Weight	Weight
0	0	84.71	173.8	582.7	561	-515	585.5	457,8	592.4			2.78	0.64
1	10	81,05	115.5	349.3	475	379.1	477.1	457	576.4		-	2.77	0.01
2	20	79.22	105.2	302.8	409,9	328.1	401.1	417.3	5t3.T			2.75	0.04
3	30	76.42	09,35	274.4	362.8	293,5	349.0	378.1	461.3		-	2.95	0.08
4	40	75.68	95.64	253.8	329.1	270.8	316.3	348.7	418.5			2.51	0.14
5	50	72.35	94,15	241	103.5	254,7	237.5	325.7	382.8			2.41	0.10
6	60	84.08	90.1	232.7	286.7	247.8	268	309.1	354.9	-	-	2.11	0.08
7	70	88.6	93.17	220.2	277.4	245	258.6	297.7	334,5		-	2.21	0.12
8	80	13.51	103.6	271.1	272.8	292.7	253.6	290.5	323			2.14	0.07
9	_	1.00				112					-		0.03
10								1	-		_	-	
11											_		-
12		·						20 8	C		-	-	-
13		(0			_			-	_		-	_
14			8					-	-	-	-	-	-
15			2		1 1 1			7		-	-	-	-
16			(1-1-1-7)		1								_
17									-			-	-
18						-							
19		1.2.5								-		-	
20							-				-		
21		i 18								-	-		
22								_		-			-
23		_						-		-	-		-
24						-				-	-	-	
25						-			-		-	-	
26							-	-			-		
27	-						_	_					-
28							-	_		-	-	-	-
29			-		· · · · ·		-		-	-	-	-	-
30					-						-	-	-

3as Particulate Sampling	1000	Data
Bas Particulate Sa		mpling
3as Particu	1	late Sa
Sas		Particu
-		Gas

				013	
0	SBI	CW2500	0	June 26, 2013	2
Project Number:	Manufacturer:	Model:	Sample ID Number:	Test Date:	Test Run Number:

romete	er, In. Hg	RH, %	Sample Box Correction (y)	Factors
Start	29.91	78	Meter Box (A)	776.0
End	29.87	81	Meter Box (B)	0.986

Maximum / Train A 0.00

Eard 29.31 7.8 Meter Box (A) 0.977 Train A Train B Train A Train A Durnel Tain A 1 Meter Box (B) 0.003405 0.003405 0.0003405 0.0003 0.000	Barometer, In. Hg	er, In. Hg	RH. %	Sample	Sample Box Correction (y) Factors	rection (y)	Factors		Leak Check, cfm @ in Hg	ctm @ in Hg		Maximur	Maximum Vacuum
29.37 81 Meter Box (B) 0.385 0.003/686 0.003/686 0.003/686 0.003/686 0.003/686 0.003/686 0.003 0.00 0.0	Start	29.91	78	W	eter Box ((A)	772.0		Train A	Train B		Train A	Train B
ration of Testi. Min. Z00 ration of Testi. Min. Particulate Sampling Data Tunnel Train A Train A Train A Train A Tunnel Train A Train B Flue Weight Train A Train A Tunnel Train A Train B Flue Weight Loss Volume Train A 0.013 0.00 0.00 0.003 9.51 0.716 543.049 100.05 99.99 99.00 0.013 0.00 0.00 0.005 0.44 138.05 541.461 99.58 99.12 0.00 0.013 0.00 0.000 0.006 0.44 1.36 715.386 541.461 99.58 99.12 0.00 0.013 0.00 0.00 0.006 0.44 1.36 725.386 541.461 99.58 99.12 0.00 0.013 0.00 0.00 0.006 0.44 1.36 725.386 555.566 101.16 101.6	End	29.87	81	W	eter Box ((B)	0.986		0.0035@5	0.003@5		00'0	0.00
Particulate Sampling Data Tunnel Train B Fuel Velocite Train B Train B Train B Defta-P Defta-H Draft Weight Loss Volume Rate Pagettional Defta-P Defta-H Draft Weight Loss Volume Rate Pagettional 0.013 0.00 0.00 0.015 8.67 710.565 539.619 99.99 0.00 0.013 0.00 0.00 0.015 8.67 715.380 541.456 101.57 0.00 0.013 0.00 0.00 0.015 6.73 0.74 715.380 544.61 93.23 0.00 0.013 0.00 0.00 0.005 6.74 1.53.80 541.650 101.75 0.00 0.013 0.00 0.00 0.005 6.74 1.53.80 541.610 101.65 0.00 0.013 0.00 0.00 0.005 6.75 0.716.93 716.60 551.62	Durat	tion of Test	. Min	200				•					
Turnel Train A Train A <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Particulate Sa</th><th>ampling Data</th><th></th><th></th><th></th><th></th></th<>								Particulate Sa	ampling Data				
Delta-H<		Tunnel	Train A	Train B	Flue	Fuel	Weight	Train A	Train B	Train A Proportional	Train B Proportional	Train A Vacuum. In.	_
0.013 0.00 0.005 3.67 8.67 710.565 533.819 93.39 99.39 0.00 0.00 0.013 0.00 0.00 0.005 7.73 0.73 712.155 541.456 101.67 0.00 0.00 0.013 0.00 0.00 0.046 6.20 0.36 713.346 546.53 99.12 0.00 0.00 0.013 0.00 0.00 0.006 6.20 0.36 716.336 547.630 101.67 0.00 0.00 0.013 0.00 0.00 0.006 6.20 0.36 718.600 547.630 101.61 0.00 <td>Time</td> <td>Delta-P</td> <td>Delta-H</td> <td>Delta-H</td> <td>Draft</td> <td>Weight</td> <td>Loss</td> <td>Volume</td> <td>Volume</td> <td>Rate</td> <td>Rate</td> <td>БН</td> <td>-</td>	Time	Delta-P	Delta-H	Delta-H	Draft	Weight	Loss	Volume	Volume	Rate	Rate	БН	-
	0	0.013	0.00	0.00	0.035	8.67	8.67	710.565:	539.819		99.99	0.00	0.00
0.013 0.00 0.005 7.31 0.005 643.641 99.68 99.12 0.00 0.006 0.013 0.000 0.000 0.045 7.5 0.76 715.330 544.641 99.68 99.12 0.000 0.013 0.000 0.000 0.005 3.54 1.36 716.330 547.630 100.30 0.000 0.000 0.013 0.00 0.006 3.54 1.30 720.198 549.442 101.76 0.000 0.00 0.013 0.00 0.006 2.58 0.56 720.198 555.600 100.62 0.00 0.00 0.013 0.00 0.00 0.006 2.56 0.238 552.660 100.62 100.72 0.00 0.013 0.00 0.00 0.044 0.44 1.30 725.305 555.430 101.75 0.00 0.00 0.013 0.00 0.00 0.044 0.44 1.30 725.305 555.430 101.76	10	0.013	00'0	0.00	0.035	8.38	0.29	712.195	541.456		101.67	0.00	0.00
	20	0.013	00'0	0.00	0.050	7.91	0.47	713.800	543.049		98.96	0.00	0.00
	30	0.013	00'0	0.00	0.045	7.15	0.76	715.394	544.641	99.58	99.12	0.00	0.00
	40	0.013	0,00	00'0	0.060	6.20	0.95	716.992	546.228		99.29	0.00	0.00
0.013 0.00 0.005 3.54 1.30 720.198 549.442 101.10 101.56 0.00 0.00 0.013 0.00 0.00 0.060 2.88 0.36 721.756 551.062 100.475 0.00 0.00 0.013 0.00 0.00 0.050 1.58 0.38 723.056 555.600 555.600 101.75 0.00 0.00 0.013 0.00 0.00 0.050 1.57 0.28 725.600 555.439 99.92 100.47 0.00 0.013 0.00 0.00 0.044 0.17 0.28 725.600 555.439 99.40 99.49 0.00 0.013 0.00 0.00 0.040 0.17 0.28 729.859 560.747 99.40 99.49 0.00 0.013 0.00 0.00 0.040 0.17 0.20 733.035 560.747 99.40 99.49 0.00 0.013 0.00 0.00 0.040 0.14 <td>50</td> <td>0.013</td> <td>0.00</td> <td>0,00</td> <td>0.070</td> <td>4.84</td> <td>1.36</td> <td>718.600</td> <td>547.830</td> <td>101.60</td> <td>100.90</td> <td>0.00</td> <td>0.00</td>	50	0.013	0.00	0,00	0.070	4.84	1.36	718.600	547.830	101.60	100.90	0.00	0.00
0.013 0.00 0.006 2.58 0.36 721,735 551.062 100.47 101.75 0.00 0.00 0.00 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.00 0.004 0.15 723,339 552,680 100.47 101.02 0.00 0.00 0.013 0.00 0.00 0.046 1.15 0.28 726,5393 555,913 100.47 101.03 0.00 0.013 0.00 0.00 0.040 0.14 0.23 728,533 559,140 99.43 101.03 0.00 0.013 0.00 0.00 0.040 0.17 729,833 559,140 99.49 90.40 0.00 0.013 0.00 0.00 0.010 0.014 0.14 729,833 559,140 99.49 90.40 0.00 0.013 0.00 0.00 0.00 0.014 0.14 734	60	0.013	0.00	0.00	0.065	3.54	1.30	720.198	549.442		101.66	0.00	0.00
0.013 0.00 0.006 2.03 0.65 723399 552.660 100.47 101.02 0.00 0.00 0.013 0.00 0.00 0.046 1.45 0.38 725.000 555.913 100.47 0.00 0.00 0.013 0.00 0.004 1.44 0.28 725.000 555.913 100.02 100.47 0.00 0.013 0.00 0.004 1.44 0.28 725.003 555.913 100.02 0.00 0.013 0.00 0.004 0.47 0.28 725.033 559.40 99.40 99.49 0.00 0.013 0.00 0.004 0.47 731.429 560.747 99.40 99.49 0.00 0.013 0.00 0.001 0.040 0.47 731.429 560.747 99.49 90.00 0.013 0.000 0.001 0.010 0.012 0.41 736.456 565.346 99.49 90.00 0.00 0.00 0.0	70	0.013	00'0	0.00	0.060	2.58	0.96	721.795	551.062	100.62	101.75	0.00	0.00
0.013 0.00 0.006 1.45 0.38 725,000 564,255 99.32 100.47 0.00 0.00 0.013 0.00 0.00 0.045 1.47 0.28 726,607 555,913 100.38 0.00 0.00 0.013 0.00 0.00 0.040 0.17 0.28 726,607 555,913 100.38 0.00 0.00 0.013 0.00 0.00 0.040 0.17 729,823 559,140 93.80 93.03 0.00 0.013 0.00 0.00 0.040 0.17 729,823 559,140 93.80 90.10 0.00 0.013 0.00 0.00 0.040 0.17 729,823 559,140 93.87 9.00 0.00 0.013 0.00 0.00 0.040 0.17 733,035 563,349 93.67 9.010 0.00 0.013 0.00 0.00 0.00 0.01 0.035 0.14 736.246 565,346 93.78 <td>80</td> <td>0.013</td> <td>00'0</td> <td>0.00</td> <td>0.050</td> <td>2.03</td> <td>0.55</td> <td>723.399</td> <td>552.680</td> <td>100.47</td> <td>101.02</td> <td>0.00</td> <td>0.00</td>	80	0.013	00'0	0.00	0.050	2.03	0.55	723.399	552.680	100.47	101.02	0.00	0.00
0.013 0.00 0.004 1.37 0.28 726.607 555.913 100.02 100.38 0.00 0.00 0.013 0.00 0.00 0.040 1.4 0.23 729.513 557.540 39.73 100.03 0.00 0.013 0.00 0.00 0.040 0.17 0.23 729.513 557.540 39.73 100.03 0.00 0.013 0.00 0.00 0.040 0.17 0.20 733.303 560.747 39.40 39.43 0.00 0.013 0.00 0.00 0.040 0.17 0.20 733.303 560.747 39.40 39.43 0.00 0.00 0.013 0.00 0.00 0.040 0.14 733.303 565.343 39.43 90.00 0.00	90	0.013	0.00	0.00	0.050	1.65	0.38	725.000	554.295	99.92	100.47	0.00	0.00
0.013 0.00 0.040 1.14 0.23 728.213 557.546 39.73 101.03 0.00 0.00 0.001 0.001 0.001 0.014 0.14 0.23 729.823 559.140 99.80 99.14 0.00 0.000 0.001 0.001 0.010 0.014 0.17 729.823 559.140 99.80 99.14 0.000 0.000 0.001 0.010 0.010 0.011 0.010	100	0.013	00'0	00.00	0.045	1.37	0.28	726.607	555.913	100.02	100.38	0.00	0.00
0.013 0.00 0.040 0.57 0.17 729.823 559.140 99.40 99.49 0.00 0.00 0.013 0.00 0.040 0.77 0.20 731.429 660.747 99.40 99.14 0.00 0.00 0.013 0.00 0.004 0.75 0.13 733.035 565.349 99.55 0.00 0.00 0.013 0.00 0.004 0.73 0.13 733.035 565.349 99.55 0.00 0.00 0.013 0.00 0.00 0.035 0.14 736.546 99.37 99.43 0.00 0.013 0.00 0.00 0.035 0.28 0.14 736.546 99.37 99.49 0.00 0.013 0.00 0.005 0.14 736.546 565.546 99.37 90.49 0.00 0.013 0.00 0.00 0.005 0.14 736.546 565.546 99.37 91.49 0.00 0.013 0.00	110	0.013	00'0	00'0	0:0:0	1.14	0.23	728.213	557.546	99.73	101.09	0.00	0.00
0.013 0.00 0.000 0.040 0.77 0.200 731,429 560.747 99.40 99.14 0.00 0.00 0.013 0.00 0.00 0.040 0.43 0.43 733,033 565.349 99.55 98.73 0.00 0.00 0.013 0.00 0.00 0.035 0.13 733,035 565.349 99.55 98.73 0.00 0.013 0.00 0.00 0.035 0.13 734,645 565.346 99.47 9.49 0.00 0.013 0.00 0.00 0.035 0.14 736.246 565.546 99.47 9.49 0.00 0.013 0.00 0.00 0.035 0.14 737.860 567.165 99.90 100.06 0.00 0.013 0.00 0.00 0.010 0.035 0.14 739.488 566.172 99.41 100.66 0.00 0.013 0.00 0.00 0.010 0.015 0.016 0.00 0.00	120	0.013	0.00	0.00	0.040	16.0	0.17	729.823	559.140	99.80	98.49	0.00	0.00
0.013 0.00 0.040 0.49 0.18 733.035 562.349 99.35 98.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.005 0.47 0.12 734.646 563.366 99.55 37.85 0.00 0.	130	0.013	0.00	00.00	0.040	17.0	0.20	731.429	560.747	99.40	99.14	0.00	0.00
0.013 0.00 0.000 0.005 0.47 0.12 734.645 563.936 99.69 97.85 0.00	140	0.013	0.00	0.00	0.040	0.69	0.18	733.036	562.349	99.35	98.73	0.00	0.00
0.013 0.00 0.000 0.035 0.33 0.14 735.249 565.546 99.37 99.49 0.00	150	0.013	0.00	0.00	0.035	75.0	0.12	734.646	563.936	99,69	97.85	0.00	0.00
0.013 0.00 0.005 0.23 0.005 737,880 567,165 99.90 100.08 0.00 0.013 0.00 0.00 0.013 0.014 0.14 739,488 5667,152 99.11 100.60 0.00 0.013 0.00 0.00 0.013 0.014 0.14 739,488 5661,792 99.11 100.60 0.00 0.013 0.00 0.00 0.013 0.014 734,488 5661,792 99.11 100.60 0.00 0.010 0.00 0.010 0.015 0.017 742,655 570.349 98.39 93.30 0.00 0.010 0.00 0.00 0.00 0.00 0.00 0.00 0.00	160	0.013	0.00	0.00	0.035	0.33	0.14	736.249	565.546	99.37	99.49	0.00	0.00
0.013 0.00 0.000 0.014 0.14 0.14 739,458 568,792 99.11 100.60 0.00 0.013 0.00 0.00 0.015 0.07 0.07 741.055 570.399 98.99 99.30 0.00 0.013 0.00 0.00 0.017 0.07 741.055 570.399 98.99 99.30 0.00 0.013 0.00 0.005 0.07 741.055 570.399 98.99 99.30 0.00 0.013 0.00 0.007 742.657 572.014 99.23 99.73 0.00	170	0.013	0.00	00'0	0.035	0.28	0.05	737.860	567.165		100.08	0.00	0.00
0.013 0.00 0.010 0.017 0.07 0.07 741.055 570.399 98.99 99.30 0.00 0.013 0.00 0.016 0.075 0.07 741.055 570.399 98.99 99.30 0.00 0.013 0.00 0.016 0.07 742.657 572.014 99.23 99.73 0.00	180	0.013	0.00	00.00	0.035	0.14	0.14	739.458	568.792	99.11	100.60	0.00	0.00
0.013 0.00 0.00 0.035 0.00 0.07 742.657 572.014 99.23 99.73 0.00	190	0.013	00'0	0.00	0.035	10.07	0.07	741.055	570.399	98.99	99.30	0.00	0.00
	200	0.013	0.00	0.00	0.035	0.00	0.07	742.657	572.014	99.23	99.73	0.00	0.00

Test Engineer._

	99.99	Proportional	Rate (2)		101.67	98.96	99.12	99.29	100.90	101.66	101.75	101.02	100.47	100.38	101.09	98.49	99.14	98.73	97.85	99,49	100.08	100.60	99.30	89.73
	66.66	Proportional	Rate (1)		101.59	100.05	99.58	100.31	101.60	101.10	100.62	100.47	99.92	100.02	59.73	99.80	99.40	99.35	99.69	99.37	06.65	99.11	98,99	99.23
141.45	7.45	Tunnel	Velocity	7.466	7.446	7.448	7.466	7.504	7.555	7.565	7.535	7.490	7.464	7.443	7.426	7.413	7,403	7.395	7.399	7.415	7.419	7.419	7.416	7.412
STD Tunnel Flow:	31.073	STD Sample	Ft ³ (2)		1.581	1.538	1.537	1.532	1.546	1.556	1.564	1.562	1.559	1.562	1.576	1.538	1,551	1.546	1.531	1.664	1.562	1.570	1.550	1.558
STD Tu	30,671	STD Sample	Ft ³ (1)		1.559	1.535	1.524	1.528	1.537	1.527	1.526	1,533	1.530	1.536	1.535	1,539	1.535	1,535	1.538	1.532	1.539	1.527	1.526	1.530
0.02610212 0.02576422	558,532857	Tunnel	Temp, R	560.6	557,59	557.91	560.6	566.3	574	575.5	570.9	564.2	560.2	557.05	554,52	552.63	551,05	549.98	550.54	552.98	553.55	553.55	563.1	552.46
VS (1) VS (2)		Tunnel Delta-	۵.	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
		Ending Average Firebox	Temp																					259.14
		Average Firebox	Temp	281.6	283.8	271.6	274.7	253.5	276.7	305.0	322.5	327.1	324.2	319.6	312.0	303.7	296.2	290.0	286.3	283.4	280.6	273.4	267.3	259.1
	200		Time	0	2	20	30	40	50	09	20	80	06	100	110	120	130	140	150	160	170	180	190	200

TEST FUEL DATA EPA METHOD 5G-3

Mar Sample IE	Number:	SBI CW2500	013			
	n Number:					
A 19 11						
	on Referen	ce ID	18	0-463		
et meter to 8 et Temperat		2 d	12%	12.0		
et remperation			22%	22.0		
er hin serring	100 4444		6.6.70	Artic V		
	PRE-B	URN FUEL	PROPE	RTIES		1
Eq. ID No.		Time:	9:50	Temp., °F:	75	
Piece No.	Length, In.	Weight, Lb.	Moi	isture, %, Dry	/ Basis	
1	9.00	1.12	20.9	20.2	20.8	
2	9.00	1.02	20.6	20.0	20.9	1
3	9.00	1.06	20.7	19.7	20.9	
4	9.00	0,91	20.0	19.6	20.2	
5	17.00	1,81	20.7	19.9	20.8	
6	17.00	1,77	20.4	20.0	20.7	
8	17.00	1.78	19.8	20.2	20.6	
9	17.00	1.57	19.9	19.3	20.2	
10					Rate.	
11						
12			;			
Total W	eight	12.6	Avera	age, %db	20.3	
Allowa	able Fuel L	oad Range		8.4	to	10.1
		EST FUEL		PROPERTIE		
Eq. ID No.			Time:	11:00	Temp.,*F:	75
Piece No.	Length, In.	Weigh 2x4	t, Lb. 4x4	Moist	ture, %, Dry	Basis
1	17.00	2.49		21.2	20.9	22.0
2	17.00	2.02		21.1	19.3	20.6
3	17.00	2.11		22.0	20.2	21.4
4 5	17.00	2.06		20.1	19,7	20.8
6	-					-
7						0
8			-			
Tota	ls	8.7	0.0			
% of W		100	0			
Total weight	t, wet, lb.	8.6	7	Average M	oisture, dry	20.7
	t, dry, kg	3.2	_	Average M	and the second se	17.20

Test Engineer._

Date:

TEST RESULTS EPA METHOD 5G-3

Print Report

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 26, 2013 Test Run Number: 2

Dry Burn-Rate, kg/hr:						
Emission-Rate, g/hr: Adjusted Emission-Rate, g/hr :						
						Duration of Test, Minutes
Dry Gas Meter Standardization	Train A	Train B				
Dry Gas Meter Beginning Reading, ft ³	710.565	539.819				
Dry Gas Meter Ending Reading, ft ³	742.657	572.014				
Barometric Pressure Correction Factor	0.999	0.999				
Dry Gas Meter Calibration Factors (y factors)	0.977	0.986				
Dry Gas Meter Temperature Factors	0.980	0.980				
Dry Gas Meter Delta-H Correction Factors	1.000	1.000				
Dry Gas Meter STD Volume Sampled, ft ³	30.685	31.087				
Dillution Tunnel Flow / Volume						
Standardized Tunnel Flow, dscfm	141.	451				
Total Tunnel Volume, scf	2829	28290.116				
Emission Caclulations	Train A	Train B				
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	921.957	910.040				
Sample Particulate Mass, mg	5.5	5.4				
Total Emissions, grams	5.071	4.914				
Emission-Rate, g/hr	1.52	1.47				
Adjusted Emission Rates, g/hr		2.51				
Deviation, %	1.3	0%				
Operating Parameters	Train A	Train B				
Max Filter Temperature, °F	88.15	84.32				
Post-Test Leak Check, cfm @ in. Hg vac.	0.0035@5	0.003@5				
Average Firebox Surface Temperture delta-T, °F	22.	10.00 E				
Maximum Ambient Temperture, "F	8					
Mimimum Ambient Temperature, *F	69					
Fuel Properties						
Wet Fuel Load Weight, Ib.	8.6	22.02				
Dry-Basis Fuel Load Moisture Content, %	20.	CO-71				
Wet-Basis Fuel Load Moisture Content, %	17.					
Coal Bed Range, Ib.		1,80 2.10				
Actual Coal Bed, Lb.	2.	14				

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 26, 2013 Test Run Number: 2

Intertek Equipment No.'s SBI-206

Sample Train - 1									
Sample Component	Component	ID Number		Weight	3				
			Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	5		117.6					
B - Rear Filter Catch	Filter	6		118					
C - Seal Set	O-Ring	and the second		10					
Total, A+B+C-Tares			241.1	235.6	5.5				
Probe & Filter Holder	Probe	- 17	139749,1	130749.2	0.0				
			Total Parti	culate, mg	5.5				

Sample Train - 2									
Sample Component	Component		Weights						
		ID INGINISE	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	7		115.2	7//////////////////////////////////////				
B - Rear Filter Catch	Filter	8		118.2					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			238,6	233.4	5.2				
Probe & Filter Holder	Probe	18	147882.0	147881.8	0.2				
			Total Parti	culate, mg	5.4				

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 26, 2013 Test Run Number: 2

	Dilution	n Tunnel		Tunnel Diameter	8,000	Inches
	Delta P In. H2O	Temp,°F	Square Root	Tunnel Static	-0.070	-0.070 In. H2O
A1	0.0100	96	0.1000			1
A2	0.0125	8	0.1118	Tunnel Area	0.34907	Ft2
A3	0.0125	96	0.1118			
A4	0.0125	95	0.1118	Pitot Correction	0.9736	factor
A Center	0.0125	96	0.1118			
81	0,0100	96	0.1000	Baro, Pressure	29.91	
82	0.0125	97	0,1118			
83	0.0125	97	0.1118	Pitot Factor	0.99	(0.95 for standard, 0.84 or Cal. For S-Type)
84	0.0125	16	0.1118			1
B Center	0.0125	96	0,1118	Initial Velocity	7.433	Ft Sec
Averages	0.012	96.037	0.1089			
				Initial Flow	141.82	Ft3/min

Test Engineer.

Date:

c	D	I
З	D	ļ

Time	(0	СС	D_2		O ₂
10:48:11	C1: CO	0.64 %	C2: CO2	0.80 %	C4: O2	19.22 %
10:49:11	C1: CO	0.51 %	C2: CO2	0.56 %	C4: O2	19.40 %
10:50:11	C1: CO	0.62 %	C2: CO2	0.69 %	C4: O2	18.43 %
10:51:11	C1: CO	0.25 %	C2: CO2	0.19 %	C4: O2	19.05 %
10:52:11	C1: CO	0.31 %	C2: CO2	0.54 %	C4: O2	20.21 %
10:53:11	C1: CO	0.43 %	C2: CO2	2.41 %	C4: O2	19.02 %
10:54:11	C1: CO	0.45 %	C2: CO2	3.65 %	C4: O2	17.37 %
10:55:11	C1: CO	0.46 %	C2: CO2	4.57 %	C4: O2	16.04 %
10:56:11	C1: CO	0.47 %	C2: CO2	2.04 %	C4: O2	16.49 %
10:57:11	C1: CO	0.41 %	C2: CO2	1.51 %	C4: O2	18.54 %
10:58:11	C1: CO	0.43 %	C2: CO2	1.48 %	C4: O2	18.53 %
10:59:11	C1: CO	0.44 %	C2: CO2	1.53 %	C4: O2	18.74 %
11:00:11	C1: CO	0.44 %	C2: CO2	1.50 %	C4: O2	18.26 %
11:01:11	C1: CO	0.46 %	C2: CO2	1.52 %	C4: O2	18.05 %
11:02:11	C1: CO	0.51 %	C2: CO2	1.69 %	C4: O2	18.60 %
11:03:11	C1: CO	0.50 %	C2: CO2	1.72 %	C4: O2	18.49 %
11:04:11	C1: CO	0.51 %	C2: CO2	1.87 %	C4: O2	18.37 %
11:05:11	C1: CO	0.48 %	C2: CO2	2.87 %	C4: O2	18.14 %
11:06:11	C1: CO	0.51 %	C2: CO2	3.63 %	C4: O2	17.21 %
11:07:11	C1: CO	0.48 %	C2: CO2	4.41 %	C4: O2	16.41 %
11:08:11	C1: CO	0.50 %	C2: CO2	5.06 %	C4: O2	15.80 %
11:09:11	C1: CO	0.52 %	C2: CO2	5.47 %	C4: O2	15.27 %
11:10:11	C1: CO	0.64 %	C2: CO2	5.53 %	C4: O2	14.95 %
11:11:11	C1: CO	0.61 %	C2: CO2	4.26 %	C4: O2	14.49 %
11:12:11	C1: CO	0.53 %	C2: CO2	2.95 %	C4: O2	16.26 %
11:13:11	C1: CO	0.57 %	C2: CO2	3.52 %	C4: O2	17.38 %
11:14:11	C1: CO	0.65 %	C2: CO2	4.71 %	C4: O2	16.19 %
11:15:11	C1: CO	0.65 %	C2: CO2	4.72 %	C4: O2	15.35 %
11:16:11	C1: CO	0.56 %	C2: CO2	4.35 %	C4: O2	14.94 %
11:17:11		0.57 %	C2: CO2	4.36 %	C4: O2	15.74 %
11:18:11	C1: CO	0.59 %	C2: CO2	4.30 %	C4: O2	16.00 %
11:19:11	C1: CO	0.62 %	C2: CO2	4.21 %	C4: O2	15.93 %
11:20:11	C1: CO	0.60 %	C2: CO2	3.97 %	C4: O2	14.95 %
11:21:11	C1: CO		C2: CO2	3.86 %	C4: O2	
11:22:11	C1: CO		C2: CO2	4.14 %	C4: O2	
11:23:11	C1: CO	0.65 %	C2: CO2	4.79 %	C4: O2	15.82 %
11:24:11	C1: CO	0.58 %	C2: CO2	5.38 %	C4: O2	15.27 %
11:25:11	C1: CO	0.57 %	C2: CO2	6.18 %	C4: O2	14.79 %
11:26:11	C1: CO	0.64 %	C2: CO2	6.77 %	C4: O2	
11:27:11	C1: CO	0.69 %	C2: CO2	7.00 %	C4: O2	
11:28:11	C1: CO	0.70 %	C2: CO2	7.26 %	C4: O2	13.19 %
11:29:11	C1: CO	0.76 %	C2: CO2	7.87 %	C4: O2	12.99 %
11:30:11	C1: CO	0.87 %	C2: CO2	8.55 %	C4: O2	12.17 %

Time	C	0	с	O ₂		O ₂
11:31:11	C1: CO	0.89 %	C2: CO2	8.87 %	C4: O2	11.67 %
11:32:11	C1: CO	0.88 %	C2: CO2	9.45 %	C4: O2	11.34 %
11:33:11	C1: CO	0.81 %	C2: CO2	9.61 %	C4: O2	10.79 %
11:34:11	C1: CO	0.73 %	C2: CO2	9.39 %	C4: O2	9.82 %
11:35:11	C1: CO	0.70 %	C2: CO2	9.66 %	C4: O2	10.52 %
11:36:11	C1: CO	0.67 %	C2: CO2	9.82 %	C4: O2	9.60 %
11:37:11	C1: CO	0.67 %	C2: CO2	9.96 %	C4: O2	10.34 %
11:38:11	C1: CO	0.66 %	C2: CO2	10.07 %	C4: O2	10.43 %
11:39:11	C1: CO	0.64 %	C2: CO2	10.16 %	C4: O2	10.33 %
11:40:11	C1: CO	0.66 %	C2: CO2	10.31 %	C4: O2	10.27 %
11:41:11	C1: CO	0.68 %	C2: CO2	10.38 %	C4: O2	9.99 %
11:42:11	C1: CO	0.70 %	C2: CO2	10.44 %	C4: O2	9.86 %
11:43:11	C1: CO	0.64 %	C2: CO2	10.44 %	C4: O2	9.89 %
11:44:11	C1: CO	0.63 %	C2: CO2	9.94 %	C4: O2	9.67 %
11:45:11	C1: CO	0.67 %	C2: CO2	10.17 %	C4: O2	10.24 %
11:46:11	C1: CO	0.70 %	C2: CO2	10.22 %	C4: O2	10.26 %
11:47:11	C1: CO	0.70 %	C2: CO2	10.14 %	C4: O2	10.26 %
11:48:11	C1: CO	0.64 %	C2: CO2	9.88 %	C4: O2	10.20 %
11:49:11	C1: CO	0.61 %	C2: CO2	9.88 %	C4: O2	9.35 %
11:50:11	C1: CO	0.58 %	C2: CO2	9.79 %	C4: O2	10.66 %
11:51:11	C1: CO	0.54 %	C2: CO2	9.70 %	C4: O2	10.74 %
11:52:11	C1: CO	0.51 %	C2: CO2	9.30 %	C4: O2	10.14 %
11:53:11	C1: CO	0.49 %	C2: CO2	9.59 %	C4: O2	11.10 %
11:54:11	C1: CO	0.47 %	C2: CO2	9.11 %	C4: O2	11.05 %
11:55:11	C1: CO	0.49 %	C2: CO2	9.09 %	C4: O2	11.51 %
11:56:11	C1: CO	0.46 %	C2: CO2	8.76 %	C4: O2	11.35 %
11:57:11	C1: CO	0.45 %	C2: CO2	8.69 %	C4: O2	11.89 %
11:58:11	C1: CO	0.44 %	C2: CO2	8.21 %	C4: O2	11.59 %
11:59:11	C1: CO	0.43 %	C2: CO2	8.30 %	C4: O2	11.99 %
12:00:11		0.43 %	C2: CO2	7.93 %	C4: O2	11.76 %
12:01:11	C1: CO	0.42 %	C2: CO2	7.79 %	C4: O2	11.79 %
12:02:11	C1: CO	0.42 %	C2: CO2	7.52 %	C4: O2	12.42 %
12:03:11	C1: CO	0.42 %	C2: CO2	7.31 %	C4: O2	
12:04:11	C1: CO	0.41 %	C2: CO2	7.17 %	C4: O2	13.07 %
12:05:11	C1: CO	0.41 %	C2: CO2	6.94 %	C4: O2	13.26 %
12:06:11	C1: CO	0.38 %	C2: CO2	6.68 %	C4: O2	13.58 %
12:07:11	C1: CO	0.36 %	C2: CO2	6.31 %	C4: O2	13.98 %
12:08:11	C1: CO	0.37 %	C2: CO2	6.07 %	C4: O2	14.23 %
12:09:11	C1: CO		C2: CO2	5.86 %	C4: O2	
12:10:11	C1: CO	0.36 %	C2: CO2	5.81 %	C4: O2	14.55 %
12:11:11	C1: CO	0.37 %	C2: CO2	5.80 %	C4: O2	14.61 %
12:12:11	C1: CO	0.37 %	C2: CO2	5.86 %	C4: O2	14.65 %
12:13:11	C1: CO	0.39 %	C2: CO2	5.85 %	C4: O2	14.58 %

Time	C	0	СС	D_2		O ₂
12:14:11	C1: CO	0.38 %	C2: CO2	5.80 %	C4: O2	14.63 %
12:15:11	C1: CO	0.38 %	C2: CO2	5.75 %	C4: O2	14.69 %
12:16:11	C1: CO	0.39 %	C2: CO2	5.70 %	C4: O2	14.74 %
12:17:11	C1: CO	0.39 %	C2: CO2	5.62 %	C4: O2	14.77 %
12:18:11	C1: CO	0.38 %	C2: CO2	5.54 %	C4: O2	14.87 %
12:19:11	C1: CO	0.38 %	C2: CO2	5.48 %	C4: O2	14.76 %
12:20:11	C1: CO	0.41 %	C2: CO2	5.49 %	C4: O2	14.88 %
12:21:11	C1: CO	0.39 %	C2: CO2	5.44 %	C4: O2	14.88 %
12:22:11	C1: CO	0.39 %	C2: CO2	5.42 %	C4: O2	14.99 %
12:23:11	C1: CO	0.41 %	C2: CO2	5.17 %	C4: O2	14.42 %
12:24:11	C1: CO	0.44 %	C2: CO2	5.16 %	C4: O2	14.89 %
12:25:11	C1: CO	0.42 %	C2: CO2	5.12 %	C4: O2	15.16 %
12:26:11	C1: CO	0.44 %	C2: CO2	5.01 %	C4: O2	14.15 %
12:27:11	C1: CO	0.41 %	C2: CO2	5.00 %	C4: O2	15.32 %
12:28:11	C1: CO	0.39 %	C2: CO2	4.65 %	C4: O2	14.23 %
12:29:11	C1: CO	0.44 %	C2: CO2	4.87 %	C4: O2	15.37 %
12:30:11	C1: CO	0.48 %	C2: CO2	4.83 %	C4: O2	15.42 %
12:31:11	C1: CO	0.52 %	C2: CO2	4.67 %	C4: O2	15.22 %
12:32:11	C1: CO	0.57 %	C2: CO2	4.55 %	C4: O2	15.54 %
12:33:11	C1: CO	0.62 %	C2: CO2	4.36 %	C4: O2	15.59 %
12:34:11	C1: CO	0.67 %	C2: CO2	4.15 %	C4: O2	15.47 %
12:35:11	C1: CO	0.73 %	C2: CO2	3.93 %	C4: O2	14.65 %
12:36:11	C1: CO	0.68 %	C2: CO2	3.87 %	C4: O2	15.14 %
12:37:11	C1: CO	0.72 %	C2: CO2	3.95 %	C4: O2	15.38 %
12:38:11	C1: CO	0.75 %	C2: CO2	3.80 %	C4: O2	15.17 %
12:39:11	C1: CO	0.77 %	C2: CO2	3.75 %	C4: O2	15.21 %
12:40:11	C1: CO	0.78 %	C2: CO2	3.84 %	C4: O2	15.85 %
12:41:11	C1: CO	0.79 %	C2: CO2	3.81 %	C4: O2	15.79 %
12:42:11	C1: CO	0.82 %	C2: CO2	3.77 %	C4: O2	15.86 %
12:43:11	C1: CO	0.84 %	C2: CO2	3.78 %	C4: O2	15.88 %
12:44:11	C1: CO	0.84 %	C2: CO2	3.65 %	C4: O2	15.49 %
12:45:11	C1: CO	0.90 %	C2: CO2	3.73 %	C4: O2	15.86 %
12:46:11	C1: CO	0.93 %	C2: CO2	3.70 %	C4: O2	15.88 %
12:47:11	C1: CO	0.92 %	C2: CO2	3.69 %	C4: O2	15.92 %
12:48:11	C1: CO	0.92 %	C2: CO2	3.63 %	C4: O2	15.69 %
12:49:11	C1: CO	0.91 %	C2: CO2	3.58 %	C4: O2	15.82 %
12:50:11	C1: CO	0.90 %	C2: CO2	3.57 %	C4: O2	15.98 %
12:51:11	C1: CO	0.91 %	C2: CO2	3.58 %	C4: O2	15.95 %
12:52:11	C1: CO	0.95 %	C2: CO2	3.59 %	C4: O2	
12:53:11	C1: CO	0.93 %	C2: CO2	3.42 %	C4: O2	15.56 %
12:54:11	C1: CO	0.98 %	C2: CO2	3.60 %	C4: O2	15.97 %
12:55:11	C1: CO	1.00 %	C2: CO2	3.57 %	C4: O2	15.97 %
12:56:11	C1: CO	1.00 %	C2: CO2	3.54 %	C4: O2	16.02 %

c	D	I
Э	D	

Time	C	0	СС	D ₂		O ₂
12:57:11	C1: CO	0.96 %	C2: CO2	3.52 %	C4: O2	14.90 %
12:58:11	C1: CO	0.99 %	C2: CO2	3.52 %	C4: O2	16.00 %
12:59:11	C1: CO	1.00 %	C2: CO2	3.49 %	C4: O2	15.99 %
13:00:11	C1: CO	1.00 %	C2: CO2	3.45 %	C4: O2	15.94 %
13:01:11	C1: CO	1.01 %	C2: CO2	3.43 %	C4: O2	16.00 %
13:02:11	C1: CO	1.04 %	C2: CO2	3.41 %	C4: O2	16.08 %
13:03:11	C1: CO	1.03 %	C2: CO2	3.35 %	C4: O2	15.87 %
13:04:11	C1: CO	1.03 %	C2: CO2	3.34 %	C4: O2	16.14 %
13:05:11	C1: CO	1.04 %	C2: CO2	3.32 %	C4: O2	16.13 %
13:06:11	C1: CO	1.04 %	C2: CO2	3.34 %	C4: O2	16.18 %
13:07:11	C1: CO	1.05 %	C2: CO2	3.32 %	C4: O2	16.12 %
13:08:11	C1: CO	1.01 %	C2: CO2	3.11 %	C4: O2	15.59 %
13:09:11	C1: CO	0.96 %	C2: CO2	3.38 %	C4: O2	15.98 %
13:10:11	C1: CO	0.98 %	C2: CO2	3.31 %	C4: O2	15.97 %
13:11:11	C1: CO	1.01 %	C2: CO2	3.30 %	C4: O2	16.24 %
13:12:11	C1: CO	1.01 %	C2: CO2	3.28 %	C4: O2	16.24 %
13:13:11	C1: CO	1.04 %	C2: CO2	3.31 %	C4: O2	16.15 %
13:14:11	C1: CO	1.04 %	C2: CO2	3.19 %	C4: O2	15.80 %
13:15:11	C1: CO	1.09 %	C2: CO2	3.24 %	C4: O2	16.19 %
13:16:11	C1: CO	1.10 %	C2: CO2	3.21 %	C4: O2	16.18 %
13:17:11	C1: CO	1.11 %	C2: CO2	3.20 %	C4: O2	16.24 %
13:18:11	C1: CO	1.11 %	C2: CO2	3.19 %	C4: O2	16.25 %
13:19:11	C1: CO	1.12 %	C2: CO2	3.10 %	C4: O2	15.58 %
13:20:11	C1: CO	1.15 %	C2: CO2	3.20 %	C4: O2	16.20 %
13:21:11	C1: CO	1.18 %	C2: CO2	3.21 %	C4: O2	16.22 %
13:22:11	C1: CO	1.18 %	C2: CO2	3.17 %	C4: O2	16.19 %
13:23:11	C1: CO	1.15 %	C2: CO2	3.04 %	C4: O2	15.81 %
13:24:11	C1: CO	1.18 %	C2: CO2	3.02 %	C4: O2	15.81 %
13:25:11	C1: CO	1.21 %	C2: CO2	3.14 %	C4: O2	16.28 %
13:26:11		1.19 %	C2: CO2	3.07 %	C4: O2	16.23 %
13:27:11	C1: CO	1.18 %	C2: CO2	3.02 %	C4: O2	16.06 %
13:28:11	C1: CO	1.20 %	C2: CO2	3.03 %	C4: O2	15.22 %
13:29:11	C1: CO	1.20 %	C2: CO2	2.99 %	C4: O2	
13:30:11	C1: CO	1.17 %	C2: CO2	2.87 %	C4: O2	
13:31:11	C1: CO	1.22 %	C2: CO2	2.94 %	C4: O2	16.36 %
13:32:11	C1: CO	1.23 %	C2: CO2	2.88 %	C4: O2	16.27 %
13:33:11	C1: CO	1.19 %	C2: CO2	2.87 %	C4: O2	15.49 %
13:34:11	C1: CO	1.20 %	C2: CO2	2.72 %	C4: O2	15.37 %
13:35:11	C1: CO	1.20 %	C2: CO2	2.84 %	C4: O2	16.06 %
13:36:11	C1: CO	1.21 %	C2: CO2	2.87 %	C4: O2	16.46 %
13:37:11	C1: CO	1.22 %	C2: CO2	2.88 %	C4: O2	16.46 %
13:38:11	C1: CO	1.20 %	C2: CO2	2.84 %	C4: O2	15.34 %
13:39:11	C1: CO	1.21 %	C2: CO2	2.84 %	C4: O2	16.47 %

SRI	
501	

Time	(0	CC	D_2		O ₂
13:40:11	C1: CO	1.20 %	C2: CO2	2.84 %	C4: O2	16.45 %
13:41:11	C1: CO	1.22 %	C2: CO2	2.87 %	C4: O2	16.44 %
13:42:11	C1: CO	1.16 %	C2: CO2	2.79 %	C4: O2	16.23 %
13:43:11	C1: CO	1.20 %	C2: CO2	2.68 %	C4: O2	16.65 %
13:44:11	C1: CO	1.13 %	C2: CO2	2.65 %	C4: O2	16.75 %
13:45:11	C1: CO	1.11 %	C2: CO2	2.59 %	C4: O2	16.63 %
13:46:11	C1: CO	1.14 %	C2: CO2	2.59 %	C4: O2	16.81 %
13:47:11	C1: CO	1.09 %	C2: CO2	2.45 %	C4: O2	15.52 %
13:48:11	C1: CO	1.17 %	C2: CO2	2.58 %	C4: O2	16.80 %
13:49:11	C1: CO	1.20 %	C2: CO2	2.54 %	C4: O2	16.79 %
13:50:11	C1: CO	1.23 %	C2: CO2	2.43 %	C4: O2	16.85 %
13:51:11	C1: CO	1.22 %	C2: CO2	2.36 %	C4: O2	16.89 %
13:52:11	C1: CO	1.28 %	C2: CO2	2.29 %	C4: O2	16.93 %
13:53:11	C1: CO	1.32 %	C2: CO2	2.16 %	C4: O2	16.97 %
13:54:11	C1: CO	1.33 %	C2: CO2	2.10 %	C4: O2	17.00 %
13:55:11	C1: CO	1.31 %	C2: CO2	2.09 %	C4: O2	15.98 %
13:56:11	C1: CO	1.35 %	C2: CO2	2.06 %	C4: O2	17.09 %
13:57:11	C1: CO	1.38 %	C2: CO2	2.00 %	C4: O2	16.91 %
13:58:11	C1: CO	1.36 %	C2: CO2	2.03 %	C4: O2	17.18 %
13:59:11	C1: CO	1.38 %	C2: CO2	1.92 %	C4: O2	17.12 %
14:00:11	C1: CO	1.40 %	C2: CO2	1.85 %	C4: O2	17.15 %
14:01:11	C1: CO	1.40 %	C2: CO2	1.87 %	C4: O2	17.26 %
14:02:11	C1: CO	1.30 %	C2: CO2	1.84 %	C4: O2	17.25 %
14:03:11	C1: CO	1.23 %	C2: CO2	1.65 %	C4: O2	16.76 %
14:04:11	C1: CO	1.36 %	C2: CO2	1.52 %	C4: O2	16.16 %
14:05:11	C1: CO	1.40 %	C2: CO2	1.51 %	C4: O2	17.51 %
14:06:11	C1: CO	1.40 %	C2: CO2	1.49 %	C4: O2	17.33 %
14:07:11	C1: CO	1.43 %	C2: CO2	1.52 %	C4: O2	17.50 %
14:08:11	C1: CO	1.39 %	C2: CO2	1.48 %	C4: O2	17.54 %
14:09:11		1.40 %	C2: CO2	1.46 %		17.54 %
14:10:11	C1: CO	1.37 %	C2: CO2	1.41 %	C4: O2	17.24 %
14:11:11	C1: CO	0.76 %	C2: CO2	0.40 %	C4: O2	17.35 %
14:12:11	C1: CO	0.17 %	C2: CO2	0.06 %	C4: O2	19.71 %
14:13:11	C1: CO	0.09 %	C2: CO2	0.11 %	C4: O2	
14:14:11	C1: CO	0.09 %	C2: CO2	0.09 %	C4: O2	
14:15:11	C1: CO	0.06 %	C2: CO2	0.07 %	C4: O2	19.37 %
14:16:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.64 %
14:17:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.62 %
14:18:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.62 %
14:19:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.62 %
14:20:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.64 %
14:21:11	C1: CO	0.08 %	C2: CO2	0.08 %	C4: O2	20.64 %
14:22:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.18 %

Time	C	0	СС	D_2		O ₂
14:23:11	C1: CO	0.05 %	C2: CO2	0.05 %	C4: O2	20.01 %
14:24:11	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.64 %
14:25:11	C1: CO	0.04 %	C2: CO2	0.04 %	C4: O2	20.61 %
14:26:11	C1: CO	0.07 %	C2: CO2	0.06 %	C4: O2	20.61 %
14:27:11	C1: CO	0.07 %	C2: CO2	0.06 %	C4: O2	20.64 %
14:28:11	C1: CO	0.07 %	C2: CO2	0.06 %	C4: O2	20.61 %
14:29:11	C1: CO	0.07 %	C2: CO2	0.06 %	C4: O2	20.63 %
14:30:11	C1: CO	0.05 %	C2: CO2	0.04 %	C4: O2	20.61 %
14:31:11	C1: CO	0.05 %	C2: CO2	0.04 %	C4: O2	20.63 %
14:32:11	C1: CO	0.04 %	C2: CO2	0.04 %	C4: O2	20.64 %
14:33:11	C1: CO	0.04 %	C2: CO2	0.04 %	C4: O2	20.60 %
14:34:11	C1: CO	0.03 %	C2: CO2	0.03 %	C4: O2	20.60 %
14:35:11	C1: CO	0.05 %	C2: CO2	0.04 %	C4: O2	20.59 %
14:36:11	C1: CO	0.07 %	C2: CO2	0.06 %	C4: O2	20.63 %
14:37:11	C1: CO	0.06 %	C2: CO2	0.05 %	C4: O2	20.60 %
14:38:11	C1: CO	0.05 %	C2: CO2	0.05 %	C4: O2	20.63 %
14:39:11	C1: CO	0.06 %	C2: CO2	0.05 %	C4: O2	20.63 %
14:40:11	C1: CO	0.06 %	C2: CO2	0.05 %	C4: O2	20.26 %
14:41:11	C1: CO	0.06 %	C2: CO2	0.05 %	C4: O2	20.63 %
26.06.2013						

26-Jun-13

Run #2

26.06.2013

SBI

CW2500

Appendix F: Test data Run 3

Project Number:	0	
Manufacturer:	SDI	
Model:	CW2500	
Sample ID Number:	0	
Test Date:	June 26, 2013	-
Test Run Number:		_

EPA Method 28 Pre Burn Data

Coal Bed Range 2.0 to 2.4

Average Firebox Temp, "F 441.2

Final Coal Bed Wt, Ib 2.09

T	ime				Tem	perature D	ata				-		
and the second se	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue	Fuel Weight	Weigh
0	0	77,13	240.6	410.7	(15)	35:87	114.4	115.1	127			14.17	12.08
1	10	73.14	178.2	689.4	335	125	185.7	170.1	194.5			11.63	2.64
2	20	74.85	179.2	718,7	440.2	172.2	258.1	245.5	238.1			9,45	2.08
3	30	77.14	182.5	714.9	490,8	217.4	313,3	307.5	296.9			7.32	2.13
4	40	70.15	156.5	726.6	518.5	253/1	352.3	357.6	378.2			5.41	1.91
5	50	80.61	17.1	879,1	531.8	283.5	380.3	332.2	467.4		_	3.91	1.50
6	60	82.69	165.6	637.6	516,1	310.2	420	412.3	502.1		-	2.72	1.19
7	70	82.68	363	57.1.4	488.8	327.5	435.3	419.8	530,1			2.12	0.59
8	80	81,8	189.3	529.1	430.5	331.7	438.8	421.8	532.7		-	2.09	0.04
9									1.		_	- 419.4	0.04
10			1									-	-
11			1								-	-	-
12			St		120				-			-	
13								-					
14					1			-	-			-	-
15		22.20			-							-	
16		1				-				-			
17						_							
18		1.1.1.1							-			-	
19							-	-	-	-		-	
20									-		-	-	
21										_	-		_
22						-		-			-	_	-
23						-					-		
24					-		-		-			-	5
25					-					_			5
26					-			-	-	-			-
27					-			-	-	_			-
28		-				-		-	-				11
29												2000	
30		-			-	-						-	1

	ſ	Q
1	h	1
1		i
5		
	2	2
1	7	5
ģ	è	
1	Ē	
	2	5
٦	'	•
1	٥	۵
1	'n	
•		
1	7	5
÷	È	5
1		
2	ļ	2
•		
1	U	0
1	ļ	2
Ç	:)

er. 0	er. SBI	el: CW2500	er. 0	le: June 26, 2013	er. 3
Project Number	Manufacture	Model	Sample ID Number	Test Date:	Test Run Number

RH, % Sample Box Correction (y) Factor
Antar Dov /AV

5
-

Train B Train B Train B Proportional Vacc 9.842 105.65 99.35 99.36 99.36 95.39 95.39 95.39 95.39 95.39 95.39 95.39	eter, I	Barometer, In. Hg	RH, %	Sample	Box Corr	Sample Box Correction (y) Factors	Factors		Leak Check, cfm @ in Hg	cfm @ in Hg		Maximur	Maximum Vacuum
Image: Non-sectional sector (B) 0.003(0) <t< th=""><th>-4</th><th>29.86</th><th>81</th><th>Me</th><th>eter Box (</th><th>(A)</th><th>0.977</th><th></th><th>Train A</th><th>Train B</th><th></th><th>Train A</th><th>Train B</th></t<>	-4	29.86	81	Me	eter Box ((A)	0.977		Train A	Train B		Train A	Train B
100 Particulate Sampling Data A Train B Flue Fuel Weight Train A Train B A-H Delta-H Draft Weight Train A Train B A-H Delta-H Draft Weight Train A Train B Proportional 0 0.00 0.066 9.76 742.675 572.039 99.87 99.87 0 0.00 0.090 4.56 742.675 573.561 108.36 108.32 0 0.00 0.090 4.56 745.812 575.356 108.32 108.32 0 0.00 0.090 4.56 745.812 575.366 101.53 102.34 0 0.00 0.096 0.44 743.365 575.456 99.37 93.36 0 0.00 0.066 0.41 0.29 755.346 95.65 93.36 0 0.00 0.066 0.41 755.346 57.82 93.84 0 0.00		29.85	91	We	eter Box (B)	0.986		0.003@5	0.003(0)5		0.00	0.00
Particulate Sampling Data Train A Train B Flue Veight Train A Train B Train A Train B Delta-H Draft Weight Loss Volume Train B Proportional 0.00 0.00 0.00 9.76 3.76 742.675 573.659 105.35 102.32 0.00 0.000 3.76 2.47 563.55 573.659 105.35 102.32 0.00 0.000 3.76 2.42 742.515 573.659 101.63 94.84 0.00 0.000 0.001 0.005 1.44 747.365 576.513 101.63 94.24 0.00 0.000 0.001 0.015 0.34 723.155 95.97 93.37 0.00 0.000 0.010 0.016 0.016 0.016 93.45 44.1 95.63 94.24 0.00 0.000 0.010 0.116 97.16 95.34 95.95 95.95 95.95 95.95	tion	of Test,	Min	100]						
Train A Train B Flue Veight Loss Train A Train B Proportional Proportional Della +H Data Doulo 0.000 0.006 9.76 9.76 72.675 572.003 99.87 99.87 0.00 0.000 0.095 7.15 3.76 573.559 102.35 102.32 0.00 0.000 4.55 2.561 744.275 573.559 105.35 102.32 0.00 0.009 4.55 2.261 744.275 573.559 106.36 102.32 0.00 0.009 4.55 2.261 744.275 573.130 101.28 102.34 0.00 0.009 4.55 2.244 743.999 576.616 99.37 93.34 0.00 0.000 0.015 0.23 752.185 561.325 93.36 93.36 0.000 0.000 0.016 0.016 0.016 0.016 90.36 93.36 93.36 0.000 0.000 0.016	μ							Particulate Si	ampling Data				
Definarti Draft Weight Loss Volume Protectional Protectional 0.00 0.000 9.76 3.76 3.76 3.76 3.76 3.76 3.81 9.817 9.817 0.00 0.000 4.56 2.61 742.575 573.559 105.35 102.32 0.00 0.000 4.56 2.84 743.5812 576.153 101.29 99.87 0.00 0.000 0.005 1.42 2.84 74.275 576.153 101.23 93.42 0.00 0.000 0.005 0.44 0.23 750.566 576.13 101.28 93.42 0.00 0.000 0.010 0.118 0.227 750.566 576.561 97.46 97.24 0.000 0.000 0.011 0.227 755.2156 95.32 95.05 0.000 0.000 0.011 0.227 755.346 97.16 96.31 95.96 0	Ĥ	unnel	Train A	_	Fline	Find	Weight	Train A	Train R	Train A Proportional	Train B Dronortional	Train A	Train B
0.00 0.000 0.76 9.76 74.2575 572.039 99.87 99.86 102.32	0	elta-P	Delta-H	_	Draft	Weight	Loss	Volume	Volume	Rate	Rate	Hg Hg	Hg Hg
0.00 0.005 7.15 2.61 7.43.75 573.559 105.35 102.32 102.32 0.00 0.009 4.56 2.59 745.812 575.130 101.28 102.32 105.84 0.00 0.001 0.079 1.5.8 2.84 743.955 575.130 101.26 95.42 0.00 0.001 0.070 1.2.3 0.36 755.165 561.325 95.97 97.24 0.00 0.001 0.016 0.41 0.25 755.165 561.325 95.36 93.36 0.00 0.001 0.016 0.41 0.25 755.165 561.325 95.36 93.36 0.00 0.001 0.016 0.41 0.23 755.165 561.325 93.36 93.36 0.001 0.000 0.010 0.010 0.010 97.82 93.36 0.001 0.000 0.010 0.010 0.016 0.18 756.395 96.31 95.39 93.36 93.36	3	0.013	0.00	0.00	0.060	9.76	9.76	742.675	572.039	99.87	99.87	0.00	0.00
0.000 0.000 4.56 2.59 745 812 575 130 101.28 106.84 0.000 0.000 2.42 2.14 747 365 576 165 101.69 93.42 0.000 0.000 1.15 0.35 745 365 579.759 93.42 93.42 0.000 0.000 1.15 0.35 750.866 579.759 93.47 97.46 0.000 0.000 0.010 0.14 0.29 752.185 561.325 98.56 93.36 93.36 0.000 0.000 0.010 0.14 0.23 755.348 561.325 98.56 93.36 93.36 0.000 0.000 0.14 0.23 755.348 561.325 98.63 96.05 95.05 0.000 0.000 0.000 0.01 0.18 755.348 563.56 95.63 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 95.05 <td>2</td> <td>0.013</td> <td>0.00</td> <td>0.00</td> <td>0.095</td> <td>7.15</td> <td>2.61</td> <td>744.275</td> <td>573.559</td> <td>105.35</td> <td>102.32</td> <td>0.00</td> <td>0.00</td>	2	0.013	0.00	0.00	0.095	7.15	2.61	744.275	573.559	105.35	102.32	0.00	0.00
0.00 0.000 0.000 2.42 2.14 747.365 576.515 101.69 93.42 2 0.00 0.007 1.180 0.34 743.969 578.240 103.56 93.42 105.66 0.00 0.001 1.20 0.34 743.969 578.240 103.56 93.74 105.66	3	0.013	0.00	0.00	060.0	4,56	2.59	745.812	575.130	101.28	105.84	0.00	0.00
000 0.001 0.005 1.58 0.84 748.399 578.240 103.50 105.66 579.730 93.77 97.24 0.000 0.001 0.070 1.23 0.236 559.735 98.56 93.77 97.24 0.000 0.000 0.006 0.41 0.23 750.566 561.32 98.66 93.45 93.45 0.000 0.000 0.006 0.41 0.26 755.348 584.441 96.63 93.45 93.45 0.000 0.000 0.010 0.118 755.348 584.441 96.63 95.93 95.99 96.05 95.34 96.05 95.34 95.99 95.91 95.91 95.91 95.91 95.91 95.91 95.	3	0.013	0.00	0.00	050.0	2.42	2.14	747.365	576.615	101.69	99.42	0.00	0.00
0.000 0.000 0.000 0.000 0.036 0.336 753.155 99.37 97.24 77.24 0.000 0.0010 0.065 0.44 0.29 753.165 561.325 99.36 <t< td=""><td>0</td><td>0.013</td><td>0.00</td><td>0.00</td><td>0.075</td><td>1.58</td><td>0.84</td><td>748,999</td><td>578.240</td><td>103.90</td><td>105.66</td><td>0.00</td><td>0.00</td></t<>	0	0.013	0.00	0.00	0.075	1.58	0.84	748,999	578.240	103.90	105.66	0.00	0.00
0.00 0.005 0.94 0.29 752.185 581.325 98.56 99.36 93.36 0.00 0.00 0.010 0.015 0.47 753.772 582.909 97.82 99.84 1 0.00 0.010 0.016 0.41 0.28 755.345 582.909 97.82 99.84 1 0.00 0.010 0.010 0.41 0.28 755.345 585.901 97.82 96.05 1 0.00 0.010 0.010 0.016 0.18 0.23 756.336 586.591 97.16 96.99 0.010 0.000 0.010 0.010 0.010 0.18 756.336 586.591 95.31 96.99 0.11 1 1 1 1 1 95.99 1 95.99 1 0.11 1 1 1 1 1 95.99 1 1 1 1 1 1 1 1 1 1 1	0	0.013	0.00	0.00	0.070	1.23	0.35	750.596	579.759	79.97	97.24	0.00	0.00
0.00 0.006 0.67 0.27 753.772 562.900 97.82 93.84 50.65 0.00 0.000 0.010 0.010 0.016 0.411 9.26 755.348 564.441 96.65 96.05 96.05 0.00 0.00 0.010 0.010 0.013 756.348 564.441 96.63 96.05 96.05 0.00 0.00 0.010 0.013 756.348 564.441 95.99 96.05 96.34 95.39 0.010 0.010 0.010 0.018 0.018 756.365 96.31 95.39 95.39 95.39 95.39 0.010 0.010 0.010 0.018 0.018 0.018 91.41 95.99 96.31 95.39 0.010 0.010 0.010 0.018 0.018 0.018 91.41 95.99 95.31 95.39 0.110 0.101 0.118 758.54 563.75 96.31 95.39 95.39 95.39 95.39	3	0.013	0.00	0.00	0.065	0.94	0.29	752.185	581.325	98.58	99.36	0.00	0.00
0 0.00 0.060 0.41 0.26 755.348 584.441 96.63 96.05 96.05 0 0.00 0.000 0.060 0.18 0.23 756.305 565.691 37.16 96.03 96.03 0 0.00 0.000 0.018 0.23 756.305 565.691 37.16 96.33 0 0.00 0.000 0.18 0.23 758.514 587.529 96.31 95.39 1 <	0	0.013	0.00	00'0	0.065	0.67	0.27	753.772	582.909	97.82	99.84	0.00	0.00
0.00 0.00 0.010 0.013 0.23 756.536 565.561 97.16 96.38 0.00 0.000 0.000 0.018 0.18 0.23 756.514 567.529 96.31 95.39 0.00 0.000 0.000 0.018 0.18 7.16 95.99 96.31 0.10 0.00 0.018 0.18 7.16 95.99 96.31 95.99 0.10 0.010 0.019 0.18 7.16 95.99 96.31 95.99 0.10 0.101 1.1 1.1 1.1 1.1 95.39 0.101 1.1 1.1 1.1 1.1 1.1 95.39 0.11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0	0.013	0.00	0.00	0.060	0.41	0.26	755.348	584.441	96.63	96.05	0.00	0.00
0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.010 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 </td <td>0</td> <td>0.013</td> <td>0.00</td> <td>0.00</td> <td>0.060</td> <td>0.18</td> <td>0.23</td> <td>756.936</td> <td>585.991</td> <td>97.16</td> <td>96,98</td> <td>0.00</td> <td>0.00</td>	0	0.013	0.00	0.00	0.060	0.18	0.23	756.936	585.991	97.16	96,98	0.00	0.00
	9	0.013	0.00	0.00	0.060	0.00	0.18	758.514	587.529	96.31	95.99	0.00	0.00
	_												
	L												
	L												
		Γ					Γ						

Test Engineer._

Date:

	99.87		Proportional	Rate (2)		102.32	105.84	99.42	105.66	97.24	99.36	99.84	96.05	96.98	95.99
	99.87		Proportional	Rate (1)		105.35	101.28	101.69	103.90	99.97	98.58	97.82	96.63	97.16	96.31
133.54	7.89		Tunnel	Velocity	7.917	8.226	8.235	8.186	7.952	7.829	7.760	7.708	7.667	7.661	7.632
STD Tunnel Flow:	14,923	STD	Sample Ft ³	(2)		1.465	1.514	1.431	1,565	1.463	1.508	1.526	1.476	1.493	1.482
STD T	15,109	STD	Sample Ft ³	3	2	1.528	1.467	1.482	1.558	1.523	1.515	1.514	1.503	1.515	1.505
0.05009113	625.309091				629.5	679.6	681	673	635	615.6	604.7	596.7	590.4	587.9	585
VS (1) VS (2)			Tunnel Delta-	٩	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
		Ending	Frebox	Temp											362.72
		Average	Firebox	Temp	448.7	480.3	513.7	537.8	506.9	475.4	448.2	425.5	402.7	381.4	362.7
	100			Time	0	10	20	30	4	60	8	02	80	8	100

TEST FUEL DATA EPA METHOD 5G-3

	t Number: ufacturer:					
a tang ber di		CW2500				
Sample ID	Number:	Contraction of the second second				
	Fest Date:		2013			
Test Run	Number:	3				
	Section 200					
Calibratio	on Referen	ce ID	18	0-463		
et meter to S						
et Temperat			12%	12.0		
et pin setting	to 444		22%	22,0		
_	PRE-B	URN FUEL	PROP	RTIES		Ê.
Eq. ID No .:		Time:	15:20	The second se	80	2
Piece No.	Length, In,	Weight, Lb.	Мо	isture, %, Dry	/ Basis	
1	9.00	0.83	19.2	19.3	20.0	8
2	9.00	0.90	20.5	19.8	20.5	2
3	9.00	0.89	20.4	18,5	21,4	1 - C
4	9,00	1.11	21.7	19,2	21.7	
5	17,00	2.01	21.4	19,6	21.5	
6	17.00	1.95	21.5	18.3	21.0	0
7	17.00	1,75	22,3	20,5	22,3	2
B	17.00	1.90	2,2.3	21.7	22.3	0
9	17.00	1.86	21.4	20.6	21,3	
10						
11	-					2
12 Total We	olaht	13.2	Auger	ige, %db	20.8	
27.53.082	110110-000			ige, %uo	20.0	C. C. C.
Allowa	3080.800 NA 6991.90	oad Range		8.4	to	10.1
Eq. ID No .:	11.0	EST FUEL		ROPERTIE	7.	80
Eq. ID NO		Weigh	Time:	15:30	Temp., °F:	80
Piece No.	Length, In.	2x4	4x4	Moist	ure, %, Dry	Basis
1	17.00	2.53		21.4	19.4	21,5
2	17.00	2.55		22.3	20.4	22,3
3	17,00	2.34		19.9	20.1	20,4
4	17.00	2.34		20.3	19/4	20.6
6	-	-				<u> </u>
7						-
8						-
Total	8	9.8	0.0			
% of We		100	0			
					oisture, dry	20.6
Total weight	wel in	9.7	6	Average M	osture dov	20.6

TEST RESULTS EPA METHOD 5G-3

Print Report

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 26, 2013 Test Run Number: 3

Dry Burn-	Rate, kg/hr:	2.20	
Emissio	n-Rate, g/hr:	1.79	
Adjusted Emission	-Rate, g/hr :	2.95	
Duration of Test, Minutes	10	00	
Dry Gas Meter Standardization	Train A	Train B	
Dry Gas Meter Beginning Reading, ft ³ Dry Gas Meter Ending Reading, ft ³	742.675 758.514	572.039 587.529	
Barometric Pressure Correction Factor Dry Gas Meter Calibration Factors (γ factors) Dry Gas Meter Temperature Factors Dry Gas Meter Delta-H Correction Factors	0.998 0.977 0.979 1.000	0.998 0.986 0.980 1.000	
Dry Gas Meter STD Volume Sampled, ft ³	15.117	14.930	
Dillution Tunnel Flow / Volume			
Standardized Tunnel Flow, dscfm	133.	545	
Total Tunnel Volume, scf	1335	4.490	
Emission Caclulations	Train A	Train B	
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams	883.409 3.2 2.827	894.488 3.5 3.131	
Emission-Rate, g/hr Adjusted Emission Rates, g/hr	1.70 2.82	1.88 3.07	
Deviation, %	4.2		
Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	Train A 86.98 0.003@5	Train B 88.21 0.003@5	
Average Firebox Surface Temperture delta-T, °F Maximum Ambient Temperture, °F Mimimum Ambient Temperature, °F	85.96 90 81		
Fuel Properties			
Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, %	9.1 20. 17.	67 13	
Coal Bed Range, lb. Actual Coal Bed, Lb.	2.00 2.0	2.40)9	

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Somolo Composent	ilter Catch Filter et O-Ring			Weight	s
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	9		115.2	
B - Rear Filter Catch	Filter	10		117.6	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			235.9	232.8	3.1
Probe & Filter Holder	Probe	19	140113,6	140113,5	0.1
			Total Parti	culate, mg	3.2

	9	Sample Train	n - 2		
Sample Component	Component	ID Number		Weight	Ś
Sample Component	Component	ib kumber	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	- 11		118.1	
B - Rear Filter Catch	Filter	12		115.7	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			237.3	233.8	3.5
Probe & Filter Holder	Probe	20	139063.0	139063.2	0.0
			Total Parti	culate, mg	3.5

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 26, 2013 Test Run Number: 3

	Dilution	Tunnel		Tunnel Diameter
	Delta P In. H2O	Temp,°F	Square Root	Tunnel Static
A1	0.0100	169	0.1000	1110000 10001 1000 10000 1000
A2	0.0125	170	0.1118	Tunnel Area
A3	0.0125	172	0.1118	
A4	0.0125	172	0.1118	Pitot Correction
A Center	0.0125	169	0.1118	
81	0.0100	169	0.1000	Baro, Pressure
82	0.0125	170	0.1118	
B3	0.0125	172	0.1118	Pitot Factor
B4	0.0125	172	0.1118	
B Center	0.0125	172	0.1118	Initial Velocity
Averages	0.012	170.56	0.1089	

-0.073 in. H2O

factor

0.9736

29.85

0.99

FIZ

0.34907

inches

000

(0.99 for standard, 0.84 or Cal. For S-Type)

Ft' Sec

7,924

Ft3/min

133.04

Test Engineer.

Date:

SB	
20	

26-Jun-13

Time	(0	C	D^2	(0 ²
16:46:25	C1: CO	0.31 %	C2: CO2	9.65 %	C4: O2	11.1 %
16:47:25	C1: CO	0.32 %	C2: CO2	9.57 %	C4: O2	11.2 %
16:48:25	C1: CO	0.33 %	C2: CO2	9.28 %	C4: O2	10.2 %
16:49:25	C1: CO	0.33 %	C2: CO2	9.12 %	C4: O2	11.6 %
16:50:25	C1: CO	0.31 %	C2: CO2	8.79 %	C4: O2	11.8 %
16:51:25	C1: CO	0.29 %	C2: CO2	8.21 %	C4: O2	12 %
16:52:25	C1: CO	0.28 %	C2: CO2	7.83 %	C4: O2	12.6 %
16:53:25	C1: CO	0.30 %	C2: CO2	7.69 %	C4: O2	12.8 %
16:54:25	C1: CO	0.29 %	C2: CO2	7.41 %	C4: O2	13 %
16:55:25	C1: CO	0.27 %	C2: CO2	7.17 %	C4: O2	13.2 %
16:56:25	C1: CO	0.30 %	C2: CO2	7.16 %	C4: O2	13.4 %
16:57:25	C1: CO	0.28 %	C2: CO2	7.07 %	C4: O2	13.4 %
16:58:25	C1: CO	0.31 %	C2: CO2	6.98 %	C4: O2	13.5 %
16:59:25	C1: CO	0.31 %	C2: CO2	6.84 %	C4: O2	13.6 %
17:00:25	C1: CO	0.32 %	C2: CO2	6.7 %	C4: O2	13.7 %
17:01:25	C1: CO	0.33 %	C2: CO2	2.71 %	C4: O2	14.3 %
17:02:25	C1: CO	0.34 %	C2: CO2	5.02 %	C4: O2	17.6 %
17:03:25	C1: CO	0.39 %	C2: CO2	1.49 %	C4: O2	15.7 %
17:04:25	C1: CO	0.81 %	C2: CO2	7.04 %	C4: O2	18 %
17:05:25	C1: CO	0.65 %	C2: CO2	12.2 %	C4: O2	12.1 %
17:06:25	C1: CO	0.68 %	C2: CO2	14.2 %	C4: O2	7.25 %
17:07:25	C1: CO	0.55 %	C2: CO2	15.3 %	C4: O2	5.76 %
17:08:25	C1: CO	0.45 %	C2: CO2	15.9 %	C4: O2	5.17 %
17:09:25	C1: CO	0.44 %	C2: CO2	16.4 %	C4: O2	4.3 %
17:10:25	C1: CO	0.42 %	C2: CO2	16.8 %	C4: O2	4.29 %
17:11:25	C1: CO	0.40 %	C2: CO2	16.9 %	C4: O2	4 %
17:12:25	C1: CO	0.41 %	C2: CO2	16.9 %	C4: O2	4.22 %
17:13:25	C1: CO	0.39 %	C2: CO2	16 %	C4: O2	4.11 %
17:14:25	C1: CO	0.40 %	C2: CO2	16.1 %	C4: O2	4.32 %
17:15:25	C1: CO	0.41 %	C2: CO2	16.1 %	C4: O2	4.77 %
17:16:25	C1: CO	0.38 %	C2: CO2	16 %	C4: O2	4.1 %
17:17:25	C1: CO	0.40 %	C2: CO2	16 %	C4: O2	5.21 %
17:18:25	C1: CO	0.39 %	C2: CO2	15.8 %	C4: O2	5.3 %
17:19:25	C1: CO	0.42 %	C2: CO2	15.5 %	C4: O2	5.52 %
17:20:25		0.41 %	C2: CO2	15.5 %	C4: O2	5.77 %
17:21:25	C1: CO	0.40 %	C2: CO2	15.3 %	C4: O2	5.8 %
17:22:25	C1: CO	0.43 %	C2: CO2	15.3 %	C4: O2	5.82 %
17:23:25	C1: CO	0.41 %	C2: CO2	15.1 %	C4: O2	4.72 %

CW2500 26-Jun-13

Time	C	0	C	D^2	(0 ²
17:24:25	C1: CO	0.39 %	C2: CO2	14.4 %	C4: O2	5.39 %
17:25:25	C1: CO	0.39 %	C2: CO2	15 %	C4: O2	6.22 %
17:26:25	C1: CO	0.40 %	C2: CO2	14.2 %	C4: O2	5.26 %
17:27:25	C1: CO	0.41 %	C2: CO2	15 %	C4: O2	6 %
17:28:25	C1: CO	0.41 %	C2: CO2	15.3 %	C4: O2	6.02 %
17:29:25	C1: CO	0.42 %	C2: CO2	15.5 %	C4: O2	5.54 %
17:30:25	C1: CO	0.43 %	C2: CO2	15.4 %	C4: O2	4.44 %
17:31:25	C1: CO	0.44 %	C2: CO2	14.9 %	C4: O2	5.44 %
17:32:25	C1: CO	0.44 %	C2: CO2	13.9 %	C4: O2	5.57 %
17:33:25	C1: CO	0.44 %	C2: CO2	12.9 %	C4: O2	6.58 %
17:34:25	C1: CO	0.43 %	C2: CO2	11.8 %	C4: O2	7.81 %
17:35:25	C1: CO	0.40 %	C2: CO2	10.8 %	C4: O2	8.9 %
17:36:25	C1: CO	0.37 %	C2: CO2	9.96 %	C4: O2	9.74 %
17:37:25	C1: CO	0.37 %	C2: CO2	9.15 %	C4: O2	10.5 %
17:38:25	C1: CO	0.36 %	C2: CO2	8.68 %	C4: O2	11.4 %
17:39:25	C1: CO	0.38 %	C2: CO2	8.09 %	C4: O2	11.9 %
17:40:25	C1: CO	0.38 %	C2: CO2	7.77 %	C4: O2	12.4 %
17:41:25	C1: CO	0.39 %	C2: CO2	7.51 %	C4: O2	12.6 %
17:42:25	C1: CO	0.39 %	C2: CO2	7.36 %	C4: O2	12.7 %
17:43:25	C1: CO	0.41 %	C2: CO2	7.32 %	C4: O2	13 %
17:44:25	C1: CO	0.40 %	C2: CO2	7.1 %	C4: O2	13.2 %
17:45:25	C1: CO	0.41 %	C2: CO2	6.93 %	C4: O2	13.4 %
17:46:25	C1: CO	0.44 %	C2: CO2	6.85 %	C4: O2	13.6 %
17:47:25	C1: CO	0.45 %	C2: CO2	6.63 %	C4: O2	13.6 %
17:48:25	C1: CO	0.42 %	C2: CO2	6.89 %	C4: O2	13.5 %
17:49:25	C1: CO	0.43 %	C2: CO2	6.7 %	C4: O2	13.5 %
17:50:25	C1: CO	0.45 %	C2: CO2	6.61 %	C4: O2	13.8 %
17:51:25	C1: CO	0.47 %	C2: CO2	6.6 %	C4: O2	13.8 %
17:52:25	C1: CO	0.48 %	C2: CO2	6.44 %	C4: O2	13.8 %
17:53:25	C1: CO	0.48 %	C2: CO2	6.35 %	C4: O2	14 %
17:54:25	C1: CO	0.48 %	C2: CO2	6.41 %	C4: O2	14.1 %
17:55:25	C1: CO	0.49 %	C2: CO2	6.28 %	C4: O2	13.8 %
17:56:25	C1: CO	0.48 %	C2: CO2	6.19 %	C4: O2	14.1 %
17:57:25	C1: CO	0.49 %	C2: CO2	6.18 %	C4: O2	14.2 %
17:58:25	C1: CO	0.49 %	C2: CO2	5.98 %	C4: O2	13.6 %
17:59:25	C1: CO	0.53 %	C2: CO2	6.15 %	C4: O2	14.2 %
18:00:25	C1: CO	0.54 %	C2: CO2	6.02 %	C4: O2	14.2 %
18:01:25	C1: CO	0.53 %	C2: CO2	6.03 %	C4: O2	14.4 %

CW2500

26-Jun-13

Time	C	0	C	O^2	(0 ²
18:02:25	C1: CO	0.55 %	C2: CO2	5.91 %	C4: O2	14.4 %
18:03:25	C1: CO	0.59 %	C2: CO2	5.81 %	C4: O2	14.4 %
18:04:25	C1: CO	0.61 %	C2: CO2	5.69 %	C4: O2	14.5 %
18:05:25	C1: CO	0.64 %	C2: CO2	5.62 %	C4: O2	14.6 %
18:06:25	C1: CO	0.63 %	C2: CO2	5.31 %	C4: O2	14.3 %
18:07:25	C1: CO	0.67 %	C2: CO2	5.51 %	C4: O2	14.8 %
18:08:25	C1: CO	0.70 %	C2: CO2	5.22 %	C4: O2	14.8 %
18:09:25	C1: CO	0.72 %	C2: CO2	4.67 %	C4: O2	14.3 %
18:10:25	C1: CO	0.77 %	C2: CO2	4.75 %	C4: O2	15 %
18:11:25	C1: CO	0.79 %	C2: CO2	4.6 %	C4: O2	14.8 %
18:12:25	C1: CO	0.82 %	C2: CO2	4.71 %	C4: O2	15.3 %
18:13:25	C1: CO	0.83 %	C2: CO2	4.61 %	C4: O2	15.3 %
18:14:25	C1: CO	0.88 %	C2: CO2	4.7 %	C4: O2	15.3 %
18:15:25	C1: CO	0.86 %	C2: CO2	4.49 %	C4: O2	15.3 %
18:16:25	C1: CO	0.91 %	C2: CO2	4.33 %	C4: O2	15.5 %
18:17:25	C1: CO	0.94 %	C2: CO2	4.3 %	C4: O2	15.6 %
18:18:25	C1: CO	0.96 %	C2: CO2	4.16 %	C4: O2	15.6 %
18:19:25	C1: CO	1.00 %	C2: CO2	4.04 %	C4: O2	15.7 %
18:20:25	C1: CO	1.02 %	C2: CO2	3.96 %	C4: O2	15.8 %
18:21:25	C1: CO	0.99 %	C2: CO2	3.89 %	C4: O2	15.8 %
18:22:25	C1: CO	1.01 %	C2: CO2	3.85 %	C4: O2	15.9 %
18:23:25	C1: CO	1.06 %	C2: CO2	3.93 %	C4: O2	15.8 %
18:24:25	C1: CO	1.06 %	C2: CO2	3.92 %	C4: O2	14.9 %
18:25:25	C1: CO	1.07 %	C2: CO2	3.85 %	C4: O2	15.8 %
18:26:25	C1: CO	1.06 %	C2: CO2	3.69 %	C4: O2	15.1 %
18:27:25	C1: CO	1.14 %	C2: CO2	3.61 %	C4: O2	16 %
18:28:25	C1: CO	1.16 %	C2: CO2	3.58 %	C4: O2	16 %
18:29:25	C1: CO	1.16 %	C2: CO2	3.55 %	C4: O2	16.1 %
18:30:25	C1: CO	1.17 %	C2: CO2	3.47 %	C4: O2	16 %
18:31:25	C1: CO	1.19 %	C2: CO2	3.46 %	C4: O2	16.1 %
18:32:25	C1: CO	1.17 %	C2: CO2	3.4 %	C4: O2	16.1 %
18:33:25	C1: CO	1.16 %	C2: CO2	3.35 %	C4: O2	16.2 %
18:34:25	C1: CO	1.17 %	C2: CO2	3.25 %	C4: O2	16.2 %
18:35:25	C1: CO	1.14 %	C2: CO2	3.18 %	C4: O2	15.9 %
18:36:25	C1: CO	1.18 %	C2: CO2	3.18 %	C4: O2	16.3 %
18:37:25	C1: CO	1.14 %	C2: CO2	3.07 %	C4: O2	16.3 %
18:38:25	C1: CO	1.18 %	C2: CO2	3.06 %	C4: O2	16.4 %
18:39:25	C1: CO	1.15 %	C2: CO2	3 %	C4: O2	16.5 %

SRI	
501	

CW2500

26-Jun-13

Time	C	0	СС) ²	C	$)^2$
18:40:25	C1: CO	1.14 %	C2: CO2	2.91 %	C4: O2	16.4 %
18:41:25	C1: CO	1.18 %	C2: CO2	2.89 %	C4: O2	16.6 %
18:42:25	C1: CO	1.15 %	C2: CO2	2.77 %	C4: O2	15.5 %
18:43:25	C1: CO	1.13 %	C2: CO2	2.71 %	C4: O2	15.6 %
18:44:25	C1: CO	1.14 %	C2: CO2	2.67 %	C4: O2	16.7 %
18:45:25	C1: CO	1.15 %	C2: CO2	2.58 %	C4: O2	16.5 %
18:46:25	C1: CO	1.15 %	C2: CO2	2.48 %	C4: O2	16.7 %
18:47:25	C1: CO	1.15 %	C2: CO2	2.33 %	C4: O2	17 %
18:48:25	C1: CO	1.11 %	C2: CO2	2.15 %	C4: O2	17.2 %
18:49:25	C1: CO	1.11 %	C2: CO2	2.09 %	C4: O2	17.3 %
18:50:25	C1: CO	1.09 %	C2: CO2	2.02 %	C4: O2	17.3 %
18:51:25	C1: CO	1.10 %	C2: CO2	2.02 %	C4: O2	17.4 %
18:52:25	C1: CO	1.04 %	C2: CO2	1.86 %	C4: O2	16.5 %
18:53:25	C1: CO	1.11 %	C2: CO2	2.01 %	C4: O2	17.4 %
18:54:25	C1: CO	1.07 %	C2: CO2	1.89 %	C4: O2	17.1 %
18:55:25	C1: CO	1.11 %	C2: CO2	1.84 %	C4: O2	17.5 %
18:56:25	C1: CO	1.11 %	C2: CO2	1.65 %	C4: O2	16.5 %
18:57:25	C1: CO	1.08 %	C2: CO2	1.68 %	C4: O2	16.5 %
18:58:25	C1: CO	1.12 %	C2: CO2	1.67 %	C4: O2	17.7 %
18:59:25	C1: CO	1.05 %	C2: CO2	1.47 %	C4: O2	16.8 %
19:00:25	C1: CO	1.11 %	C2: CO2	1.52 %	C4: O2	17.7 %
19:01:25	C1: CO	1.11 %	C2: CO2	1.5 %	C4: O2	17.7 %
19:02:25	C1: CO	1.10 %	C2: CO2	1.49 %	C4: O2	17.9 %
19:03:25	C1: CO	1.06 %	C2: CO2	1.39 %	C4: O2	17.9 %
19:04:25	C1: CO	1.04 %	C2: CO2	1.34 %	C4: O2	18 %
19:05:25	C1: CO	1.08 %	C2: CO2	1.36 %	C4: O2	18.1 %

Appendix F: Test data Run 4

Project Number:	0	
Manufacturer:	SBI	_
Model:	CW2500	
Sample ID Number:	0	
	June 27, 2013	
Test Run Number:		

EPA Method 28 Pre Burn Data

Coal Bed Range 1.8 to 2.2

Average Firebox Temp, *F 305.54

Final Coal Bed Wt, b 1.87

Interval T	ime		1. N		Tem	perature D	ata	ns					
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	86,67	178.1	013,9	286.4	514,3	586.2	475.5	366.1			2.31	0.94
1	10	88.4	117.7.	375.5	498.7	391.1	485.4	487.1	263			2.57	0.24
2	20	56,65	107.5	215,8	431.3	541.8	416.9	432.8	\$24.5			2,49	0.08
3	30	82.67	101.0	287.1	380.4	310.1	388.8	393.5	482.9			2.43	0.05
4	40	77.36	05:04	207.2	344.8	208	336.2	355.5	445.2			2.25	0.18
5	50	72.68	03.29	252.0	217.8	267.3	311	331.5	416.8			2.08	0.17
6	60	71.47	91.26	244	200.3	255.2	295.5	310.8	193			5.83	0.15
7	70	78.34	105.1	287.5	292.4	254.8	290.9	299.9	379.7			1.87	0.05
8		-											
9													
10		-									-		
11	-	1	0					0 T				1 3	-
12			2 8					() () () () () () () () () () () () () (
13			12	-									
14		1	0		8 - 7			C 1					
15													
16		-			-								-
17			12 5		Q			0					
18			6 6		S= S			Q			(1	
19			0.000					1000			-		-
20													
21			1 C		1 - J.								
22		1	19 S		1			8 <u> </u>					
23					· · · · ·			S			-		
24		(9			1		S	1	1 1	-
25													
26					C 10			10 D				1 1	1
27					-			0 1			-		
28			1.1		1 - 1			S. 2			-		
29								7					
30											-		

Intertek

TEST DATA EPA METHOD 5G-3

		icuum Train B	0.00	Γ	Train B Vacuum, In.	00.0	0.00	0.00	0.00	0.00	0.00	00	00	0,00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	.00	Π	T
		um Va				0	-	0	0	0	0	0	0	0	0	0	0	0	2		0	0	0	0	0		+
		Maxim Train A	0.00		Vac	00.0	0000	00'0	00.00	0.00	0.00	0.00	00'0	0.00	00'0	0.00	0000	0.00	000	0.00	0.00	0.00	0.00	00'0	00'0		
		_			Train B Proportional	66 66	100.79	98.65	100.66	100.64	103.41	102.43	102.27	101.55	101.23	100.81	100.02	99.25	18.95	18 89	97.99	98.38	98.40	99.18	98.69		
		m @ in Hg Train B	0.0035(0)5		Proportional	99.99	100.99	98.47	99.93	100.18	101.92	101.64	100.27	100.69	69.69	100.14	100.19	99.55	10.00	10.06	98.95	02.66	99.66	99.18	99.32		
		Leak Check, cfm @ in Hg Train A Train B	0.0035(25 0	pling Data	_	587,563	589.123	590.650	592.197	593.727	595.299	596,866	598.442	600.015	601.589	603.160	604.721	606.272	070.100	610.898	612.430	013.900	615.507	617.059	618.604		
Gas Particulate Sampling Data		-Te	0.	Particulate Sampling Data	Train A	35	760.145	761.715	763.297	764.866	766.462	768.064	769.656	771.263	772.860	774.468	776.079	777.682	100 000	782 509	784.103	705.709	787.315	788.914	790.516		-
e Sampl		tors	386	Par	Weight T	-	0.67	0.75	1.08	1.49	1.37	0.98	0.51	0.34	0.22	0.20	0.18	0.19	0.10	0.11	0.11	0.09	0.10	0.07	0.01	Π	-
articulat		on (y) Fac	D.		Fuel We	-	8.13 0	.38	1 02'	.81 1	1 1	.46 0.	.95 0.	.61 0	.39		0 10	+	5 0 10 10	+	0.27 0	0.16 0.	.08 0.	0.01 0.	0.00 0.0		+
Gas Pa		Sample Box Correction (y) Factors Meter Box (A) 0.977	Meter Box (B)		Flue F	+	0.040 8	.055 7	.065 6	.070	0.070 3	.065 2	.055 1	0.050 1	0.050 1	0.045	0.045	+	0 010 0	+	0.040 0	0.040 0	035 0	0.035 0	0.035 0		╀
	Ę	Sample Bo Meter	200 Mete			_	0 00.0	0.00 0	0.00 0	0.00 0	0.00 0	0 00'0	0.00 0	+	0.00 0		0.00 0.0	0.00 0	0 00 0	0.00 0.0	0.00 0	0.00 0.0	0.00 0.0	0,00 0,0	0.00 0.0		t
	BI W2500 Ine 27, 20	RH, % 8	82 in		Train A Train B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	+	+	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00		t
	oject Nurmber: 0 Manufacturer: SBI Model: CW2500 Ha ID Number: 0 Test Date: June 27, 2013 !Run Nurmber: 4	H	Duration of Test. Min		Tunnel T	_	0.013	0.013	0.013	0,013	0.013	0.013	0.013	0.013	0.013	0.013	£10.0	C10'0	510.0	0.013	0.013	0.013	0.013	0.013	0.013		1
	Project Number: 0 Manufacturer: SI Model: CI Sample ID Number: 0 Test Date: Ju Test Run Number: 4	Barometer, In. Hg Start 29.85	Duration			t	t	Н	Н	40				+	+	+	+	120	+	┢	160	170		Η	200		T
	in the second se		-	h	Trein B DGM	76.7	76,8	76.37	76.965	77,035	77,035	77.115	77.155	17.185	17,195	11.15	11.14	11.11	7 175	77.15	77.22	2225	77.33	77.5	7.515	T	1
					Train A .	76.88	77.06	77.16	17.255	17,385	77.44	77.515	17,575	17.635	11.65	10.11	G/C/1	213 212	202.77	65.77	77.66	312.77	77.77	77.91	7.935	t	T
		Temps Train B	84.96		Train B	19.77	18,08	81,16	82.18	83,92	84,96	84.74	83.73	62.7	81.78	01.03	00.00	24 87	69.62	79.65	79.87	30.05	80.21	30.23	80.13	t	1
ata		Max Filter Temps Train A Train B	64,56		Train A	77.13	82.32	83.49	84,92	37.05	88,46	33,56	87.36	36.01	64.72	17.00	+	12 07	81.68	81.61	31.84	31.99	82.03	32.02	81.93	t	t
Temperature Data		Eri	-		Catalyst									1	1	1	1	T	T							†	t
Tempe		311.32 247.78	63.5	ata	Firebox C Right	⊢	348.5	317.4	318.2	345.3	378.3	407.7	120.7	422	414.0	6.404	1 205	176.9	163.3	353.7	346.3	3,32,4	335.2	331,6	324.6	+	t
		np Start	-	Temperature Data	Firebox F	+	231.9	264,2	262.1	14	307.4		0	+	0.645		1.026	1010	1.382	291.2	285.6	278.9	271.9	264.7	255	+	+
		Firebox Temp Start 311.32 Firebox Temp End 247.78	Firebox Delta-T	Tem	Firebox F Back	300.2	324.9	317.9	316.1	273	274.8	285.4	293,8	530.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1006	+	3746	265.1	255.1	253,5	247.7	238.1	228.6	220.4	+	+
					Firebox F Bottom	285.7	346,5	351.1	341.2	232.4	212.5	204.8	202.6	1707	17007	6 202	2017	208	206.6	206.7	205.1	201.11	197,6	193.2	188,4	+	
			200		Firebox F	235,5	304.8	305.5	350.2	440	505.8	+	466,8	413.2	0110	197 1	2.120	305.4	295.3	287.8	281.3	273.2	264	255,5	247.5	\dagger	t
	2013		. Min		Flue	252.2	269.8	331.4	419.8	500.1	515.2	+	514.4	12.000	01100	276.4	1 206.1	257.7	249.5	245,2	239.5	232.8	225,5	219	213.9	t	
SBI	CW2500		Duration of Test, Min		Dillution	13.99	6'101	101.9	110.2	122.9	123.1	115.6	107.5	0.101	0.15	12.20	91.75	90.31	89.15	90.56	91.52	91.65	91.36	91,08	30.67	T	T
Project Number: Manufacturer:	Model: Sample ID No: Test Date: Test Run No:		Durati		Room	78.39	80.05	30.63	82.23	86.13	81.58	18.32	24777	79.63	70.07	70.94	71 87	79.97	70.32	77.32	79,32	79.82	80,27	15.41	79.37	t	T
Manul	Sampl Te		10	Time	Duration	0	10	20	30	40	20	00	2	00	100	110	120	130	140	150	160	170	180	190	200	T	
۵.			Interval		Interval	1	-	+	_	_	_	_		1	1	1	-	-	-	-	_	_	_	_		1	

Test Engineer:

Date

	66'66		Proportional	Rate (2)		100.79	98.65	100.60	100.64	103.41	102.43	102.27	101.55	101.23	100.81	100.02	99.25	98.91	97.79	98.81	97.99	98,38	98.40	99.18	98.69
	66,66		Proportional	Rate (1)		100.99	98.47	59.83	100.18	101.92	101.64	100.27	100.69	99,69	100.14	100.19	99.55	99.91	99.31	100.08	98.95	06.70	99.66	99.13	99.32
139,10	7.35		Tunnel	Valocity	7.347	7.363	7.363	7,417	7,499	7.501	7.454	7.400	7,362	7.335	7.318	7.307	7.296	7,287	7.279	7.288	7.295	7.296	7.294	7.292	7.289
STD Tunnel Flow:	30.017	STD	Sample Ft ³ Sample Ft ³	(3)	- California	1.510	1.477	1.497	1.480	1.520	1.515	1,524	1.521	1.522	1.619	1.510	1,500	1.497	1.481	1.495	1.481	1.487	1.488	1.500	1,493
STD T	30.621	STD	Sample Ft ³	3		1.543	1,504	1.616	1.503	1.528	1.534	1.524	1.538	1.529	1.539	1.542	1,535	1.542	1.535	1.544	1.526	1.637	1.537	1.530	1.533
0.02573132 0.02624885	559.455714		Tunnel		559.51	561.9	561.9	570.2	582.9	583.1	575.8	567.5	561.8	557.6	555	553.31	551.75	550.31	549.15	550.56	551.52	551.65	551.36	551.08	550.67
VS (1) VS (2)			Tunnel Delta-	٩	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	1 1	Average	Firebox	Temp																					247.78
		Average	Firebox	Temp	311.3	321.3	311.2	317.6	314.6	335.8	348.4	346.1	338.5	325.8	316.2	309.1	302.9	294.5	285.7	279.5	274.4	268.1	261.4	254.7	247.8
	200			Time	0	9	20	30	40	50	60	20	8	8	100	110	120	130	140	150	160	170	180	190	200

TEST FUEL DATA EPA METHOD 5G-3

Mar Sample II) Number: Test Date:		2013			
Calibratio	on Referen	ce ID		1		
Set meter to 8	Species 1		-12	30-463		
Set Temperat	ure to 70F	S 1	12%	12.0		
Set pin setting	g to 444		22%	22.0		
_	DDE.B	URN FUEL	PROP	EDTIES		1
Eq. ID No.		Time:	7:20	Temp., *F:	80	•
Piece No.	Length, In.	Weight, Lb.		isture, %, Dry		1
1	9.00	0.88	20.9	20.3	21.0	1
2	9.00	0.87	21.1	20,4	20.5	1
3	9.00	0.87	21.2	20.3	21.1	1
4	9.00	0.81	21.0	24.3	20.9	1
5	17.00	1,94	20.8	19.2	20,6	1
6	17,00	1.53	20.8	20.2	19.7	1
7	17.00	1.57	19.3	19.7	19.2	
8	17.00	1,56	18,3	19.2	19.2	
9	17,00	1,97	20.4	20,6	19.8	1
10	-					
12	-			++		
Total W	eight	12.0	Aver	age, %db	20.3	
28008080	Section and	oad Range		8.4	to	10.1
1.000110	encounter au		Manager	PROPERTIES	1.1723.5	10.1
Eq. ID No.:	SBI214	a second	Time	\$:20	Temp., *F:	08
Piece No.	Length, In,	Weigh 2x4	t, Lb. 4x4	Moistu	ire, %, Dry	Basis
1	17.00	2.05		19,1	19.0	18.9
2	17.00	2.55		20.9	20.4	20.9
3	17.00	1.97		20.1	19,5	20.0
4	17.00	2.24		21.6	20.4	21.5
5						-
6	-		_			
8				++		-
Tota	s	8.8	0.0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mmm
% of We		100	0.0			
		8.8	_	minin	mmm	minin
Total weight	Total weight, wet, lb. Total weight, dry, kg			Average Moisture, dry 20 Average Moisture, wet 16		

Date:__

TEST RESULTS EPA METHOD 5G-3

Print Report

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 27, 2013 Test Run Number: 4

Dry Burr	n-Rate, kg/hr:	1.00
Emissio	on-Rate, g/hr:	1.51
Adjusted Emissio	n-Rate, g/hr :	2.57
Duration of Test, Minutes	2	00
Dry Gas Meter Standardization	Train A	Train B
Dry Gas Meter Beginning Reading, ft ³	758.535	587.563
Dry Gas Meter Ending Reading, ft ³	790.516	618.604
Barometric Pressure Correction Factor	0.998	0.998
Dry Gas Meter Calibration Factors (y factors)	0.977	0.986
Dry Gas Meter Temperature Factors	0.982	0.983
Dry Gas Meter Delta-H Correction Factors	1.000	1.000
Dry Gas Meter STD Volume Sampled, ft ³	30.635	30.031
Dillution Tunnel Flow / Volume		
Standardized Tunnel Flow, dscfm	139	.098
Total Tunnel Volume, scf	2781	9.669
Emission Caclulations	Train A	Train B
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	908.095	926.379
Sample Particulate Mass, mg	5.7	5.3
Total Emissions, grams	5.176	4.910
Emission-Rate, g/hr	1.55	1.47
Adjusted Emission Rates, g/hr	2.62	2.51
Deviation, %	2.1	
Operating Parameters	Train A	Train B
Max Filter Temperature, *F	88.56	84.96
Post-Test Leak Check, cfm @ in. Hg vac.	0.0035@5	0.0035@5
Average Firebox Surface Temperture delta-T. *F	63	54
Maximum Ambient Temperture, "F	8	-
Mimimum Ambient Temperature, "F	7	0
Fuel Properties		
Wet Fuel Load Weight, Ib.	8.8	
Dry-Basis Fuel Load Molsture Content, %	20.	
Wet-Basis Fuel Load Moisture Content, %	16.	
Coal Bed Range, Ib.	1.80	2.20
Actual Coal Bed, Lb.	1.0	17

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 27, 2013 Test Run Number: 4

Intertek Equipment No.'s SBI-206

Sample Component	Composed	ID Number		Weight	S
sample component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	13		117.3	
B - Rear Filter Catch	Filter	14		117.7	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			240.7	235	5.7
Probe & Filter Holder	Probe	22	139574.3	139574.3	0.0
			Total Parti	culate, mg	5.7

£	S	Sample Train	n - 2	2506-36	
Comple Compenset	Company	ID Mumber		Weight	8
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	15		115.5	7//////////////////////////////////////
B - Rear Filter Catch	Filter	16		117.5	
C - Seal Set	O-Ring				
Total, A+B+C-Tares	<i>9////////////////////////////////////</i>		238	233	5
Probe & Filter Holder	Probe	25	135816.2	136815.9	0.3
			Total Parti	culate, mg	5.3

Date:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 27, 2013 Test Run Number: 4

	Dilution	Tunnel	200	Tunnel Diameter	8.000 inches	inches
	Delta P In. H2O	Temp, "F	Square Root	Tunnel Static	-0.070	In. H2O
A1	0.0100	98	0.1000		Concess Long	
A2	0.0125	98	0.1118	Tunnel Area	0.34907	Ft2
A3	0.0125	98	0.1118			
A4	0.0125	98	0.1118	Pitot Correction	0.9586	factor
A Center	0.0125	98	0.1118	1042		
81	0.0075	16	0.0866	Baro. Pressure	29.85	
82	0.0125	96	0.1118			
83	0.0125	96	0.1118	Pitot Factor	0.99	(0.99 for standard, 0.84 or Cal. For S-Type)
B4	0.0125	96	0.1118			
B Center	0.0125	96	0.1118	Initial Velocity	7.332	FV Sec
Averages	0.01175	96,907	0.1072			
				Initial Flow	139.39	Ft3/min

Test Engineer.

Date:

Time	(0	C	0 ₂	(0 ₂
10:47:26	C1: CO	0.98 %	C2: CO2	2.85 %	C4: O2	16.7 %
10:48:26	C1: CO	0.98 %	C2: CO2	2.62 %	C4: O2	16.7 %
10:49:26	C1: CO	0.53 %	C2: CO2	1 %	C4: O2	17.6 %
10:50:26	C1: CO	0.78 %	C2: CO2	1.72 %	C4: O2	18.1 %
10:51:26	C1: CO	0.40 %	C2: CO2	0.37 %	C4: O2	17.9 %
10:52:26	C1: CO	0.36 %	C2: CO2	0.4 %	C4: O2	19.9 %
10:53:26	C1: CO	0.48 %	C2: CO2	3.27 %	C4: O2	19.1 %
10:54:26	C1: CO	0.45 %	C2: CO2	5.17 %	C4: O2	16 %
10:55:26	C1: CO	0.48 %	C2: CO2	7.34 %	C4: O2	14.5 %
10:56:26	C1: CO	0.64 %	C2: CO2	5.25 %	C4: O2	12 %
10:57:26	C1: CO	0.56 %	C2: CO2	1.95 %	C4: O2	15.9 %
10:58:26	C1: CO	0.54 %	C2: CO2	1.69 %	C4: O2	18.3 %
10:59:26	C1: CO	0.54 %	C2: CO2	1.66 %	C4: O2	18.5 %
11:00:26	C1: CO	0.52 %	C2: CO2	1.81 %	C4: O2	18.4 %
11:01:26	C1: CO	0.49 %	C2: CO2	1.97 %	C4: O2	18.3 %
11:02:26	C1: CO	0.50 %	C2: CO2	2.21 %	C4: O2	18.1 %
11:03:26	C1: CO	0.51 %	C2: CO2	2.6 %	C4: O2	17.9 %
11:04:26	C1: CO	0.62 %	C2: CO2	3.33 %	C4: O2	17.4 %
11:05:26	C1: CO	0.76 %	C2: CO2	3.88 %	C4: O2	16.5 %
11:06:26	C1: CO	0.78 %	C2: CO2	4.36 %	C4: O2	16 %
11:07:26	C1: CO	0.78 %	C2: CO2	4.38 %	C4: O2	15.7 %
11:08:26	C1: CO	0.79 %	C2: CO2	4.7 %	C4: O2	15.6 %
11:09:26	C1: CO	0.75 %	C2: CO2	5.8 %	C4: O2	15.2 %
11:10:26	C1: CO	0.74 %	C2: CO2	5.93 %	C4: O2	14.3 %
11:11:26	C1: CO	0.71 %	C2: CO2	5.61 %	C4: O2	14.3 %
11:12:26	C1: CO	0.65 %	C2: CO2	5.05 %	C4: O2	14.8 %
11:13:26	C1: CO	0.67 %	C2: CO2	4.57 %	C4: O2	15.2 %
11:14:26	C1: CO	0.67 %	C2: CO2	4.38 %	C4: O2	15.6 %
11:15:26	C1: CO	0.68 %	C2: CO2	4.68 %	C4: O2	15.4 %
11:16:26	C1: CO	0.81 %	C2: CO2	6.66 %	C4: O2	15 %
11:17:26	C1: CO	0.89 %	C2: CO2	7.65 %	C4: O2	13.1 %
11:18:26	C1: CO	0.91 %	C2: CO2	8.09 %	C4: O2	12.5 %
11:19:26	C1: CO	1.06 %	C2: CO2	8.85 %	C4: O2	11.8 %
11:20:26	C1: CO	1.17 %	C2: CO2	9.1 %	C4: O2	10.8 %
11:21:26	C1: CO	1.24 %	C2: CO2	9.65 %	C4: O2	10.9 %
11:22:26	C1: CO	1.20 %	C2: CO2	9.84 %	C4: O2	10.4 %
11:23:26	C1: CO	1.20 %	C2: CO2	10 %	C4: O2	9.16 %
11:24:26	C1: CO	1.14 %	C2: CO2	10.2 %	C4: O2	9.88 %
11:25:26	C1: CO	1.13 %	C2: CO2	10.4 %	C4: O2	9.79 %
11:26:26	C1: CO	1.15 %	C2: CO2	10.4 %	C4: O2	9.67 %
11:27:26	C1: CO	1.14 %	C2: CO2	10.2 %	C4: O2	9.28 %
11:28:26	C1: CO	1.17 %	C2: CO2	10.3 %	C4: O2	9.63 %
11:29:26	C1: CO	1.05 %	C2: CO2	9.95 %	C4: O2	7.97 %

Time	C	0	CC	D_2	C	D₂
11:30:26	C1: CO	0.97 %	C2: CO2	10.4 %	C4: O2	9.47 %
11:31:26	C1: CO	1.05 %	C2: CO2	10.5 %	C4: O2	9.53 %
11:32:26	C1: CO	1.19 %	C2: CO2	10.7 %	C4: O2	8.39 %
11:33:26	C1: CO	1.26 %	C2: CO2	10.4 %	C4: O2	8.89 %
11:34:26	C1: CO	1.38 %	C2: CO2	10.7 %	C4: O2	9.29 %
11:35:26	C1: CO	1.48 %	C2: CO2	10.7 %	C4: O2	9.26 %
11:36:26	C1: CO	1.53 %	C2: CO2	10.6 %	C4: O2	9.12 %
11:37:26	C1: CO	1.48 %	C2: CO2	10.5 %	C4: O2	9.25 %
11:38:26	C1: CO	1.28 %	C2: CO2	10.3 %	C4: O2	8.93 %
11:39:26	C1: CO	1.13 %	C2: CO2	10.6 %	C4: O2	9.47 %
11:40:26	C1: CO	1.09 %	C2: CO2	10.5 %	C4: O2	9.49 %
11:41:26	C1: CO	0.99 %	C2: CO2	10.3 %	C4: O2	9.63 %
11:42:26	C1: CO	0.80 %	C2: CO2	9.84 %	C4: O2	9.26 %
11:43:26	C1: CO	0.73 %	C2: CO2	10.1 %	C4: O2	10.2 %
11:44:26	C1: CO	0.65 %	C2: CO2	9.89 %	C4: O2	10.4 %
11:45:26	C1: CO	0.66 %	C2: CO2	9.58 %	C4: O2	10.6 %
11:46:26	C1: CO	0.63 %	C2: CO2	9.32 %	C4: O2	10.6 %
11:47:26	C1: CO	0.59 %	C2: CO2	9.57 %	C4: O2	10.9 %
11:48:26	C1: CO	0.53 %	C2: CO2	9.12 %	C4: O2	11.2 %
11:49:26	C1: CO	0.50 %	C2: CO2	8.84 %	C4: O2	11.6 %
11:50:26	C1: CO	0.48 %	C2: CO2	8.44 %	C4: O2	12.1 %
11:51:26	C1: CO	0.48 %	C2: CO2	8.25 %	C4: O2	12.4 %
11:52:26	C1: CO	0.49 %	C2: CO2	7.96 %	C4: O2	12.5 %
11:53:26	C1: CO	0.49 %	C2: CO2	7.69 %	C4: O2	12.8 %
11:54:26	C1: CO	0.49 %	C2: CO2	7.44 %	C4: O2	13 %
11:55:26	C1: CO	0.48 %	C2: CO2	7.11 %	C4: O2	13.3 %
11:56:26	C1: CO	0.46 %	C2: CO2	6.76 %	C4: O2	13.6 %
11:57:26	C1: CO	0.41 %	C2: CO2	6.31 %	C4: O2	13.4 %
11:58:26	C1: CO	0.40 %	C2: CO2	6.37 %	C4: O2	14.1 %
11:59:26	C1: CO	0.39 %	C2: CO2	6.22 %	C4: O2	14.2 %
12:00:26	C1: CO	0.39 %	C2: CO2	6.01 %	C4: O2	14.3 %
12:01:26		0.41 %	C2: CO2	5.92 %	C4: O2	14.5 %
12:02:26	C1: CO	0.42 %	C2: CO2	5.75 %	C4: O2	14.2 %
12:03:26		0.46 %	C2: CO2	5.59 %	C4: O2	14.3 %
12:04:26		0.49 %	C2: CO2	5.67 %	C4: O2	14.7 %
12:05:26	C1: CO	0.51 %	C2: CO2	5.57 %	C4: O2	14.8 %
12:06:26	C1: CO	0.50 %	C2: CO2	5.61 %	C4: O2	14.8 %
12:07:26	C1: CO	0.50 %	C2: CO2	5.58 %	C4: O2	14.8 %
12:08:26	C1: CO	0.49 %	C2: CO2	5.46 %	C4: O2	14.9 %
12:09:26	C1: CO	0.54 %	C2: CO2	5.31 %	C4: O2	14.9 %
12:10:26	C1: CO	0.56 %	C2: CO2	5.11 %	C4: O2	14.8 %
12:11:26	C1: CO	0.62 %	C2: CO2	4.85 %	C4: O2	15.1 %
12:12:26	C1: CO	0.65 %	C2: CO2	4.55 %	C4: O2	15.3 %

Time	C	0	CC	D_2	(D_2
12:13:26	C1: CO	0.69 %	C2: CO2	4.54 %	C4: O2	15.5 %
12:14:26	C1: CO	0.69 %	C2: CO2	4.13 %	C4: O2	14.8 %
12:15:26	C1: CO	0.74 %	C2: CO2	4.33 %	C4: O2	15.6 %
12:16:26	C1: CO	0.75 %	C2: CO2	4.27 %	C4: O2	15.6 %
12:17:26	C1: CO	0.76 %	C2: CO2	4.24 %	C4: O2	15.6 %
12:18:26	C1: CO	0.73 %	C2: CO2	3.87 %	C4: O2	13.9 %
12:19:26	C1: CO	0.81 %	C2: CO2	4.2 %	C4: O2	15.6 %
12:20:26	C1: CO	0.80 %	C2: CO2	4.16 %	C4: O2	15.6 %
12:21:26	C1: CO	0.79 %	C2: CO2	4.13 %	C4: O2	15.6 %
12:22:26	C1: CO	0.80 %	C2: CO2	4.02 %	C4: O2	15.2 %
12:23:26	C1: CO	0.79 %	C2: CO2	3.81 %	C4: O2	14.3 %
12:24:26	C1: CO	0.83 %	C2: CO2	4.16 %	C4: O2	15.6 %
12:25:26	C1: CO	0.84 %	C2: CO2	4.14 %	C4: O2	14.4 %
12:26:26	C1: CO	0.83 %	C2: CO2	4.11 %	C4: O2	15.6 %
12:27:26	C1: CO	0.85 %	C2: CO2	4.08 %	C4: O2	15.6 %
12:28:26	C1: CO	0.88 %	C2: CO2	4.1 %	C4: O2	15.7 %
12:29:26	C1: CO	0.87 %	C2: CO2	4.07 %	C4: O2	15.6 %
12:30:26	C1: CO	0.89 %	C2: CO2	4.05 %	C4: O2	15.5 %
12:31:26	C1: CO	0.85 %	C2: CO2	3.94 %	C4: O2	14.9 %
12:32:26	C1: CO	0.90 %	C2: CO2	4.07 %	C4: O2	15.6 %
12:33:26	C1: CO	0.89 %	C2: CO2	4.05 %	C4: O2	14.5 %
12:34:26	C1: CO	0.84 %	C2: CO2	4.04 %	C4: O2	15.6 %
12:35:26	C1: CO	0.84 %	C2: CO2	4.09 %	C4: O2	15.6 %
12:36:26	C1: CO	0.83 %	C2: CO2	4.04 %	C4: O2	15.2 %
12:37:26	C1: CO	0.85 %	C2: CO2	4.11 %	C4: O2	15.6 %
12:38:26	C1: CO	0.83 %	C2: CO2	3.95 %	C4: O2	15 %
12:39:26	C1: CO	0.88 %	C2: CO2	4.06 %	C4: O2	15.6 %
12:40:26	C1: CO	0.90 %	C2: CO2	4.03 %	C4: O2	15.7 %
12:41:26	C1: CO	0.87 %	C2: CO2	3.93 %	C4: O2	15.3 %
12:42:26	C1: CO	0.87 %	C2: CO2	3.99 %	C4: O2	15.7 %
12:43:26	C1: CO	0.87 %	C2: CO2	4.01 %	C4: O2	15.7 %
12:44:26	C1: CO	0.81 %	C2: CO2	3.95 %	C4: O2	15.8 %
12:45:26	C1: CO	0.83 %	C2: CO2	3.8 %	C4: O2	15.8 %
12:46:26	C1: CO	0.89 %	C2: CO2	3.76 %	C4: O2	15.9 %
12:47:26	C1: CO	0.89 %	C2: CO2	3.64 %	C4: O2	15.4 %
12:48:26	C1: CO	0.96 %	C2: CO2	3.72 %	C4: O2	15.9 %
12:49:26	C1: CO	0.94 %	C2: CO2	3.35 %	C4: O2	15.7 %
12:50:26	C1: CO	0.97 %	C2: CO2	3.23 %	C4: O2	16.3 %
12:51:26	C1: CO	1.00 %	C2: CO2	3.17 %	C4: O2	16.2 %
12:52:26	C1: CO	1.03 %	C2: CO2	3.14 %	C4: O2	16.2 %
12:53:26	C1: CO	1.01 %	C2: CO2	2.92 %	C4: O2	15.4 %
12:54:26	C1: CO	1.09 %	C2: CO2	3.06 %	C4: O2	16.3 %
12:55:26	C1: CO	1.16 %	C2: CO2	2.99 %	C4: O2	16.3 %

c	D	I
Э	D	

Time	C	0	СС	D_2		0 ₂
12:56:26	C1: CO	1.18 %	C2: CO2	3.05 %	C4: O2	16.3 %
12:57:26	C1: CO	1.15 %	C2: CO2	2.95 %	C4: O2	15.8 %
12:58:26	C1: CO	1.17 %	C2: CO2	3.1 %	C4: O2	16.2 %
12:59:26	C1: CO	1.20 %	C2: CO2	3 %	C4: O2	16 %
13:00:26	C1: CO	1.18 %	C2: CO2	2.97 %	C4: O2	16.3 %
13:01:26	C1: CO	1.17 %	C2: CO2	2.77 %	C4: O2	15.9 %
13:02:26	C1: CO	1.23 %	C2: CO2	2.85 %	C4: O2	16.4 %
13:03:26	C1: CO	1.24 %	C2: CO2	2.9 %	C4: O2	16.4 %
13:04:26	C1: CO	1.19 %	C2: CO2	2.83 %	C4: O2	16.3 %
13:05:26	C1: CO	1.20 %	C2: CO2	2.78 %	C4: O2	16.5 %
13:06:26	C1: CO	1.21 %	C2: CO2	2.76 %	C4: O2	16.5 %
13:07:26	C1: CO	1.23 %	C2: CO2	2.75 %	C4: O2	16.6 %
13:08:26	C1: CO	1.22 %	C2: CO2	2.75 %	C4: O2	16.5 %
13:09:26	C1: CO	1.25 %	C2: CO2	2.72 %	C4: O2	16.5 %
13:10:26	C1: CO	1.27 %	C2: CO2	2.75 %	C4: O2	15.4 %
13:11:26	C1: CO	1.28 %	C2: CO2	2.73 %	C4: O2	16.5 %
13:12:26	C1: CO	1.30 %	C2: CO2	2.75 %	C4: O2	16.5 %
13:13:26	C1: CO	1.30 %	C2: CO2	2.83 %	C4: O2	16.5 %
13:14:26	C1: CO	1.32 %	C2: CO2	2.77 %	C4: O2	16.3 %
13:15:26	C1: CO	1.36 %	C2: CO2	2.71 %	C4: O2	16.4 %
13:16:26	C1: CO	1.37 %	C2: CO2	2.69 %	C4: O2	16.4 %
13:17:26	C1: CO	1.35 %	C2: CO2	2.64 %	C4: O2	16.4 %
13:18:26	C1: CO	1.39 %	C2: CO2	2.58 %	C4: O2	16.3 %
13:19:26	C1: CO	1.42 %	C2: CO2	2.68 %	C4: O2	16.5 %
13:20:26	C1: CO	1.29 %	C2: CO2	2.48 %	C4: O2	15.7 %
13:21:26	C1: CO	1.33 %	C2: CO2	2.49 %	C4: O2	16.1 %
13:22:26	C1: CO	1.39 %	C2: CO2	2.6 %	C4: O2	16.4 %
13:23:26	C1: CO	1.41 %	C2: CO2	2.52 %	C4: O2	16.5 %
13:24:26	C1: CO	1.43 %	C2: CO2	2.5 %	C4: O2	16.6 %
13:25:26	C1: CO	1.39 %	C2: CO2	2.42 %	C4: O2	16.2 %
13:26:26	C1: CO	1.41 %	C2: CO2	2.46 %	C4: O2	16.6 %
13:27:26	C1: CO	1.40 %	C2: CO2	2.45 %	C4: O2	16.7 %
13:28:26	C1: CO	1.42 %	C2: CO2	2.47 %	C4: O2	16.7 %
13:29:26	C1: CO	1.51 %	C2: CO2	2.29 %	C4: O2	16.7 %
13:30:26	C1: CO	1.45 %	C2: CO2	2.37 %	C4: O2	16.8 %
13:31:26	C1: CO	1.43 %	C2: CO2	2.35 %	C4: O2	16.7 %
13:32:26	C1: CO	1.43 %	C2: CO2	2.34 %	C4: O2	16.7 %
13:33:26	C1: CO	1.30 %	C2: CO2	2.33 %	C4: O2	16.7 %
13:34:26	C1: CO	1.34 %	C2: CO2	2.39 %	C4: O2	16.8 %
13:35:26	C1: CO	1.28 %	C2: CO2	2.31 %	C4: O2	16.4 %
13:36:26	C1: CO	1.28 %	C2: CO2	2.41 %	C4: O2	16.9 %
13:37:26	C1: CO	1.25 %	C2: CO2	2.38 %	C4: O2	16.9 %
13:38:26	C1: CO	1.18 %	C2: CO2	2.29 %	C4: O2	16.2 %

Time	C	0	СС	D_2		0 ₂
13:39:26	C1: CO	1.27 %	C2: CO2	2.31 %	C4: O2	17 %
13:40:26	C1: CO	1.25 %	C2: CO2	2.18 %	C4: O2	16.3 %
13:41:26	C1: CO	1.28 %	C2: CO2	2.16 %	C4: O2	17 %
13:42:26	C1: CO	1.30 %	C2: CO2	2.17 %	C4: O2	17.1 %
13:43:26	C1: CO	1.30 %	C2: CO2	2.06 %	C4: O2	17 %
13:44:26	C1: CO	1.30 %	C2: CO2	2.04 %	C4: O2	17.1 %
13:45:26	C1: CO	1.29 %	C2: CO2	2.07 %	C4: O2	17.1 %
13:46:26	C1: CO	1.31 %	C2: CO2	2.07 %	C4: O2	17.1 %
13:47:26	C1: CO	1.34 %	C2: CO2	2.08 %	C4: O2	17.1 %
13:48:26	C1: CO	1.30 %	C2: CO2	1.98 %	C4: O2	16.8 %
13:49:26	C1: CO	1.26 %	C2: CO2	2.06 %	C4: O2	17.2 %
13:50:26	C1: CO	1.21 %	C2: CO2	1.9 %	C4: O2	17 %
13:51:26	C1: CO	1.28 %	C2: CO2	1.92 %	C4: O2	17.3 %
13:52:26	C1: CO	1.25 %	C2: CO2	1.89 %	C4: O2	17.3 %
13:53:26	C1: CO	1.22 %	C2: CO2	1.86 %	C4: O2	15.9 %
13:54:26	C1: CO	1.26 %	C2: CO2	1.85 %	C4: O2	17.2 %
13:55:26	C1: CO	1.25 %	C2: CO2	1.87 %	C4: O2	17.3 %
13:56:26	C1: CO	1.28 %	C2: CO2	1.9 %	C4: O2	17.3 %
13:57:26	C1: CO	1.30 %	C2: CO2	1.86 %	C4: O2	17.3 %
13:58:26	C1: CO	1.25 %	C2: CO2	1.71 %	C4: O2	16.7 %
13:59:26	C1: CO	1.28 %	C2: CO2	1.81 %	C4: O2	17.3 %
14:00:26	C1: CO	1.23 %	C2: CO2	1.65 %	C4: O2	16.5 %
14:01:26	C1: CO	1.28 %	C2: CO2	1.79 %	C4: O2	17.4 %
14:02:26	C1: CO	1.27 %	C2: CO2	1.78 %	C4: O2	17.4 %
14:03:26	C1: CO	1.27 %	C2: CO2	1.79 %	C4: O2	17.4 %
14:04:26	C1: CO	1.23 %	C2: CO2	1.73 %	C4: O2	16.9 %
14:05:26	C1: CO	1.27 %	C2: CO2	1.77 %	C4: O2	17.3 %
14:06:26	C1: CO	1.31 %	C2: CO2	1.78 %	C4: O2	17.4 %
14:07:26	C1: CO	1.30 %	C2: CO2	1.76 %	C4: O2	17.4 %
14:08:26	C1: CO	1.30 %	C2: CO2	1.73 %	C4: O2	17.4 %
14:09:26	C1: CO	1.30 %	C2: CO2	1.72 %	C4: O2	17.4 %
14:10:26	C1: CO	1.28 %	C2: CO2	1.72 %	C4: O2	17.5 %
14:11:26	C1: CO	1.28 %	C2: CO2	1.62 %	C4: O2	17.5 %
14:12:26	C1: CO	1.30 %	C2: CO2	1.6 %	C4: O2	17.6 %
14:13:26	C1: CO	1.29 %	C2: CO2	1.6 %	C4: O2	17.5 %
14:14:26	C1: CO	1.28 %	C2: CO2	1.59 %	C4: O2	17.6 %
14:15:26	C1: CO	1.27 %	C2: CO2	1.58 %	C4: O2	17.6 %
14:16:26	C1: CO	0.54 %	C2: CO2	0.2 %	C4: O2	17.6 %
14:17:26	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2	20.2 %
14:18:26	C1: CO	0.05 %	C2: CO2	0.09 %	C4: O2	20.6 %
14:19:26	C1: CO	0.04 %	C2: CO2	0.07 %	C4: O2	20.6 %
14:20:26	C1: CO	0.04 %	C2: CO2	0.07 %	C4: O2	20.3 %
14:21:26	C1: CO	0.06 %	C2: CO2	0.08 %	C4: O2	20.6 %

c	D	I
З	D	I

CW2500 27-Jun-13

Time	CO CO		D_2	O ₂	O ₂	
14:22:26	C1: CO	0.04 %	C2: CO2	0.06 %	C4: O2 20.	6 %
14:23:26	C1: CO	0.03 %	C2: CO2	0.05 %	C4: O2 20.	6 %
14:24:26	C1: CO	0.05 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:25:26	C1: CO	0.04 %	C2: CO2	0.06 %	C4: O2 20.	6 %
14:26:26	C1: CO	0.05 %	C2: CO2	0.06 %	C4: O2 20.	6 %
14:27:26	C1: CO	0.06 %	C2: CO2	0.07 %	C4: O2 19.	5 %
14:28:26	C1: CO	0.08 %	C2: CO2	0.08 %	C4: O2 20.	3 %
14:29:26	C1: CO	0.09 %	C2: CO2	0.09 %	C4: O2 20.	6 %
14:30:26	C1: CO	0.08 %	C2: CO2	0.09 %	C4: O2 19.	5 %
14:31:26	C1: CO	0.05 %	C2: CO2	0.06 %	C4: O2 20.	6 %
14:32:26	C1: CO	0.06 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:33:26	C1: CO	0.05 %	C2: CO2	0.06 %	C4: O2 20.	5 %
14:34:26	C1: CO	0.06 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:35:26	C1: CO	0.05 %	C2: CO2	0.06 %	C4: O2 20.	5 %
14:36:26	C1: CO	0.06 %	C2: CO2	0.07 %	C4: O2 19.	8 %
14:37:26	C1: CO	0.06 %	C2: CO2	0.06 %	C4: O2 20.	6 %
14:38:26	C1: CO	0.06 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:39:26	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:40:26	C1: CO	0.07 %	C2: CO2	0.08 %	C4: O2 20.	6 %
14:41:26	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:42:26	C1: CO	0.09 %	C2: CO2	0.09 %	C4: O2 20.	5 %
14:43:26	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:44:26	C1: CO	0.07 %	C2: CO2	0.07 %	C4: O2 20.	6 %
14:45:26	C1: CO	0.04 %	C2: CO2	0.05 %	C4: O2 20.	6 %

27.06.2013

Appendix F: Test data Run 5

Project Number:	0	
Manufacturer:	SBI	
Model:	CW2500	- 2
Sample ID Number:	0	
Test Date:	June 27, 2013	-
Test Run Number:		-

EPA Method 28 Pre Burn Data

Coal Bed Range 1.8 to 2.2

Average Firebox Temp, *F 378.24

Final Coal Bed Wit, Ib 2.19 Г

e.

interval													
- 1	ime				Tem	perature D	Asta .	_	-	-	÷		1
nterval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight Loss
0	0	76.7	195.1	747.4	488.1	276.8	349,9	264.8	303			7.98	5.80
1	10	78.38	140.5	532.1	A77.2	258.6	349.5	316.5	376.1		0	6.45	1.34
2	20	78.92	135.1	533.5	474.4	285.5	353.5	346.8	410.E			5.33	1.32
3	30	78.81	131,2	517.1	477.8	272.5	359.9	363.0	446.1			4,18	1,15
4	40	00.73	120.9	471.5	478.6	279.3	366.5	37E.5	475.4			3.20	0.89
5	50	79,84	113.1	425.5	446.2	283.7	389.5	384	187.7			2.75	0.54
5	60	79.43	109.5	390.0	416.6	238.5	370.7	383:4	480			2.44	0.31
7	70	79,73	107.4	358.8	387,8	293.8	374.1	377.6	488.8		ò	2.24	0.20
8	80	79.21	126.5	372.1	379.7	295.3	375.2	375.3	485.8			2.19	0.05
9			1000 C		19-19-19-19-19-19-19-19-19-19-19-19-19-1			-			1		
10			1.								-	1	
11		-										-	
12			1		8 1			Q	1 2			1	-
13			17			-		1	-		-	1	-
14			1						-		-	-	-
15		-									-		-
16		÷	8		6			-			-	-	
17											-		-
18					E - 0			10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	() ()		-		-
19					6 E			2	2 2		-	-	
20		2			1	-					-		
21		1	1								-		
22			-									<u> </u>	
23		4	1		0	-				-	-		-
24					5				1 5		-	-	
25		-			1		-				-	-	
26								1.1			-	-	
27		1	-						-				-
28					0 3		-	-	-		-	-	-
29		2			-				-		-		
30					-	-		-	-		-	-	

Intertek

TEST DATA EPA METHOD 5G-3

		cuum	Train B	0.00			Train B Vacuum, In.	Hg	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	
		Maximum Vacuum	Train A	0.00			A II	Hg	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		L					ual .	Rate	66.66	105.84	104.67	100.65	98.37	100.74	99.11	98.34	76.86	100.54	100.23	99.14	98.05	98.54	97.87	98.76	
		m @ in Hg	Train B	0.004(05			nal	Rate	16.66	101.68	98.89	100.55	98,95	100.23	100.28	100.32	100.21	99.85	99.80	99.64	99.84	100.34	60'66	99.86	
		Leak Check, cfm @ in Hg	Train A	0.0035(0)5		npling Data	1 (Volume	618,604	620.279	621.924	623.505	625.063	626.679	628.279	629.871	631.472	633.102	634.734	636.345	637.937	639.537	641.129	642.740	
Gas Particulate Sampling Data		E				Particulate Sampling Data	Train A	Volume	790.516	792.099	793.628	795.182	796.724	798.306	799.899	801.497	803.092	804.685	806.284	807.877	809.472	811.075	812.661	814.264	
late Sarr		Factors	779.0	0,986			Weight	Loss	8.95	1.81	1.99	1.78	1.24	0.43	0.25	0.19	0.15	0.19	0.16	0.20	0.16	0.14	0.14	0.12	
Particu		Sample Box Correction (y) Factors	A)	B)			Fuel	Weight	3,95	7.14	5,15	3.37	2.13	1.70	1.45	1.26	1.11	0,92	0.76	0.56	0.40	0.26	0.12	00'0	
Gas		a Box Corr	Meter Box (A)	Meter Box (B)				Draft	0,050	0.030	0.080	0.035	0.075	0.065	0.060	0.055	0.055	0,050	0.050	0,050	0.050	0,045	0.045	0.045	
	2013	Sample	2	2	150		Train A Train B	Delta-H Delta-H	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	00'0	00'0	0.00	00'0	
	umber: 0 acturer: SBI Model: CW2500 umber: 0 st Date: June 27, umber: 5	RH, %	84	98	t, Min				0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	
Project Number: 0 Manufacturer: SBI Model: CW2500 ample ID Number: 0 Test Dato: June 27, 2013 Test Run Number: 5	er, In. Hg	29,88	29.91	Duration of Test, Min		Tunnel	Delta-P	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013		
Project Number: 0 Manufacturer: S Manufacturer: S Sample ID Number: 0 Test Date: Ju		Barometer, In. Hg	Start	End	Durati			Time	•	10	20	30	40	50	60	10	80	90	100	110	120	130	140	150	
							Train B	DGM	77,035	77.175	77,265	77.3	77.35	77.29	77.2	77.21	27,14	77.035	10.77	77.025	76.945	76.915	76,835	76.785	
							Train A	DGM	77.195	77,415	77.53	77.595	27.675	77.64	77.55	77.595	77.505	77.415	17.4	77.36	77.29	77.255	77.22	77.21	
		Temps	Train B	84.61			Train B	Filter	77.37	83,65	84.61	83,93	83,6	82,13	81,96	81.98	81.89	31,83	81.17	81.06	81	80.9	80.79	30.43	
Data		Max Filter Temps	Train A Train B	56.5			1.2	Filter	78.22	84.1	84.51	84.03	83.59	82.45	84.75	86.22	36.8	86.71	85.77	85.64	85.7	85.51	85.32	85	
Temperature Data								Outlet																	
Temp		384.3	286.24	98.1)ata		Right	464.1	440.5	446,3	474.5	509.2	527.1	517.9	397.8	478.9	461.1	441.1	421.5	105	389.1	371.5	352.6	
		np Start		elta-T		Temperature Data	×	Left	375.7	359.8	363.7	383.5	407.8	419	414.9	399.1	382.6	364.7	345.9	332.3	321.5	311.7	301.4	290.9	
		Firebox Temp Start	Firebox Temp End	Firebox Delta-T		Tem	~	Back	383.8	419.4	424.9	439.7	389,8	379.2	366.6	354.3	344.1	335.6	322,4	313.8	307	298.9	288.3	279.8	
			-					Bottom	319.8	405.7	416	409.4	296.9	273.9	265	261.7	260.8	259.9	251.5	246,8	242.7	238.1	232.5	227.7	
ΠΠΠ					150		×	Top	378.1	425.3	546	602.6	597.6	516.3	445.1	402.7	377.2	358.1	338.1	325	315.2	305.5	292.8	280.2	
	2013				Min		_	Gas	342.1	602.8	643,4	713.3	575,5	454,3	403.3	376.2	355.7	338.3	323.9	315.7	303.5	296.9	283.5	272.8	
18	GW2500 June 27, 2				Duration of Test, Min		Dillution	Tunnel	116.9	137.2	145.7	146,4	136.6	121.5	113.9	110.8	111.5	108.7	193.8	136.1	106.9	1,16,8	104.6	101.3	
oject Number: Manufacturer:	Model: Cample ID No: Test Date: Later Late				Durati		_	Room	78.66	78.33	80.16	82.26	35.01	82.68	82.19	81.76	84.3	85.62	80.61	86.08	87.07	87	83.21	89.3	
Project Number	Sample Test F				10	Time		Duration	•	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	
					Interval	Ē		Interval	•	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16

17

Test Engineer:

Date:

577.41875	577,41875
Tunnel Delta- Tunnel P Temp, R	E 5
3 576.9	16
3 59	53
3 605.7	60
3 606.4	8
3 596.6	59
3 581.5	58
3 57	25
3 570.8	25
	29
013 568.7	56
3 563.8	56
	566
0.013 566.9	56
	41
	566,8
	3 8

TEST FUEL DATA EPA METHOD 5G-3

Project Number:	0
Manufacturer:	SBI
Model:	CW2500
Sample ID Number:	
	June 27, 2013
Test Run Number:	

Calibration Reference ID	400	-463
Set meter to Species 1	1 100	+403
Set Temperature to 70F	12%	12.0
Set pin setting to 444	22%	22.0

	RTIES	PROPE	URN FUEL	PRE-B	
80	Temp., *F:	15:00	Time:	SBI-214	Eq. ID No .:
Basis	sture, %, Dry	Moi	Weight, Lb.	Length, In.	Piece No.
20.6	19.6	20.0	89.0	9.00	1
20.0	19.0	10.6	0.89	9.00	2
20.0	19,1	19.7	0.87	9.00	3
19,7	19.1	18.7	0.86	9.00	4
20.0	18.8	19.6	1.65	17.00	5
19,1	19.0	19.0	1,94	17,00	6
18.8	19.8	19,4	1.96	17.00	7
19.5	19.0	19.1	1.64	17,00	8
21.6	20.9	21.0	1.84	17.00	9
					10
			/	8	11
				Service -	12
19.7	ge, %db	Avera	12.5	eight	Total W
to	8.4	: 3	oad Range	ible Fuel Lo	Allowa
	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1 - Ball (B. 2 - Ball) - 11	EST FUEL		· ····································
Temp., *F	15:20			SBI214	Eq. ID No .:
	Mojety	t, Lb.		Length,	Piece No.
ure, 70, Dry	Micrate	4x4	2x4	In.	Piece No.
19.0	19.6		2.39	17.00	1
19.5	20.1	(c.)	2.14	17.00	2
19.9	21.6		2.23	17.00	3
21,3	21.3		2.18	17.00	4
					5
			8		6
		_			7
			Constant St		8
	the second se				
		0.0	9.0		Tota
		0.0	9.0 100		Tota % of W
pisture, dry	Average Mo	0		eight	
5 5 7 0 7 7	Basis 20.1 20.1 20.1 19. 19. 19. 19. 21.1 19. 21.1 19. 19. 19. 19. 19. 19.	Temp.,*F: 80 sture, %, Dry Basis 19.6 20.1 19.6 20.1 19.1 20.1 19.1 20.3 19.1 20.3 19.1 19.1 20.3 19.1 19.1 19.0 19.1 19.1 19.1 19.1 19.1 19.0 19.1 19.2 19.0 19.2 <td< td=""><td>15:00 Temp., "F: 80 Moisture, %, Dry Basis 20.0 19.6 20.1 19.5 19.0 20.3 19.7 19.7 19.1 20.3 19.7 19.1 20.3 19.7 19.1 19.7 19.6 18.8 20.3 19.0 19.0 19.1 19.4 19.8 18.3 19.1 19.0 19.1 19.4 19.8 18.3 19.1 19.0 19.1 19.4 19.8 18.4 19.1 19.0 19.1 21.0 20.9 21.1 Average, %db 19.1 . 8.4 to . 15:20 Temp. 4:x4 19.6 19.2 4:x4 19.6 19.2 20.1 19.2 19.2</td><td>Time: 15:00 Temp., *F: 80 Weight, Lb. Moisture, %, Dry Basis Moisture, %, Dry Basis 0.96 20.0 19.6 20.0 0.89 19.5 19.0 20.0 0.89 19.5 19.0 20.0 0.89 19.7 19.1 20.0 0.86 19.7 19.1 20.0 0.86 19.7 19.1 19.7 1.65 19.6 18.8 20.0 1.94 19.0 19.0 19.1 1.95 19.4 19.8 18. 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 21.0 20.9 21.1 0 19.1 19.0 19.1</td></td<> <td>Length, In. Weight, Lb. Moisture, %, Dry Basis 9:00 0.96 20.0 19.6 26.1 9:00 0.89 19.5 19.0 20.4 9:00 0.89 19.5 19.0 20.4 9:00 0.89 19.5 19.0 20.4 9:00 0.89 19.7 19.1 20.4 9:00 0.85 19.7 19.1 19.4 9:00 1.65 19.6 18.8 20.4 17:00 1.94 19.0 19.0 19.4 17:00 1.95 19.4 19.8 18.3 17:00 1.64 19.1 19.0 19.4 17:00 1.84 21.0 20.9 21.4 17:00 1.84 21.0 20.9 21.4 17:00 1.84 21.0 20.9 21.4 17:00 1.84 21.0 20.9 21.4 10:0 1.84 21.0 19.4 19.4<</td>	15:00 Temp., "F: 80 Moisture, %, Dry Basis 20.0 19.6 20.1 19.5 19.0 20.3 19.7 19.7 19.1 20.3 19.7 19.1 20.3 19.7 19.1 19.7 19.6 18.8 20.3 19.0 19.0 19.1 19.4 19.8 18.3 19.1 19.0 19.1 19.4 19.8 18.3 19.1 19.0 19.1 19.4 19.8 18.4 19.1 19.0 19.1 21.0 20.9 21.1 Average, %db 19.1 . 8.4 to . 15:20 Temp. 4:x4 19.6 19.2 4:x4 19.6 19.2 20.1 19.2 19.2	Time: 15:00 Temp., *F: 80 Weight, Lb. Moisture, %, Dry Basis Moisture, %, Dry Basis 0.96 20.0 19.6 20.0 0.89 19.5 19.0 20.0 0.89 19.5 19.0 20.0 0.89 19.7 19.1 20.0 0.86 19.7 19.1 20.0 0.86 19.7 19.1 19.7 1.65 19.6 18.8 20.0 1.94 19.0 19.0 19.1 1.95 19.4 19.8 18. 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 19.0 19.0 19.1 1.94 21.0 20.9 21.1 0 19.1 19.0 19.1	Length, In. Weight, Lb. Moisture, %, Dry Basis 9:00 0.96 20.0 19.6 26.1 9:00 0.89 19.5 19.0 20.4 9:00 0.89 19.5 19.0 20.4 9:00 0.89 19.5 19.0 20.4 9:00 0.89 19.7 19.1 20.4 9:00 0.85 19.7 19.1 19.4 9:00 1.65 19.6 18.8 20.4 17:00 1.94 19.0 19.0 19.4 17:00 1.95 19.4 19.8 18.3 17:00 1.64 19.1 19.0 19.4 17:00 1.84 21.0 20.9 21.4 17:00 1.84 21.0 20.9 21.4 17:00 1.84 21.0 20.9 21.4 17:00 1.84 21.0 20.9 21.4 10:0 1.84 21.0 19.4 19.4<

Test Engineer:

TEST RESULTS EPA METHOD 5G-3

Print Report

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 27, 2013 Test Run Number: 5

Dry Burn	-Rate, kg/hr:	1.35		
Emissio	n-Rate, g/hr:	1.34		
Adjusted Emission	-Rate, g/hr :	2.32		
Duration of Test, Minutes	18	50		
Dry Gas Meter Standardization	Train A	Train B		
Dry Gas Meter Beginning Reading, fl ³	790,516	618.604		
Dry Gas Meter Ending Reading, fl ³	814.264	642.74		
Barometric Pressure Correction Factor	0.999	0.999		
Dry Gas Meter Calibration Factors (y factors)	0.977	0.986		
Dry Gas Meter Temperature Factors	0.982	0.983		
Dry Gas Meter Delta-H Correction Factors	1.000	1.000		
Dry Gas Meter STD Volume Sampled, ft ³	22.776	23.376		
Dillution Tunnel Flow / Volume				
Standardized Tunnel Flow, dscfm	139	.145		
Total Tunnel Volume, scf	2087	1.811		
Emission Caclulations	Train A	Train B		
Sample Ratios (Total Tunnel Volume / Total Sample Volume)	916.406	892.890		
Sample Particulate Mass, mg	3.9	3.5		
Total Emissions, grams	3.574	3.125		
Emission-Rate, g/hr	1.43	1.25		
Adjusted Emission Rates, g/hr	2.45	2.19		
Deviation, %	and the second se	6%		
Operating Parameters	Train A	Train B		
Max Filter Temperature, °F	86.8	84.61		
Post-Test Leak Check, cfm @ in. Hg vac.	and the second se	0.004@5		
Average Firebox Surface Temperture delta-T, *F		.06		
Maximum Ambient Temperture, *F	89			
Mimimum Ambient Temperature, °F	7	78		
Fuel Properties				
Wet Fuel Load Weight, Ib.	1273	95		
Dry-Basis Fuel Load Moisture Content, %		.48		
Wet-Basis Fuel Load Moisture Content, %	10.000	.00		
Coal Bed Range, Ib.	1.80	2.20		
Actual Coal Bed, Lb.	2	19		

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 27, 2013 Test Run Number: 5

Intertek Equipment No.'s SBI-206

		Sample Train	Weights						
Sample Component	Component	ID Number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	17		118.4					
B - Rear Filter Catch	Filter	18		115.6					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			237.7	234	3.7				
Probe & Filter Holder	Probe	28	136218.2	136218.0	0.2				
			Total Parti	culate, mg	3.9				

		Bample Train	1-2						
Semale Component	Component	ID Number	Weights						
Sample Component	Component	ito number	Final, mg	Tare, mg	Particulate, mg				
A - Front Filter Catch	Filter	19	<i>/////////////////////////////////////</i>	117.5					
B - Rear Filter Catch	Filter	20		117.9					
C - Seal Set	O-Ring								
Total, A+B+C-Tares			238.9	235.4	3.5				
Probe & Filter Holder	Probe	31	137101.8	137101.9	0.0				
	S2		Total Parti	culate, mg	3.5				

Dillution Tunnel Velocity Traverse EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 27, 2013 Test Run Number: 5

Test Engineer.

Date:

Time	(0	С	02		O ₂
17:10:06	C1: CO	0.52 %	C2: CO2	4.75	C4: O2	16.08 %
17:11:06	C1: CO	0.54 %	C2: CO2	4.76	C4: O2	15.01 %
17:12:06	C1: CO	0.59 %	C2: CO2	4.55	C4: O2	15.05 %
17:13:06	C1: CO	0.62 %	C2: CO2	4.44	C4: O2	15.26 %
17:14:06	C1: CO	0.60 %	C2: CO2	4.40	C4: O2	15.33 %
17:15:06	C1: CO	0.62 %	C2: CO2	4.35	C4: O2	15.14 %
17:16:06	C1: CO	0.66 %	C2: CO2	4.45	C4: O2	15.46 %
17:17:06	C1: CO	0.64 %	C2: CO2	4.37	C4: O2	15.44 %
17:18:06	C1: CO	0.65 %	C2: CO2	4.39	C4: O2	15.43 %
17:19:06	C1: CO	0.68 %	C2: CO2	4.44	C4: O2	15.37 %
17:20:06	C1: CO	0.68 %	C2: CO2	3.48	C4: O2	15.33 %
17:21:06	C1: CO	0.51 %	C2: CO2	2.64	C4: O2	17.54 %
17:22:06	C1: CO	0.63 %	C2: CO2	3.22	C4: O2	16.93 %
17:23:06	C1: CO	0.41 %	C2: CO2	0.78	C4: O2	17.19 %
17:24:06	C1: CO	0.62 %	C2: CO2	4.37	C4: O2	19.42 %
17:25:06	C1: CO	0.70 %	C2: CO2	6.76	C4: O2	13.78 %
17:26:06	C1: CO	0.72 %	C2: CO2	10.82	C4: O2	11.80 %
17:27:06	C1: CO	0.92 %	C2: CO2	9.50	C4: O2	8.53 %
17:28:06	C1: CO	1.02 %	C2: CO2	9.93	C4: O2	10.12 %
17:29:06	C1: CO	0.86 %	C2: CO2	11.29	C4: O2	9.47 %
17:30:06	C1: CO	0.80 %	C2: CO2	11.68	C4: O2	8.69 %
17:31:06	C1: CO	0.82 %	C2: CO2	11.99	C4: O2	8.34 %
17:32:06	C1: CO	0.76 %	C2: CO2	11.92	C4: O2	7.99 %
17:33:06	C1: CO	0.76 %	C2: CO2	12.27	C4: O2	8.06 %
17:34:06	C1: CO	0.72 %	C2: CO2	12.47	C4: O2	8.12 %
17:35:06	C1: CO	0.75 %	C2: CO2	12.45	C4: O2	8.23 %
17:36:06	C1: CO	0.69 %	C2: CO2	12.52	C4: O2	8.16 %
17:37:06	C1: CO	0.68 %	C2: CO2	11.92	C4: O2	7.50 %
17:38:06	C1: CO	0.72 %	C2: CO2	12.60	C4: O2	8.13 %
17:39:06	C1: CO	0.68 %	C2: CO2	11.95	C4: O2	7.04 %
17:40:06	C1: CO	0.69 %	C2: CO2	12.49	C4: O2	7.88 %
17:41:06	C1: CO	0.68 %	C2: CO2	12.61	C4: O2	8.08 %
17:42:06	C1: CO	0.71 %	C2: CO2	12.71	C4: O2	7.99 %
17:43:06	C1: CO	0.69 %	C2: CO2	12.54	C4: O2	6.78 %
17:44:06	C1: CO	0.66 %	C2: CO2	12.72	C4: O2	7.88 %
17:45:06	C1: CO	0.68 %	C2: CO2	12.84	C4: O2	7.80 %
17:46:06	C1: CO	0.63 %	C2: CO2	12.82	C4: O2	7.78 %
17:47:06	C1: CO	0.68 %	C2: CO2	13.03	C4: O2	7.75 %
17:48:06	C1: CO	0.73 %	C2: CO2	13.33	C4: O2	7.36 %
17:49:06	C1: CO	0.73 %	C2: CO2	13.48	C4: O2	7.21 %
17:50:06	C1: CO	0.72 %	C2: CO2	13.84	C4: O2	6.88 %
17:51:06	C1: CO	0.63 %	C2: CO2	14.43	C4: O2	6.68 %
17:52:06	C1: CO	0.50 %	C2: CO2	15.01	C4: O2	6.07 %

Time	(0	С	02		O ₂
17:53:06	C1: CO	0.47 %	C2: CO2	15.07	C4: O2	5.83 %
17:54:06	C1: CO	0.45 %	C2: CO2	14.96	C4: O2	5.69 %
17:55:06	C1: CO	0.52 %	C2: CO2	14.72	C4: O2	6.08 %
17:56:06	C1: CO	0.69 %	C2: CO2	13.55	C4: O2	6.40 %
17:57:06	C1: CO	0.58 %	C2: CO2	12.47	C4: O2	7.14 %
17:58:06	C1: CO	0.46 %	C2: CO2	11.94	C4: O2	7.82 %
17:59:06	C1: CO	0.45 %	C2: CO2	11.58	C4: O2	8.39 %
18:00:06	C1: CO	0.43 %	C2: CO2	10.80	C4: O2	9.00 %
18:01:06	C1: CO	0.44 %	C2: CO2	9.62	C4: O2	9.81 %
18:02:06	C1: CO	0.42 %	C2: CO2	9.10	C4: O2	10.69 %
18:03:06	C1: CO	0.41 %	C2: CO2	8.49	C4: O2	11.33 %
18:04:06	C1: CO	0.40 %	C2: CO2	8.02	C4: O2	11.89 %
18:05:06	C1: CO	0.41 %	C2: CO2	7.59	C4: O2	12.38 %
18:06:06	C1: CO	0.41 %	C2: CO2	7.34	C4: O2	12.83 %
18:07:06	C1: CO	0.39 %	C2: CO2	6.86	C4: O2	12.80 %
18:08:06	C1: CO	0.41 %	C2: CO2	6.78	C4: O2	13.51 %
18:09:06	C1: CO	0.40 %	C2: CO2	6.58	C4: O2	13.67 %
18:10:06	C1: CO	0.43 %	C2: CO2	6.54	C4: O2	13.94 %
18:11:06	C1: CO	0.44 %	C2: CO2	6.44	C4: O2	14.02 %
18:12:06	C1: CO	0.46 %	C2: CO2	6.30	C4: O2	13.95 %
18:13:06	C1: CO	0.47 %	C2: CO2	6.31	C4: O2	14.02 %
18:14:06	C1: CO	0.43 %	C2: CO2	6.15	C4: O2	14.18 %
18:15:06	C1: CO	0.44 %	C2: CO2	6.03	C4: O2	14.31 %
18:16:06	C1: CO	0.46 %	C2: CO2	5.91	C4: O2	14.38 %
18:17:06	C1: CO	0.47 %	C2: CO2	5.82	C4: O2	14.55 %
18:18:06	C1: CO	0.49 %	C2: CO2	5.76	C4: O2	14.58 %
18:19:06	C1: CO	0.48 %	C2: CO2	5.70	C4: O2	14.64 %
18:20:06	C1: CO	0.47 %	C2: CO2	5.49	C4: O2	14.71 %
18:21:06	C1: CO	0.46 %	C2: CO2	5.17	C4: O2	14.43 %
18:22:06	C1: CO	0.49 %	C2: CO2	5.37	C4: O2	14.91 %
18:23:06	C1: CO	0.51 %	C2: CO2	5.20	C4: O2	14.34 %
18:24:06	C1: CO	0.53 %	C2: CO2	5.37	C4: O2	14.83 %
18:25:06	C1: CO	0.55 %	C2: CO2	5.34	C4: O2	14.84 %
18:26:06	C1: CO	0.58 %	C2: CO2	5.32	C4: O2	14.85 %
18:27:06	C1: CO	0.61 %	C2: CO2	5.27	C4: O2	14.90 %
18:28:06	C1: CO	0.64 %	C2: CO2	5.13	C4: O2	14.83 %
18:29:06	C1: CO	0.67 %	C2: CO2	5.13	C4: O2	13.86 %
18:30:06	C1: CO	0.69 %	C2: CO2	5.02	C4: O2	15.03 %
18:31:06	C1: CO	0.71 %	C2: CO2	4.98	C4: O2	15.08 %
18:32:06	C1: CO	0.70 %	C2: CO2	4.87	C4: O2	14.99 %
18:33:06	C1: CO	0.74 %	C2: CO2	4.89	C4: O2	15.06 %
18:34:06	C1: CO	0.76 %	C2: CO2	4.83	C4: O2	15.03 %
18:35:06	C1: CO	0.77 %	C2: CO2	4.78	C4: O2	15.17 %

Time	(0	СС	D_2		0 ₂
18:36:06	C1: CO	0.80 %	C2: CO2	4.77	C4: O2	15.20 %
18:37:06	C1: CO	0.87 %	C2: CO2	4.36	C4: O2	15.30 %
18:38:06	C1: CO	0.90 %	C2: CO2	4.28	C4: O2	15.52 %
18:39:06	C1: CO	0.91 %	C2: CO2	4.21	C4: O2	15.43 %
18:40:06	C1: CO	0.94 %	C2: CO2	4.16	C4: O2	15.56 %
18:41:06	C1: CO	0.96 %	C2: CO2	4.15	C4: O2	15.58 %
18:42:06	C1: CO	0.94 %	C2: CO2	4.00	C4: O2	13.87 %
18:43:06	C1: CO	1.00 %	C2: CO2	3.84	C4: O2	15.27 %
18:44:06	C1: CO	1.02 %	C2: CO2	3.89	C4: O2	15.75 %
18:45:06	C1: CO	1.00 %	C2: CO2	3.70	C4: O2	14.94 %
18:46:06	C1: CO	1.03 %	C2: CO2	3.83	C4: O2	15.75 %
18:47:06	C1: CO	1.01 %	C2: CO2	3.60	C4: O2	14.98 %
18:48:06	C1: CO	1.09 %	C2: CO2	3.65	C4: O2	15.77 %
18:49:06	C1: CO	1.15 %	C2: CO2	3.65	C4: O2	14.81 %
18:50:06	C1: CO	1.09 %	C2: CO2	3.40	C4: O2	15.30 %
18:51:06	C1: CO	1.14 %	C2: CO2	3.47	C4: O2	15.83 %
18:52:06	C1: CO	1.18 %	C2: CO2	3.42	C4: O2	16.03 %
18:53:06	C1: CO	1.16 %	C2: CO2	3.38	C4: O2	16.11 %
18:54:06	C1: CO	1.17 %	C2: CO2	3.39	C4: O2	16.09 %
18:55:06	C1: CO	1.18 %	C2: CO2	3.30	C4: O2	15.63 %
18:56:06	C1: CO	1.17 %	C2: CO2	3.33	C4: O2	16.01 %
18:57:06	C1: CO	1.19 %	C2: CO2	3.31	C4: O2	16.06 %
18:58:06	C1: CO	1.15 %	C2: CO2	3.25	C4: O2	15.75 %
18:59:06	C1: CO	1.22 %	C2: CO2	3.33	C4: O2	16.13 %
19:00:06	C1: CO	1.19 %	C2: CO2	3.23	C4: O2	15.81 %
19:01:06	C1: CO	1.22 %	C2: CO2	3.25	C4: O2	16.07 %
19:02:06	C1: CO	1.22 %	C2: CO2	3.17	C4: O2	16.18 %
19:03:06	C1: CO	1.22 %	C2: CO2	3.18	C4: O2	16.23 %
19:04:06	C1: CO	1.24 %	C2: CO2	3.21	C4: O2	16.21 %
19:05:06	C1: CO	1.23 %	C2: CO2	3.22	C4: O2	16.19 %
19:06:06	C1: CO	1.19 %	C2: CO2	3.21	C4: O2	15.94 %
19:07:06	C1: CO	1.19 %	C2: CO2	3.24	C4: O2	16.18 %
19:08:06	C1: CO	1.20 %	C2: CO2	3.22	C4: O2	16.15 %
19:09:06	C1: CO	1.21 %	C2: CO2	3.25	C4: O2	16.16 %
19:10:06	C1: CO	1.25 %	C2: CO2	3.27	C4: O2	16.14 %
19:11:06	C1: CO	1.22 %	C2: CO2	3.18	C4: O2	16.07 %
19:12:06	C1: CO	1.24 %	C2: CO2	3.18	C4: O2	16.25 %
19:13:06	C1: CO	1.20 %	C2: CO2	3.24	C4: O2	16.18 %
19:14:06	C1: CO	1.22 %	C2: CO2	3.15	C4: O2	16.23 %
19:15:06	C1: CO	1.25 %	C2: CO2	3.15	C4: O2	16.28 %
19:16:06	C1: CO	1.23 %	C2: CO2	3.12	C4: O2	16.02 %
19:17:06	C1: CO	1.25 %	C2: CO2	3.15	C4: O2	16.25 %
19:18:06	C1: CO	1.21 %	C2: CO2	2.95	C4: O2	15.45 %

Time	(0	C	D₂		0 ₂
19:19:06	C1: CO	1.22 %	C2: CO2	2.87	C4: O2	15.32 %
19:20:06	C1: CO	1.17 %	C2: CO2	2.71	C4: O2	15.13 %
19:21:06	C1: CO	1.26 %	C2: CO2	2.86	C4: O2	16.06 %
19:22:06	C1: CO	1.26 %	C2: CO2	2.94	C4: O2	15.63 %
19:23:06	C1: CO	1.27 %	C2: CO2	2.90	C4: O2	16.37 %
19:24:06	C1: CO	1.27 %	C2: CO2	2.81	C4: O2	16.02 %
19:25:06	C1: CO	1.27 %	C2: CO2	2.81	C4: O2	16.51 %
19:26:06	C1: CO	1.24 %	C2: CO2	2.69	C4: O2	16.64 %
19:27:06	C1: CO	1.26 %	C2: CO2	2.61	C4: O2	16.69 %
19:28:06	C1: CO	1.28 %	C2: CO2	2.61	C4: O2	16.75 %
19:29:06	C1: CO	1.32 %	C2: CO2	2.53	C4: O2	16.78 %
19:30:06	C1: CO	1.35 %	C2: CO2	2.55	C4: O2	16.76 %
19:31:06	C1: CO	1.46 %	C2: CO2	2.32	C4: O2	16.79 %
19:32:06	C1: CO	1.36 %	C2: CO2	2.35	C4: O2	16.87 %
19:33:06	C1: CO	1.50 %	C2: CO2	2.14	C4: O2	16.88 %
19:34:06	C1: CO	1.66 %	C2: CO2	1.93	C4: O2	16.83 %
19:35:06	C1: CO	1.68 %	C2: CO2	1.86	C4: O2	17.07 %
19:36:06	C1: CO	1.61 %	C2: CO2	1.96	C4: O2	17.09 %
19:37:06	C1: CO	1.68 %	C2: CO2	1.83	C4: O2	17.07 %
19:38:06	C1: CO	1.63 %	C2: CO2	1.80	C4: O2	16.78 %
19:39:06	C1: CO	1.51 %	C2: CO2	2.01	C4: O2	17.14 %
19:40:06	C1: CO	1.60 %	C2: CO2	1.84	C4: O2	17.07 %
19:41:06	C1: CO	1.61 %	C2: CO2	1.82	C4: O2	17.20 %
19:42:06	C1: CO	1.59 %	C2: CO2	1.76	C4: O2	17.19 %
19:43:06	C1: CO	1.59 %	C2: CO2	1.77	C4: O2	17.22 %
19:44:06	C1: CO	1.55 %	C2: CO2	1.70	C4: O2	17.00 %
19:45:06	C1: CO	1.60 %	C2: CO2	1.77	C4: O2	17.25 %
19:46:06	C1: CO	1.59 %	C2: CO2	1.75	C4: O2	17.24 %
19:47:06	C1: CO	1.61 %	C2: CO2	1.75	C4: O2	17.27 %
19:48:06	C1: CO	1.61 %	C2: CO2	1.71	C4: O2	16.17 %
19:49:06	C1: CO	1.60 %	C2: CO2	1.70	C4: O2	17.30 %
19:50:06	C1: CO	1.59 %	C2: CO2	1.71	C4: O2	17.32 %
19:51:06	C1: CO	1.57 %	C2: CO2	1.73	C4: O2	17.33 %
19:52:06	C1: CO	1.61 %	C2: CO2	1.61	C4: O2	17.34 %
19:53:06	C1: CO	1.59 %	C2: CO2	1.59	C4: O2	17.39 %
19:54:06	C1: CO	1.58 %	C2: CO2	1.58	C4: O2	17.41 %
19:55:06	C1: CO	1.61 %	C2: CO2	1.55	C4: O2	17.30 %
19:56:06	C1: CO	1.62 %	C2: CO2	1.51	C4: O2	17.17 %
19:57:06	C1: CO	1.61 %	C2: CO2	1.51	C4: O2	17.18 %
19:58:06	C1: CO	1.65 %	C2: CO2	1.56	C4: O2	17.41 %
19:59:06	C1: CO	1.60 %	C2: CO2	1.61	C4: O2	17.42 %
20:00:06	C1: CO	1.59 %	C2: CO2	1.65	C4: O2	17.42 %
20:01:06	C1: CO	1.58 %	C2: CO2	1.57	C4: O2	16.93 %

SBI	CW2500	27-Jun-13	3	F	Run #5	
Time	СС	C	СС) ₂		O ₂
20:02:06	C1: CO	1.60 %	C2: CO2	1.53	C4: O2	17.30 %
20:03:06	C1: CO	1.58 %	C2: CO2	1.48	C4: O2	17.48 %
20:04:06	C1: CO	1.59 %	C2: CO2	1.47	C4: O2	17.57 %
20:05:06	C1: CO	1.56 %	C2: CO2	1.42	C4: O2	17.59 %
20:06:06	C1: CO	1.52 %	C2: CO2	1.38	C4: O2	17.62 %
20:07:06	C1: CO	1.50 %	C2: CO2	1.36	C4: O2	17.62 %
20:08:06	C1: CO	1.54 %	C2: CO2	1.38	C4: O2	17.64 %
20:09:06	C1: CO	1.53 %	C2: CO2	1.37	C4: O2	17.63 %
20:10:06	C1: CO	1.51 %	C2: CO2	1.40	C4: O2	16.59 %

Appendix F: Test data Run 6

Project Number:	0	
Manufacturer:	SBI	
Model:	CW2500	
Sample ID Number:	0	
	June 28, 2013	
Test Run Number:		

EPA Method 28 Pre Burn Data

Coal Bed Range 1.8 to 2.1

Average Firebox Temp, *F 345.84

Final Coal Bed Wt, b 1.85

Interval	10 ma				Toim	persture D	late		_		-	-	-
	in the		-		tern	perature L				_			
Interval	Duration	Room	Dilution Tunnel	Flue Gas	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Catalyst Outlet	Flue Draft	Fuel Weight	Weight
0	0	86.2	181.3	1,600	500.4	\$33.2	388.5	434.8	532,4			2.81	0.95
1	10	01.74	.114.0	289	\$11.5	ETC1	585	483.5	575.7		0	2.07	0.14
2	20	78.34	104.1	315.8	452.8	554.1	515.6	647	. 535.5		3	2.60	0.09
3	30	70,25	98.74	234.9	404.0	47.6.4	459,2	410.7	475.6		2	2.67	0.11
4	40	77,82	94,43	215.3	370.1	454.0	439.7	380.8	435			2,37	0.10
5	50	74.59	92.99	255.4	345.8	435.8	403.6	358.4	406.6		3	2,30	0.07
6	60	69.39	05.17	246	328.3	427.4	381.6	338.7	.383.8		2	2.16	0.14
7	70	69,34	35.8	224.1	344.8	418.9	365.7	323,1	267.7		í —	2.04	0.12
8	80	08.69	85.94	229.4	303.9	405.5	355	211	353.8		1	1.90	0.14
9	90	72.38	BE.17	258.7	296.3	385.7	349.5	002.5	344.7			1.85	0.05
10					6 3						é –		
11		1			-						-		1
12		5					0		-		0		
13					-						8	1	-
14		V			0								
15									-		-		
16					1	0							-
17					S								-
18		6			8 3		C						-
19		1									-	12	
20												-	-
21		8 - D			6								
22					0						2	1	2
23		5			2				-		8	-	1
24		1			4						6		-
25		1			-						-		
26					÷	5			1 1		2	-	
27		2 2									-	-	
28		2 2			Q				-		1		
29		-					1		-		-	-	-
30									-		2		

Intertek

TEST DATA EPA METHOD 5G-3

		Maximum Vacuum	Train B	0.0		Train B Vacuum, In. Ho	0.00	0,00	0,00	0.00	0,00	0,00	0.00	0,00	0.00	0.00	0.00	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0.00	0.00		
		Maximu	Train A	000		Train A Vacuum, In. Ha	0.00	0.00	00'0	0.00	00.00	0.00	00.0	00'0	0.00	00'0	0.00	0.00	0.00	00'0	0,00	0,00	0.00	00'00	00'0	0010		
						Train B Proportional Rate	100.01	100.29	99.18	100.08	102.72	103.15	100.14	100.70	101.80	99.78	99.54	98.87	16.99	99.57	99.26	98.46	98.41	100.16	99.53	98.51		
		cfm @ in Ha	Train B	enfection's		Train A Proportional Rate	100.00	98,98	96.54	101.37	101.79	102.22	102.15	100.47	99.93	100.18	100.68	98.83	100.35	99.46	76.66	99.16	99.74	99.16	99.61	99.47		
		Leak Check. cfm @ in Ha	Train A	10000 A 1000	mpling Data	Train B Volume	642.775	644.365	645.937	647.518	649.125	650.727	652.285	653.864	655.470	657.050	658.630	660.202	661.794	663.382	664.967	666.541	668.115	009.710	671.309	672.882		
Gas Particulate Sampling Data				1	Particulate Sampling Data	Train A Volume	814.290	815.871	817.413	819.027	820.632	822.232	823.834	825.422	827.011	828.610	830.221	831.805	833.416	835.015	836.624	838.222	839.830	841.430	843.035	844.636		
late Sam		Factors	0.977	000010		Weight	8.64	0.52	0.61	0.84	1.28	1.45	1.22	0.72	0.34	0.24	0.17	0.20	0.17	0.19	0.14	0.14	0.13	0.17	0.05	90.06	T	Π
Particu		Sample Box Correction (y) Factors	(A la	5		Fuel Weight		8.12	7.51	6.67	5.39	3,94	2.72	2.00	1.66	1.42	1.25	1.05	0.38	0.69	0.55	0.41	0,28	0.11	0,06	0.00	T	T
Gas		Box Corr	Meter Box (A)	Voor Into		Flue Draft	0.035	0.040	0.050	0.055	0.070	0.075	0.070	0.060	0.055	0.050	0.045	0.045	0.045	0.045	0.040	0.040	0.040	0.040	0.040	0,040		
	2013	_	22	190		Train A Train E Delta-H	0.00	0.00	0,00	0'00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0,00	0.00		
	umber: 0 Icturer: SBI Model: CW2500 umber: 0 4 Date: June 28, umber: 6	RH, %	56	Min			0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	Project Nurmber: 0 Manufacturer: SBI Model: CW2500 ample ID Nurmber: 0 Test Date: June 28, 2013 Test Run Nurmber: 6	Barometer, In. Hg	29.68	Duration of Test, Min		Tunnel Delta-P	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013		
	Project Number: 0 Manufacturer: Si Model: Ci Sample ID Number: 0 Test Date: Ju. Test Run Number: 6	Baromet	Start	Durat		Time	0	10	20	30	40	50	60	20	80	90	100	110	120	130	140	150	160	170	180	190		
						Train B DGM	74.74	74.775	74.61	74.6	1.47	74.755	74.84	74.81	74.73	74.75	74.745	74.745	74,69	74,645	74,605	74.575	74.51	74,48	74,46	74,44	T	Π
						Train A DGM	74,885	74,975	74.9	74.94	75.1	75,15	75.27	75,26	75.195	75,195	75.24	75.205	75.135	75,11	75,015	75.03	74,955	74,91	74.91	74.87		
		r Temps	Train A Train B			Train B Filter	75.28	78,27	78.51	79,21	80,65	32.05	82.58	82	80.69	79.6	78,9	78.54	78,13	77.73	77.43	77.15	76.86	7.6.7	76.78	11		
Data		Max Filter Temps	Train A			Train A Filter	75.86	79,82	80,32	81.2	83.01	84.32	85.48	34,59	83.29	82.17	31.51	80.71	80.33	79.82	79.45	79.11	78.65	78,53	78.58	78.44		
Temperature Data				-		Catalyst Outlet	Π																			T	T	Π
Temp		336.4	338.72		Data	Firebox Right	344	327.5	300.7	299.9	319.5	353.2	387.7	415.5	428	431.2	431.2	426.8	420.2	413.9	405.8	395,5	383.1	372.1	364.4	360	T	Π
			σ		Temperature Data	Firebox Left	300.9	283.5	262.2	251.6	262.9	289	319.2	346.7	357.5	356.5	353.1	347.8	341.9	335.3	329.8	322.4	312.7	203.7	301.5	200.2	t	Ħ
		Firebox Temp Start	Firebox Temp En		Ten	Firebox Back	347,9	335,7	316.8	307,6	310.1	327.3	351.5	377	407.2	429.4	433,1	429.6	422.5	414.4	405.6	392.6	378.6	367.1	361.3	356.5	t	T
				1		Firebox Bottom	394.2	383	365.8	343.1	332	319.9	316.4	321.4	331.9	345.7	359.7	370.9	3/ 6.9	378.8	375,8	377.9	375.3	370.8	369.1	367.1	t	Ħ
				190		Firebox Top	295	293.1	290.5	318.9	392.5	503	565,4	551,5	496.3	442,4	406.9	385	302.6	358.4	348.3	336.5	324,9	315.5	312.8	205.2	t	Ħ
	2013			t, Min		Flue Gas	246.8	251	299.4	321.3	448.8	550.5	504,5	415,5	359.1	321.3	1.105	291.4	R.797	2/4.8	201.4	250	243.9	241.2	239.9	238.3	T	П
SBI	CW2500			Duration of Test, Min		Dillution	93.39	96.15	96.03	1.99.7	111	119.5	117.6	103.6	101.7	97.42	94.71	92.86	10'16	17"60	10.10	86.53	35,86	85.15	80.42	56.15	T	Π
Project Number: Manufacturer:	Model: Sample ID No: Test Date: Test Run No:			Durat		Room	13,5	76.38	77.96	78.81	81.58	14.35	74,65	75.2	73.61	13.5	51	12:21	10,30	10.65	35.50	10	69.78	60.34	10.12	11.15		Π
Project. Manu	Samp T. Test			10	Time	Interval Duration	0	9	20	30	40	20	09	20	80	90	100	011	120	021	140	150	160	170	180	190		
				Interval	-	Interval	•	-	2	-	4	0	0	-		5	2	= ;	71	2	4	2	2	-	2	AL OC	21	22

Test Engineer:

Date:

	100.01		Proportional	Rate (2)		100.29	99.18	100.08	102.72	103,15	100.14	100.70	101.80	99.78	99.54	98.87	99.97	99.57	99.26	98.46	98.41	100.16	99.53	98.51
	100.00		Proportional	Rate (1)		98.98	96.54	101.37	101.79	102.22	102.15	100.47	99.93	100.18	100.68	98.83	100.36	99.46	99.97	99.16	99.74	99.18	99.61	99.47
139.15	7.34		Tunnel	Velocity	7.324	7.343	7.342	7.366	7,440	7.495	7.483	7.424	7.379	7.351	7.333	7.321	7.309	7.297	7.288	7.279	7.274	7.270	7.278	7.286
STD Tunnel Flow:	29.113	STD	Sample Ft ³	(2)		1.537	1.520	1.529	1,554	1.549	1.508	1.526	1.553	1.528	1.528	1.520	1.539	1.536	1.533	1.522	1.522	1.551	1.539	1.522
STD T	29.054	STD	Sample Ft ³	E		1.514	1.477	1.546	1.537	1.532	1.533	1.520	1.521	1.631	1.542	1.516	1.542	1.531	1.541	1.530	1.540	1.532	1.537	1.533
0.0272575 0.02720207	556.4135		Tunnel	Temp, R	663.39	556.15	556.03	559.7	571	579.5	577.6	568.6	561.7	557.42	554.71	552,86	551.01	549.27	547.84	546.53	545.86	545.15	546.42	547.53
VS (1) VS (2)			Tunnel Delta-	۵.	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	Ending	Average	Firebox	Temp																				338.72
		Average	Firebox	Temp	336.4	324.6	307.2	305.2	323.4	358.5	388.0	402.4	404.2	401.0	396.8	392.0	386.2	380.2	373.7	365.0	354.9	345.8	341.8	338.7
	190			Time	0	9	20	30	40	50	60	2	80	90	100	110	120	130	140	150	180	170	180	190

Intertek

TEST FUEL DATA EPA METHOD 5G-3

	t Number:					
Man	ufacturer:	SBI CW2500				
Sample ID	Number:	100000000000000000000000000000000000000				
	Fest Date:		2013			
	Number:					
Calibratio	on Referen	ce ID				
et meter to S			18	0-463		
et Temperat			12%	12.0		
et pin setting	to 444		22%	32.0		
	PRE-B	URN FUE	PROPE	RTIES		1
Eq. ID No .:		Time:	8:30	Temp., *F:	80	
Piece No.	Length, In.	Weight, Lb.		sture, %, Dr		1
1	9.00	0.87	21.2	19.5	21.7	
2	9.00	0.89	20.4	20.3	20.5	1
3	9.00	0.89	20.4	19.8	20.4	1
4	9.00	0.89	20.4	19.7	20.4	1
5	17.00	1.70	20.6	20.5	20.8	
6	17.00	1.76	20.4	20.2	20.6	1
7	17,00	2.07	20.1	18,9	20,5	
8	17.00	1.63	21.2	20.3	21,0	1
9	17.00	1,83	20.6	18.9	20,6	
10						
11 12			-			
Total W	eiaht	12.3	Avera	ge, %db	20.4	1
Sec. 100.081	ble Fuel Lo	A series and the		8.4	to	10.1
10000	т	EST FUEL	LOAD F	ROPERTIE	S	20.02.02
Eq. ID No .:	SBI214		Time:	9:50	Temp., F:	80
Piece No.	Length, In.	Weigh 2x4	t, Lb. 4x4	Moist	ture, %, Dry	Basis
1	17.00	2.00		20,0	19.2	20.9
2	17.00	2,46		19.0	20.1	20.3
3	17.00	2.09		21.3	20.6	21.2
4	17.00	2.09		20.4	20.4	20.9
5						
6		_				
8						-
Total	0	8.6	0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
% of We		100	0.0			
Total weight	and the second se	8.6		Augrana M	oisture, dry	20.36
Total weight		-		the state of the s	and the second s	
a croi supiribi	OLA KU	3.2	D I	Average M	oisture, wet	16.91

TEST RESULTS EPA METHOD 5G-3

Print Report

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 28, 2013 Test Run Number: 6

Dry Burn-	Rate, kg/hr:	1.03
Emission	Rate, g/hr:	1.87
Adjusted Emission	Rate, g/hr :	3.05
Duration of Test, Minutes	19) 0
Dry Gas Meter Standardization	Train A	Train B
Dry Gas Meter Beginning Reading, ft ³ Dry Gas Meter Ending Reading, ft ³	814.29 844.636	642.775 672.882
Barometric Pressure Correction Factor Dry Gas Meter Calibration Factors (γ factors) Dry Gas Meter Temperature Factors Dry Gas Meter Delta-H Correction Factors	0.993 0.977 0.987 1.000	0.993 0.986 0.988 1.000
Dry Gas Meter STD Volume Sampled, ft ³	29.066	29.125
Dillution Tunnel Flow / Volume		
Standardized Tunnel Flow, dscfm	139	152
Total Tunnel Volume, scf	2643	8.870
Emission Caclulations	Train A	Train B
Sample Ratios (Total Tunnel Volume / Total Sample Volume) Sample Particulate Mass, mg Total Emissions, grams	909.614 6.4 5.822	907.788 6.6 5.991
Emission-Rate, g/hr Adjusted Emission Rates, g/hr	1.84 3.02	1.89 3.0 9
Deviation, %	1.1	ACT 2 7.
Operating Parameters Max Filter Temperature, °F Post-Test Leak Check, cfm @ in. Hg vac.	Train A 85.48 0.004@5	Train B 82.58 0.0035@6
Average Firebox Surface Temperture delta-T, "F Maximum Ambient Temperture, "F Mimimum Ambient Temperature, "F	2 8 6	2
Fuel Properties		
Wet Fuel Load Weight, Ib. Dry-Basis Fuel Load Moisture Content, % Wet-Basis Fuel Load Moisture Content, % Coal Bed Range, Ib. Actual Coal Bed, Lb.	87 20. 16. 1.80 1.7	36 91 2.10

DILLUTION TUNNEL PARTICULATE CALCULATIONS EPA Method 5G-3

Project Number: 0 Manufacturer: SBI Model: CW2500 Sample ID Number: 0 Test Date: June 28, 2013 Test Run Number: 6

Intertek Equipment No.'s SBI-205

	s	Sample Train -	1-1		
Comple Component	Commenter	Companies ID Mumber	2 - 22 - 24	Weights	92
Addition aldition	CUTIPUTIETS	IACILIAN CI	Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Fatter	21		115.4	
B - Rear Filter Catch	Fatter	22		117,6	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			239.1	233	6.1
Probe & Fitter Holder	Probe	38	108413.4	108413.1	0.3
			Total Particulate, mg	culate, mg	6.4

	60	Sample Train -	1-2	Same a	
Comple Composite	increased in the second	IO Mumbree		Weights	59
tualinduino alduipo	Cumpunetty		Final, mg	Tare, mg	Particulate, mg
A - Front Filter Catch	Filter	23		138.2	
B - Rear Filter Catch	Filter	24		1.15.2	
C - Seal Set	O-Ring				
Total, A+B+C-Tares			239.7	233.4	6.3
Probe & Filter Holder	Probe	35	107840.6	107840.3	0.3
			Total Particulate, mg	culate, mg	6.6

Test Engineer.

Date:

Dillution Tunnel Velocity Traverse EPA Method 5G-3

- Project Number: 0 Manufacturer: SBI Model: CW2500
- Sample ID Number: 0 Test Date: June 28, 2013 Test Run Number: 6

	Dilution	Tunnel		Tunnel Diameter	8,000	inches
	Delta P In. H2O	Temp, *F	Square Root	Tunnel Static	-0.075	-0.075 In. H2O
A1	0.0100	16	0.1000			1
A2	0.0125	97	0.1118	Tunnel Area	0.34907	Ft2
A3	0.0125	97	0.1118			
A4	0.0125	97	0.1118	Pitot Correction	0.9586	factor
A Center	0.0125	26	0.1118			
B1	0.0075	93	0.0966	Baro, Pressure	29.77	
B2	0.0125	96	0.1118			
B3	0.0125	96	0.1118	Pitot Factor	0.99	(0.99 for standard, 0.84 or Cal. For S-Type)
B4	0.0125	94	0.1118	1		
B Center	0.0125	96	0.1118	Initial Velocity	7.335	Ft' Sec
Averages	0.01175	95.872	0.1072			
				Initial Flow	139.33	Ft3/min

Test Engineer.

Date

Time	C	0	СС	D ₂		O ₂
11:54:14	C1: CO	1.15 %	C2: CO2	1.58 %	C4: O2	20.07 %
11:55:14	C1: CO	0.71 %	C2: CO2	0.78 %	C4: O2	18.60 %
11:56:14	C1: CO	0.92 %	C2: CO2	1.34 %	C4: O2	18.88 %
11:57:14	C1: CO	0.46 %	C2: CO2	0.12 %	C4: O2	18.23 %
11:58:14	C1: CO	0.47 %	C2: CO2	0.26 %	C4: O2	19.87 %
11:59:14	C1: CO	0.62 %	C2: CO2	2.93 %	C4: O2	19.70 %
12:00:14	C1: CO	0.68 %	C2: CO2	5.15 %	C4: O2	16.32 %
12:01:14	C1: CO	0.76 %	C2: CO2	7.75 %	C4: O2	14.09 %
12:02:14	C1: CO	0.74 %	C2: CO2	2.44 %	C4: O2	12.20 %
12:03:14	C1: CO	0.64 %	C2: CO2	1.30 %	C4: O2	17.80 %
12:04:14	C1: CO	0.65 %	C2: CO2	1.26 %	C4: O2	18.52 %
12:05:14	C1: CO	0.65 %	C2: CO2	1.24 %	C4: O2	18.53 %
12:06:14	C1: CO	0.65 %	C2: CO2	1.38 %	C4: O2	18.47 %
12:07:14	C1: CO	0.65 %	C2: CO2	1.47 %	C4: O2	18.35 %
12:08:14	C1: CO	0.60 %	C2: CO2	2.02 %	C4: O2	18.27 %
12:09:14	C1: CO	0.59 %	C2: CO2	2.92 %	C4: O2	17.56 %
12:10:14	C1: CO	0.61 %	C2: CO2	3.39 %	C4: O2	16.88 %
12:11:14	C1: CO	0.67 %	C2: CO2	3.65 %	C4: O2	16.48 %
12:12:14	C1: CO	0.70 %	C2: CO2	3.52 %	C4: O2	16.32 %
12:13:14	C1: CO	0.75 %	C2: CO2	3.53 %	C4: O2	16.35 %
12:14:14	C1: CO	0.77 %	C2: CO2	3.97 %	C4: O2	16.28 %
12:15:14	C1: CO	0.74 %	C2: CO2	4.51 %	C4: O2	15.61 %
12:16:14	C1: CO	0.76 %	C2: CO2	4.09 %	C4: O2	15.43 %
12:17:14	C1: CO	0.79 %	C2: CO2	3.76 %	C4: O2	15.83 %
12:18:14	C1: CO	0.78 %	C2: CO2	3.85 %	C4: O2	16.12 %
12:19:14	C1: CO	0.76 %	C2: CO2	4.50 %	C4: O2	15.83 %
12:20:14	C1: CO	0.76 %	C2: CO2	5.03 %	C4: O2	15.29 %
12:21:14	C1: CO	0.78 %	C2: CO2	5.63 %	C4: O2	14.77 %
12:22:14	C1: CO	0.84 %	C2: CO2	5.28 %	C4: O2	14.38 %
12:23:14		0.78 %	C2: CO2	5.01 %		14.68 %
12:24:14	C1: CO	0.79 %	C2: CO2	4.39 %	C4: O2	15.01 %
12:25:14	C1: CO	0.79 %	C2: CO2	4.12 %	C4: O2	15.56 %
12:26:14	C1: CO	0.83 %	C2: CO2	4.70 %	C4: O2	15.76 %
12:27:14		0.87 %	C2: CO2	7.03 %	C4: O2	
12:28:14	C1: CO	0.80 %	C2: CO2	7.86 %	C4: O2	
12:29:14	C1: CO	0.85 %	C2: CO2	8.28 %	C4: O2	12.15 %
12:30:14	C1: CO	0.92 %	C2: CO2	8.72 %	C4: O2	11.77 %
12:31:14	C1: CO	0.88 %	C2: CO2	9.08 %	C4: O2	11.23 %
12:32:14	C1: CO	0.86 %	C2: CO2	9.02 %	C4: O2	11.13 %
12:33:14	C1: CO	0.82 %	C2: CO2	9.29 %	C4: O2	11.15 %
12:34:14	C1: CO	0.79 %	C2: CO2	9.38 %	C4: O2	11.03 %
12:35:14	C1: CO	0.77 %	C2: CO2	9.56 %	C4: O2	10.93 %
12:36:14	C1: CO	0.76 %	C2: CO2	9.79 %	C4: O2	10.87 %

Time	C	0	С	0 ₂		O ₂
12:37:14	C1: CO	0.76 %	C2: CO2	9.85 %	C4: O2	10.75 %
12:38:14	C1: CO	0.75 %	C2: CO2	9.79 %	C4: O2	10.57 %
12:39:14	C1: CO	0.81 %	C2: CO2	10.03 %	C4: O2	10.39 %
12:40:14	C1: CO	0.82 %	C2: CO2	10.16 %	C4: O2	10.12 %
12:41:14	C1: CO	0.89 %	C2: CO2	10.32 %	C4: O2	9.97 %
12:42:14	C1: CO	0.96 %	C2: CO2	10.54 %	C4: O2	9.74 %
12:43:14	C1: CO	1.05 %	C2: CO2	10.72 %	C4: O2	9.48 %
12:44:14	C1: CO	1.10 %	C2: CO2	10.75 %	C4: O2	9.37 %
12:45:14	C1: CO	1.09 %	C2: CO2	10.91 %	C4: O2	9.22 %
12:46:14	C1: CO	1.05 %	C2: CO2	10.93 %	C4: O2	9.15 %
12:47:14	C1: CO	1.05 %	C2: CO2	10.89 %	C4: O2	9.06 %
12:48:14	C1: CO	0.97 %	C2: CO2	10.78 %	C4: O2	8.99 %
12:49:14	C1: CO	0.91 %	C2: CO2	10.77 %	C4: O2	8.97 %
12:50:14	C1: CO	0.87 %	C2: CO2	10.56 %	C4: O2	9.02 %
12:51:14	C1: CO	0.82 %	C2: CO2	10.28 %	C4: O2	9.10 %
12:52:14	C1: CO	0.78 %	C2: CO2	10.17 %	C4: O2	9.20 %
12:53:14	C1: CO	0.72 %	C2: CO2	10.01 %	C4: O2	9.38 %
12:54:14	C1: CO	0.69 %	C2: CO2	9.87 %	C4: O2	9.59 %
12:55:14	C1: CO	0.66 %	C2: CO2	9.73 %	C4: O2	9.79 %
12:56:14	C1: CO	0.64 %	C2: CO2	9.67 %	C4: O2	9.98 %
12:57:14	C1: CO	0.63 %	C2: CO2	9.52 %	C4: O2	10.17 %
12:58:14	C1: CO	0.61 %	C2: CO2	9.25 %	C4: O2	10.31 %
12:59:14	C1: CO	0.60 %	C2: CO2	9.10 %	C4: O2	10.42 %
13:00:14	C1: CO	0.59 %	C2: CO2	9.19 %	C4: O2	10.56 %
13:01:14	C1: CO	0.58 %	C2: CO2	8.96 %	C4: O2	10.73 %
13:02:14	C1: CO	0.57 %	C2: CO2	8.69 %	C4: O2	10.90 %
13:03:14	C1: CO	0.57 %	C2: CO2	8.40 %	C4: O2	11.07 %
13:04:14	C1: CO	0.56 %	C2: CO2	7.85 %	C4: O2	11.27 %
13:05:14	C1: CO	0.55 %	C2: CO2	7.11 %	C4: O2	11.49 %
13:06:14		0.54 %	C2: CO2			11.76 %
13:07:14	C1: CO	0.55 %	C2: CO2	6.43 %	C4: O2	12.18 %
13:08:14	C1: CO		C2: CO2	6.26 %	C4: O2	12.65 %
13:09:14	C1: CO	0.55 %	C2: CO2	6.06 %	C4: O2	13.07 %
13:10:14	C1: CO	0.53 %	C2: CO2		C4: O2	
13:11:14		0.52 %	C2: CO2	5.86 %	C4: O2	
13:12:14	C1: CO	0.52 %	C2: CO2	5.82 %	C4: O2	13.85 %
13:13:14		0.51 %	C2: CO2	5.78 %	C4: O2	14.01 %
13:14:14	C1: CO	0.51 %	C2: CO2	5.72 %	C4: O2	14.12 %
13:15:14	C1: CO	0.51 %	C2: CO2	5.60 %	C4: O2	14.20 %
13:16:14	C1: CO	0.51 %	C2: CO2	5.42 %	C4: O2	
13:17:14	C1: CO	0.51 %	C2: CO2	5.21 %	C4: O2	
13:18:14		0.52 %	C2: CO2	5.05 %	C4: O2	14.51 %
13:19:14	C1: CO	0.54 %	C2: CO2	5.02 %	C4: O2	14.70 %

Time	C	0	СС	D ₂		O ₂
13:20:14	C1: CO	0.55 %	C2: CO2	4.97 %	C4: O2	14.89 %
13:21:14	C1: CO	0.56 %	C2: CO2	4.93 %	C4: O2	14.99 %
13:22:14	C1: CO	0.56 %	C2: CO2	4.90 %	C4: O2	15.04 %
13:23:14	C1: CO	0.58 %	C2: CO2	4.84 %	C4: O2	15.07 %
13:24:14	C1: CO	0.59 %	C2: CO2	4.83 %	C4: O2	15.10 %
13:25:14	C1: CO	0.60 %	C2: CO2	4.79 %	C4: O2	15.13 %
13:26:14	C1: CO	0.62 %	C2: CO2	4.78 %	C4: O2	15.14 %
13:27:14	C1: CO	0.63 %	C2: CO2	4.72 %	C4: O2	15.16 %
13:28:14	C1: CO	0.65 %	C2: CO2	4.64 %	C4: O2	15.17 %
13:29:14	C1: CO	0.66 %	C2: CO2	4.61 %	C4: O2	15.21 %
13:30:14	C1: CO	0.68 %	C2: CO2	4.56 %	C4: O2	15.26 %
13:31:14	C1: CO	0.70 %	C2: CO2	4.50 %	C4: O2	15.28 %
13:32:14	C1: CO	0.71 %	C2: CO2	4.48 %	C4: O2	15.30 %
13:33:14	C1: CO	0.73 %	C2: CO2	4.38 %	C4: O2	15.32 %
13:34:14	C1: CO	0.75 %	C2: CO2	4.32 %	C4: O2	15.34 %
13:35:14	C1: CO	0.78 %	C2: CO2	4.27 %	C4: O2	15.38 %
13:36:14	C1: CO	0.79 %	C2: CO2	4.19 %	C4: O2	15.43 %
13:37:14	C1: CO	0.81 %	C2: CO2	4.14 %	C4: O2	15.46 %
13:38:14	C1: CO	0.83 %	C2: CO2	4.11 %	C4: O2	15.50 %
13:39:14	C1: CO	0.84 %	C2: CO2	4.05 %	C4: O2	15.52 %
13:40:14	C1: CO	0.86 %	C2: CO2	4.08 %	C4: O2	15.54 %
13:41:14	C1: CO	0.86 %	C2: CO2	4.01 %	C4: O2	15.55 %
13:42:14	C1: CO	0.87 %	C2: CO2	4.03 %	C4: O2	15.55 %
13:43:14	C1: CO	0.88 %	C2: CO2	4.03 %	C4: O2	15.56 %
13:44:14	C1: CO	0.90 %	C2: CO2	4.01 %	C4: O2	15.55 %
13:45:14	C1: CO	0.91 %	C2: CO2	3.96 %	C4: O2	15.54 %
13:46:14	C1: CO	0.93 %	C2: CO2	3.93 %	C4: O2	15.56 %
13:47:14	C1: CO	0.94 %	C2: CO2	3.86 %	C4: O2	15.57 %
13:48:14	C1: CO	0.94 %	C2: CO2	3.86 %	C4: O2	15.59 %
13:49:14		0.95 %	C2: CO2	3.84 %		15.62 %
13:50:14	C1: CO	0.95 %	C2: CO2	3.83 %	C4: O2	15.63 %
13:51:14	C1: CO	0.97 %	C2: CO2	3.83 %	C4: O2	15.63 %
13:52:14	C1: CO	0.98 %	C2: CO2	3.79 %	C4: O2	15.64 %
13:53:14	C1: CO	0.98 %	C2: CO2	3.78 %	C4: O2	
13:54:14		0.98 %	C2: CO2	3.74 %	C4: O2	
13:55:14	C1: CO	0.99 %	C2: CO2	3.73 %	C4: O2	15.67 %
13:56:14	C1: CO	0.99 %	C2: CO2	3.71 %	C4: O2	15.70 %
13:57:14	C1: CO	0.98 %	C2: CO2	3.66 %	C4: O2	15.71 %
13:58:14	C1: CO	0.99 %	C2: CO2	3.63 %	C4: O2	15.73 %
13:59:14	C1: CO	0.99 %	C2: CO2	3.64 %	C4: O2	15.77 %
14:00:14	C1: CO	1.00 %	C2: CO2	3.63 %	C4: O2	15.79 %
14:01:14	C1: CO	1.03 %	C2: CO2	3.63 %	C4: O2	15.78 %
14:02:14	C1: CO	1.03 %	C2: CO2	3.59 %	C4: O2	15.79 %

Time	C	0	СС	D_2		O ₂
14:03:14	C1: CO	1.03 %	C2: CO2	3.58 %	C4: O2	15.79 %
14:04:14	C1: CO	1.03 %	C2: CO2	3.59 %	C4: O2	15.80 %
14:05:14	C1: CO	1.05 %	C2: CO2	3.54 %	C4: O2	15.81 %
14:06:14	C1: CO	1.07 %	C2: CO2	3.55 %	C4: O2	15.80 %
14:07:14	C1: CO	1.06 %	C2: CO2	3.52 %	C4: O2	15.82 %
14:08:14	C1: CO	1.07 %	C2: CO2	3.47 %	C4: O2	15.82 %
14:09:14	C1: CO	1.08 %	C2: CO2	3.43 %	C4: O2	15.84 %
14:10:14	C1: CO	1.10 %	C2: CO2	3.39 %	C4: O2	15.88 %
14:11:14	C1: CO	1.12 %	C2: CO2	3.33 %	C4: O2	15.94 %
14:12:14	C1: CO	1.12 %	C2: CO2	3.23 %	C4: O2	15.98 %
14:13:14	C1: CO	1.14 %	C2: CO2	2.96 %	C4: O2	16.00 %
14:14:14	C1: CO	1.17 %	C2: CO2	2.87 %	C4: O2	16.08 %
14:15:14	C1: CO	1.19 %	C2: CO2	2.85 %	C4: O2	16.24 %
14:16:14	C1: CO	1.19 %	C2: CO2	2.81 %	C4: O2	16.32 %
14:17:14	C1: CO	1.18 %	C2: CO2	2.79 %	C4: O2	16.33 %
14:18:14	C1: CO	1.20 %	C2: CO2	2.76 %	C4: O2	16.35 %
14:19:14	C1: CO	1.23 %	C2: CO2	2.70 %	C4: O2	16.38 %
14:20:14	C1: CO	1.14 %	C2: CO2	2.74 %	C4: O2	16.39 %
14:21:14	C1: CO	1.15 %	C2: CO2	2.71 %	C4: O2	16.42 %
14:22:14	C1: CO	1.20 %	C2: CO2	2.57 %	C4: O2	16.45 %
14:23:14	C1: CO	1.25 %	C2: CO2	2.49 %	C4: O2	16.49 %
14:24:14	C1: CO	1.30 %	C2: CO2	2.42 %	C4: O2	16.54 %
14:25:14	C1: CO	1.34 %	C2: CO2	2.37 %	C4: O2	16.59 %
14:26:14	C1: CO	1.36 %	C2: CO2	2.32 %	C4: O2	16.61 %
14:27:14	C1: CO	1.36 %	C2: CO2	2.28 %	C4: O2	16.62 %
14:28:14	C1: CO	1.36 %	C2: CO2	2.27 %	C4: O2	16.65 %
14:29:14	C1: CO	1.37 %	C2: CO2	2.28 %	C4: O2	16.67 %
14:30:14	C1: CO	1.37 %	C2: CO2	2.25 %	C4: O2	16.69 %
14:31:14	C1: CO	1.40 %	C2: CO2	2.24 %	C4: O2	16.69 %
14:32:14		1.41 %	C2: CO2	2.23 %		16.69 %
14:33:14	C1: CO	1.40 %	C2: CO2	2.22 %	C4: O2	16.70 %
14:34:14	C1: CO	1.40 %	C2: CO2	2.25 %	C4: O2	16.70 %
14:35:14	C1: CO	1.41 %	C2: CO2	2.23 %	C4: O2	16.71 %
14:36:14	C1: CO	1.43 %	C2: CO2	2.20 %	C4: O2	
14:37:14	C1: CO	1.46 %	C2: CO2	2.22 %	C4: O2	
14:38:14	C1: CO	1.47 %	C2: CO2	2.22 %	C4: O2	16.72 %
14:39:14	C1: CO	1.48 %	C2: CO2	2.16 %	C4: O2	16.71 %
14:40:14	C1: CO	1.41 %	C2: CO2	2.26 %	C4: O2	16.70 %
14:41:14	C1: CO	1.35 %	C2: CO2	2.41 %	C4: O2	16.71 %
14:42:14	C1: CO	1.32 %	C2: CO2	2.44 %	C4: O2	16.68 %
14:43:14	C1: CO	1.30 %	C2: CO2	2.49 %	C4: O2	16.63 %
14:44:14	C1: CO	1.30 %	C2: CO2	2.53 %	C4: O2	16.60 %
14:45:14	C1: CO	1.30 %	C2: CO2	2.55 %	C4: O2	16.59 %

c	D	I
З	D	ļ

Time	C	0	СС) ₂		0 ₂
14:46:14	C1: CO	1.31 %	C2: CO2	2.47 %	C4: O2	16.57 %
14:47:14	C1: CO	1.33 %	C2: CO2	2.45 %	C4: O2	16.57 %
14:48:14	C1: CO	1.35 %	C2: CO2	2.46 %	C4: O2	16.60 %
14:49:14	C1: CO	1.37 %	C2: CO2	2.49 %	C4: O2	16.61 %
14:50:14	C1: CO	1.38 %	C2: CO2	2.51 %	C4: O2	16.59 %
14:51:14	C1: CO	1.38 %	C2: CO2	2.48 %	C4: O2	16.55 %
14:52:14	C1: CO	1.39 %	C2: CO2	2.45 %	C4: O2	16.52 %
14:53:14	C1: CO	1.42 %	C2: CO2	2.42 %	C4: O2	16.51 %
14:54:14	C1: CO	1.44 %	C2: CO2	2.36 %	C4: O2	16.52 %
14:55:14	C1: CO	1.43 %	C2: CO2	2.34 %	C4: O2	16.54 %
14:56:14	C1: CO	1.44 %	C2: CO2	2.33 %	C4: O2	16.58 %
14:57:14	C1: CO	1.43 %	C2: CO2	2.34 %	C4: O2	16.60 %
14:58:14	C1: CO	1.39 %	C2: CO2	2.40 %	C4: O2	16.62 %
14:59:14	C1: CO	1.39 %	C2: CO2	2.40 %	C4: O2	16.62 %
15:00:14	C1: CO	1.44 %	C2: CO2	2.29 %	C4: O2	16.61 %
15:01:14	C1: CO	1.54 %	C2: CO2	2.15 %	C4: O2	16.61 %
15:02:14	C1: CO	1.55 %	C2: CO2	2.11 %	C4: O2	16.66 %
15:03:14	C1: CO	1.56 %	C2: CO2	2.11 %	C4: O2	16.73 %
15:04:14	C1: CO	1.53 %	C2: CO2	2.06 %	C4: O2	16.75 %
15:05:14	C1: CO	1.51 %	C2: CO2	2.07 %	C4: O2	16.77 %
15:06:14	C1: CO	1.51 %	C2: CO2	2.06 %	C4: O2	16.81 %
15:07:14	C1: CO	1.51 %	C2: CO2	2.03 %	C4: O2	16.83 %
15:08:14	C1: CO	1.52 %	C2: CO2	2.00 %	C4: O2	16.85 %
15:09:14	C1: CO	1.49 %	C2: CO2	1.90 %	C4: O2	16.88 %
15:10:14	C1: CO	1.45 %	C2: CO2	1.81 %	C4: O2	16.91 %
15:11:14	C1: CO	1.44 %	C2: CO2	1.75 %	C4: O2	16.99 %
15:12:14	C1: CO	1.41 %	C2: CO2	1.73 %	C4: O2	17.10 %
15:13:14	C1: CO	1.42 %	C2: CO2	1.74 %	C4: O2	17.17 %
15:14:14	C1: CO	1.37 %	C2: CO2	1.77 %	C4: O2	17.20 %
15:15:14		1.39 %	C2: CO2	1.74 %		17.21 %
15:16:14	C1: CO	1.39 %	C2: CO2	1.72 %	C4: O2	17.22 %
15:17:14	C1: CO	1.40 %	C2: CO2	1.72 %	C4: O2	17.24 %
15:18:14	C1: CO	1.40 %	C2: CO2	1.70 %	C4: O2	17.26 %
15:19:14	C1: CO	1.41 %	C2: CO2	1.70 %	C4: O2	
15:20:14	C1: CO	1.41 %	C2: CO2	1.71 %	C4: O2	17.28 %
15:21:14	C1: CO	1.42 %	C2: CO2	1.70 %	C4: O2	17.28 %
15:22:14	C1: CO	1.42 %	C2: CO2	1.70 %	C4: O2	17.27 %
15:23:14	C1: CO	1.42 %	C2: CO2	1.68 %	C4: O2	17.27 %
15:24:14	C1: CO	1.42 %	C2: CO2	1.66 %	C4: O2	17.27 %
15:25:14	C1: CO	1.42 %	C2: CO2	1.67 %	C4: O2	17.29 %
15:26:14	C1: CO	1.42 %	C2: CO2	1.67 %	C4: O2	17.31 %
15:27:14	C1: CO	1.43 %	C2: CO2	1.63 %	C4: O2	17.30 %
15:28:14	C1: CO	1.43 %	C2: CO2	1.63 %	C4: O2	17.30 %

SBI	CW2500	28-Jun-13	Run #6	
Time	СО	C	CO ₂	0 ₂
15:29:14	C1: CO 1.4	1 % C2: CO2	1.63 %	C4: O2 17.32 %
15:30:14	C1: CO 1.4	2 % C2: CO2	1.65 %	C4: O2 17.32 %
15:31:14	C1: CO 1.4	2 % C2: CO2	1.63 %	C4: O2 17.32 %
15:32:14	C1: CO 1.4	4 % C2: CO2	1.61 %	C4: O2 17.32 %
15:33:14	C1: CO 1.4	4 % C2: CO2	1.56 %	C4: O2 17.33 %
15:34:14	C1: CO 1.4	4 % C2: CO2	1.58 %	C4: O2 17.35 %
15:35:14	C1: CO 1.4	3 % C2: CO2	1.57 %	C4: O2 17.37 %
15:36:14	C1: CO 1.4	4 % C2: CO2	1.58 %	C4: O2 17.37 %
15:37:14	C1: CO 1.4	4 % C2: CO2	1.58 %	C4: O2 17.37 %
15:38:14	C1: CO 1.4	1 % C2: CO2	1.57 %	C4: O2 17.37 %
15:39:14	C1: CO 1.4	2 % C2: CO2	1.60 %	C4: O2 17.37 %
15:40:14	C1: CO 1.4	2 % C2: CO2	1.59 %	C4: O2 17.40 %
15:41:14	C1: CO 1.4	1 % C2: CO2	1.59 %	C4: O2 17.39 %
15:42:14	C1: CO 1.4	2 % C2: CO2	1.59 %	C4: O2 17.39 %

Appendix F: Test data Barometric pressure

.

Barometric pressure

10	Pressure	(in. Hg)
_	Start	End
Run #1	29.7	29.7
Run # 2	29.91	29.87
Run # 3	29.85	29.85
Run # 4	29.85	29.88
Run #5	29.88	29.91
Run # 6	29.77	29.68

Leak test

		Leak Check,	cfm @ in Hg
		Train A	Train B
Run #1	Start	0.000 @5	0.001 @5
KUN #1	End	0.0025 @5	0.003 @5
Run #2	Start	0.0025 @5	0.0005 @5
KUN #2	End	0.0035@5	0.003 @5
Dun #2	Start	0.000 @5	0.000 @5
Run #3	End	0.003 @6	0.003 @5
Run #4	Start	0.000 @5	0.000 @5
Kun #4	End	0.0035 @6	0.0035 @8
Run #5	Start	0.0035 @5	0.004 @5
Kun #5	End	0.0035 @5	0.0035 @5
Pup #6	Start	0.000 @5	0.000 @5
Run #6	End	6.004 @5	0.0035 @5

Appendix F: Test data Probes and filters Weight at stabilization

CW2500 Projet: Date: Tech: Standard:

V. Pelletier

Wale 2nd Jak 3rd

184, 7491						
1bhL b						
and the second se						
45.8920						
						+++
34.0630						-
						-
139.5943						I
						╞
						╞
36.8162						+
8012						╞
						+
36.2182						╞
						╞
						+
1018						+
						+
						+
108.4/34						+
102.8406						+
						-
						╞
						+
						-
						L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5743 816.8 809.2 89.2 21.8.2 2	0630 5743 8162 8622 2183 2183 2183 2183 2183 2183 2183 21	2/13 8082 8082 8182 2182 2182 2182 2183 2183 2183 21	8422 8422 8422 8423 8423 8423 8423 8423	81/3 80/2 81/3 21/3 21/3 21/3 2018 1018 1018 1018 1018 1018	816.4 8012 8012 818.2 81.8 81.8 81.8 81.8 81.8 81.8 8

v. Pelletier Projet: Date: Tech: Standard:

	Id. Filtres	Dáte	Date Date	Date	Date	Date	Date	Date	Date	Date	Date
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		144.30	98.00								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		101274	0.1274								+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		20 1176	0, 1175								╞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0:12.	0.1263								+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 0, 1184	0.11.85								+
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		50.12,25	0, 13,25								+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		60 1186	0.1186								-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		70,1202	011202								-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		80 1184	0,1184								-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9 0.1183	0.1183								+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		96 11 0 0	0.11.95								+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	10.1216	0.1216								+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	2 0. 1154	0.1154								+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	3 0. 1223	01223								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	4 0' 1183	1811 0								+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	50.1206	0:1205								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	4611.03	0.11 73								+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	70.1217	0.12.7								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŧ	80,1159	0.1160								-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	90, 1210	0.1210								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	00,1180	0,1179								-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	10,1210	0.1209								Ļ
23 0.12 0.12 0.12 24 0.11 54 0.12 24 0.11 54 0.12 7 0.1154 0.1238 7 0.1154 0.1238 7 0.1154 0.1238 7 0.1154 0.1238 7 0.1154 0.1238 7 0.1154 0.009 7 0.009 $100m_{9}$ 7 0.0009 $100m_{9}$ 7 $100m_{9}$ $100m_{9}$ 7 $100m_{9}$ $100m_{9}$	2	20.1183	0,1182								-
240,1159 01,1159 01, 1159 1 tienweight (alibration weight 3 - 0,1000y 100 mg = 0,00999 = 10,0000y 10 g = 10,0000y = 199,999 300 = 199,99949	2	1.04	0.1238								-
tionweight 7 (alibration weight y = 0, 1000 y = 10, 0000y 10 g = 10, 0000y = 199, 999 3 300g = 199, 9994g	2	10,1159	0, 1159								
y = 0, 1000 y = 10, 0000y = 199. 999 3 y = 10, 0000y = 199. 999 3 y = 199. 999 4 y	Timme	tt A	A Co	libratio.	A work P						
= 10,0000 10 = 10,0000 = 199,9994	0 = 0	1000 "		1000	20,0,00	1 bb					
= 199. 999 3 2009 = 199. 9994 g	- 10	0000		10 0	= 1D 0	0000					
burning barner barner	- 191	00030		300	144	agua .					
		1 1114				Luci					