

TEST REPORT

SCOPE: EMISSIONS AND OUTPUT

FUEL: EPA TEST FUEL (CRIBS)

TEST STANDARD: EPA

MODEL: FP-14 WOOD FIREPLACE

<u>Notice to reader</u>: Our FP-14 wood fireplace was tested as part of our FP-8 firebox. Therefore, the FP-8 is referenced throughout the attached test report.

<u>TEST REPORT</u>

TEST OF A WOOD BURNING FIREPLACE FOR EMISSIONS AND EFFICIENCY PER EPA METHODS 28 AND 5G-3, July 1st, 1999

MODEL: FP8

Client: Foyers Valcourt 1345, Jacques-Cartier sud Saint-Jean-sur-Richelieu, Quebec, Canada, J3B 6Y8

Attention: Mr. Danick Power

TESTED BY: Intertek Testing Services NA Ltd. 1829, 32nd Avenue Lachine, Québec H8T 3J1

TEST DATES: From September 19th to September 22th REPORT DATE: November 17, 2006 Project number: 3105271

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Services d'essais Intertek AN Ltée Intertek Testing Services NA Ltd.

Montréal 1829, 32º Avenue Lachine QC H8T 3J1 Tél.: (514) 631-3100 1-877-779-4357 Fax: (514) 631-1133 Toronto 3210 American Drive Mississauga ON L4V 1B3 Tel.: (905) 678-7820 1-888-823-2204 Fax: (905) 678-7131 Vancouver 1500 Brigantine Dr. Coquitlam BC V3K 7C1 Tel.: (604) 520-3321 1-800-668-8378 Fax: (604) 524-9186

Issued: November 17, 2006

1.0. INTRODUCTION

1.1	General	.1
	Test Unit Description	
	Results	
	Pretest Information	
	Report Organization	

2.0. SUMMARY OF TEST RESULTS

2.1	Emissions	.2
	Weighted Average Calculation	
	Test Facility Conditions	
	Fuel Qualities	
2.5	Dilution Tunnel Flow Rate Measurements	
	and Sampling Data (5G-3)	.4
2.6	Dilution Tunnel Dual Train Precision	
	General Summary of Results	

3.0. PROCESS DESCRIPTION

3.1	Discu	ission	5
3.2	Unit I	Dimensions	5
		upply System	
		ation during Test	
		Up Operation	
		Minimum burn rate testing procedure (burn rate < 1 kg/hr)	
		3.5.1.1 Lighting procedure (kindling)	9
		3.5.1.2 Pre-testing.	
	3.5.2	Testing procedure category #2	
		(Burn rate between 0.80 and 1.25 kg/hr)	
		3.5.2.1 Lighting procedure (kindling)	
		3.5.2.2 Pre-testing.	
	3.5.3	Testing procedure category #3	
		(Burn rate between 1.25 and 1.90 kg/hr)	
		3.5.3.1 Lighting procedure (kindling)	11
		3.5.3.2 Pre-testing	

Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

3.5.4	Maxim	um burn rate testing procedure	
	3.5.4.1	Lighting procedure (kindling)	12
		Pre-testing	

4.0. SAMPLING SYSTEMS

4.1 Sampling Locations	
4.2 Drawings	
4.3 Equipment List	14

5.0. SAMPLING METHODS

5.1	Particulate sampling	14	រ

6.0. QUALITY ASSURANCE

6.1	Instru	ment Calibration	
	6.1.1	Dry Gas Meters	15
	6.1.2	Stack Sample Rotameter	15
	6.1.3	Gas Analyzers	
6.2	Test M	Aethod Procedures	
	6.2.1	Leak Check Procedures	16
		Tunnel Velocity / Flow Measurement	
	6.2.3	PM Sampling System Proportionality (5G-3)	16

APPENDICES

Data and Calculation Forms	A
Laboratory Operating Procedure	B
Sampling Proportionality Results	Ċ
Calibration Data	D
Drawings and Specifications	
Operator's Manual	
Unit Pre-Burn Documentation	G
Photographs	
Drawings of stack gas sampling train and dilution tunnel system	I
Comparison between Evolution and Atmosphere fireplace	I

Issued: November 17, 2006

1.0 INTRODUCTION

1.1 <u>GENERAL</u>

From September 19th to September 22th, Intertek, Lachine, Québec, conducted tests on the FP8 non-catalytic fireplace from Foyers Valcourt, to determine compliance with U.S. EPA emissions regulations.

Tests were conducted by Eric Lafontaine. The tests were conducted at the Intertek laboratory located at 1829, 32nd Avenue, Lachine, Quebec. The laboratory elevation is 860 feet above sea level. Tests were conducted to EPA Method 28 and 5G-3 criteria, July 1st, 1999.

1.2. TEST UNIT DESCRIPTION

The FP8 is a non-catalytic unit having air combustion intakes located on the right side below the door of the unit with its control located at the same place. The firechamber is lined with an insulating pad covered with a stainless steel sheet. A double shield is present above the firechamber.

1.3. <u>RESULTS</u>

The unit as tested, produced a weighted average emissions rate of 3.96 grams/hour and did not exceed any of the emission rate caps specified in the EPA regulations. The unit thus meets EPA certification requirements for 1990.

1.4. PRETEST INFORMATION

The test unit was received at Intertek in Lachine, Québec in September from the client. The unit was inspected upon receipt and found to be in good condition. It was set up, following the manufacturer's instructions.

Following assembly, the unit was placed on the test stand and the instrumented thermocouples were hooked up to our logging system. Prior to emission testing, a ten (10) hours break-in period was performed during which the unit was set to operate at high to medium burn rate. During the break-in period, the unit was found to operate satisfactorily.

Following inspection of the unit, the chimney system and laboratory dilution tunnel were cleaned using standard wire brush chimney cleaning equipment.

On September 19,2006, the unit was set-up for testing.

Issued: November 17, 2006

1.5. <u>REPORT ORGANIZATION</u>

This report includes summaries of all data necessary to determine compliance with the regulations.

2.0 SUMMARY OF TEST RESULTS

2.1 <u>EMISSIONS</u>

Run Number	Test Date	Burn Rate (kg/hr)	Adjusted Emission Rate (g/hr)	Heating Efficiency (% Overall)
1	19-09-2006	0.987	2.526	n/a
2	20-09-2006	0.907	3.666	n/a
3	21-09-2006	1.289	4.449	n/a
4	22-09-2006	3.059	4,602	n/a

2.2. WEIGHTED AVERAGE CALCULATION

Run Number	Burn Rate	Adjusted Emission Rate g/hr	(OHE)	Output (BTU/hr)	Prob	(K) Weighing Factor
2	0.907	3.666	n/a	10936.79	0.3039	0.3665
1	0.987	2.526	n/a	11901.44	0.3665	0.3055
3	1.289	4.449	n/a	15543.02	0.6094	0.6187
4	3.059	4.602	n/a	36886.03	0.9852	0.3906
		Sum:	1.68126			

Weighted Average Emissions Rate: 3.9644. g/hr

Issued: November 17, 2006

2.3 TEST FACILITY CONDITIONS

	Room Temperature		Barometric pressure		Relat humi		Air Velocity		
Run Number	Before (F)	After (F)	Before (in.Hg)	After (in.Hg)	Before (%)	After (%)	Before (ft/min)	After (ft/min)	
1	82	81	29,65	29,65	51	51	9	9	
2	81	81	29.65	29,63	48	46	4	4	
3	81	81	29,95	29,95	41	34	9	9	
4	83	87	30,15	30,15	39	46	4	9	

2.4. <u>FUEL QUALITIES</u>

	P	re-test Loa	d			Test	Load		
Jun Number	Loading Weight Wet Basis (Ibs)	Moisture Content Dry Basis (%)	Coal bed Weight (Ibs)	Weight Wet Basis (Ibs)	Density Wet Basis (Ibs/ft ³)	Moisture Content Dry Basis (%)	Piece Length (in.)	Number of 2 X 4's	Number of 4 x 4's
1	11.21	20.3	2.10	10.45	35.487	20.0	12.188	2	2
2	11.8	20.8	2.10	10.4	34.789	20.0	12.375	2	2
3	12.54	22.2	2.85	11.53	39.659	20.5	12.188	2	2
4	11.52	19.3	2.50	10.73	33.756	19.3	12,125	2	2

2.5 DILUTION TUNNEL FLOW RATE MEASUREMENTS AND SAMPLING DATA (5G-3)

Average dilution tunnel measurements				Sample Data				
Run Number	Burn Rate (Min)	Volumetric Flow Rate (dscf/min)	Total Temperatures (°R)	Volume (DS	•	ca	culate tch ng)	
		(usc/mm)	(")	1	2	1	2	
1	240	138,83	573	29,98	22,69	5,4	4,0	
2	260	148,75	573	34,60	25,26	9,4	6,3	
3	202	146,69	580	24,67	18,67	8,4	6,1	
4	80	133,78	632	10,18	7,52	3,7	3,0	

2.6 DILUTION TUNNEL DUAL TRAIN PRECISION

Run	Sample	e Ratio	Total Emission (g)		
Number	Train 1	Train 2	Train 1	Train 2	% Deviation
1	1111,35	1468,29	6,001	5,873	0,45%
2	1117,89	1530,88	10,508	9,645	1,78%
3	1201,01	1586,91	10,089	9,680	0,86%
4	1050,90	1422,33	3,888	4,267	1,93%

2.7 GENERAL SUMMARY OF RESULT

Run Number	Burn Rate (kg/hr)	Average Surface Temperature (F)	Change in surface Temperature (F)	Initial Draft (in. H ² O)	Primary Air Setting	Run Time (min)
1	0,987	461	-64,6	0,065	0.112" opened	240
2	0,907	457	-89,6	0,060	0.112" opened	260
3	1,289	489	-28,0	0,065	0.924" opened	202
4	3,059	594	35,4	0,090	Fully opened	80

AIR INTRODUC	П	OUTLET			
Identification	Туре	I _{min}	I _{max}	Controlled	(sq. in.)
Α	Secondary		2.0	No	1.56
В	Main	0.1	2.76	Yes	6.56
С	Secondary		.11	No	.012

Legend:

Identification:	Tag name refers to drawings in Appendix E, section airflow pattern	
Type:	Characterisation of air intake	
I _{min:}	Minimum air intake of a particular air channel	
I _{max:}	Maximum air intake of a particular air channel	
Controlled:	Determines if a provision for air control is present	
Outlet:	Total air outlet of a particular air channel	
NOTE:	Surfaces are expressed in sq. inches	

3.4 OPERATION DURING TEST

Run #1:

This run lasted 240 minutes. It was performed on September 19th, 2006. The burn rate achieved is a Category 2 with 0.987 kg/hr.

Refer to the front page of test run data #1 in Appendix A for the detailed test sequence.

Run #2:

This run lasted 260 minutes. It was performed on September 20th 2006. The burn rate achieved is a Category 2 with 0.907 kg/hr.

Refer to the front page of test run data #2 in Appendix A for the detailed test sequence.

Run #3:

This run lasted 202 minutes. It was performed on September 21th 2006. The burn rate achieved is a Category 3 with 1.289 kg/hr.

Refer to the front page of test run data #3 in Appendix A for the detailed test sequence.

Issued: November 17, 2006

Run #4:

This run lasted 80 minutes. It was performed on September 22th 2006. The burn rate achieved is a Category 4 with 3.059 kg/hr.

Refer to the front page of test run data #4 in Appendix A for the detailed test sequence.

Issued: November 17, 2006

3.5 START-UP OPERATION

3.5.1 Procedure for FP8, slow burning combustion

3.5.1.1 Stove lighting: 25% of load.

Place crumpled newspaper on ³/₄ of the surface of the bottom of the stove starting from the back and crisscross wood over the paper leaving some space between the wood pieces. Light up and leave the door ajar by half inches for 1 minute then close the doors with the air intake fully open.

3.5.1.2 Pre-heating of the stove:

- a. When one pound of the lighting load left toss about the ashes and add all the wood for pre-load in a pyramid shape leaving air space between each piece. Pieces are 10" long. Close the door with the primary air intake open at 0.112".
- b. When the weight is down to 6.5 pounds close completely the primary air intake. Stir the fire as needed to reach a good charcoalization and let burn until the weight is down to 25% of the load.
- c. Place the primary air intake fully open and open the doors, carefully crush the ashes and spread them evenly on the whole surface of the bottom of the stove. Place the test load as far to the back as possible. Close the doors and leave the primary air intake fully open for 5 minutes before closing it back.

Intertek ETL SEMKO

Issued: November 17, 2006

3.5.3 Procedure for FP8 semi-rapid burning combustion

3.5.3.1 Stove lighting: 25% of load.

Place crumpled newspaper on ³/₄ of the surface of the bottom of the stove starting from the back and crisscross wood over the paper leaving some space between the wood pieces. Light up and leave the door ajar by half inches for 1 minute then close the doors with the air intake fully open.

3.5.3.2 Pre-heating of the stove:

- d. When one pound of the lighting load left toss about the ashes and add all the wood for pre-load in a pyramid shape leaving air space between each piece. Pieces are 10" long. Close the door with the primary air intake fully open.
- e. At 10 lbs close the primary air intake to leave an opening of 0.924". Stir the fire as needed to reach a good charcoalization and let burn until the weight is down to 25% of the load.
- f. Place the primary air intake fully open and open the doors, carefully crush the ashes and spread them evenly on the whole surface of the bottom of the stove. Place the test load as far to the back as possible. Close the doors and leave the primary air intake fully open for 5 minute before closing it back.

Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt Issued: November 17, 2006

3.5.4 Procedure for FP8 rapid burning combustion

3.5.4.1 Stove lighting: 25% of load.

Place crumpled newspaper on $\frac{3}{4}$ of the surface of the bottom of the stove starting from the back and crisscross wood over the paper leaving some space between the wood pieces. Light up and leave the door ajar by half inches for 1 minutes then close the doors with the air intake fully open.

3.5.4.2 Pre-heating of the stove:

- g. When one pound of the lighting load left toss about the ashes and add all the wood for pre-load in a pyramid shape leaving air space between each piece. Pieces are 10" long. Close the door with the primary air intake fully open.
- h. Stir the fire sometime to reach a good charcoalization and let burn until the weight is down to 25% of the load.
- i. Open the doors carefully crush the ashes and spread them evenly on the whole surface of the bottom of the stove. Place the test load as far to the back as possible. Close the doors and leave the primary air intake fully open.

Issued: November 17, 2006

4.0 <u>SAMPLING SYSTEMS</u>

4.1 SAMPLING LOCATIONS

(Particulate) Samples are collected from the dilution tunnel at a point 20 feet from the tunnel entrance. The tunnel has two elbows and two mixing baffles in the system ahead of the sampling section. The sampling section is a continuous 13-foot section of 6-inch diameter pipe straight over the entire length. A standard pilot tube located 60 inches from the start of the sampling section determines tunnel velocity pressure. Thermocouple is installed on the pilot tube to measure the dry bulb temp. MC is assumed, as allowed, to be 4%. Tunnel samplers are located 60 inches downstream of the pilot tube and 36 inches upstream from the end of this section.

4.2 DRAWINGS

Various drawings of the stack gas sampling train and of dilution tunnel system are found in Appendix I.

Issued: November 17, 2006

Report No. 3105271 Foyers Valcourt

4.3 EMISSIONS/EFFICIENCY TESTING EQUIPMENT LIST

ITEM DESCRIPTION	<u>WH #</u>	MANUFACTURER	MODEL	<u>SERIAL #</u>	MEASUREMENT INCERTAINTY
1. CO, CO ₂ & O ₂ Analyzer	180-169	NOVA	7800CP3A	3819	±10%CO,±5%CO2,±1%O2
2. Dry Gas Meter 1	180-175	American Meter Co. Ltd	DTM-200A	96X547016	Refer to Equip. File
3. Dry Gas Meter 2	180-176	American Meter Co. Ltd	DTM-200A	96X547017	Refer to Equip. File
4. Rotameter (1)	180-092	Omega	FL3839ST	64605	Refer to Equip. File
5. Rotameter (2)	180-131	Omega	FL3839ST	092489	±5% fsd
6. Hot Wire Anemometer	180-414	Omega		Q117881	Refer to Equip. File
7. Inclined Manometer	180-139	Dwyer	125-AV		± 0.0025 in W
8. Pitot Tube	180-184		160S-18		Refer to Equip. File
9. Pitot Tube	180-290		160S-18		Not Applicable
10. Pressure gages (2)	180-311/180-312	Basco	0-15 PSI		Refer to Equip. File
11. Vacuum gages (2)	180-362/180-363	Basco	-30 - 0 in. Hg		Refer to Equip. File
12. Draft Indicator	180-332	Dwyer	2000-00	W42F	Refer to Equip. File
13. Scale, 1000lbs Cap./Record.	180-130	Рарр	30" x 30"		±0.2lb
14. Readout for 1000lbs Scale	180-129	Papp	UMC600AAAC	L6990	Not Applicable
15. Scale, 8 kgs Capacity	180-280	Mettler	PB8001-S	826741	Refer to Equip. File
16. Analytical Balance	180-170	Ohaus	AP310S-0	1114501141	± 0.0001g
17. Diaphragm Pumps (2)	180-125	Barnant	400-1901	L94001630	Not Applicable
	180-126	Barnant	400-1901	L94001743	Not Applicable
18. Gases; Calibration, Zero,					
Span	180-265	Matheson			Refer to Equip. File
19. Moisture Meter	180-219	Delmhorst	J2000	14740	Refer to Equip. File
20. Humidity Chamber	180-160	Shop Built			Refer to Equip. File
21. Dilution Tunnel	180-142	Shop Built			Refer to Equip. File
22. Reference Dry Gas Meter	180-304	American Meter	DTM-200A	02C056244	$\pm 0.1 \deg C$
23. Spirometer	180-161	Shop built			±0.01 cu ft
24. Data Acquisition System	180-004	Fluke	2240-B	985022	$\pm 0.1 \deg C$
25. Drying Oven	180-159 180-157 & 180-	Quincy Lab. Inc.	21-350	9502106	Refer to Equip. File
26. Filter Holders, 47 mm (8)	158	Millipore	SX0004700		Refer to Equip. File
27. Type J T/C Plugs		Gordon	HMP		Refer to Equip. File
28. Sling Psychrometer	180-317	Omega	RHSP	A4Q	±5% RH
29. Dessicator cabinet	180-162	Nalgene	5317-0180		Refer to Equip. File
30. Exhaust blower	180-141				Refer to Equip. File
31. Drying columns	180-143	W.A. Hammond			Refer to Equip. File
	180-144	Drierite Co.	26800		Refer to Equip. File
32. Impinger train	180-140	Shop Built			Refer to Equip. File
33. Mercurial Barometer	180-300	Princo	508-794		Refer to Equip. File

Issued: November 17, 2006

5.0 SAMPLING METHODS

5.1 PARTICULATE SAMPLING

Particulates were sampled in strict accordance with EPA Method 5G-3. This method uses two identical sampling systems with Gelman A/E 61631 binder free, 47 mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run.

6.0 **QUALITY ASSURANCE**

6.1 INSTRUMENT CALIBRATION

6.1.1 Dry Gas Meters

At the conclusion of each test program the dry gas meters are verified using the reference dry gas meter. This process involves sampling the train operation for 1 cubic foot of volume. With readings made to .001 ft³, the resolution is .1%, giving accuracy higher than the $\forall 2\%$ required by the standard.

6.1.2 Stack Sample Rotameter

The stack sample rotameter is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotameter in series with one of the dry gas meters for 10 minutes with the rotameter at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions.

6.1.3 Gas Analyzers

The continuous analyzers are zeroed and spanned before each test with NBS traceable gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a five point calibration check is made and must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt Issued: November 17, 2006

6.2 <u>TEST METHOD PROCEDURES</u>

6.2.1 Leak Check Procedures

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train. Pre-test and post-test leak checks are conducted with a vacuum of 5 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During, these tests the vacuum is typically less than 2 inches of mercury. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.

6.2.2 <u>Tunnel Velocity/Flow Measurement</u>

The tunnel velocity is calculated from a center point pilot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in EPA Method 1. Final tunnel velocities and flow rates are calculated from EPA Method 2, Equation 6.9 and 6.10. (Tunnel cross sectional area is the average from both lines of traverse.)

Pilot tubes are cleaned before each test and leak checks are conducted after each test.

6.2.3 Pm Sampling Proportionality (5g-3)

Proportionality was calculated in accordance with EPA Method 5G-3. The data and results are kept in file for future reference.

Tested by:

En hafatri

Éric Lafontaine, Tech. Physical Testing

Verified by:

enh

Claude Pelland, P. Eng. Regional Manager Physical Testing

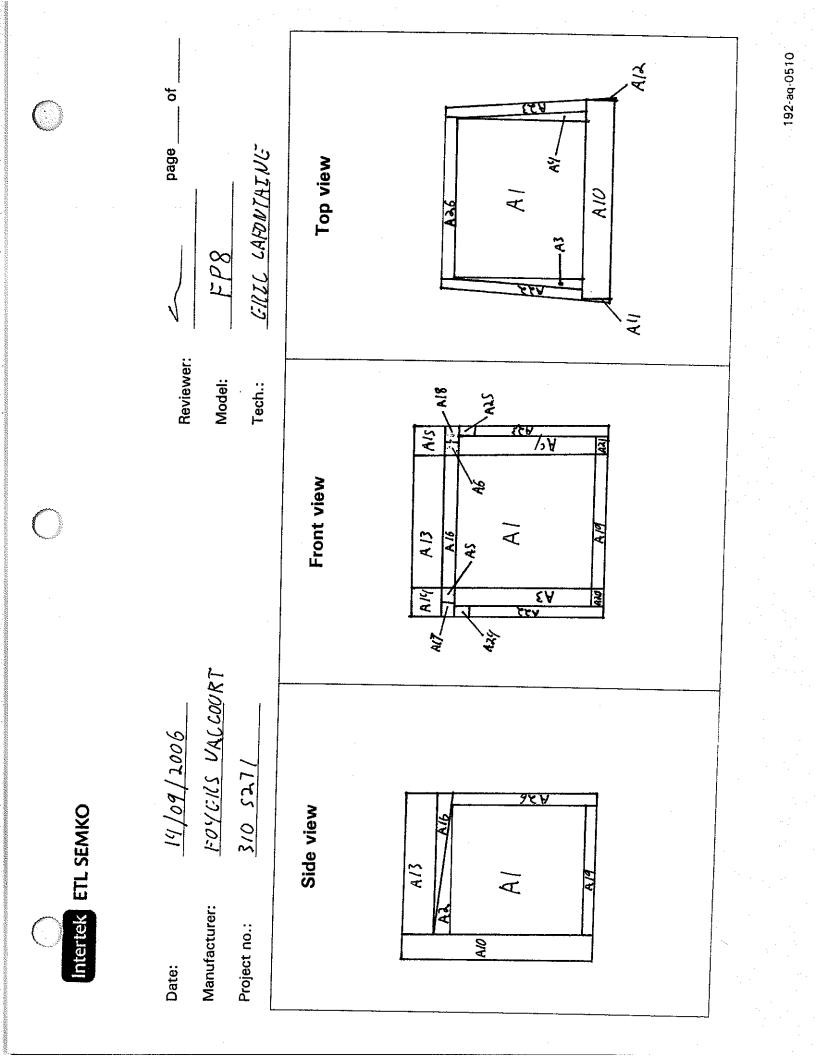
Written by:

arole Soucher

Carole Boucher Building Material's Report Writer

Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt


Issued: November 17, 2006

APPENDIX A Data and Calculation Forms

[Type of	[
[Stove:	2
						Weighted .	Average	1=cat	
								2=noncat	
آ ^و	·							3=pellet	
			<u>(E)</u>						
			Ave.		Heat		(K)		
		Burn	Emission		Output		Weighting		
	Test No.	Rate	Rate g/hr	(OHE)	(BTU/HR)	Prob.	Factor	(KxE)	KxOHE
	2	0.907	3.666		10936.79	0.3039	0.3665	1.3435	0.00
	1	0.987	2.526		11901.44	0.3665	0.3055	0.7717	0.00
	3	1.289	4.449		15543.02	0.6094	0.6187	2.7526	0.00
	4	3.059	4.602		36886.03	0.9852	0.3906	1.7974	0.00
					0.00	1.0000	0.0000	0.0000	0.00
					0.00	1.0000	0.0000	0.0000	0.00
					0.00	1.0000	0.0000	0.0000	0.00
					0.00	1.0000	0.0000	0.0000	0.00
					0.00	1.0000	0.0000	0.0000	0.00
					0.00	1.0000	0.0000	0.0000	0.00
ļ	4				0.00				
ļ							1.68126	6.6652	0.00
ļ									
ļ									
l									
~									
	ghted average emissi							3.9644	
L		Weighted	Average OH	E				0.00	

3105271....

L

\bigcirc				•
	Intertek ETL	SEMKO		
	Date:	14/09/2006	page	
	Manufacturer:	FOYERS VALCOURT	Model: <u>FP8</u>	
	Project no.:	310 5271	Tech.: <u>ERIC LAFONTA</u>	ENE
	Addition	Substraction		
	Volume: A1	L: 17.500 in. W: 12.375 in. H: 11.000 in.	L*W*H 2382.19 in.cu.	
	H W			
	Volume: A2 W	L: 17.500 in. W: 12.375 in.	L*W*H/2	
\cap	- L H	H: 2.250 in.	243.63 in.cu.	
Sec. 2	Volume: A3+A4	L: 1.250 in.	L*W*H/2	
	w н	W: 12.375 in. H: 11.000 in.		70.2 .cu.
	L Volume: A5+A6	L: 1.250 in. W: 12.375 in.	Pyramide (L*H*W/3)	
	H L	H: 2.250 in.		.20 .cu.
	Volume Total:	A1+A2+A3+A4+A5+A6	A1+A2+A3+A4+A5+A6	
		V.T. in.cu. 2819.22	V.T. cu.f. 1.631	

C

\bigcirc	Intertek ETL	SEMKO	
	Date:	14/09/2006	page
-	Manufacturer:	FOYERSVALCOULT	Model: <u>FP8</u>
	Project no.:	310 5271	Tech.: <u>LERIC CAFONIAINE</u>
	Addition	Substraction	
	Volume: Atotal 1 H	L: 19.875 in. W: 17.188 in. H: 18.250 in.	l*w*h 6234.41 in.cu.
	Volume Atotal 2	L: 1.875 in. W: 17.188 in. H: 18.25 in.	l*w*h/2 588.1519 294.076 in.cu. in. cu. A.T. 6822.562
C	Volume: A10 H	L: 22.875 in. W: 3.313 in. H: 18.25 in.	A.T. 6822.562 I*w*h 1383.074 in. cu.
	Volume: A11+A12 L H	L: 0.375 in. W: 3.313 in. H: 18.25 in.	l*w*h/2 11.337 in. cu. 22.673
	Volume: A13 H W	L: 19.875 w: 13.75 h: 4.75	in. cu. I*w*h 1298.086 in. cu.
	Volume: A14+A15 L H W	L: 1.875 in. W: 13.75 in. H: 4.75 in.	l*w*h/2 61.230 in. cu. 122.461
	Volume: A16 L H W	L: 19.875 w: 13.875 h: 1.875	in. cu. l*w*h/2 258.530 in. cu.

0				
	Intertek ETL S	EMKO		
	Date:	14/09/2006	page	-
	Manufacturer:	FOYERS VACCOURT	Model: <u>FP8</u>	
	Project no.:	310 5271	Tech.: <u>FRIC CAFONTAIN</u>	16
	Addition	Substraction		
	Volume: A17+A18	L: 1.5 in. W: 13.625 in.	Pyramide (L*H*W/3)	
	L W	H: 1.875 in.	12.773 in.cu. 25.54688 in.cu.	
	Volume: A19	L: 17.5 in.	J*w*h	
	H	W: 12.5 in. H: 1.188 in.	259.875 in.cu.	
	Volume: A20+A21		l*w*h/2	
\bigcirc	L W	L: 1.5 in. W: 12.5 in. H: 1.188 in.	11.138 in.cu. 22.275 in.cu.	
	Volume: A22+A23 H	L: 1.188 in. W: 12.375 in. H: 11.375 in.	l*w*h 167.230 in.cu. 334.459 in.cu.	
	L Volume: A24+A25		l*w*h/2	
	H W	L: 1.188 in. W: 12.375 in. H: 1.875 in.	27.565 in.cu. 55.131 in.cu.	
	Volume: A26		l*w*h/2	
	H L W	L: 18.25 in. W: 1.188 in. H: 11.375 in.	123.311 in.cu. 246.621 in.cu.	
		ATotal1+ATotal2-(A10+A11+A12+ A13+A14+A15+A16+A17+A18+ A19+A20+A21+A22+A23+A24+ A25+A26) V.T. in. cu. 2793.829	V.T cu. ft. 1.617	

 \bigcirc

page ____ of _

Date:

Manufacturer:

Project no.:

<u>14/09/2006</u> FOYGRS VALCOURT 310 5271

> (), S (5% max.)

Reviewer:	
Model:	FP8
Tech.:	EREC LAFONTAINE

		ADDITION	SUBTRACTION		
	ft**3	Volume	ft**3	Volume	
V measured	1,63	A/+A2+A3+A4+AS +A6	1,62	A TOTACI + A TOTACZ-(A0 AII+AIZ+AI3+AI4+AI5+ A16+AI7+AI8+A19+A20 AZI+AZZ+AZ3+AZ4+ AZ5+AZ6)	
V ashlip			•		
%			<u> </u>		
	1,63	Alt AztA 3 + A4 + AS + A6	1,62	ATOTAC 1 + ATOTAC 2 (AIDA AII + A/2 + A/3 + A/4 + A/5+ A/6 + A/7 + A/8 + A/9 + A20 A21 + A22 + A23 + A24 +	
V usable				A25+A26)	
Usable firebox volume:	1,624				
Test load weight:	11,37	Minimum:/ <i>l</i>	7,23 N	laximum: 12,51	

INTERTEK TESTING SERVICES NA Ltd.

SFBA EPA ADJUSTED EMISSION RESULTS

	· · · · · · · · · · · · · · · · · · ·	SPOA DPA AD	COSIED EMIS	SION RESULTS		
						V
w	Manufacturer:	Foyers Valc	ourt	RESULTS		
	Model:	FP8				
	Date:	19/09/2006		AVERAGE ADJUSTED EMISSION	N RATE:	alay (1997) - 2012 (33)
	Run:	1				
	Project #:	3105271		Burn Rate (Dry kg/hr)	:	
	Test Duration:	240				
	(minutes)			Category II		
						: •
	PRESSURE FACTOR:		0.99098	BAROMETRIC PRESSURE		· · ·
					Average:	29.65
	TEMPERATURE FACTORS				Start:	29.65
		DGM #1:	0.98003		End:	29.65
		DGM #2:	0.98076			
				DRY GAS METER VALUES		
	VOLUMES SAMPLED			DGM #1	Final:	506.758
		DGM #1:	29.98034		Initial:	475.733
		DGM #2:	22.69222			
				DGM #2	Final:	949.858
	TOTAL TUNNEL VOLUME	(scf):	33318.746	ډ.	Initial:	926.274
سبي						
فرين	SAMPLE RATIOS			TEMPERATURES (DEG. RANKIN)	-
	Sample Train 1:		1111.353		DGM #1:	538.760
	Sample Train 2:		1468.290		DGM #2:	538.360
	TOTAL EMISSIONS			CALIBRATION FACTORS		
	Sample Train 1 (g):		6.0013		DGM #1:	0.9950
	Sample Train 2 (g):		5.8732		DGM #2:	0.9900
						0.9900
	EMISSION RATES			TUNNEL FLOW RATE:		138.828
	Sample Train 1 (g/hr)	:	1.5003			
	Sample Train 2 (g/hr)	:	1.4683	PARTICULATE CATCH (mg)		·
				Sample Train 1:		5.4000
	ADJUSTED EMISSION RAT			Sample Train 2:		4.0000
	Sample Train 1 (g/hr)		2.5486			
	Sample Train 2 (g/hr)	:	2.5034			· · · ·
						
	DEVI	ATION:	0.45%			

In	ter	tek	ETL	SEM	KO
1.000	L 🗸 🤉	CC IN			

Date: 19/09/ 2006		Page of
Manufacturer: 1-046RS	<u>VALCOUR</u> T	Model: FP8
Project #: <u>3/0 5271</u>	Run:	Tech: Internet Content of the Internet of the

COMMENTS

	8:46 START FIRE WITH K	INDLING, DOOR CLOSE					
	AFTER I MINUTE.						
	9:00 STER THEFERE, ADD PRETEST LOAD						
	9: SS TEST AZIC CONTROL	$C/\sum T \sum A_{ij}/$					
	1033 1031 AZIL CONTROC	SCILNO					
	10:58 ADD TEST COAD						
		· · · · · · · · · · · · · · · · · · ·					
\sim	11:03 TRAP CLOSE AFTER SMIN						
	· · · · · · · · · · · · · · · · · · ·						
		TEST LOAD CONFIGURATION					
\bigcirc							

- latogly and	Intertek	ETL SEM	1KO			
Date: <u> 9/09/2/106</u>	······································	<u></u>		Page	of	
Manufacturer: FOYGUS U	ALCOUR	T	Model:	FP8		
Project #: <u>3/0 \$27/</u>	Run:(2/	Tech: <u><i>[][[]</i>[</u>	CAFONTAL		\sim
	j	Pre/Post Ch	ecks			
Moisture Meter Calibration Check:		Time:	x:	- Y:	12:	22:
Facility Conditions:				Pre-Test	:	Post-Test
Air Velocity	******			SO fpm	< >	0
Smoke Capture Check		*****		2/5		
Wood Heater Conditions:			L	-11	0	<u> </u>
Date Wood Heater Stack Cleaned		*****	18.09	- 2006]	
Date Dilution Tunnel Cleaned	**********************	*******		- 2006		
Induced Draft Check.				005	<0,0	ns
Tunnel Velocity	*****************************	*****	. 0			
Flow Rate 140 cfm ±10%					138.8	2) P
Pitot Leak Check:					0	100
Side A	*****		0	1/2	Oh	
Side B		*****		rk l		
Temperature System:			<u> </u>	1		
Ambient (65°-90°F)				Г	<u> </u>	/
Wood Heater Surface (±125°F)					82,0) °F
Proportional Checks:					-67,(<u>ን</u> ም
CO Analyzer Drift Check				Г		
CO2 Analyzer Check				·····	<u> </u>	
h Analyzer Check					OK	
hermocouple check					OK	
Sampling Train ID Numbers:	********************************		************************************		OK	
			Train	1 	Train 2	······
robe			157			-13
ilter Front			<u> </u>		3	
iter Back			2		4	
Iter Thermocoupie			30		33	
lter 5G-3 (<90°F)	* 19 *** * 5 1 1 ***********************		81		85	
Termocouple Identification Numbers: Flue1	Der-					
Dilution Tunnel Wet Bulb4	Тор		Dilution T Back	unnel Dry Bulb		
Right Side	Left Side		Bottom	************************************		

192-L-0603

Date: 19/09/2006	intertek ETL SE	
Manufacturer: FOYERS	VALCOURT	Page of Model:/ ⁵ / 9
Project #: <u>3/0 \$27/</u>	Run: 0 /	Tech: EllZC LAFONTAZUG Reviewer:

SAMPLING EQUIPMENT CHECK OUT

Leakage Checks Tunnel Samplers

	SYSTEM 1		SYSTEM 2	
Unplugged Flow Rate = .25cfm	Pre-Test	Post-Test	Pre-Test	Post-Test
Vacuum (inches Hg.)	S	S	S	(
Final 1 minute DGM (ft ³)	475,734	506,766	926,274	949.870
Initial 1 minute DGM (ft ³)	475,733	506,765	926,273	1 1 1
Change © (ft ³)	0,001	0,001	0,001	949,869
Allowable leakage .04 x Sample rate or .02cfm	0,005	0.005	0,004	0,001
Check OK	UK	0h	OK	0,004

Leakage Checks Flue Gas Sampler

Plugged Probe	Pre Test	Post Test
Vacuum (inches Hg.)	S	(
Rotometer Reading (mm)	10	10
Flow Rate (CFM)	0,001	0,001
Allowable (.04 x Sample Rate)	0,005	0,00 S
Check OK	0 k	0/003

	Intertek ETL SEM	IKO
Date: <u>19/09/2006</u>		Page of
Manufacturer: VALCOUI	<u>?</u> [Model:
Project #: 3/0 \$27/	Run: 0/	Tech: <u>EILTC_LAFONTALME</u> Reviewer:

Pre-Test Scale Audit

Scale Type	Audit	Audit Weight		Measured Weight	
Platform	9,40	lbs, Class F	4.40	lbs	
Wood	2,20	lbs, Class F	2,20	lbs	
Analytical	100	mg, Class S	100	mg	

LIMITS OF WEIGHT RANGES

ANALYTICAL SCALE:	
PLATFORM SCALE	20%-80% of ideal test load weight, ± 0.1 lbs or 1%
WOOD SCALE	20%-80% of ideal test load weight, ± 0.1 lbs or 1%

10/00/2001	Intertek ETL SE	ИКО
Date: <u>19/09/2006</u>		Page of
Manufacturer: <u>FOYERS UA</u>	LCOURT	Model: <i>FP8</i>
Project #: <u>3/0 \$27/</u>	Run:	Tech: <u>L'ILIC (AFOUTAL</u> WReviewer:

CONTINUOUS ANALYZERS

Pre-Test (Adjust and Record)

	ZERO		SPAN		CAL. (Record Only)	
со	0.00	0.00	1.74	1.74	0.55	0511
CO2	0.00	0.00	17.12	17.1	4.49	505
O ₂	00.0	00.0	21.2	21.2	6.6	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

		Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	O K ?	Not OK*
\bigcirc	СО	0.02	1.78	0.57	0,02	0.04	0,02	/	
	CO ₂	0.02	16.89	4.43	0,02	0,23	0,06	V	
	O 2	00.0	21.2	6.6	00,0	0.0	0.0	V	

• Greater than 5% of the range used.

Date: <u>19/09/200</u>	Intertek	ETL SEMKO	Page of
Manufacturer: FOYE	RS VALCOURT	Model:	P8
Project #: <u>3/0 \$27</u>	/ Run: <u></u>	Tech: <u>67776 6</u> TECh: <u>67776 6</u>	AFONTAING Reviewer:
FUEL DESCRIPTION:	F	RE-TEST LOAD	
Kindling weight: <u>3.50</u> 1	os. Consisting of: <u>D</u>	DUGLAS FIL	Fire lit Time:
Pre-test load weight: 11.2	lbs. Consisting of:	2X4X 10 1/8 inches	Time loaded: 9300
Pre-test moisture content: Co	rrected Dry: 20,3 %	Wet:%	
Test Air Control Settings:	CLOSCII	TO INZINE MI	<u>117</u>
Test Unit Fan Settings:	11 1 1 1		Time:
TEST LOAD			1 ime:
	Lower Limit	Ideal	Upper Limit
Test Load Weight:	10.28 lbs	3. 11.42 lb	
Fire Box Volume: Load Volume: Number of Spacers	$\frac{1}{0}, \frac{6}{2}$, $\frac{1}{7}$ ft. $\frac{1}{12}$:x12x	³ Loading Density:	$\frac{\text{inches}}{35, 487}$ $\frac{1}{1}$
		5 Load Density:	6, 4/34 lbs/ft ³
Piece Size	Weight	Meter Moisture Co	ontent (% dry)*
1/2 x 3/2 x/2% in.	1.59 lbs.	20.2 % 21.1	% 21.0 %
$\frac{1\frac{1}{2} \times 3\frac{1}{2} \times 1\frac{1}{2}}{3\frac{1}{2} \times 3\frac{1}{2} \times 1\frac{1}{2}}$ in.	$\frac{1.36}{100}$ lbs.	19.3 % 19.0	
$3'_{\rm A} \times 3'_{\rm A} \times 12'_{\rm h}$ in.	$\frac{2.62}{3./9}$ lbs.	<u>19.9 % 19.0</u> 21.1 % 205	% 19.1%
x x in,		21.1 % 20.5	<u>%</u> <u>21,2</u> % % %
x x in.	lbs.	%	<u>%</u> % %
x x in.	lbs.	%	% %
*uncorrected range = 17.9	1% to 23.1%		
TEST LOAD WEIGHT: AVERAGE MOISTURE	CONTENT:		<u>,95</u> kg.
CORRECTED TO TWO P COAL BED RANGE:	N: (DRY) <u>& U, U</u> %	(WET) <u>/6./</u> %	
$\underline{2.09}$ lbs. to	2.6/ Ibs.	(20% to 25% of test load)	
TEST CHARGE: Time loaded: 10:58		_lbs. Coal bed weight = $\underline{20}$	1 th of test load and it
CHARCOALIZATION:			
		· · · · · · · · · · · · · · · · · · ·	+poor

C

C

192-0-0603

ntertek	ETL	SEMKC)
Date:/	9/09	1/2006	

page____ of ___

Manufacturer: VALCOUICT

Project #: 3/0 \$27/

Run:

FP8 Model:__

Tech: CAPONTAINL- Reviewer:

_ grams

DILUTION TUNNEL PARTICULATE SAMPLER DATA FILTER TYPE: Geiman 47mm A/E

	Samples	in Desiccator D	ate: Tim	e:
		SYSTEM 1	SY	STEM 2
	Probe and Front Half Housing # 157	Numbers	Probe and Front Half Housing # /S7-/3	Filter Numbers 3 + 4
Post Test Weight:	33,24/2 gram	s 0,2330 grams	33,4942 grams	0,2333 grams
Pre Test Weight:	33,240/ gram	s 0,2287 grams	33,4937 grams	0,2298 grams
Gain:	0,001/ gram	s 0,0043 grams	0,000 S grams	0,0035 grams
	al	bl	a2	b2 ·

Total Gain:

a1 + b1 = 0.0054 grams a2 + b2 = 0.0040

			SYSTEM	M I 1		SYSTE	M 2		
	-test ight cord	Probe & Housing Number	Front Filter Number	Back Filter Number	Probe & Housing Number	Front Filter Number	Back Filter Number	ТЕМР	HUMI D
Date	Time	157	1	2	157-13	3	4	EF	%
18/09/06	18:30	33,2398	0.1071	0.1216	33.4935	0.1/75	0.1/24		
19/09/06		33,2401	0.1072	0.12/5	33.4937				
		Total		[L Total				

			SYSTEM 1			SYSTEM	2]	
We	i-test ight cord	Probe & Housing Number	Filter	nbined Weight mber	Probe & Housing Number	Filter	nbined Weight Imber	TEMP	HUMI D
Date	Time	157	1	2	157-13	3	4	EF	%
19/09/06	15:30	33,7432	0.1109	0.1223	33.5127	0.1203	0.1129		
20/09/06	7:30		0.1109	0.1223	33,4942	0.12063	0.1129		
20/09/06	15:55	33.2412	0.1108	0.1222	33.4942	0.1205	0.1128		
									

Int all and	Intertek ETL SE	MKO	
Date: <u>19/09/2006</u>		Page of	
Manufacturer: FOYERS U	ALCOURT	Model:	
Project #: 310 527/	Run:	Tech: CKIC LAFONTAURReviewer	u

PRETEST DILUTION TUNNEL TRAVERSE RUN

Barometric pressure $(P_{bar}) \xrightarrow{29,65}$ (inches Hg.) Inside diameter: Port A <u>6in</u> Port B <u>6in</u>.

Static pressure $(P_q) = 0_1 / 4_{(inches w.c.)}$

Tunnel cross sectional area: .1963Ft² Pitot tube type: Standard

Traverse Point	Position (inches)	Velocity Head Δ_p (inches H ₂ O)	Tunnel Temperature (°F)	√_∆ _p
A- Centroid	3.00	0,055	115	0,2345
B - Centroid	3.00	0,045	1/2	0,2/2/
A-1	0.40	0,055	115	0,2345
A-2	1.50	0,060	1/5	0,2449
A-3	4.50	0,053	115	0,2291
A-4	5.60	0,080	108	0,2828
B-1	0.40	0,050	1/3	0,2236
B-2	1.50	0,055	115	0,2345
B-3	4.50	0,040	114	0,2000
B-4	5.60	0,060	97	0,2449
		AVERAGE	111.5	0,2368

 $Vs = K_p C_p$ ($\sqrt{\Delta_p}$) avg. /_T_s

Where,

 C_p = pitot tube coefficient, dimension less = 0.99 for standard pitot.

 Δ_p = manometer reading (inches H₂O)

 T_s = average absolute dilution tunnel temperature (°F + 460)

 P_s = absolute dilution tunnel gas pressure or $P_{bar} + P_{qg}$

$$P_q = \text{static pressure } \underline{\text{in. } H_2O}$$

{ 13.6 }

 $M_s = 28.56$, wet molecular weight of stack gas (alternatively, it may be measured)

 $K_p = 85.49$ pitot tube constant, (conversion factor for English units)

 Δ_p avg. = average of the square roots of the velocity heads (Δ_p) measured at each traverse point.

Intertek	ETL SEMKO
----------	-----------

	Date: 19/09/ 2006		Page of
\bigcirc	Manufacturer: FOYERS	VAL COURT	Model: <u>FP8</u>
Section of the sectio	Project #: <u>3/0 \$27/</u>	Run: /	Tech: GILL LAFONTAING Reviewer:

TEST DATA LOG

RAW DRY GAS METER READINGS

	System 1	System 2
Final (ft ³)	s06,758	949.858
Initial (ft ³)	475,733	926,274

AMBIENT CONDITIONS

	Start	End
Barometer. (inches Hg)	29,65	29,65
Wet Bulb (EF)°F	69	69
Dry Bulb (EF)°F	82	82
Humidity (%)	51	51

																	KO 2.10		40 3:01		04.40		0 6.35		Elapsed Weight CO	Time loaded:	Project #: 3/0 527/		
CRTC LANCHTAT MIL																									Q Q	41	71	MKO	
ITAT N										,						·	367	378	391	ζ/γ	523	429	Sag	temp	gau Fiue				
																	32	ኖ እ	۲8	۲ (18	8/	80		Room temp.		Client:		
																	//3	114	115			118	129		Tunnel temp		Client: FOVERSVAL COUR		
3			_		\downarrow	\downarrow	_	-		_									608 3	6473			769 2			4	15225		
🕅 Pre Test					_					+	1							392 42	378 411	ths 95	323 38	287341	506 972	Side	Unit back R.	-	'AC CO		
Test																		471	460	446	377 418 374	383	052		۲ G	_	DICI	· .	
																.	409	393	380	370	374	772	347		Unit				
			-	_	_				_																Cat.	_	Date:	٠,	
🗆 Test	0																} 								Center	_	19/09	\bigcirc	
est	$\left \right\rangle$																								Gas samp Rotameter		12000	C Ô	
																								1	Dry gas meter		• • •		
														t	T										Rotam			·	
																			-						meter # 2		Run #:		
		\uparrow																t			T	+			NOMIN		01	-	
														+-	╈		6		26	1/	1	1	1	Inlet .					
													+		╎	1-	18				10		11	Outer Mari	Trans Trans				
															╈		╋						+	Temp			Sheet #		
														T				11	1)	r L	5/	1-1-	/ L / L	Ĵ Ţ		Dry gas meter # 2	# 		
					-												$\left \right $	11	5	5	10	יר ר ר	11	Jount	Temp	neter # 2			
																								lemp			9	•	
		-	+-	-					+	1	-	+		+	-	+	4	+	+	-	+	+	+	-	velo	Tun Draft			
	$\left \right $	+	+	+	╀	╇			-	+	+	+			+	-	╉	+	+	+	-	-		+	•	aft smoke	1		
107 V-060																									<u></u>	<u> </u>			

	Tec	230	220	9,10	200	190	081	170	091	150	140	130	120	110	100	90	01	70	60	05	40	30	0r	6	0		Elapsed	T		F	, . ,		
	Technician:	0.10	52.0	0.35	02.0	59.0	0.85	0.95	1.10	02.1	1.35	1.50	1.60	1.80	2.00	2.4.2	56.0	3.50	4.30	<u>ک ک</u>	6.30	7.40	8.3	ر <u>م</u>	10.4		Weight	Time loaded:		Project #:	-	Interter	
	L-R	10.97	0.90	0.87	0.87	51')	0.99	860	0.92				0.59	220		25.0						5	\sim	\sim	25.032		8	ġ.			200	S	
	ERIC (0.97 2.71 16.9 259	184	2.92	~			_	348					-	5	86.78	<u> </u>	· ·		_	_				27.7		02	100 38		160	(17,		
	A.FO	16.9		892 8 391	9`91			۲.%	16.1	631	8 51	15.7	5.5	2	2/13.9	140	[/33		1119	_	\sim	_	5 143		2 1/2		Q,	8	ר ז			Č	5
	CAFONTAING				273	16-4-55	አያና	182	794	301	3/0	32/	334	22	379	391	111	430	747	۲ S	ί, λ	399	391	502	ž	temp	Flue	1, 1					
	NG	رگر	37	የት	$\tilde{\mathcal{Y}}$	3	7	Z	83	٤3	23	128	83	2	83	28	٤3	<u>}</u>	12	28	ž	2	۲	کر	2		Room			Client:	Ë		
		101	201	101	103	104	1,01	<i>ς 0)</i>	106	107	109	110	Ξ	114	116	8/1	021	22	124	1,21	2	8/1	117	22	5%	iemp.	Tunnel			L			
		396		<i>د/1</i> 2	よん	p_{χ}^{\prime}	826	447	hSh	~ 1	181	191	5	Sad	809	8 19	LS9	989	737	777	7/0	641	592	601	73	9	Unit		-	10101	V10		
	⊠ P	409 0	4/9 0	432 0	7		469	4478478	6188	86/5	1,05			90 <u>7</u>		181	597	437		-	389	389	401	ζĵ	2	Dack	Guit			N A A			
	🛛 Pre Test	400 3	4 904	413 4	121 5	5 th 8 th							~			MAY .	1217	12%		554					434	Side	°⊑ #			100			
	št		4004					ן א	h 15h		466 6	<u>52</u> 4	~			815	125	24	5/0 3	505			7		<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Side							
		1 62/1	432	1281	3/	824	433	436	434	523	<i>درار</i> ک	111	50h	397	390	384	379	74	22	380	787	397	407	024	717	DOHOID	Unit						
						_																				- EXI	Cat			Dalc.		΄,	
	XT		\bigcirc)														ζ	\sum								Cal				19	\bigcirc	
	Test																	-7	and and a second se							KOUHIEW	Gas samp			1	your/ 64/	Carin .	
		505,483) sorta ao	502,944	589,102	500,428	6/99, 143	497,870	496,594	495325	499048	492	491,497	uri and	488.940	487,663	486,379	485,094	483,794	482497	261'181,	898'241	478,527	471.147	475,733	*1				0 0	yvu		
		5/7 281	1, OC	4 6				1, 018		γ 5 č ξ		4 8CL	497 4	2 1/ 85	21, 046		379 41	094 4							733 (
			4 5	6 S			6 51	5	4 51,	51	45 8	5	5			45 9	5	5	4 S1,	51,2	65 6	6 519		454	513		Rotam				•		
			947.927	946,966 40	066 546	266'446	944,012	943,026 40	94,042	9201HP	940.078	939,094	938,110	bt 1266	936, 149	935 71	934,193	933212	932,228	931,246	82 2028	129.269	928.294	927294	926,274	#2	Dry gas		•	NUL #.	D #.		
		40	40	40	ر/0	40	c10	40	40	40	ر10	40	01,	90	40	40	40	40	91	40	40	40	40	40	40		Rotam			k	2		
		80	79	79	7q	79	79	79	79	79	79	7q	79	79	79	79	79	7q	79	78	79	78	78	78	36	Temp Inlet	Dry gas			ľ			
		08	79	79	79	7q	79	79	79	79	79	p_{ζ}	79	79	79	79	82	82	78	32	82	78	78	82	78	Temp Outlet	meter #1						
		80	08	03	80	80	.08	08	80	<i>S</i>	18	18	18	18	19	18	18	(1	18	18	18	18	18	5.2	08	Filter Temp	1	l .		,	She		
		179	79	79	79	79	79	79	79	79	78	78	36	78	76	81	22	78	78	78	78	78	78	78	78	II I I I I I I I I I I I I I I I I I I	Dry g	1			Sheet #		
		179	79	79	79	79	79	79	78	78	78	78	78	78	78	32	28	77	178	78	82	71	78	78	22	Temp outlet	Dry gus meter #2						
		63	83	83	83	83	83	83	83	83	1,8	84	158	1,8		1, 9	184	64	12	83	5	83	1,8	58	83		-			1	of		
		000	0.050	0.056	2450'0	0.050	5500	0,0535	02020	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.0175	0.04	0.01	0.01	0.045	0.045		0.045	0,075			-			- -		
		0.075	-		5/0032	5400 0		54000	5,000			6 0.0SO	5000	500055	50 0,000		75 0.060	0.041% 0.065	0.0475 0.065	5,015 0.070	15 0.065	15 0.060	5 0.060	5005	5 0,065		Draft	1.					
192		SIOK	0	0	10	201		5015		20 05	10 0		201	5 05						100			_		-		smoke	1					
192-V-060		L	1		1		1	1	1			<u> </u>		1		1		<u> </u>		L	<u> </u>	L	<u> </u>	1	Ľ	<u> </u>			-		•		

Tech									1														240		Elansed	Tim	Proj			
Technician:												T	T						·				0,00	remaining	Weight	Time loaded:	Project #: 3/0 527/	Intertek, ETL SEMKO		
<u>L-R</u>	┝─┼╴	+			+	-	╉	╉	+	-	+	╉	-	-	_			-	-		-		29.0		8	Ř.	3/0	П		
GREC	┝━┼╸		-			╉	╈	+	-	╉	╞	╉	+										52,49		ି ନୃ	_	1125	SEM		
LAFO								+	-			+											\$ 17,2		Q.		۱.	õ		
יזאנ									T										-				254	gas	7	Ļ				
LAFONTAING		e -						-			╎		-										8/	temp,	Room		Clien			
								╎		╞													107	lemp.	Tumel		Client: FOYER VALCOURT			
	$\left \right \right $					-+	╉	+	-	-	+	+			-		 						387	ą)YER			
							╉	+	+	+	+	-	-										399		Unit		VA			
🗆 Pre Test			\uparrow				+	╋									ſ						392	R. Side			1.COU			
lest			·							╎		T											386	Side	Unit		111			
										T													428	bottom	Unit		:			
			\uparrow						1								$\left \right $	ſ						Exit	C at		Date			
\boxtimes		5															5	Γ						Center	Cat.		Date: 19/09/2006	C		
⊠ Test			+							+						$\left \right $	┢	$\frac{1}{1}$				ŀ		Rotam	Gas samp		e/10			
10 °		<u>_</u>	-						_		_	_					$\frac{1}{1}$				-		S				006	\bigcirc		
																							806,758	meter #1						
																				. *			ζh		Rotam					
·			1															T		T			\$58 th hb	#2	Dry gas		Run #:			
				$\left \right $									-		+	╀	+-	+		╁╼			94 8	ļ	Rotam		10			
		_	+	+	-					-				 -	-	+	+	╀		+	╀	+-) 79	L		{	\vdash			
	$\left \right $	_	+	╞										-	╞	+	╇	╋	+-	╀	+			ng Temp A Outlet	Dry gas meter #1					
						ļ													_	+					*					
					· .							L											08				Sheet #		*	
													ŀ										79		Dry gas meter #2		*			
																							79		eter #2					
																	T		Ţ	T			58	1-7			of			
			\uparrow	\uparrow	+		t				ţ-	ſ	T		T	T	T	╎		T	T		20,01							
		\square	1		1			\top	T	T	T	T	T	Ť		T							0.01		Drant					
192-V-(Γ			T	1		T	T	T	T	ŀ	T	1				╡	T		T			2	2	SIDOKE					
₽-V	L				. I	1		1			1		1			·							<u> </u>							

INTERTEK TESTING SERVICES NA Ltd.

SFBA EPA ADJUSTED EMISSION RESULTS

(`					1
No.	Manufacturer:	Foyers va	lcourt	RESULTS		\sim
	Model:	FP8			*	
	Date:	20/09/200	6	AVERAGE ADJUSTED EMISSI	ION RATE:	
	Run:		2		N	
	Project #:	310527	71	Burn Rate (Dry kg/h	r):	
	Test Duration:	26	50			
	(minutes)			Category II		
					·	
	PRESSURE FACTOR:		0.99064	BAROMETRIC PRESSURE		
					Average:	29.64
	TEMPERATURE FACTORS				Start:	29.65
		DGM #1:	0.98185		End:	29.63
		DGM #2:	0.98260			
				DRY GAS METER VALUES		
	VOLUMES SAMPLED			DGM #1	Final:	542.556
		DGM #1:	34.59692		Initial:	506.808
		DGM #2:	25.26349			
				DGM #2	Final:	976.161
	TOTAL TUNNEL VOLUME	(scf):	38675.483		Initial:	949.945
r						
1	SAMPLE RATIOS		1117 000	TEMPERATURES (DEG. RANK		
	Sample Train 1:		1117.888		DGM #1:	537.759
	Sample Train 2:		1530.884		DGM #2:	537.352
	TOTAL EMISSIONS			CALIBRATION FACTORS		
	Sample Train 1 (g):		10.5081		DGM #1:	0.9950
	Sample Train 2 (g):		9.6446		DGM #2:	0.9900
	EMISSION RATES					
	Sample Train 1 (g/hr	-).	2,4250	TUNNEL FLOW RATE:		148.752
	Sample Train 2 (g/hr			PARTICULATE CATCH (mg)		
	bampie itain z (g/m	.,.	4.44.31	Sample Train 1:		9.4000
	ADJUSTED EMISSION RA	TRS.		Sample Train 1: Sample Train 2:		6.3000
	Sample Train 1 (g/hr		3.7964	Sampre Hain 2;	422 722	
	Sample Train 2 (g/hr		3.5356			
		, -	2.3330			
	DEV	TATION:	1.78%			•

	Date: 20/09/2006		Page of
	Manufacturer: <u>FOYGUS</u>	ALCOURT	Model: FP8
	Project #: <u>3/0 \$27/</u>	Run: 02	Tech: <u>ERIC LAFONIAINE</u> Reviewer:
C	OMMENTS		
		PY: h, h = 1/	LINDER DOOD CLOCK
	4FTER IMENUT		KINDLING, DOOR CLOSE
6			
8	SZ ADD PRET	EST LOAD	
	7422	·······	
9	1:37 TEST ADR C	CONTROL SC	TTTNG,
7	0:39 ADD TUST		
10	0:44 TRAP CLO.	SE AFTER S	SIJIN
			·
	<u></u>		
<u>.</u>			
		· · · · · · · · · · · · · · · · · · ·	TEST LOAD CONFIGURATION
	<u> </u>		

ALC: NO.

Date: <u>20/09/2006</u>			Page	of	
Manufacturer: <u>FOYGRS V</u>	ALCOURT	Model:	FP8		
Project #: 3/0 \$27/	Run: 02	Tech:	IL LAFONTA	MReviewer:	\sim
	Pre/Po	st Checks			
Moisture Meter Calibration Check:	Time: ~	X:	Y:	- 17:	22:
Facility Conditions:			Pre-Test		Post-Test
Air Velocity	*****		<so for<="" td=""><td></td><td>()</td></so>		()
Smoke Capture Check		j	<u>CJU</u> fpm のに		
Wood Heater Conditions:			UK	01	
Date Wood Heater Stack Cleaned		18-00	9-2006	ר	
Date Dilution Tunnel Cleaned		10 0		4	
Induced Draft Check		100	<u>7-2006</u>	10 -	<u> </u>
Tunnel Velocity				10,00	
Flow Rate 140 cfm ±10%			<u>//</u>	1/10 -	
Pitot Leak Check:			******	148,7	52
Side A			2/5		
Side B			/r	01	
Temperature System:				01	
Ambient (65°-90°F)		***	ł	01	/
Wood Heater Surface (±125°F)			*******	- 89	<u>6</u> °F
Proportional Checks:				- 07	<u>6</u> °F
CO Analyzer Drift Check	***		Г		
CO2 Analyzer Check				<u> </u>	<u> </u>
)2 Analyzer Check				Ok	·····
hermocouple check				$\frac{0k}{0k}$	
Sampling Train ID Numbers:			in 1	0 15	
robe				Train 2 / <i>S 8</i>	17
ilter Front	******			<u>- 120-</u> -	
iter Back		6		8	{
ilter Thermocouple				33	
ilter 5G-3 (<90°F)			<u></u>	<u> </u>	———
		L			1
Termocouple Identification Numbers: Flue					

192-L-0603

	• •	1 -	1.	
Dater	20	109	12	2006
Date.	~~~	/ 0 / /	/ -	

Page____ of ____

Manufacturer: FOYCILS	VACCOURT	
Project # 3//) 527/	Run (1

Model:	FP8	

<u>/</u> Run: *L*

Fech: CLAFONTAL NEReviewer:	\mathcal{U}

SAMPLING EQUIPMENT CHECK OUT

Leakage Checks Tunnel Samplers

	SYST	TEM 1	SYST	EM 2
Unplugged Flow Rate = .25cfm	Pre-Test	Post-Test	Pre-Test	Post-Test
Vacuum (inches Hg.)	S	S	S	S
Final 1 minute DGM (ft ³)	506,808	542,720	949,945	976.394
Initial 1 minute DGM (ft ³)	506, 806	542,719	949,944	976.392
Change © (ft ³)	0,002	0,001	0,001	0.002
Allowable leakage .04 x Sample rate or .02cfm	0,006	0,006	0,004	0,004
Check OK	OK	OK	0 k	OK

Leakage Checks Flue Gas Sampler

Plugged Probe	Pre Test	Post Test
Vacuum (inches Hg.)	S	S
Rotometer Reading (mm)	10	10
Flow Rate (CFM)	0,001	0,001
Allowable (.04 x Sample Rate)	0,005	0,005
Check OK	OK	05

	Interte		KO
Date: 20/09/2006			Page of
Manufacturer: <u>FOYERS VA</u>	<u>CCOUR</u>	15	Model: <u>FP8</u>
Project #: <u>3/0 S27/</u>	Run:	02	Tech: <u>EMIC (AFONTA 148</u> Reviewer:

Pre-Test Scale Audit

Scale Type	Audit V	Veight	Measured W	eight
Platform	4,40	lbs, Class F	4,40	lbs
Wood	2,20	lbs, Class F	2,20	lbs
Analytical	100	mg, Class S	100	mg

LIMITS OF WEIGHT RANGES

ANALYTICAL SCALE:	
PLATFORM SCALE	. 20%-80% of ideal test load weight, ± 0.1 lbs or 1%
WOOD SCALE	.20%-80% of ideal test load weight + 0.1 lbs or 1%

Intertek ETL SE	MKO
Date: 20/09/2006	Page of
Manufacturer: FOYGUS VALCOURT	Model: <u>FP8</u>
Project #: <u>3/0 527/</u> Run: <u>02</u>	Tech: EREC LAFONTAENE Reviewer:

CONTINUOUS ANALYZERS

Pre-Test (Adjust and Record)

	Z	ERO	S	PAN	CAL. (Re	cord Only)
со	0.00	0.00	1,74	1.74	0.54	0.511
CO2	0.03	0.00	17.10	17.1	4.49	5.05
O ₂	00.0	00.0	21.2	21.2	6.5	6.68
	Actual	Shouid Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

~	r	Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK?	Not OK*
	СО	0,02	1.77	0.56	0,02	0,03	0,02	1	
	CO ₂	0,04	16.80	9.47	0,01	030	0,02		
	O ₂	00,0	21.0	06. S	000	02	0.0		

• Greater than 5% of the range used.

Date: <u>20/09/20</u>	o 6	ETL SEMKO		Page of	
Manufacturer: FOY(RS VALCOURT	Mod	iel: <u>FP8</u>	· · ·	
Project #: <u>3/0 S27</u>			h: <i>(=][]]C. (. A.F.(</i>	2NTAINE Revi	ewer:
FUEL DESCRIPTION		FUEL DATA PRE-TEST LOAD			
Kindling weight: <u>3.45</u>	•	DOUGLAS	ST 11	T	8130
Pre-test load weight: 11.80	0		inches	Fire lit Time Time loaded:	
Pre-test moisture content: C			-	I line loaded:_	0020
Test Air Control Settings:		TO MIL)	me: <u>9.37</u>
Test Unit Fan Settings:		FAN			
TEST LOAD				Ti	me:
_	Lower Limit	Ide	eal	Upper Lin	nit
Test Load Weight:	10.28 lb	s. 11.42	lbs.	12.56	lbs.
Fire Box Volume:	1,624 ft	³ Ideal L	ength:		inches
Load Volume:		³ Loading	Density:	34.789	lbs/ft ³
Number of Spacers	:x12x	5 Load D	ensity:	6,403	lbs/ft ³
Piece Size	Weight	Meter	Moisture Conte	nt (% drv)*	
$\frac{1}{2} \times \frac{3}{2} \times \frac{1}{2}$ in.	1.24 lbs.	19.3 %	21.1	% 20.	/ %
1/2 x 3/2 x /23/2in.	<u>1.57 lbs.</u>	18.1 %	11.7	% 18.0	
3/2 x3/2 x/23/2 in.		21.0 %	21.4	% 21.	
$\frac{3'/2}{x} \frac{x 3'/2}{x} \frac{x}{2} \frac{x}{2} \frac{y}{y} \frac{in}{in}$		19.5 %	20.0	% 19.9	the second s
\mathbf{x} \mathbf{x} \mathbf{n} .	lbs	%		%	%
\mathbf{x} \mathbf{x} in.	lbs.	<u>%</u>		%	%
*uncorrected range = 17.		%	· <u>·····</u> ·· <u>······</u> ·······	%	%
TEST LOAD WEIGHT: AVERAGE MOISTURE CORRECTED TO TWO P COAL BED RANGE: <u>2.08</u> lbs. to TEST CHARGE: Time loaded: <u>10:39</u>	CONTENT: IN: (DRY) <u>20.0</u> % 	(WET <u>) /6. 7</u> (20% to 25% of _lbs. Coal bed w	$\frac{-\%}{1000}$ test load) eight = $\frac{20}{2}$	% of test load we	eight
CHARCOALIZATION:	good*******	••*•*•*•*		- · ·	

Intertek ETL SEMKO

Date: 20/09/06

Manufacturer: FOYGIS VALCOUNT

FP8 Model:

page_

Project #: 3/0 \$27/

Run: 02

Tech: GREC CAROVIALNG Reviewer:

_ 01]

DILUTION TUNNEL PARTICULATE SAMPLER DATA FILTER TYPE: Getman 47mm A/E

			Sau	Samples in Desiccator Date: Time:						
				SY	STEM	[1		S	YSTEM	[2
			Fron	e and t Half sing #		Filter Numbers S + 6		Probe and Front Half Housing # / S & - /3		Filter Numbers 7 t 8
Post Test	t Weight:		34,6833	grams	0,24	432 gran	18 33 ·	7297 grams	0,2	395 grams
Pre Test	Weight:		34,6826	grams	0,23	45 gram	1 '	2 <i>94</i> grams	1 .	285 grams
Gain:			0,0007	grams	0,00	87 gram	IS 0,0	00 × 3 grams	0,0	060 grams
			al			b1		a2		b2 ·
Total Ga	in:	al + bl	= <u>0,009</u> SYSTE		ams	a2 + b		0,006¥3 g	rams	
Pre-1 Wei Reco	ght	Probe & Housing Number	Front Filter Number	Ba Filt Num	ter	Probe & Housing Number	Front Filter Numbe	Back Filter	TEM	P HUMI D
Date	Time	158	2	6		158-B	7	8	EF	%
19/09/06	16:00	34.6826		0.1/1	0	33.7296	0.107	3 0.12/6		
20/09/06	<u>7:55</u>	34,6826	0.1236	0.11	09	33.7294	0.107	20.1213		
	·····	Total				Total				

		SYSTEM 1				SYSTEM 2]		
We	-test ight cord	Probe & Housing Number	Filter	mbined r Weight umber	Probe & Housing Number	Filter	nbined Weight Imber	TEMP	HUMI D
Date	Time	158	S	6	158-B	7	8	EF	%
20/09/06	15:20	34.6849	0.1317	0.1116	33.7307	0.1129	0,12/6		
21/09/05	7:45	34.6833	0.13/6	0.1116	33.7297	0.1129			
21/09/06	15:30	34 6833	0,1316	0,1116	33.7297				
· ·									

Intertek ET	LSEMKO
Date: 20/09/2006	Page of
Manufacturer: FOVERS VALCOURT	Model: FP8
Project #: <u>3/0 527/</u> Run: <u>02</u>	Tech: <u>CAFONTAZM</u> Reviewer:

PRETEST DILUTION TUNNEL TRAVERSE RUN

Barometric pressure (P_{bar}) 29.65 (inches Hg.) Inside diameter: Port A <u>6in</u> Port B <u>6in</u>.

Static pressure $(P_q) = \frac{O_1/4/S}{(inches w.c.)}$

Tunnel cross sectional area: .1963Ft²

Pitot tube type: Standard

Traverse Point	Position (inches)	Velocity Head Δ_p (inches H ₂ O)	Tunnel Temperature (°F)	√_∆p
A- Centroid	3.00	0,055	118	0,2345
B - Centroid	3.00	0,050	119	0,2236
A-1	0.40	0,058	118	0,2398
A-2	1.50	0,060	118	0,2449
A-3	4.50	0,050	116	0,2236
A-4	5.60	0,073	113	0,2693
B-1	0.40	0,063	119	0,2500
B-2	1.50	0,060	119	0,2449
B-3	4.50	0,055	119	0,2345
B-4	5.60	0,055	117	0,2345
		AVERAGE	116,1	0,2427

$$Vs = K_p C_p \quad (\forall \Delta_p) \text{ avg.} \qquad \underline{/ T_s} \\ \underline{P_s M_s}$$

Where,

 C_p = pitot tube coefficient, dimension less = 0.99 for standard pitot.

 Δ_p = manometer reading (inches H₂O)

 T_s = average absolute dilution tunnel temperature (°F + 460)

 $P_s =$ absolute dilution tunnel gas pressure or $P_{tar} + P_{qg}$

 P_q = static pressure <u>in. H₂O</u>

{ 13.6 }

 $M_s = 28.56$, wet molecular weight of stack gas (alternatively, it may be measured)

 $K_p = 85.49$ pitot tube constant, (conversion factor for English units)

 Δ_p avg. = average of the square roots of the velocity heads (Δ_p) measured at each traverse point.

	Date: 20/09/2006	Intertek ETL SE	MKO	Page of
\bigcirc	Manufacturer: FOYERS	VALCOUILT	Model:/	598
\$	Project #: <u>3/0 \$27/</u>	Run: 02	Tech: <u>[-][][[]</u>	AFONTALM Reviewer:

TEST DATA LOG

RAW DRY GAS METER READINGS

·····	System 1	System 2
Final (ft ³)	542,556	976.161
Initial (ft ³)	506,808	949,945

AMBIENT CONDITIONS

	Start	End
Barometer. (inches Hg)	29,65	29,63
Wet Bulb (EF)°F	67	66
Dry Bulb (EF)°F	81	81
Humidity (%)	48	46

197-A-A																							
											🛛 Test	~~		est] Pre Test			"f]	TALNU	LAFOWTALWG	ERIC (Technician:	Tech
_	r, 10101000	0 N N	1/8	1/8	10	8/1	1/4	973122 40	5 97	238,482 4		-	423	399 6	4/4	403 424	102 6			16,7	1	30	230
-	21/0/0/22	Ľ		11	80	81				21, 521286			422	407 4	8 421	851 2 14	103 4		276		2	.40	02 F
	-	ľ	10	1/8	20	18	79	01 401/16		535774 515			4/4	4 2117	2429	esh 125				16,6	2	S	
				2/8	20	1-		045 560 alb		539,413 45			408	42/4	1 433	191 184		\square	290	16,3	5		200
		10 C C C	20	10	20	1		969,079 40		51, 840855			409	428 4	8 438	438 468	105 4	1 28	784	٤,3	99		0bl
07		ľ		- 10	20	1		968,072 40		231,688 4			4/3	436 4	, chhh	445 475	106 0	1 28	b82	<i>۲() </i> ۲	5	1.00	081
04			20	10	0 0	10	1/2	967,065 40	96	520, 336 4			414	499 6		455 486	107 4	1 28	5 <i>b</i> C	9 16,1	0,84 3,49		071
40 0800		\sim	1 / 1	1/1	00	1	0/		96 515				4/3	451 6	6 460	464 496	108 01	148	301	1 16,0			091
70 000		0 2 40	77	20	00	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							413	429 6	4 467	475 504	109	l'X	308	15,9	89'5 89'0		051
ot	st paso ok		11	76	8/) 	1/2	464042 70	Ĩ	27, 258955		-	11	169 0	267 2	X15 28h	10	r S	317	7 15,8	0,60 3,7		140
ok	ance and		171	1-1-	00	1	1~					-	108	479 4	7 482	15 203		82	329	10 IS,7	0, Sa 3,90	1.65	130
ok			1/2	1-	0/	-1						╞	104	(ap)	520 490	52752	119	كر	532	4 15,5	0,42 4,04	1,80	140
a oss lo lr			11	14	0		_			51, 188 42			397	ŝ	7 496	75 895	116	82	368	8 15,4	0,50 4,48	d <i>,00</i>	011
01			11	11	6/	1	$\frac{1}{1}$						389	SI4	3 498	<u>75 / 7</u>	021	83	398	19 13.7	465 1540	2,26	100
0	AACC ONAD		1	抃	0								185	SVS	18 494	864 488	14	ຽງ	412	19 13,6	0,27 6,09		06
ok	0 150 00 0 K		77	77	0	1	1						379			690 473	1251	le g	75)	17 12,9	0,247,	1	80
OK	5900 5500		77	77	00	1-1-	╎			_		+	167	Ľ	114 0	131 440	12.4	22	554	1 11.7	0,63 8,1	3,85	70
or	0,060 0,070		77	77	08	- 17-7-			7	17 LEV 11/1	C T		~/~~		2 122			<u>}</u>	153	38 119	0.34 8.38	12	60
ok	0,055 0,070		77	17	64	17	╁	757045 10	1/2 25			╇	12	1				1,9	123	111 54	54,8 2,40	.70	05
ok	20575 0,070 0 K	<u>́</u>	77	77	0.8		2	-	şκ	_			1 1 2				120	18	128	8/1 89	0,56 1,1	6,90	40
0	29010 55010	_	77	77	80	77	1	122,011 10				-	1 15	_				18	377	50 14,1	55 850	00'8	30
0 17	0,06	100 YB	77	77	08	ーー		017 610 5	~ L	-		-	707	_	_			10	754	7/1/24	0,51 1,4	8,95	06
ok	0,0625 0,06	82 0,06		77	RO	777	ノブ					+	141					20	; >>	4.7		3	10
017	0,060 0,06	82 poe	76	77	08	777	77		"ן ר	10 10000		+	ン レ ー				ľ	07	100	0.01	2017	10.90	
OK	0.0575 0.06	8/ 0.0S	76	76	86	777	71	dhiddel da	<u>_</u>	17 8 UB 705		+	470	407		· .			702				,
		Filter temp	Temp outlet	Temp Inlet	Filter Temp	p Temp Outlet	Temp Inlet	#2	* 8	meter #1		Exit Ce	bottom	L. Side	ck R. Side	top back	temp.	temp.	iendo Ba			remaining	time
smoke	Draft	Velo	meter #2	Dry gas n	1	gas meter #1	n Dry gaa	ry gas Rotam	Rotam D		. Gas samp	Cat.		_		_		Room		9 <u>.</u> 92	8 8	Wright	Elancod
	4	4																	Ϊ, ·	0:39	_10	Time loaded:	Tim
																							a t
		ef I		:# 	Sheet #		60	Run #:0	R	6	20/09/2006	Date:	п	4	FOYCILS VALLOUILT	1 511:	1	Client:		Γ	310 527/	Project #: 3	Pro
¢.											C C											1.2	
2											/ }									KÔ	ETL SEMKO	Intertek E	Inte

-060

						T	- T		T.	_								·									
Technician:																			360	رد ا 20	2410	l	Elapsed	Tim	Proj		
ician:										·									0,00	500	<i>0.15</i>		Weight	Time loaded:	Project #: 3/0 527/	Intertek, ETL SEMKO	
EREC		1		-+	+		+		+	+	-	-						-	114	-	0.98		8	6÷	3/0 S	EIL	
						-+		+	┤		-								13,02				CO ²		172	SEM	
LAFONTALUC						┪													217.4	<u> </u>	~		Q,		I	õ	
VTAL																			1	258	262	្ឋ័ា	Flue				
<u>W</u> C:											÷										-	4	Room		Client:		
																			101	101	102	.4	Tunnel		n: <u>Fo</u>		
ал 																			577	386	396		u unit		FOYGRS VAL COURT		
																			389				Unuit		VAL		
Pre Test																			397	. 1 9	107	Side			.600		
est																			269		888	Side	Unit		LRT .		
									i										408	6/16	047		Unit				
																									Date	•,	
凶 Test		\downarrow													(Cast.		1 <u>05</u> ::	Q	
ſest																·				Ī			Gas samp Rotameter		Date: <u>20/09/2006</u>		
		1														F			352,645	10 Plas	128/84/		r Dry gas meter		6	U	
	┝╋	-					_							-									Rotam				
	$\left \right $	+	+-				-							-			-			'È	1		m Dry gas meter		Ru		
	$\left - \right $	+	-											-			 		7/6, 101 7	01, 161 126	979,133 5				Run #:		
		-	_										 						710			<u> </u>			62		
																							Dry gas meter #1			•	
																			à				4				
																				10		Ľ			Sheet #		
																					4L 81		Dry gas meter #2		*		
													T						ò	10	81	Temp outlet	neter # 2				
																			1 1						of		
										ľ		T								5/00 200	2005 2005		velo II				
	Π									T			Ī							51,00	2700		Druft				
192-V-(ŀ											07	24	smoke				
<u> </u>																											

192-V-060																				1					
												est	□ Test			: Test	🛛 Pre Test			LNG	LAFONTALNG		6111.6	Technician:	Tech
		-								Γ															
												0	C												
		-															_					_	_		
					-						_						_						_		
																						\neg			
																-	_								
															_	-	_				· .				
					T				-													_			
														_	-							_			
																							_		
				ŀ	T															 I					
							<u> </u> .	T																	
		-																							
		_						T					(
			/6	/6		77	77					$\left[\right]$			424	;3 507	460 463		113	18	366	-		2.10	09
			6	16		16	6/	T							397	464 514	457 4		116	18	395		-	04.2	05
	+	+	10	76		76	76							-		460 509	439 40	579	111		c/19			2.90	40
		╞	6	6		76	76		ŀ							1,05 bhh	4 504		0.51		443			3.50	ЗŔ
			6	26		76	76		ŀ						025 1	30 48	374 430 484	6/2	127	-	957			4.3 S	20
	1	╞	36			76	76										723 344 410	723	22		477			5.30	10
			76			76	76								192 5	553 53	238 596	832	137	80	<u>585</u>			05.4	0
		temp Hiter	Temp F	Temp	Filter Temp	Temp Outlet	Temp Inlet		#2		*	Kotaliteva	Center			Side Side		Ģ	lemp.	истар.	temp gas			TETRETTET	in.
smoke	Draft	Velo	-	Dry gas meter #2		meter #1	Dry gas meter # 1	Rotam	Dry gas	Rotam	Dry gas	Gas samp	Cat		G				Tunnel	Room		Q Q	8	Weight	Elapsed
		-]														÷			ļ			Time loaded:	Tim
																				•					
		ef.		* *	Sheet #		ľ	40	Run #:		96	Date: <u>20/09/20</u> 06	: <u>20/</u>	Date		DURT	FOYERS VALCOURT	16125		Client:			10 527	Project #: 3/0 S27/	Proj
										· .	~	(C												
												ĵ)									MKO	IL SE	Intertek ETL SEMKO	Inte

INTERTEK TESTING SERVICES NA Ltd.

SFBA EPA ADJUSTED EMISSION RESULTS

\bigcirc						
Manufacturer:	Foyers	Valco	urt	RESULTS		
Model:	FP8					
Date:	21/09/2	2006		AVERAGE ADJUSTED EMISSION	N RATE:	
Run:		3				
Project #:		0		Burn Rate (Dry kg/hr)	:	
Test Duration:		202				
(minutes)				Category III	•	
PRESSURE FACTOR:			1.00100	BAROMETRIC PRESSURE		
					Average:	29.95
TEMPERATURE FACTORS					Start:	29.95
	DGM #1:		0.98216		End:	29.95
	DGM #2:		0.98320			
				DRY GAS METER VALUES		
VOLUMES SAMPLED		ŗ		DGM #1	Final:	567.978
	DGM #1:		24.67190		Initial:	542.757
	DGM #2:		18.67230			
				DGM #2	Final:	
TOTAL TUNNEL VOLUME	(SCI):		29631.239		Initial:	976.353
GAMPLE RATIOS						
Sample Train 1:			1201.012	TEMPERATURES (DEG. RANKIN		
Sample Train 1: Sample Train 2:			1586.909		DGM #1:	537.591
Sampre Italli 2:			T200'202		DGM #2:	537.023
TOTAL EMISSIONS				CALIBRATION FACTORS		
Sample Train 1 (g):			10.0885		DGM #1:	0.9950
Sample Train 2 (g):			9.6801		DGM #2:	0.9900
EMISSION RATES				TUNNEL FLOW RATE:		146.689
Sample Train 1 (g/hr			2.9966			
Sample Train 2 (g/hr	:):		2.8753	PARTICULATE CATCH (mg)	-	
				Sample Train 1:		8.4000
ADJUSTED EMISSION RA			_	Sample Train 2:		6.1000
Sample Train 1 (g/hr			4.5255			
Sample Train 2 (g/hr):		4.3730			
DEV	IATION:		0.86%			

3105271...' 6

•	
Intertek E	TL SEMKO
Date: 21/09/2006	Page of
Manufacturer: FOYERS VALCOUR	Model: <u>FP8</u>
Project #: <u>3/0 \$27/</u> Run: <u>03</u>	Tech: <u>FILL (AFONIALINE</u> Reviewer:
COMMENTS	
8:40 STARTFERE WITH KIN	VDCENG, DOOR CLOSE AFTER
I MINUTE.	
8°CC CTTP TILEETRE AND	DUCTION
8:55 STIR THE FIRE, ADD	
9:29 TEST AZIL CONTROL	(\$1:777416
10:19 DOOR OPENED 10 S	ECOND, A PEECE OF WOOD
WAS MOVED.	
~~	
11:05 ADD TEST COAD	
LIQUE TRUD CCOCK HETE	
11:10 TRAP CLOSE AFTER	a signal
	TEST LOAD CONFIGURATION
)L	

192-K-0602

Date: 21/09/2006					Page_		of		
Manufacturer: FOYGRS V	ALCOUL	RT		Model:	FP8				
Project #: 3/0 \$27/	Run:	03		Tech: <u>67(1C</u>	CAFON	TA Des	Reviewer:	<u>/</u>	
		Pre/Post (Cb aa						
Moisture Meter Calibration Check:		Time:		X	Y:		12:	22:	
Facility Conditions:					Pre-Test	L.	P	ost-Test	
Air Velocity				< 5	0				_
Smoke Capture Check						pm -	<u> </u>		þı
Wood Heater Conditions:				0	<u>17</u>		<u> </u>		
Date Wood Heater Stack Cleaned		*****		18-09	1-200	6			
Date Dilution Tunnel Cleaned	*********	******	*****	18-09					
Induced Draft Check.					- <u>200</u>	<u>-</u>	10		
Tunnel Velocity	******			U k			(0,00	ک	_
Flow Rate 140 cfm ±10%	****	*****		<u> </u>	<u> </u>		14/6 100		_
Pitot Leak Check:						·	146,680	1	-
Side A	*******		[OK	-	Т	Ok		
Side B	*******		[OK		+-	OF		
Temperature System:			i i i i i i i i i i i i i i i i i i i				<u> </u>		
Ambient (65°-90°F)					******		81,5	۳ ° ک	 ;
Wood Heater Surface (±125°F)	******						-28	<u>، ر</u>	-
Proportional Checks:						L	~ ~ 0		
CO Analyzer Drift Check	******						Øk		7
CO2 Analyzer Check	*****	*****	*****	******			OK	·····	1
D ₂ Analyzer Check	****			*****			OK		1
Thermocouple check			•••••				0 K		1
Sampling Train ID Numbers:				Train 1	_		Train 2	······	1
robe				159			159-	13	
ilter Front				9			11		
ilter Back				10			12]	
ilter Thermocouple				30			33		
liter 5G-3 (<90°F)				83			85		
Termocouple Identification Numbers: Flue	Room	-			Ł			J	
Dilution Tunnel Wet Bulb	Тор			Dilution Tunn Back Bottom			6		

192-L-0603

Date: 21/09/2006	
Manufacturer: FOYERS	VALCOURT
Project #: 3/0 527/	Run: 03

	Page of
Model: FP8	
Tech: [-/[IC CAFOWT	WEReviewer:

SAMPLING EQUIPMENT CHECK OUT

Leakage Checks Tunnel Samplers

(.

	SYS	FEM 1	SYST	FEM 2
Unplugged Flow Rate = .25cfm	Pre-Test	Post-Test	Pre-Test	Post-Test
Vacuum (inches Hg.)	S	S	5	5
Final 1 minute DGM (ft ³)	542,757	567,985	976,353	995,527
Initial 1minute DGM (ft ³)	542,756	567,984	976,352	995,525
Change © (ft ³)	0,001	0,001	0,001	0,002
Allowable leakage .04 x Sample rate or .02cfm	0,005	0,005	0,004	0,004
Check OK	OK	0 k	Olt	OK

Leakage Checks Flue Gas Sampler

Plugged Probe	Pre Test	Post Test
Vacuum (inches Hg.)	5	S
Rotometer Reading (mm)	10	10
Flow Rate (CFM)	0,001	0,001
Allowable (.04 x Sample Rate)	0.005	0,005
Check OK	0 k	0 k

Intertek ETL SE	EMKO
Date: 21/09/2006	Page of
Manufacturer: FOYLERS VALCOURT	Model: <u>FP8</u>
Project #: <u>310 \$271</u> Run: <u>03</u>	Tech: <u>Ell EC (A FONTA EU r</u> Reviewer:

Pre-Test Scale Audit

Scale Type	Audit W	Veight	Measured We	eight
Platform	4,40	lbs, Class F	4,40	lbs
Wood	2,20	lbs, Class F	2,20	lbs
Analytical	100	mg, Class S	100	mg

LIMITS OF WEIGHT RANGES

ANALYTICAL SCALE:	50% -150% of dry filter weight, $\pm 0.1 \text{ mg}$
PLATFORM SCALE	20%-80% of ideal test load weight, ± 0.1 lbs or 1%
WOOD SCALE.	20%-80% of ideal test load weight, ± 0.1 lbs or 1%

Intertek ETL	SEMKO
Date: 21/09/2006	Page of
Manufacturer: FOY GRS VACCOURT	Model: <u>FP8</u>
Project #: <u>3/0 5271</u> Run: <u>03</u>	Tech: CREC CAFONTAINE Reviewer:

CONTINUOUS ANALYZERS

ж | .

Pre-Test (Adjust and Record)

	Z	ERO	S	PAN	CAL. (R	ecord Only)
со	0.00	0.00	1.74	1.74	0.54	0.511
CO ₂	0.00	0.00	17.10	17.1	4.53	5.05
O ₂	00.0	00, 40	21.2	21.2	06.6	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

~~. 	Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK?	Not OK*
Со	0.01	1.76	0.55	0,01	0,02	0,01	1	
CO ₂	0.03	16.83	4,94	0.03	0.27	0,09	K	
O ₂	00.0	21,1	06.6	00,0	01	0.0	V	

• Greater than 5% of the range used.

	Date: 21/09/20	Intertei	ETL SEMKO)	Dage	of	
\sim	<i>(</i>	ERS VALCOUR	27 Μα	lel:FP8	•	01	
U	Project #: 3/0 527		2				1
		Kun. <u></u>	FUEL DATA	h: <u>6772C CAF</u>	<u>ONTAIN(</u> =	Reviewe	я:
	FUEL DESCRIPTION:		PRE-TEST LOAI)			
	Kindling weight: 3.6		DOUGLAS F	ΓI	E : 1:4	Time:	8040
	Pre-test load weight: 12,5					nded:	
	Pre-test moisture content: Co				Time loa	ided:	
	Test Air Control Settings:			v			9:29
	Test Unit Fan Settings:	IL	O FAIN				
	TEST LOAD					Time:_	<u></u>
	Test Load Weight:	Lower Limit 10.28	Id Ibs. //.4			er Limit	······
	-		10s. <u> . </u>	ג lbs.	$[] \lambda$	56	lbs.
	Fire Box Volume:			.ength:		in	ches
and the second	Load Volume:		_	Density:	39,650	7 lt	os/ft ³
\bigcirc	Number of Spacers	:x12	Load D	ensity:	7,099	16	os/ft ³
	Piece Size	Weight	Mete	r Moisture Cont	ent (% drv)*		
	1/2 x3/2 x12/1/2 in.	1.75 lbs.	21.1 %	18.8		21.0	%
	1/2 x 3/2 x 12% in.	1.73 lbs.	21.1 %	187		0.6	70 %
	31/2 x 31/2 x/21/2 in.	3./7 lbs.	21.1 %	21.5	% 1	9.7	%
	$3\frac{1}{2} \times 3\frac{1}{2}\frac{3}{6}$ in.	3./4 lbs.	20.5 %	20.4	% 2	1.5	%
	<u> </u>	lbs.	%		%		%
	<u> </u>	lbs.	%		%	· ·	%
Į	<u> </u>	lbs.	%		%		%
ł	*uncorrected range = 17.9	9% to 23.1%					
]	TEST LOAD WEIGHT:	//.53 ibs	DRY WEICH	τ. <i>L</i> /	24		
ł	AVERAGE MOISTURE	CONTENT:		· • •'	+ 2 1	kg.	
•	2.31 lbs. to	2.88 lbs.	(2004 to 2504 a	Edent I. all			
1	HNT CHARCH!						
	Time loaded: 1/205	Coal bed weight: 2.85	ibs. Coal bed	weight = <u>24, 7</u>	% of test 1	oad weigh	it
<u>_</u>	HARCOALIZATION:	good********					:
-\					- por	•	

í

Intertek	ETL	SEMKO
Date:	<u> 1/01</u>	<u>1/2006</u>

page____ of __

Manufacturer: FOYERS VACCOURT

Project #: 310 527/

Run: () 3

Model: <u>FP8</u>

Tech: CATC CAFONTAING Reviewer:

DILUTION TUNNEL PARTICULATE SAMPLER DATA FILTER TYPE: Gebran 47mm A/E

	San	ples in Desi	ccator]	Date:	Tin	ne:	
		SYSTE	M 1		S	YSTEM 2	
	Probe Front Hous 1 S 9	Half ing #	Filter Numbers 9 + 10		Probe and Front Half Housing # S 9 - 13		Filter umbers + /2
Post Test Weight:	30,6407	grams 0,2	(// grams	30,939		0,2355	grams
Pre Test Weight:	30,6397	rams 0, 2	2340 grams	30,939		0,2299	grams
Gain:	0,0010	rams 0,0	074 grams	0,000		0,0056	grams
	al		Ъ1		12	b2	
Total Gain: a1 -	+ b1 = <u>0,0084</u>	grams	a2 + b2 =	: <u>0,0</u>	<u>06/</u> gr	ams	

r		SYSTEM 1				SYSTE	IM 2			
	We	e-test eight cord	Probe & Housing Number	Front Filter Number	Back Filter Number	Probe & Housing Number	Front Filter Number	Back Filter Number	ТЕМР	HUMI
ļ	Date	Time	159	9	10	159-B	11	12	EF	96
	20/09/06	15:45	30.6404	0.1141	0.1200	30.9398	0.1219	DINTA		
ŀ	21/09/06	7:	30.6399	0.1140	0.1200	3/19792	σ σ	DIDDA		
-	<u> 1/09/06</u>	<u>10:02</u>	30.6397	0.1]40	0.1200	30.9392	0.1220	0.1079		
╞										
Ľ			Total		ſ	Total	[<u>_</u> _		

			SYSTEM 1			SYSTEM 2			
We	t-test eight cord	Probe & Housing Number	Filter	abined Weight mber	Probe & Housing Number	Filter	mbined Weight umber	TEMP	HUMI
Date	Time	159	9	10	159-B	11	12	EF	%
21/09/06		30.6462	0.1210	0.1205	30.9397	0.1224			70
22/09/06	7:30	30.6407	0.1210	0.1205	30.9397	0.1224	a lizz		
<u>25/09/06</u>	<u>11. S</u>	30.6407	0.1209	0.1205	30.9397	0.1228	0.1131		
		<u> </u>						1	

.

2.1.01	Intertek ETL SEMI	KO
Date: 21/09/2006		Page of
Manufacturer: FOUCRS VA	CCOURT	Model: <u>FP8</u>
Project #: 3/0 S27/	Run: <u>03</u>	Tech: GREC LAFONTALMReviewer:

PRETEST DILUTION TUNNEL TRAVERSE RUN

Barometric pressure (P_{bar}) $\frac{29.95}{6in.}$ (inches Hg.) Inside diameter: Port A <u>6in.</u> Port B <u>6in.</u>

Static pressure (P_q) $O_1/SS_{(inches w.c.)}$

Tunnel cross sectional area: .1963Ft²

Pitot tube type: Standard

Traverse Point	Position (inches)	Velocity Head Δ_p (inches H ₂ O)	Tunnei Temperature (°F)	√_∆ _p
A- Centroid	3.00	0,065	118	0,2550
B - Centroid	3.00	0,058	1/3	0,2398
A-1	0.40	0,058	118	0,2398
A-2	1.50	0,065	118	0,2550
A-3	4.50	0,058	117	0,2398
A-4	5.60	0,083	110	0,2872
B-1	0.40	0,058	1/6	0,2398
B-2	1.50	0,065	117	0,2550
B-3	4.50	0,055	116	0, 2345
B-4	5.60	0,053	96	0,2291
		AVERAGE	113,5	0,2475

$$Vs = K_p C_p$$
 ($\sqrt{\Delta_p}$) avg. /_T_s

_ P_sM_s

Where,

 C_p = pitot tube coefficient, dimension less = 0.99 for standard pitot.

 Δ_p = manometer reading (inches H₂O)

 T_s = average absolute dilution tunnel temperature (°F + 460)

 P_s = absolute dilution tunnel gas pressure or $P_{bar} + P_{qg}$

 P_q = static pressure <u>in. H₂O</u>

{ 13.6 }

 $M_s = 28.56$, wet molecular weight of stack gas (alternatively, it may be measured)

 $K_p = 85.49$ pitot tube constant, (conversion factor for English units)

 Δ_p avg. = average of the square roots of the velocity heads (Δ_p) measured at each traverse point.

	Date: 21/09/2006		Pag	e of
\bigcirc	Manufacturer: FOYERS	VALCOURT	Model: FP 8	
_ ?	Project #: 3/0 527/	Run: <u>03</u>	Tech: GRIC (AFONTAIN	Reviewer:

TEST DATA LOG

RAW DRY GAS METER READINGS

	System 1	System 2
Final (ft ³)	567,978	995,517
Initial (ft ³)	542,757	976,353

AMBIENT CONDITIONS

	Start	End
Barometer. (inches Hg)	29,95	29,95
Wet Bulb (EF)°F	63	64
Dry Bulb (EF)°F	79	83
Humidity (%)	41	34

192-V-0											🛛 Test	\boxtimes		est	Pre Test				INE	FONTE	GRIC LAFOWTAINE	Technician: <u>(</u>	Techr
					-	-						$\left \right $				$\left - \right $							
				+								Ċ					_				_		
1 2 26	V ~ 050.0 590.0	8 >	18	1/8	1 10	71 7	40	715366	51,8	\$67,978)	482	1/2 Chh	447	114 25	<u> 454 20,</u>			2.9		9	1
via ak	0.0000	ſ		1/8	8	11/1	40	995.355	546	567,769			629	<i>hhd h</i> h	448	_	~	01 28	308	16.1	_	\sim	
vious of all alt	0,000		1/	11	8 81	- - - -			55.6	bes 995			426	448 4	4155	460 490	08 4	1 28	3//	16,2		560	
1 0 020 0 020 V	0 0390 0	20	11	11	0 01	7 8/	50	993,470	27/2	565,292			431	155 4	463	470 496	109 4	81 18	3/7			.40	
1 0 x 20.0 x 20.0	00000			110	0 0	101	10	0 h hs 246	51,0	264,050			436	462 4	470	481 500	10 4	1 28	323	159	0.95 3,57	ζζ	170
-1 0 St 50'0	10 570 0		11	91	9 8/	1 26	02	bb 5 11bb	545	562,813			190 a	470 4	2479	205 X bh	11 4	1 28	329			\sim	160
_	550'0 0350 v		11/	91			40	859066	51, 825195	25135			494	478 4	489	504 505	ראי	1 28	737	5 /5.8		56.0	150
or ok				1		1 91	10	989,724	54 0	560,340	-		448	489 4	499	2/9 507	5/2/	1 28	_				140
-10 520	550 0 030 V	91	- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		2				57 80	801 655			449	4 205		· · · · ·		1 28	360	9:51	0.72 3.77		130
vasi ok	0,000 0		1/		<u>}</u>			987,860		52825			441	5/5 4	1 518	725 232	5 81	1 18	376	S S/	0.60 3.87		120
0.060 0 k	0.060 0.060	00	1 1 1			1	<u> </u>	986,924	51, 01	556 6 40			429	2 PSS			2 / ۲		397	<u>[]</u>	-	ļ	011
	22/2 0		1	Ľ		, 2 7	10	1 46583	5/2 8	\$98,225	 		547	541 4	کرک	642 214	<u>کر</u>	ر ا	620	14.0	5 810	1.90	100
	0.060 0.	× i	77	<u>+++</u> -(< </td <td>10/</td> <td>40</td> <td></td> <td>5/0</td> <td>351/25</td> <td></td> <td></td> <td>16</td> <td>74 11</td> <td><u> </u></td> <td>673 498</td> <td>9 5 41</td> <td></td> <td>823</td> <td>13.6</td> <td>6.14 6.</td> <td></td> <td>90</td>	10/	40		5/0	351/25			16	74 11	<u> </u>	673 498	9 5 41		823	13.6	6.14 6.		90
_	290.01 0700		7 7	ר (ר ר ר ר	5	101	40		19 75	552,919			409	545 4	715/19	124 477	127-17		161				80
	0/0/0/22/0/10		- 1-		10		70	485,168	51 10	79/102			404	294 4	1 499	780 451	29 1	r S	482	7.93 11.8	0.67 7.1	3.60	70
0.070 0K	0.06 0.		17		7 1 1	1 1 1 1		201 489	54 6	<u> 1 hh Ors</u>	F	1	403		21/2	281 562	1	28	561,	8.60 11.1	0.70 8.	4.55	09
0.070 0K	0.06 0.0		22		1000			181,252	5 4 5	291,192			405	206 4	6 hh 6	739 400	128 7	81 1	478	11.5	0.70 8.20	5.80	95
0.070 OK	0.06 0.0	1	-6-1-1-	<u>, </u>	191	<u> </u> 	10	192,011		146165			(07	17	1927	685 38	9 5 7	1 18	449	16 12.4	0.70 7.1	7.10	40
_			77	77	7 61	/ //	4 4	4/4,3/2	243	689 945		-	4/2		414	-	9 14	108	121	<u>4 13 x</u>	0.75 5.99	8,30	30
KS OK		l L	72	77	00 6	1/1	_			217 270			141		111	Ľ		10	165	07 <u> (S. /</u>	0.52 4.07	9.50	02
0965 OK		-	76	5 77	08 2		40 -	_		001/14 5	-		9/1/	_	133	Ľ.	5	2	63	29 11S.2	15.0	10.35	10
085°0K	6.06 0.2	18	72	72 6	7 7	1			ŝ	10/10/				+	44	154 1.95		1	523	2.00 14.8	12.0	11.53	0
085 CK	0.06 0.9	181	76	7 76			40	972 3(3	2	1 (4) 70		╀									·		,
		Filter	Temp	np Index	mp Hilter Temp	Temp Temp Inlet Outlet		#2	-	r meter # 1				L. Side b	Side	top back	temp.	temp.	gaa			1 cmaining	time
	velo Van		Dry gas meter #2	Dry g		Dry gas meter #1	Rotum		Rotam		Gas samp	r. Cat	Unit Cat.					_	File B	9 <u>.</u> 9 <u>.</u>	8 8	Weight	Flansed
	4			-															٩,	1:05	11	Time loaded:	Tim
		Ş		Sheet #	SI	•	00	Run #:		2006	9002/2001	Date: $\frac{\lambda}{\lambda}$	Ď	ZRT	ALCO	FOYERS VALCOURT	FOYL	Client:			1220	Project #: 3/0	Proj
) •		F			~ 7					,											
										\smile		\bigcirc	•,							KO	ETL SEMKO	Intertek, E	

-060

172-1-00																									
												🗌 Test	, Lud		st	🛛 Pre Test				AINE	GRIC LAFONTAING	RIC LI		Technician:	T
	┝										-	-	┝	-	┝			┝	<u> </u>	-					
		-				+		-	-	-			Ĉ												
								-			}														
	+		T	+	+	╞													_			_			
	+																								
	+				-	$\left \right $				1					_				-		_		_	-	Ī
	+					-									_		-	_		_		+	_		Τ
				$\left \right $		-														-			_		
			T																_						
						+																			
			Ţ	╋	-	╞										·						_	_	-	
	+	-		+	+	+											-		ξ						-
	+					╞																			
						+	-				-														
			10	0 /	2	9/6	0/							440	182 4	507	2 428	<u> 192</u>		391 8			05	3	90
			70	24		1	0/		-				-	417	14 084	426	9 400	7 6/9	1 11	18 204			22	03,	80
	+		77	72		1	200			-				392	471 39	50%	1 357	8 684	80 118	129 8			20	2 4.20	70
			76	12		_	<u>/</u>	+	-		Þ	ľ		366	438 36	373	8 3/6	7 658	79 11	2 414			10	1 .	66
			72	1/2			10							340	388 30	344	7 286		79 115	7 265			20		05
	+		77	1/2		-	ý/ 4/		-					304	369 30	331		915 61	109 8				6.90		40
	+		40	12		10				-				288	3372	3/6	13 263	3 483	8 113	236 7			59,	7	2
	+		77	32	Ť	1	5/		-	-				796	૬ ૪ ૬	205	/ 1	2	8 10-	336 7		_	ζΣ.		ير
	+	+	1/2	1/2	ľ	(-						298	531 2	297		7	11 2	7 955			9,00	\square	5
	+		122	12	` ۱		27							776	787	274	5 22 9	18 576	7 1/	434 7			9.95		5
	╀		1		et . Temp	25	lemp Inlet									Side					<u></u>				
	velo		_		_	-15	Rotam Dry g	Dry gas Ro meter	Rotann	Dry gas Ru meter		Gas samp Rotameter	Cat. Cat. Exit Center	Unit bottom	5 G		back	Tunnel Unit	Room Tu	Flue Ro	Q2	0 02	Weight CO		Elapsod
Į																							aded:	Time loaded:	
		ο c ,		Sheet #	She		03	Run #:	R		13006	Date: <u> </u>	اate:	U	7	FOYCIRS UNCCOURT	S VA	coyer	Client:	G		1255		Project #: 3/0	
												\cup	·								õ	SEM		Intertek ETL SEMKO	

ğ

INTERTEK TESTING SERVICES NA Ltd.

SFBA EPA ADJUSTED EMISSION RESULTS

	_	SFBA EPA AD	JUSTED EMIS	SION RESULTS		
No.	Manufacturer:	FOYERS VALC	OURT	RESULTS		•
	Model:	FP8				
	Date:	22/09/2006		AVERAGE ADJUSTED EMISSION	RATE:	
	Run:	4				
	Project #:	3105271		Burn Rate (Dry kg/hr)	:	
	Test Duration:	80				······································
	(minutes)			Category IV		
	PRESSURE FACTOR:		1.00769	BAROMETRIC PRESSURE		
	_				Average:	
	TEMPERATURE FACTORS				Start:	30.15
		DGM #1:	0.98395		End:	30.15
		DGM #2:	0.98456			
				DRY GAS METER VALUES		
	VOLUMES SAMPLED	- DOM #1	10 10405	DGM #1	Final:	
		DGM #1:	10.18425		Initial:	568.230
		DGM #2:	7.52472		una t es	
	TOTAL TUNNEL VOLUME	(sof).	10702.642	DGM #2	Final:	1003.669
	TOTAD TOWNED VODOME	(SCI):	10/02.042		Initial:	996.008
and the second second	SAMPLE RATIOS			TEMPERATURES (DEG. RANKIN)	4	
Ne Kilowani	Sample Train 1:		1050.901		DGM #1:	536.611
	Sample Train 2:		1422.330		DGM #1. DGM #2:	536.278
	Sumpto Hain 27				$DGM \pi 2$.	550.278
	TOTAL EMISSIONS			CALIBRATION FACTORS		
	Sample Train 1 (g):		3.8883		DGM #1:	0.9950
	Sample Train 2 (g):		4.2670		DGM #2:	0.9900
				· · · · · ·		·
	EMISSION RATES			TUNNEL FLOW RATE:		133.783
	Sample Train 1 (g/hr)):	2.9163			
	Sample Train 2 (g/hr)):	3.2002	PARTICULATE CATCH (mg)		
				Sample Train 1:		3.7000
	ADJUSTED EMISSION RAT			Sample Train 2:		3.0000
	Sample Train 1 (g/hr)		4.4246			
	Sample Train 2 (g/hr)):	4.7794			
	DEVJ	LATION:	1.93%			

	22/26/22/	Intertek ETL SEI	МКО
\sim	Date: 22/09/2006		Page of
	Manufacturer: FOYERS VA		Model: <u>FP8</u>
	Project #: <u>3/0 527/</u>	Run: 04	Tech: <u>GIVE CAFONTADAU</u> Reviewer:
	COMMENTS		
	9:06 START FIRG	WITH KIN	NUCING, DOOR CLOSE-
	AFTER I MENUTE		
	9:21 STERTHEFE	ruc Ann D	PRETECT COAD
			ILL I USI LUNU
	10:26 ADD TEST	LOAD AND	CLOSE THE DOOR.
\bigcirc			
		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		
ŀ			
		······································	
ľ			
ŀ	····		TEST LOAD CONFIGURATION
	·		
-			
╞			
A			
()_			

192-K-0602

	Interte	ETL SEM	KO			
Date: 22/09/2006				Page	_of	• .
Manufacturer: FOYERS VA	LCOUR	RT	Model:	FP8		
Project #: 310 \$27/	Run:	04	Tech: <u>6//// (</u>	AFONTATN	Reviewer:	
		Pre/Post Che	ecks			· .
Moisture Meter Calibration Check:		Time:	x:	Y:	12:	22:
Facility Conditions:				Pre-Test	P	ost-Test
Air Velocity				O fpm	< 5	\mathcal{O}
Smoke Capture Check				κ		
Wood Heater Conditions:					Ok	
Date Wood Heater Stack Cleaned	****		18-09	2006		1.
Date Dilution Tunnel Cleaned		*******		·······		
Induced Draft Check				005	\$0,00	S
Tunnel Velocity						<u> </u>
Flow Rate 140 cfm ±10%					133,7	8
Pitot Leak Check:				Ľ		<u>نہ ۔</u> ۔۔۔۔
Side A		•••••	01	r T	01	.]
Side B			01	-	Ole	
Temperature System:				· · · · · · · · · · · · · · · · · · ·		
Ambient (65°-90°F)	*****				86.7	٦°
Wood Heater Surface (±125°F)	,	******	*****		35.4	°F
Proportional Checks:				h		
CO Analyzer Drift Check					OK	
CO ₂ Analyzer Check					ok	
O ₂ Analyzer Check					OK	
Thermocouple check					OK	
Sampling Train ID Numbers:			Train	L	Train 2	
Probe			157		157-	13
Filter Front			/3		15	
Filter Back			14		16	
Filter Thermocouple		*****	30		33	
Filter 5G-3 (<90°F)			83		89	
Termocouple Identification Numbers: Flue1 Dilution Tunnel Wet Bulb4 Right Side7	Тор	2	Back	nnel Dry Bulb	6	······································
Catalyst /Combustion Chamber 10						

(÷

Ċ

192-L-0603

Date:	スス	109	/200	6

		Page	of
Model:	FP8		

Tech: GICC CAFONTALNE Reviewer:

SAMPLING EQUIPMENT CHECK OUT

Leakage Checks Tunnel Samplers

	SYS	TEM 1	SYST	TEM 2
Unplugged Flow Rate = .25cfm	Pre-Test	Post-Test	Pre-Test	Post-Test
Vacuum (inches Hg.)	S	5	5	S
Final 1 minute DGM (ft ³)	568,230	578,002	996,011	003,718
Initial 1 minute DGM (ft ³)	568,229	578,001	\$996,010	003,716
Change © (ft ³)	0,001	0,001	0,001	0,002
Allowable leakage .04 x Sample rate or .02cfm	0,005	0,005	0,004	0,004
Check OK	OK	OK	OK	OF

Leakage Checks Flue Gas Sampler

Plugged Probe	Pre Test	Post Test
Vacuum (inches Hg.)	S	S
Rotometer Reading (mm)	10	10
Flow Rate (CFM)	0,001	0,001
Allowable (.04 x Sample Rate)	0,005	0,005
Check OK	ok	0F

224ada	Intertek ETL SEA	ИКО	-
Date: 22/09/2006		Page of	
Manufacturer: <u>FOYERS L</u>	VACCOURT	Model: FP8	
Project #: <u>3/0 \$27/</u>	Run: 04	Tech: LATC LAFONTALD Reviewer:	n

Pre-Test Scale Audit

Scale Type	Audit V	Veight	Measured Wei	ght
Platform	4,40	lbs, Class F	4,40	lbs
Wood	2,20	lbs, Class F	2,20	lbs
Analytical	100	mg, Class S	100	mg

LIMITS OF WEIGHT RANGES

ANALYTICAL SCALE:	$\dots 50\%$ -150% of dry filter weight, $\pm 0.1 \text{ mg}$
PLATFORM SCALE	20%-80% of ideal test load weight, ± 0.1 lbs or 1%
WOOD SCALE	20%-80% of ideal test load weight, ± 0.1 lbs of 1%

Intertek	ETL	SEMKO
		NPULITO

Date:	<u>2</u> 2	1091	2006
		· · · · · · · · · · · · · · · · · · ·	

Manufacturer: FOYERS	VALCOURT
Project #: 310 527/	Run: $O \mathcal{Y}$

Page of	
Model: <u>FP8</u>	
Tech: <u>EALCLAFONTATIVE</u> Reviewer:	$ \sum $

CONTINUOUS ANALYZERS

Pre-Test (Adjust and Record)

	Z	ERO	SI	PAN	CAL. (Re	cord Only)
со	0,00	0.00	1.74	1.74	0.54	0.5/1
CO ₂	0.00	0.00	17.03	17.1	4.S/	5.05
O ₂	00.0	00.0	21.2	21.2	06.6	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

	Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK?	Not OK*
co	0.00	1.74	0.54	0,00	0,00	0.00	/	
CO ₂	0.00	16.79	4.43	0,00	0,04	0,08	V	
O ₂	00.0	21.0	06. S	0,0	0.2	01	V	

• Greater than 5% of the range used.

Date: 22/09/2	Loo6	ETL SEMKO)	Page	of.
	YERS VALCOUR	27 Moo	lel:FP	•	JI
Project #: <u>310 ያዲን</u> /		Tec FUEL DATA	h: <u>C//2C (AF</u>	<u>ONTAINE</u> Rev	viewer:
FUEL DESCRIPTION:		PRE-TEST LOAD)		
Kindling weight: 2.80 I	os. Consisting of:_	DOUGLAS H	ZR	Fire lit Tim	ne:_ 9: 06
Pre-test load weight: 11. S	<u>2</u> lbs. Consisting	of: 2X4X 9/2	inches	Time loaded	9:21
Pre-test moisture content: Co	prrected Dry: 19.3	% Wet:9	%		
Test Air Control Settings:					Time:
Test Unit Fan Settings:	NO	FAN			Time:
TEST LOAD		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	Lower Limit	Id	leal	Upper L	imit
Test Load Weight:	10,28	lbs. //, (ノン Ibs.	12,56	lbs.
Fire Box Volume:	1,624	ft. ³ Ideal I	Length:		inches
Load Volume:	0,246		Density:	33,756	inches lbs/ft ³
Number of Spacers	:x		Density:	6,607	lbs/ft ³
Piece Size	Weight	Meta	er Moisture Cont	ent (% drv)*	
1 1/2 x3 1/2 x /2 1/2 in.	1.27 lbs.	19.8 +.4%	19.2		8,8+.4%
$\frac{1}{3} x \frac{3}{2} x \frac{3}{2} \frac{x}{2}$ in.	1.42 lbs.	18.6+.4%			1.9+.1%
31/2 x31/2 x/21/8 in.	3./2 lbs.	19.2 +.4%	18.4		7.04.4%
31/2 x31/2 x/2/gin.	<u> </u>	19.7 +.4%	18.3	t.4% 1	8.2+.4%
<u> </u>	lbs.	<u>%</u>		%	%
<u> </u>	lbs.	%	·	%	%
\mathbf{x} \mathbf{x} in.	lbs.	%	·	%	%
*uncorrected range = 17.	770 to 23.1%				
TEST LOAD WEIGHT:	<u>10.73</u> lb	S DRY WEIGF	ι τ : ^ζ	1,080	ka
AVERAGE MOISTURE	CONTENT:	·		· · · · · · · · · · · · · · · · · · ·	_ kg.
CORRECTED TO TWO P	IN: (DRY) <u>[9.3</u>	_% (WET) <u>/6.</u> 2	%		
COAL BED RANGE:	2.68 lbs.		n		
FEST CHARCE.		(20% to 25% c	-		
Time loaded: 10:26	Coal bed weight: 2.	<u>SO</u> lbs. Coal bed	weight = 23	3% of test load	! weight
HARCOALIZATION:		-**********-			-
				pout	

(

ſ

ntertek	ETL SEMKO	
Date:	2/09/2006	

Manufacturer: FOYERS VALCOURT

Model:	FP8
--------	-----

page____ of ___

Project #: 3/0 527/

04 Run:____

Tech: ERIC (AFONTAINC Reviewer:

DILUTION TUNNEL PARTICULATE SAMPLER DATA FILTER TYPE: Geiman 47mm A/E

		FILTER TYPE: Geiman 47mm A/E Samples in Desiccator Date: SYSTEM 1			Date:	Tim		<u></u> .	
						SYSTEM 2			
		Probe and Front Half Housing # 157	Filter Numbers /3 + /4		Probe and Front Half Housing # /S7-/3		Nu	Filter Numbers /S + /6	
Post Test Weight:	33	1,2406 grams	0,2206	grams	33,4939	grams	0,23/6	grams	
Pre Test Weight:	3	3,2399 grams	0,2176	grams	33,4931	grams	0,2299	grams	
Gain:	0	,0007 grams	0,0030	grams	0,0008	grams	0,0022	grams	
		a1	b1		a2		b2		

SYSTEM 1 SYSTEM 2 Pre-test Probe & Front Back Probe & Front Back Weight Housing Filter Filter Housing Filter Filter TEMP HUMI Record Number Number Number Number Number Number D 14 13 'S7·B 15 15 Date Time 7 16 EF % 0.1196 33.4933 0.1101 16:15 33.2401 0.1091 0.1086 21/09/06 8:00 33.2399 0.1090 0.1086 33.4931 0.1099 0.1195 22/09/06 Total Total

			SYSTEM 1			SYSTEM	2]	
We	-test ight cord	Probe & Housing Number	Filter	nbined Weight mber	Probe & Housing Number	Filte	mbined r Weight umber	ТЕМР	HUMI D
Date	Time	157	13	14	157-B	15	16	EF	%
23/09/06	12:00	33.29/3	0.1118	0.1088	33.4931	0.1119	0.1197		
25/09/06	8:30	33,2406	0.1118	0.1088	33.4939	0.1119	0.1197		
25/09/06	11:30	33.2406	0.11/8	0,1088	33.4939	0.119	0.1197		-
• ′									

Date:_	22/09/2006	Page of _
		 •

04

Run:

Manufacturer: FOYGRS VALCOURT

Project #: 310 5271

Tech: <u>CALC LAFONTATUE</u>Reviewer:

Static pressure (Pq) ______(inches w.c.)

PRETEST DILUTION TUNNEL TRAVERSE RUN

Barometric pressure $(P_{bar}) = \frac{30, / S}{6in.}$ (inches Hg.) Inside diameter: Port A <u>6in.</u> Port B <u>6in.</u> Tunnel cross sectional area: .1963Ft²

Pitot tube type: Standard

Traverse Point	Position (inches)	Velocity Head Δ_p (inches H ₂ O)	Tunnel Temperature (°F)	√_∆ _p
A- Centroid	3.00	0,068	146	0,2598
B - Centroid	3.00	0,063	145	0,2500
A-1	0.40	0,060	144	0,2449
A-2	1.50	0,065	146	0,2550
A-3	4.50	0,060	146	0,2449
A-4	5.60	0,06 D ^{sc}	130	0,2449
B-1	0.40	0,065	144	0,2550
B-2	1.50	0,065	145	0,2550
B-3	4.50	0,055	145	0,2345
B-4	5.60	0,048	101	0,2179
		AVERAGE	137,625	0,2440

$$Vs = K_p C_p$$
 ($\sqrt{\Delta_p}$) avg. / T_s
 $P_s M_s$

Where,

 C_p = pitot tube coefficient, dimension less = 0.99 for standard pitot.

 Δ_p = manometer reading (inches H₂O)

 T_s = average absolute dilution tunnel temperature (°F + 460)

 P_s = absolute dilution tunnel gas pressure or $P_{bar} + P_{qg}$

 P_q = static pressure <u>in. H₂O</u>

{ 13.6 }

 $M_s = 28.56$, wet molecular weight of stack gas (alternatively, it may be measured)

 $K_p = 85.49$ pitot tube constant, (conversion factor for English units)

 Δ_p avg. = average of the square roots of the velocity heads (Δ_p) measured at each traverse point.

	Intertek ET	. SEMKO	
	Date: <u>22/09/2006</u>	Page of	
) }	Manufacturer: FOYERS VACCOURT	Model: 1= 1= 1= 8	~
	Project #: <u>3/0 \$271</u> Run: <u>04</u>	Tech: <u>CRIC LAFOUTAIM</u> Reviewer:	

TEST DATA LOG

C

(

RAW DRY GAS METER READINGS

·	System 1	System 2
Final (ft ³)	578,553	003,669
Initial (ft ³)	568,230	996,008

AMBIENT CONDITIONS

	Start	End
Barometer. (inches Hg)	30,15	30,15
Wet Bulb (EF)°F	65	66
Dry Bulb (EF)°F	82	81
Humidity (%)	39	46

Tech																0Å	70	60	50	40		, d 0	20		3	time	Flansed	Tin	Pro		E		
Technician:																0.00	5/.0	0.65	1.35	4.40		2, 10	1.10	<u> </u>		remaining	Weight	Time loaded:	Project #: 3/0 527/		Interlet, EIL SEMKO		
<u>ERIC LAFONTAZ NE</u>								T								627	6.12	0.09	0,13	1				12			8		c 5 0/	·	11.2] 2	
AFON					-												05.5	6,24	8.44								ę,	10:26	,7/		EMR		
TALN	┝─┼			+	+	_	+		_		_					15.4 5	141 5	09 5 21	11.5 6		-	+	1 17	-1-			°		•		Ļ		
Ē	$\left - \right $	_				_	_	_		_	-	_				3 5 15	1 295		1099		- <u>+</u>		776	+					~				
			_	4												87 1	88	88	64	5-4	Ĭ	ĴĹ				temp.			Client:				
											·					81/1	155	162	F	01	11	jþ	12		- - - -	temp.	Tunnel						
															l.	لا 53	$\frac{7}{9}$		956	154	146))))	200	0 5 5	80	iop	Unit		FOYERS VALCOURT				
																606	604	590	57/		• []	Γ	9/6	1~		back			ALCO	•			
Pre Test		-	_		_	_	\downarrow							-		617 -	630 5		6576			-	5) 2		670	R. Side			URT				
st	$\left - \right $	_	-	-		-	-		-							576 4	1 165		621 4	· I ·			Call C	<u>`</u> [S -	Side F							
	Ц															141	128	414	403	920	100			217	ž	bottom	Ē						
			\downarrow																						_		Ê		Date:				
M		d																$\left \right\rangle$								Center	C.		240	י ר ר	\bigcirc		
🛛 Test																							ľ		T	Rotameter	Gas samp		Date: <u> </u>		Ō		
								-								528253	573	<u>127</u>	141	110			(J)-	200.0	(8)	meter # 1	Dry s		.0		<u></u>		
	$\left \right $	_		_		1							┞	╀	┼	57, 25	Ch 1/2 415	7 28		17 00	10 61	27 07) h mc us) /> C2	5		as Rotam						
														-							1	.	1	1	$\sum_{n=1}^{\infty}$	* 8			7	٩			
																003669	001,711		114	177,023	900 \$ (((19 (9)9		100700	996 nn 8	#2			NUI1 #.				
																40				2,	\bot		_		40		Rotam			1,0			
																18	- 	14	11	7	_	2	ľ		_	Temp Inlet	Dry gas meter # 1		,				
																	- L -	- - - -	11	77	76	26	76	76	76	Temp	ia #1						
										T		T	T		T	09		2		2	8	d d	2	٢3	82	Filter Temp				Sheet #			
		-										╎	╈				1	1	77	26	2	72	92	32	76	Temp	Dry g	1	; ; 	#			
		-			+							╉	╈		╉	<u> </u>	卞	Ľ L	7	22	76	92	32	76	76	Temp outlet	Dry gas meter #2						
	$\left \right $	+	+		+	$\frac{1}{1}$		╞	+	╎	+	+-	╉	╉			100	99	69	89	88	67	98	158	13		1"		I	e,			
	$\left \right $	┼	-	┼	╀	+	$\left \right $	+	╀	╀	+	+	╀							900	0.06	-			0.06		ê i	1					
	+	╋	+	╉	╉	+	+	╀		ł	╉	+	╉		+		720010021			0.08	0.060 0.09	0.060 0.09	0.000.09	0.060 0.09	0.060 0.09		Draft						
192		+	+	+	+	+	+	+	+	+	╋	╉				_	_		r lok	0.085 OK	106	105		or			Samolia						
192-V-060	L]					<u> </u>	<u> </u>	Ĺ		<u> </u>	<u> </u>							

192-V-060	19														🗆 Test) Test	⊠ Pre Test				UL:	NINL	ERIC CHEONTAINE	ERIC	Technician:	Tech
		\vdash	-											$\left - \right $			$\left - \right $	$\left \right ^{+}$	$\left \right $	$\left \right $									
		$\left \right $	$\left \cdot \right $	┝╌┨	$\left \right $									9	Ť	(_			_	-		\downarrow	_	\square				
		+	_	+	+	+			1			_	-		+-		-	+	╉										
	-+	-	+-	+	┽	+	+												$\left - \right $								\square		
	+	╉	╀		╀	+	+	\uparrow																					
			┼	╀	┼╴	$\left \right $													\neg								-		
<u> </u>	+	+				+												-			_								
	+	+	+			┢		$\left \right $										\neg		-									
	╉	+	+						$\left \right $																				
	+	+	╀	-		-		T						-															
	╉	+	+	$\left \right $	-	+-			T										_	_									
	╉	+		+	┼	┼	╀																						
		+	+	+	╀	+	+		\uparrow														-						
		╉	+	+	╋	+	┢	\uparrow	†																				
	╉		╀	+	╀			1	\uparrow																				
	╉	╀	-		╀		$\left \right $						 			· ·								•					
	╉	╉		Ť	6,	6		76	76					P				55 14	484 504		878	091	رگ ا				3		09
	╉	+	╉	+	+	; 6	╉	76	76											Ebs be 8		151	08				2	4,5	05
	+	+	+	+			┢	<u> </u>	62								6		37X Y1	294 334	r 1	とか	79	755		-	\sim	ر) فر	60
	+	╉	╀	Ť	_	1	-	76	76								9	6226	11 319	182 621	~	737	71	605			\sim	29.7	30
1. 1. 1.	╈	╋		ľ	1/2	, 		97	27								0		17 222		262	_ I	77	927			0	9.60	لو ان
	╉	╀		^۲		、こ	+-	27	27								9		2410 269			521	イイ	5/2	1		\sim	10.9S	6
<u> </u>	+	╀	+	<u>}</u>	175	22		52	27								2	39/24	PEX 581	22	726	140	78	620		╡		12.0	0
	+	+		n Filter	outlet	Inder Temp	Filter Temp	Temp Outlet	Temp Inlet		#2		meter # 1			<u>,</u>	·····		R. Side Side		ŝ	temp.	temp.	iemp j	·			remaining	Į,
ă 	smoke	Draft	ve i	12	Dry gas meter #2	Dry g	1	Dry gas meter #1	Dry gas	Rotam	Dry gas	Rotam			Gas samp	₽ ₽	C H	ui Unit				Tunnel	Room	File	Q.	ę.	8	Weight	Elapsed
	-					1																					₽ I	Time loaded:	Tin
		-	 	 Of		Sheet #	She		`	109	Run #:	_		<u>00</u> 6	Date: <u>22/09/200</u> 6	te: גר	D	F	NOO	FOYERS VALLOURT	<u>'6-</u> R S		Client:		۱ .	171	310 5	Project #: 3/0 \$27/	Pro
														\bigcirc	\bigcirc	()	· ,								6	SEMI	Ē	Intertek, ETL SEMKO	

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

APPENDIX B Laboratory Operating Procedures

INTRODUCTION

This document provides a step by step guide for the technician conducting tests to Oregon and/or EPA standard requirements. Procedures outlined here, when followed, will result in tests in conformance with Oregon Department of Environmental Quality Method Om42 and EPA Methods 28 and 5G.

The primary measurements to be made are particulate emissions rates. The technician's duties include the following steps.

- 1. Incoming inspection of test units.
- 2. Set-up of test units.
- 3. Preliminary testing to establish unit operating procedures and familiarity with operating controls.
- 4. Calibration of test equipment.
- 5. Set-up, checking and operation of sampling apparatus.
- 6. Conduct of tests including complete record keeping and data recording for non-automated functions.
- 7. Operation of hardware and software included in automatic data acquisition system.
- 8. Review and analysis of data at test completion to ensure test validity.

The technician running this test must be familiar with the following documents, which are to be kept in the laboratory at all, times.

EPA METHODS

- a. Method 28
- b. Method 28a
- c. Method 5G

Test forms are provided for all collected data and calibration records are found in appendix for each instrument.

I. APPLIANCE INSPECTION AND SET-UP

A. INCOMING INSPECTION

- 1. Check for completeness of unit including parts, accessories, installation and operating instructions, drawings and specifications etc. Note any discrepancies or missing parts or information.
- 2. Check for shipping damage. If damage has occurred, notify the laboratory manager. In some cases, repairs may be made, provided the manufacturer and laboratory manager concur that repairs will not affect the unit's performance. If damage is irrepairable, a new unit will need to be obtained.
- 3. Note whether unit is catalytic of non-catalytic.
- 4. Mark unit with manufacturer's name, model number, work order number and date received.
- 5. If unit is safety listed, note label data including listing agency and serial number. If unit is not listed, mark all data sheets "UNLISTED". Test results will not be released until unit passes safety tests without modification unless authorized by laboratory manager.

B. UNIT SET-UP

- 1. All new units must be operated for a breaking in period as follows.
 - a) Non-catalytic units: Ten (10) hours at medium burn rate with Douglas Fir scrap or cordwood.
 - b) Catalytic units: Fifty (50) hours at medium burn rate with Douglas Fir scrap or cordwood.

During these break-in runs the unit may be connected to a lab chimney and fuel additions noted on data form no. 192-ai-9904. For catalytic units, a thermocouple must be installed in the catalyst.

Record catalyst temperature at 1-hour intervals or on chart recorder. Operating should continue until data shows at least fifty (50) hours of operation with catalyst temperature in excess of 800 degrees Fahrenheit (active range).

For non-catalytic units a stack thermocouple should be installed and stack temperature recorded at 1-hour intervals. Ten (10) hours minimum burn time with a stack temperature of at least 250 degrees Fahrenheit is required.

- 2.
- Once break-in is completed, allow unit to cool. Clean unit thoroughly.

- 3. Unit is to be placed on scale for testing. Prior to proceeding with verification process, scale should be turned on and allowed to warm up for one (1) hour minimum. Zero scale and check calibration with standard weights. One (1) 1 kg weight and one (1) 2 kg weight are provided for this purpose. Use scale verification test form no. 192-m-9904 to record results. If scale fails to reproduce weights within tolerance, check with laboratory manager before proceeding.
- 4. If scale checks out, place unit on scale and align so chimney will be centered in hood. Note unit weight on form no. 192-af-9904.
- 5. Attach chimney connector and chimney. Be sure all joints are sealed below sampling points. Chimney and connector should be cleaned with a wire brush. Be sure chimney connector terminates and chimney starts at proper level above scale platform. Chimney must be supported from scale so that it does not touch test enclosure or hood walls.
- 6. Thermocouples should be attached to surfaces of unit prior to testing. EPA requires a thermocouple on the bottom of the firebox. This must be installed prior to putting the unit on the scale. In some cases, the required thermocouple locations will be inaccessible on finished units. These units should have thermocouples installed by the manufacturer during construction. Check with the laboratory manager if problems are encountered in proper thermocouple attachment.
- 7. Measure firebox dimensions and record on data form nos. 192-ar-9905 and 192-aq-9905. Make a three dimensional sketch of the firebox including firebrick, baffles and obstructions. Calculate firebox volume in cubic feet. See Section 6.2.4 of EPA Method 28 for details of firebox volume determination.
- 8. If unit is catalytically equipped, additional thermocouples must be installed upstream and downstream of catalyst. Thermocouples should also be placed in the primary and secondary combustion chambers of all units.
- 9. Plug thermocouples into data acquisition system jacks making a record of locations and jack numbers for each test on data form no. 192-ah-9904.
- 10. Note that inserts are tested as if they are freestanding stoves.
- 11. Dilution tunnel should be cleaned prior to each certification test series and at anytime a higher burn rate follows a lower test burn rate.

II. SAMPLING SYSTEM – SET-UP

A. GAS ANALYSIS

1. Instruments should be turned on and allowed to warm up for one (1) hour minimum.

3105271

- 2. Calibrate analyzers as follows:
 - NOTE : Prior to proceeding with calibration, make sure to use NIST tracable calibration gas bottles. Adjust flow meter if necessary at each instrument to required flow value.
 - a) Using span gas, adjust span control to values specified on calibration gas label.
 - b) Using nitrogene, adjust zero controls to provide a 0.00 analyzer readout.
 - c) Repeat a) and b) until no further adjustment is required.
 - d) Check readout vs. calibration gases (2) labels.

The CO₂ and CO analyzers are "ZEROED" on nitrogen. The O₂ analyzer is spanned on air and set for 20.9%. It is zeroed on nitrogen as well.

- 3. Check for response time synchronization.
 - a) With no fire in unit, allow reading to stabilize (O₂ should be 20.93, CO and CO₂ should equal O).
 - b) Flow the calibration gas in the unit and start stop watch. Note the time required for each unit to reach .90 of the calibration gas bottle value. If all three analyzers reach this value within 15 seconds of each other, synchronization is adequate. If not, contact the laboratory manager. Synchronization is adjusted by internal instrument setting.
- 4. Set-up sample clean-up and water collection train as follows.

 a) Load impingers as follows: Impinger #1: 100 ml distilled water and 5 ml H₂SO₄ Impinger #2: 100 ml distilled water and 5 ml H₂SO₄ Impinger #3: Empty Impinger #4: 200 – 300 grams silica gel (dry)

- b) Place impingers in container and connect with "U TUBES". Grease carefully on bottom half of ball joint so that grease will not get into tubes.
- c) Connect filter to first impinger and sample line to last impinger.

3105271.

e. Leak check system as follows.

1) Plug probe.

- 2) Turn on sample system.
- Observe sample flow rotometer and vacuum gauge. If necessary, use vacuum; adjust valve to set vacuum to the maximum inches Hg.
- If the float in rotometer does not stabilize below 10 on scale, system must be resealed.
- 5) Repeat leak check procedure until satisfactory results are obtained.
- f) Just prior to starting test, fill impinger container with water and ice and record ambiant conditions on data form no. 192-t-9904.

B. DILUTION TUNNEL SAMPLE TRAIN SET-UP

- 1. Filters and holders.
 - a) Clean probes and filter holder front housings carefully and desiccate for at least 24 hours prior to use.
 - b) Filters should be numbered and filter and probe combinations labeled prior to use.
 - c) Weigh desiccated filters and probe-filter units on analytical balance. Record weights data form no. 192p-9904. Note that probe and front half of front filter are to be weighed as a unit.
 - d) Carefully assemble filter holder units and connect to sampling systems. Check "DRIERITE" columns for adequate dry absorbent (blue).
- 2. Leak checking.
 - a) Each sample system is to be checked for leakage prior to inserting probes in tunnel.
 - b) Plug probes and start samplers, adjust pump bypass valve to produce a vacuum reading of 5 inches Hg. (NOTE: During test, vacuum must not exceed 5 inches unless posttest leak check shows acceptable results.)

- c) Allow vacuum indication to stabilize for two (2) minutes, then record time and dry gas (DGM₁) and (DGM₂) meter readings. Wait ten (10) minutes and record dry gas meter readings again (DGM₃, DGM₄). NOTE: If mark, system is leaking too much and all seals should be checked.
- d) Calculate leakage rate as follows.
 - 1) System 1: <u>(DGM₃ DGM₁)</u> = CFM₁ 10
 - 2) System 2: <u>(DGM₄ DGM₂)</u> = CFM₂ 10

If CFM₁ or CFM₂ is greater than .02 CFM, leakage is unacceptable and system must be resealed.

If CFM₁ or CFM₂ is greater than 0.04 X sample rate, leakage is unacceptable. For most tests, the sample rate will be about 0.15 CFM, thus leakage rates in excess of 0.04 X 0.15 = 0.006 CFM are not acceptable.

e) Once leakage check is satisfactory, unplug probe and set flow to appropriate rate for test. This should be done in the minimum amount of time necessary and with the probes in ambient air. Do not insert probes in tunnel until the start of the test run. When flow is established, replug probes to prevent contamination.

III. TEST CONDUCT

A. FUEL LOAD

- 1. Determine optimum load weight by multiplying firebox volume in cubic feet by 7. This is the load weight on an as-fired basis.
- 2. Determine piece size to obtain the requested load configuration and meet the test load weight criteria. The load should consist of the following: **TO BE DETERMINED**
- 3. Weigh out test load and adjust weight by shortening all pieces equally if necessary.

4. Measure and record moisture content of each fuel piece using Delmhorst moisture meter. Determine if fuel load moisture content is in required range. If not, construct new load using wood with required moisture content. All wood in the humidity chamber should be within range. Contact project manager if you cannot find suitable pieces.

B. UNIT START-UP

- 1. Before lighting a fire, turn on dilution tunnel and set flow rate to 140 SCFM if burn rate is to be less than 3 kg/hr or to an appropriate rate from table provided in laboratory for higher burn rates. Record readings on data form no. 192-r-9904.
- 2. Check draft imposed on cold stove with all inlets closed and a draft gauge in the chimney. If draft is greater than 0.005 inches water column, adjust tunnel to stack gap until draft is less than 0.005.
- 3. Check for ambient airflow around unit with hot wire anomometer. Must be less than 50 ft/min.
- 4. Check all equipment for proper operation. Analyzers should be on and in sample mode. Computer should be loaded with test program and awaiting test start command.
- 5. Zero scale and start fire with uncolored newspaper and kindling representing 10 % of test load with the same type of fuel.
- 6. Once kindling is burning well after 5 minutes, add splitted pieces having a bottom surface around 4 sq. inches and representing 25% of test load weight. Operate at high fire for 15 minutes. Then adjust settings to intended test run levels as per the manufacturer's.

3105271 ...

7. Following addition of pretest fuel load (splitted pieces), start computer for data logging.

C. TEST RUN

- 1. When the 15 minutes high fire pre-burn period is completed, the test is to be started as follows:
 - a) Insert the sample probes into the tunnel being careful not to hit sides of tunnel with probe tip.
 - b) Check tunnel pitot tube for proper position. (Pitot should be carefully cleaned prior to each test.)
 - c) Turn on probe sample systems and stack sampler,
 - d) Open stove door, rake coals and load stove as follows: TO BE DETERMINED
 - e) Close door or follow manufacturer's start-up procedures. (Five (5) minutes maximum time before all doors and controls must be set to final positions for duration of test.)
 - f) An alarm will sound an audible signal at the (10) minutes intervals. This signal a reading interval. You must record at each interval the following readings on data form no. 192-v-9904:
 - 1) Rotometer readings.
 - 2) Tunnel pitot tube reading.

(Zero regularly between readings)

- 3) Dry gas meter readings.
- 4) Temperature readings.
- 5) Draft reading
- 6) Test laod weight
- 7) CO, CO₂ and O₂ readings
- 8) Observations of any unusual or non-routine events.
- g)

During the test, any condition approaching unacceptable limits will be noted. The filter probes and housings are installed in small holders just outside the tunnel. If the filter temperature gets too high, you will have to increase the water flow through the cooling unit until acceptable temperatures are obtained. In between readings, check on other equipment. Be sure dryers and filters are working and monitor impinger train for proper water and ice levels etc.

h)

When the fuel charge is consumed, it will signal end of test and shut down the sampling systems. When this occurs, remove filter holder and probes from tunnel and impingers from sample line.

IV. POST TEST PROCEDURES

A. SAMPLE RECOVERY – FILTER TRAINS

- 1. Carefully clean outside of probes and filter housings with alcohol.
- 2. Disassemble filter holder and transfer filters to clean petri dish. Scrape gasket with scalpel and collect any loose material on filters.
- 3. Place probe and front half of first filter holders (still assembled) and filters in desiccator. Allow 24-hour desiccation before weighing.
- 4. Weigh probe filter holder units and filters at two (2) hour intervals until weight change between weighings is less than 0.5 mg. Record all weights taken on data form no. 192-p-9904.

B. CALCULATION OF RESULTS

The computer program carries out all final calculations. When run, it will ask for data from forms used during the test. Enter data as called for.

C. OTHER TESTS

Fuel samples for each run should be tested for heating value and moisture content by ASTM D3286 and D4442 methods respectively.

GENERAL

This guide cannot cover every possible contingency, which may develop during a particular test program. Many questions, which may arise, can be answered by a complete understanding of the test standards and their intent. When in doubt on any detail, check with the laboratory manager and be sure you understand the procedures involved.

It is critical that all spaces on the data forms be properly filled in. Each test must be represented by a complete record of what was done and when.

Report No. 3105271 Foyers Valcourt

.

Issued: November 17, 2006

APPENDIX C Sampling Proportionality Results

Manufacturer: Foyers Valcourt Model: FP8 Date: 19/09/2006 Run: 1

		<i>µ</i> 1	"0	
		#1	#2	
		dDGM	dDGM	
		Vol.Std.	Vol.Std.	
PR1	PR2	(ft3)	(ft3)	Time
				0
114.94	108.99	1.368	0.982	10
111.88	106.57	1.335	0.963	20
108.81	104.00	1.298	0.939	30
107.52	105.67	1.280	0.952	40
106.44	105.93	1.263	0.951	50
102.87	102.48	1.254	0.945	60
102.93	102.51	1.257	0.947	70
101.57	102.02	1.242	0.944	80
98.66	98.97	1.240	0.942	90
97.95	98.79	1.233	0.942	100
98.24	98.82	1.239	0.944	110
97.30	98.67	1.230	0.944	120
97.75	98.88	1.237	0.947	130
96.82	98.79	1.227	0.947	140
97.18	98.23	1.233	0.944	150
96.49	98.34	1.226	0.946	160
94.60	95.90	1.232	0.946	170
92.13	93.80	1.230	0.948	180
97.53	98.08	1.241	0.945	190
95.32	99.19	1.214	0.956	200
95.77	97.21	1.221	0.938	210
96.30	95.71	1.228	0.924	220
95.43	95.63	1.218	0.924	230
92.03	92.03	1.231	0.932	240

Manufacturer:	Foyers valcourt
Model:	FP8
Date:	20/09/2006
Run:	2

		#1	#2	
		dDGM	#2 dDGM	
		Vol.Std.	Vol.Std.	
PR1	000			m i
FRI	PR2	(ft3)	(ft3)	Time
100 76	101 05	1 204	1 017	0
100,76	101.05	1,384	1.013	10
98.10	95.33	1.375	0.976	20
98.95	97.28	1.357	0.974	30
103.88	101.94	1.358	0.973	40
101.40	98.77	1.352	0.961	50
103.10	102.19	1.343	0.972	60
99.49	97.45	1.354	0.968	70
102.66	100.99	1.338	0.961	80
102.48	100.82	1.338	0.961	90
101.71	101.23	1.329	0.966	100
100.84	100.99	1.323	0.967	110
100.86	100.91	1.325	0.968	120
100.38	100.25	1.322	0.964	130
99.93	100.56	1.318	0.968	140
99.98	100.78	1.319	0.971	150
100.34	100.39	1.325	0.968	160
99.88	100.71	1.320	0.972	170
98.84	100.32	1.308	0.969	180
99.34	100.23	1.316	0,969	190
95.38	96.73	1.320	0.978	200
97.05	97.94	1.315	0.969	210
98.42	100.15	1.306	0.970	220
96.59	98.25	1.311	0.974	230
98.91	100.36	1.313	0.973	240
96.72	98.55	1.314	0.978	250
103.34	105.27	1.310	0.974	260
		2.010	0.0/3	200

3105271

ĺ

C

 \bigcirc

 \bigcirc

Foyers Valcourt
FP8
21/09/2006
3

		#1	#2	
		dDGM	ďDGM	
		Vol.Std.	Vol.Std.	
PR1	PR2	(ft3)	(ft3)	Time
				0
109.03	107.77	1.315	0.984	10
106.57	103.86	1.288	0.950	20
103.51	104.77	1.248	0.956	30
102.08	102.14	1.226	0.929	40
102.50	103.90	1.228	0.942	50
102.50	103.95	1.225	0.940	60
100.70	104.10	1.205	0.943	70
99.13	99.30	1.213	0.920	80
100.76	102.57	1.210	0.932	90
100.90	99.29	1.214	0.904	100
100.73	99.01	1.214	0.903	110
99.90	99.71	1.207	0.912	120
95.58	94.43	1.205	0.901	130
99.23	99.60	1.204	0.915	140
97.22	96.89	1.205	0.909	150
95.78	95.64	1.212	0.916	160
95.47	94.95	1.209	0.910	170
97.67	96.94	1.214	0.912	180
95.30	95.69	1.209	0.919	190
97.42	97.28	1.212	0.916	200
82.10	83.66	0.204	0.158	202

 \bigcirc

 \bigcirc

Manufacturer:	FOYERS VALCOURT
Model:	FP8
Date:	22/09/2006
Run:	4

		#1	#2	
		dDGM	ddgm	
		Vol.Std.	Vol.Std.	
PR1	PR2	(ft3)	(ft3)	Time
				0
101.52	106.36	1.286	0.995	10
97.78	102.63	1.237	0.959	20
98.93	98.32	1.247	0.916	30
101.35	97.45	1.281	0.910	40
100.40	98.96	1.274	0.928	50
99.45	99.40	1.271	0.939	60
98.77	96.76	1.295	0.938	70
97.96	96.41	1.292	0.940	80

3105271..

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

APPENDIX D Calibration Data

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

EQUIPMENT LIST

<u>And</u>

CALIBRATION MATRIX

NO. EOUIP. 180-318 180-169 180-265 180-442 180-444/443 180-311/365 180-304/305 180-175/176 180-184 180-290 180-414 180-170 180-280 180-129/130 180-110/195/302/303 180-355 180-223 180-004 180-300

EOUIPMENT Sling Psychrometer Gas Analyzer Calibration gases Draft indicator Vacuum gages (2) Pressure gages (2) Reference Dry Gas Meter Dry Gas Meter (metering system) Pitot Tube "s" Pitot Tube "s" Hot Wire Anemometer Analytical Balance Scale 0-8000 gr. Readout for 1000lbs Scale Calibration weights Moisture Meter Calibrator t/c temperature recorder Mercurial Barometer

FREQUENCY None (mercury type) Each test (initial and final) On purchase Annual Annual None (indication only) Annual Semi-Annual and each series Semi-Annual Semi-Annual Semi-Annual Semi-Annual Annual Annual 5 years Each series Annual Semi-Annual None (mercury type)

AGENCY

n/a intertek Air Liquide Chevrier Ulrich Ulrich Canadian Meter Intertek Chevrier Chevrier Chevrier Intertek and Vacs Vacs Vacs Marconi Intertek Ulrich Intertek п/а

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

GAZ ANALIZER

Inter	tek ETL SEMKO
Date: 19/09/2006	Page of
Manufacturer: FOYERS VALCOURT	Model: <u>FP8</u>
Project #: <u>3/0 \$27/</u> Run:	0 (Tech: GILTC LAFOUTAT MA Pavione

Pre-Test (Adjust and Record)

	ZE	RO	SI	PAN	CAL. (Re	cord Only)
СО	0.00	0.00	1.74	1.74	0.55	050
CO2	0.00	0.00	17.12	17.1	4.49	5.05
O ₂	00.0	00.0	21.2	21.2	6.6	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

\cap		Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK?	Not OK*
	со	0.02	1.78	0.57	0,02	0.04	0,02	/	
	CO ₂	0.02	16.89	4.43	0,02	0,23	0,06	V	
	O ₂	00.0	21.2	6.6	00,0	0.0	0,0	V	

Intertek ETL SE	МКО
Date: 20/09/2006	Page of
Manufacturer: FOYGILS VALCOURT	Model: <u>FP8</u>
Project #: <u>3/0 527/</u> Run: <u>02</u>	Tech: GILL LAFONTAENE Reviewer:

Pre-Test (Adjust and Record)

·····	Z	ERO	S	PAN	CAL. (Record Only)	
СО	0.00	0.00	1.74	1.74	0.54	0.511
CO ₂	0.03	0.00	17.10	17.1	4.49	5.05
O ₂	00.0	00,0	21.2	21.2	6.5	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

\cap		Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK ?	Not OK*
	со	0,02	1.77	0.56	0,02	0,03	0,02	1	
	CO ₂	0,04	16.80	4,47	0,01	030	0,02	\checkmark	-
i	O ₂	00,0	21.0	06. S	00.0	0.2	0,0	V	·

Date: ス1/09/2006	1KO
	Page of
Manufacturer: FOY GIS VALCOURT	Model: <u>FP8</u>
Project #: <u>3/0 5271</u> Run: <u>03</u>	Tech: CREC LAFONTAENE Reviewer

(

Pre-Test (Adjust and Record)

	ZERO		S	PAN	CAL. (Record Only)	
со	0.00	0.00	1.74	1.74	0.54	0.5//
CO2	0.00	0.00	17.10	17.1	4(3	5.05
O ₂	00.0	00.40	21.2	21.2	06.6	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

\cap		Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK?	Not OK*
	со	0.01	1.76	0.55	0,01	0,02	0,01		
	CO ₂	0.03	16.83	4,94	0.03	7 10	0,09		
	O ₂	00.0	21,1	06.6	00.0	0,1	0.0	1 V	

Date: 22/09/2006		Page of
Manufacturer: FOYERS VA	LCOURT	Model: <u>FP8</u>
Project #: 310 527/	Run: 04	Tech: EllCLAFONTATUE Reviewer:

Pre-Test (Adjust and Record)

со		ERO	SI	PAN	CAL. (Record Only)	
	0,00	0.00	1.74	1.74	0.54	0.5/1
CO ₂	0.00	0.00	17.03	17.1	4.S1	5.05
O ₂	00.0	00.0	21.2	21.2	06.6	6.68
	Actual	Should Be	Actual	Should Be	Actual	Should Be

Post Test (Record Only)

	Zero	Span	Cal.	Zero Drift	Span Drift	Cal. Drift	OK?	Not OK*
CO	0.00	1.74	0.54	0,00	0,00	0.00	/	
CO2	0.00	16.79	4.43	0.00	0,04	0,08	V	
O ₂	00.0	21.0	06. S	0,0	0.2	01	V	

Report No. 3105271 Foyers Valcourt

/ k Issued: November 17, 2006

CALIBRATION GASES

Intertek ETL SEMKO

Lachine, le 28 juin 2004

RAPPORT D'AUDIT

<u>Date:</u> Le 15 juin 2004

Endroit: À l'usine de Air Liquide Canada Inc 11201, boul. Ray-Lawson, Anjou (Québec)

<u>Personnes rencontrées</u>: Lucie Senécal, Représentante Jacynthe Malenfant, Chimiste François Grisé, Chimiste et Directeur de production

<u>But</u>: La visite a été effectuée dans le but d'auditer la façon de faire lors de l'analyse de la composition chimique d'une bouteille de gaz et les mesures prises afin d'assurer l'exactitude du certificat ainsi que la traçabililité de l'information.

La bouteille commandée et dont nous voulions superviser l'analyse est identifiée X297590 et la composition demandée est:

CO	1.7%
a a	

CO2 17%

O₂ 21.5%

N balance

Il s'agit d'un gaz de calibration, il est donc traité selon la procédure des gaz spéciaux.

Fabrication et Analyse

Le mélange est préparé au poids selon les instructions du chimiste avec une balance précise $\dot{a} \pm 0.1$ g puis il est analysé au laboratoire à l'aide des Chromatographes à phase Gazeuse à Détection par Conductibilité Thermique(GC-TCD)de modèles Sigma 3 et SRI. Le Sigma 3 est équipé d'un Servomex qui analyse directement l'oxygène par propriétés paramagnétiques.

Une ou plusieurs bouteilles standard se rapprochant le plus possible de la composition à analyser sont utilisées pour l'analyse au GC-TCD et au Servomex. Pour notre analyse, 2 standards ont été nécessaires (voir tableau).

Services d'essais Intertek AN Ltée Intertek Testing Services NA Ltd. 1829 32^e Avenue, Lachine, Québec H8T 3J1 Canada Téléphone: (514) 631-3100 Télécopieur: (514) 631-1133 www.intertek-sc.com

Page I de 3

3105271

Émis le: 28 juin 2004

Air Liquide Canada Inc.

1 ^{er} standard (pour CO et O ₂)	2 ^e standard (pour CO ₂)		
CO 2.006%	CO 19.99%		
O2 19.98%	CO ₂ 19.98%		
N ₂ balance	N ₂ balance		

Pour chaque standard, au minimum 2 injections sont faites avec le standard afin de s'assurer de la stabilité de l'appareil, puis 2 injections sont prises de la bouteille à analyser, et à nouveau 2 autres injections du standard sont reprises pour s'assurer que les mesures ne dévient pas.

Le Servomex donne une lecture directe que l'on inscrit sur l'Ordre de Fabrication (O.F.), le nôtre porte le numéro 04-SGM-1349. Les résultats de chromatographie sont imprimés et les compositions sont calculées sur ordinateur par programme Excel avec lequel on s'assure que la marge d'erreur entre les valeurs de la bouteille standard est inférieure à 2% relatif sinon on recommence le tout. Tous les résultats sont consignés par la chimiste sur le O.F. et dans la base de données du laboratoire. L'étiquette est imprimée et le O.F. reçoit l'étampe "accepté, refusé ou réaffecté". Le O.F. et les chromatogrammes sont conservés pour une période de 7 ans.

Calibration

Pour ce qui est de la calibration de la balance, on utilise un jeu de poids standards retraçables au NIST et avant chaque mélange de gaz standard, on vérifie la linéarité de la balance à l'aide du jeu de poids. De ce fait la bouteille standard est retraçable au NIST La balance est aussi calibrée par un consultant à tous les 2 mois. Voir en annexe les preuves de calibration.

Les appareils GC et Servomex ne sont pas calibrés comme tel puisque à chaque analyse, on vérifie qu'ils donnent avec consistance les mêmes résultats et les compositions chimiques sont obtenues par comparaison avec le standard.

3100271..

INTERTEK

Émis le: 28 juin 2004

Air Liquide Canada Inc.

Remarque:

On fait l'analyse de la bouteille en se branchant directement dessus et on calcule immédiatement les compositions sur ordinateur à partir des courbes obtenues du GC afin d'imprimer l'étiquette d'analyse. Mais une fois l'étiquette imprimée, elle est envoyée à la production pour qu'une tierce personne (de production) vienne apposer l'étiquette sur la bouteille. C'est donc le numéro de la bouteille, qui est aussi sur l'étiquette, qui est garant de l'exactitude de l'étiquette.

Conclusion:

Les éléments mentionnés dans ce rapport nous permettent de conclure que l'analyse des gaz effectuée chez Air Liquide Canada Inc. nous fournit la précision recherchée pour les gaz que nous employons.

Essais effectués par :

Martine Bourbonnais, ing. Certification & essais physiques

Rédigé par :

he fan

Ghislaine Leduc Rédactrice de rapport essais physiques Certification & essais physiques Vérifié par :

Claude Pelland, ing. Directeur régional Certification & essais physiques

F: 600 (02/03) REL CD **AIR LIQUIDE** *PROD : SPG-4MX0015338 DATE : 2006-06-16 #OF : 06-56M-1947 *CYL/BOUT : H8011548 VOLUME : 4.6740 M3 PRESS@15C : 10125 kpa CERTIFIED MIXTURE MELANGE CERTIFIE CO 0.511 % C02 5.05 % 02 5.88 × N2 BALANCE CHEMIST, CHIMISTE HOLAR CONCENTRATION / CONCENTRATION MOLAI EMPTY VIDE IN USE **EN SERVICE** FULL PLEINE

310 271.

F.: 600 (02/03) REL CD **AIR LIQUIDE** +PROD SPG-4MX0005159 : DATE : 2006-05-10 *0F 06-SGM-1363 : +CYL/BOUT : H8154738 VOLUME : 4.6950 M3 PRESS@15C : 9653 kpa CERTIFIED MIXTURE MELANGE CERTIFIE CO 1 74 % 202 17.1 % 02 21.2 % N2 BALANCE CHEMIST, CHIMISTE MOLAR CONCENTRATION / CONCENTRATION MOLATE EMPTY VIDE IN USE **EN SERVICE** FULL PLEINE

N	HAGA HITROG NITI	Ð	V.	N2-	
of Volume Pressure/Pres Purity/Purete	sion		6.3 149	SGM-189 12 M3 165 KPA 999%]4 ``
02 H20 THC	< < < ·		2 3 0.5	PPM PPM PPM	

(

C

AIR LIQUIDE 7915 (00-07)CD

3105271..

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

DRAFT GAUGE

Ulrich Métrologie inc. Ulrich Metrology Inc. 9912, Côte-de-Liesse Montréal (Québec) H8T 1A1

Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ukich.ca

CALIBRATION CERTIFICATE

1829, 32e Avenue

Lachine, QC H8T 3J1

Certificate no.:

Instrument ID: Type: Size: Manufacturer: Model no.:

Property of:

19845 83857-01 180-332 MANOMETER, DWYER MAGNEHELIC 0 TO 0.25 IN WATER DWYER MAGNEHELIC

SERVICES DESSAIS INTERTEK AN LTEE

Calibration date: Certificate issued: March 3, 2006 Interval: Due date: Procedure: Environment: Temperature: Humidity: Metrologist:

Approved by:

March 3, 2006 12 Months March 3, 2007 SEE NEXT PAGE. CLAS Type 2 Laboratory 20 ± 2°C 35 - 55% RH DNR

Ucros

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which Canada has an equivalence agreement.

CALIBRATION STANDARDS

See notes below.

MEASUREMENT UNCERTAINTY

The calibration was performed using a standard having a test ratio of four times or more greater than the unit being calibrated.

MEASUREMENT RESULTS

This gauge was subcontracted. See next page for measurement results.

Copyright of this Calibration Certificate CE-03-03 is owned by Ulrich Metrology Inc. and may not be reproduced other than in full except with the prior approval of Ulrich Metrology Inc.

NEW DI MARTINE E DE

4850, bd Gouin est Montréal-Nord, Qc Canada H1G1Å2 www.chevrierinstruments.com

Tél. (514) 328-2550 1 800 522-1226

Fax (514) 327-0604

info@chevrierinstruments.com lastromonte de maxare at da régulation paur les pracédés luduxtriels et lokaratoire d'étalennage

Certificat d'étalonnage **Calibration certificate**

Description Plage	Manom	ètre différentiel Magn Modèle : 2000-0	ehelic Dwy 0	Numéro de série Serial number			
Range	0/0.25 "CE				Identification	83857-01 180 - 3	
Précision Accuracy	······	±4% p.é.				Oui	
Client / Customer	Ulrich Métrologie Inc. 17311				Received in specs		
Bon de travail Work order #	14198-01	État instrument Condition	<u>Апivée/In</u> Moven		Leaving in specs Réparation (o/n)	Oui	
Conditions d'étalonn	age à l'ambiante		woyen	Bon	Repaired (y/n)	Non	
Ambient conditions a Remarque(s)	t time of calibration			20 ± 1°C		35-55% H.R.	
Comments		*Fuite au n	nh usavit	auvercie (m			

*Fuite au niveau du couvercie (mai serré) / resserré

Appliquée Applied				Réaclings	
TOP		nërat i Ta Kasilari	Carlor CE	(Gelecendarine) (Concernelling)	20 Éneur
0.0000	0.000	0.0000	0.0000	0.000	Enor
0.0273	0.025	-0.0023	0.0235		0.0000
0.0501	0.050	-0.0001	0.0463	0.025	0.0015
0.0736	0.075	0.0014	0.0726	0.050	0.0037
0.1006	0.100	-0.0006	0.0977	0.075	0.0024
0.1211	0.125	0.0039		0.100	0.0023
0.1452	0.150	0.0048	0.1205	0.125	0.0045
0.1712	0.175		0.1433	0.150	0.0067
0.1934		0.0038	0.1709	0.175	0.0041
0.2194	0.200	0.0066	0.1928	0.200	0.0072
	0.225	0.0056	0.2182	0.225	0.0068
0.2487	0.250	0.0013	0.2487	0.250	0.0013

L'instrument ci-haut mentionné a été étaionné selon la méthode de comparaison en conformité avec la procédure PR004. The above instrument was calibrated using the comparison method in conformance with the procedure PR004,

Étaions utilisés traçable au C.N.R.C / N.I.S.T.- Standards used C.N.R.C / N.I.S.T. Traceable

Reda Aksas

CHEV029, manomètre/simulateur différentiel Fumess Controls PPC500 n/s 960294, 0.00008/8°CE, 0.0008/80°CE, 0/20 mA, 0/20 Vcc précision pression: ±0.1% v.m. ±1 chiffre, précision voltage et courant ±0.05% v.m. + 1 chiffre, certifié NIST, Certificat: FC05-292-A01, date due 19 octobre 2006

Certifié par Certified by

Date 2006/mar/03 Numéro du certificat Certificate number

Date due Due Date 14198-01-17311

(J.(

7.7

3100271

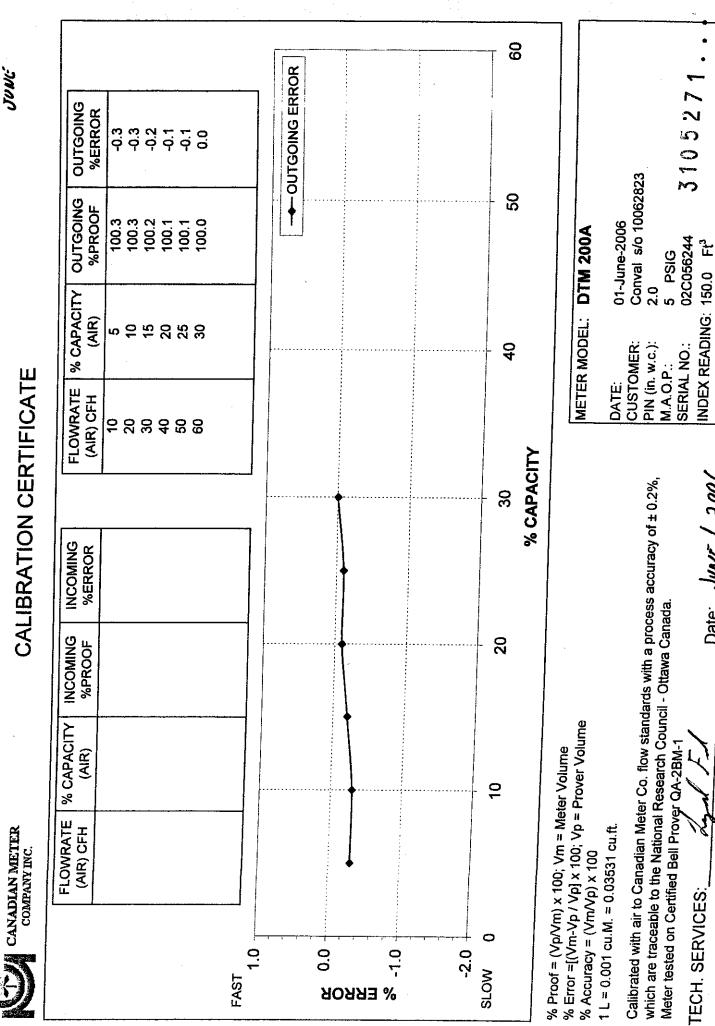
2007/mar/03

révision 050725

Reproduction interdite sans consentement écrit A moins d'exception, le ratio d'incertitude étalon/instrument est d'au moins 4 pour 1. The test uncertainty ratio exceeds four to one unless otherwise indicated

H:\WPAT\CERTIFIC\Save\14198-01-17311.doc Enregistré par le BNQ selon ISO 9001

Report No. 3105271 Foyers Valcourt Issued: November 17, 2006


METERING SYSTEM 1 &2

Intertek ETL SEMKO

CERT. 0385 01-01-0106 *Juluc*

CALIBRATION CERTIFICATE

6

Date: Junz 1, 2006

A LTD. ION DATA DATE: 04/10/2006TECHNICIAN: 5.RLC LAFOUTALUE DGM#2: 1.004 STANDARDIZED DGM#3: 0.999	#1 & 0- 76 E TEMP STD. CAL. °F FT. ³ FACTOR	1680 0.103 74.5 0.103 0.971 0.180 0.185 1.016 0.277 1.016 1.290 0.377 74.6 0.277 1.011 1.886 0.377 74.6 0.377 0.993 1.568 0.681 74.6 0.377 0.993 AVERAGE CALIBRATION FACTOR: 0.993 0.993	ł	<u>4.503</u> 0.101 75.0 0.101 1.018 4.903 0.181 74, 8 0.181 1.011 898 0.275 74, 8 0.225 0.997 663 0.439 74, 8 0.438 0.987 7357 0.674 74, 7 0.673 1.005 AVERAGE CALIBRATION FACTOR: 1.005 IO D. 0.01
A ' <i>'{/10/3006</i> TEG	METER #1 L CHANGE FT. ³	719,680 0.103 720,190 0.185 721,888 0,277 721,888 0,581 721,588 0,681 AVERAGE CALIE	METER #2 / 10-/75 - CHANGE TEMI FT: ³ °F	C 0.101 0.175 0.475 0.439 0.439 AGE CALIBR
. ICES NA LTD. CANADA ALIBRATION DAT. O:DATE:0	, INITIAL FT. ³	がれれれれ	INITIAL FT. ³	0 0 0 0
INTERTEK TESTING CICES NA LTD. LACHINE, QUÉBEC, CANADA SIX MONTH DRY GAS METER CALIBRATION DATA MODEL:	FINAL FT. ³	719783 72,0275 72,267 72,267 733,269	FINAL FT. ³	105,084 105,084 107,102 108,031
TESTING TINE, QUÉB Y GAS MET	P STD FT. ³	1 0,100 1 0,188 1 0,280 1 0,374 1 0,676	STD. FT. ³	0.103 0.183 0.474 0.677
INTERTEK TESTING LACHINE, QUÉJ SIX MONTH DRY GAS MET MODEL: CALIBRATION FACTOR D	VGE TEMP	8 79,4 8 79,4 4 79,4 6 79,4	-	75.7 1946 7946 7946 7946
	AETER L CHANGE FT. ³	00,100 0,188 0,280 0,374 0,676	METER CHANGE FT ³	0.183 0.183 0.433 0.433 0.677
RE: 29,9	STANDARD METER L INITIAL (FT. ³	002 011 005 111 005 111	STANDARD METER 'ÍNITIAL CHA FT. ³ F	174, 800 174, 800 176, 600 177, 300 510 527
URER: /	ST FINAL FT. ³	110,400 170,488 173,874 173,876	FINAL FT. ³ FT. ³	
MANUFACTURER: 09.90 BAROMETRIC PRESSURE: 29.90	FLOW RATE FT. ³	0.094 May 110, 400 0.094 May 170, 988 0.140 May 172, 180 0.187 May 173, 874 0.338 May 173, 876	FLOW RATE FT. ³ <i>PLOST</i> Fru	

0	TEWER:	17	STD. CAL. FT. ³ FACTOR	2021 2020	0,205 0,992	203 1,002		DEVIATION PERCENT	% /20-		STD. CAL. FT ³ FACTOR			207 0,986	DEVIATION		- 0, 4 %		
	LTO: 310 5371 DATE: 25/04/2006 TECHNICIAN: 1-1226 LACOUNDEVIEWER:	STANDARDIZED DGM#3: 1,00/7 METER #1	TEMP □F	71,5 0.:	71, 6	71,6 0,		EQUALS	EI.		TEMP □F	7 <i>0</i> 7		70, 8, 0,	EQUALS		11		
	ECHNICIAN: C.K	TANDARDIZED METER #1		00°0 0	10,202	3 0,200		MULTIPLIED *100	*100		CHANGE		+	3 0, 203	MULTIPLIED *100	*100			
	TE: 25/69/2006 T		INITIAL FT. ³	0 578,840	579,443 579,241	3 579,643					INTTIAL FT. ³	004 876 004 078	004,668 004,468	076 004, 8 73				3105271	
	LYG /15 0/E:0	<i>0,995</i> DGN ER CALIBRATI	FINAL FT. ³	/ 579,040	-	4 579, 843		PREVIOUS CAL. FACTOR	566'0		FINAL FT. ³			200	PREVIOUS CAL. FACTOR	0 900		ů Ť	-
	FP8 LT	CATION FACTOR DGM#1: 0,995 DGM#2: 0,990 POST TEST DRY GAS METER CALIBRATION DATA	IP STD FT. ³	1,02'0 9	70,204	1,02,09		DIVIDED BY	1		P STD.	202'0 Y		<u> </u>	DIVIDED BY				
		CALIBRATION FACTOR POST TEST DRY (CHANGE TEMP FT. ³ DF	200 70 6	200 70	200 70,					CHANGE TEMP FI. ³ DF	0,200 TO,2	<i>.</i> 02	01 000					
	VAL COUIT N	1 LER	INITIAL CHA	155,600 0,	0 000	400 00		AVERAGE CAL. FACTOR	0,999		INITIAL CHA FT. ³ F		0	00 00	AVERAGE CAL, FACTOR	0,999			
	MANUFACTURER: FOYGI(S VAL COURT MODEL:	BAROMETRIC PRESSURE: <u>30, / 5</u> STANDARD METER	FINAL IN FT. ³ I	155, 800 155	156, 200 156,000	156,600 156,400	AVERAGE CALIBRATION FACTOR:	MINUS		ERMETER #2	FINAL INI FT. ³ F	157,000 156,800		AVERAGE CALIBRATION FACTOR:	MINUS			. •	
Ο.	MANUFACTU	BAROMETRI	PRESS DROP	0	0 11	0 11	GE CALIBRA	IOUS ACTOR	S	STANDARD METERMETER #2	PRESS DROP	0	0 0	U) GE CALIBRA	OUS	0			
			TRAIL NO.	~	ی ک	\sim	AVERA	PREVIOUS CAL. FACTOR	0,995	STA	TRAIL NO.	-	۲	AVERA	PREVIOUS CAL. FACTOR	0, 990			• .

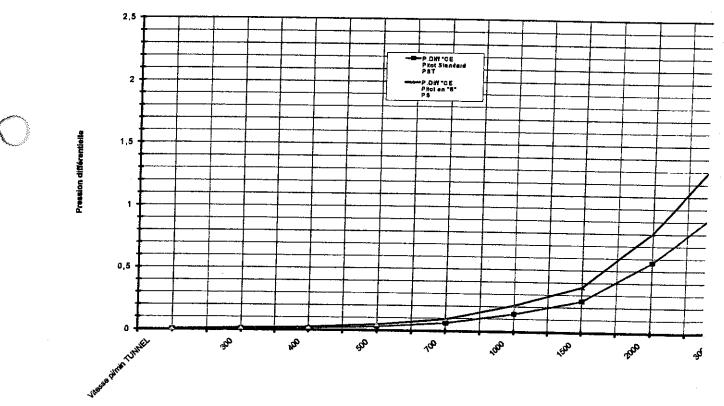
192-AM-0602

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

PITOT TUBE TYPE ''S''

Intertek ETL SEMKO


4850, bd Gouin est Montréal-Nord, Qc Canada H1G 1A2 www.chevrierinstruments.com

info@chevrierinstruments.com instrumente de monaru et de régalation paur les precédés industriais et inhereinire d'étainsent

180-184

Certificat d'étalonnage Calibration certificate

Description	Tube de Pitot en « S »	Identification	160	S-18
Client / Customer	ITS Services D'essais Intertek Ltée #1802	État instrument Condition	<u>Arrivée/In</u> Bon	Sortie/Out
Bon de travail Work order #	15215-01	Réparation (o/n) Repaired (y/n)	N	<u>Bon</u> DN
Remarque(s) Comments				

Courbe d'étalonnage

Vitesse en pleds/minutes

3105271...

révision 051213 Reproduction Interdite sans consentement écrit Points pon-conforme en ombragé. Out of tolerance readings shaded.

H:\WPAT\CERTIFIC\Save\15215-01-1802.doc Enregistre par le BNO selon /SO 9001 depair 1975

4850, bd Gouin est Montréal-Nord, Qc Canada H1G1A2 www.chevrierinstruments.com Tél. (514) 328-2550 I 800 522-1226 Fax (514) 327-0604

www.chevrierinstruments.com info@chevrierinstruments.com Instruments de masare el de régulation peur les precédie infestiries el infestiries d'internance

Température deg (Pression atm. Pa	C 21.8	Humidité Relative % Facteur K	49		
	presion dimensionalia CP Phot Standard CHEV059	rejeikes T	irrealait Interaction Plus on -scalars		Partour Cf. serrestion correction resto
300	0.0055	297	0.0071	338	0.8801
400	0.0103	407	0.0151	492	0.8259
500	0.0158	504	0.0244	626	0.8047
700	0.0309	704	0.0473	871	0.8083
1000	0.0630	1006	0.0949	1234	0.8148
1500	0.1421	1510	0.2122	1846	0.8183
2000	0.2518	2011	0.3637	2416	0.8321
3000	0.5676	3019	0.8078	3601	0.8382
4000	1.0049	4017	1.4387	4806	0.8357
5000	1.5728	5025	2.2426	6000	0.8375

L'instrument ci-haut mentionné a été étalonné selon la méthode de comparaison. The above instrument was calibrated using the comparison method.

Étalons utilisés traçable au C.N.R.C / N.I.S.T.- Standards used C.N.R.C / N.I.S.T. Traceable

CHEV029, manomètre/simulateur différentiel Furness Controls PPC500 n/s 960294, 0.00008/8°CE, 0.0008/80°CE, 0/20 mA, 0/20 Vcc précision pression: ±0.1% v.m. ±1 chiffre, précision voltage et courant ±0.05% v.m. + 1 chiffre, certifié NIST, Certificat: FC05-292-A01, date due 19 octobre 2006

CHEV031 Tuyère à jet d'air Airflow Developments type 83 FSL #VM7154670 et plaques orifices certifiées. Différentiel de pression mesuré avec transmetteur Kimo modèle CP303-MOP/SPI-1000, n/s 6030628, id. CHEV121, précision \pm (0.5% v.m + 1Pa)., référencé BNM-COFRAC no.P05334, P05335, P05347, certificat no.AMA0602030609, date due 02 mars 2007.

Certifié par Certified by	Trinh Thanh Tung	Date	2006/sep/01	Date due Due Date	2007/sep/01	
A	Alle	>	Numéro du certificat Certificate number	15215-	01-1802	C.Q. T.T.T.
		3	10527	1	•	
révision 051213 Reproduction interdite sans consentement é Points non-conforme en ombragé. Out of tolerance re		ge 2 de 2	H:\WF	PAT\CERTIFIC Enregistre j	NSave) 15215-01-11 bar le BNQ selor IS	802.doc 50 9001
Forme concernence of omorage. Out or colerance re-	sangs snaca. Fa	ne z ne z				

Report No. 3105271 Foyers Valcourt Issued: November 17, 2006

HOT WIRE ANEMOMETER

Intertek ETL SEMKO

180-414

4850, bd Gouin est Montréal-Nord, Qc Canada H1G 1A2 www.chevrierinstruments.com

Tél. (514) 328-2550 1 800 522-1226 Fax (514) 327-0604

www.chevrierinstruments.com info@chevrierinstruments.com Internation to regulation peer las precédée inductrieus et leterative d'étaisenage

Certificat d'étalonnage Calibration certificate

Description	Anémo	Anémomètre Omega modèle HHF42				Q117881
Plage Range	40/3940 pi/min (0.2/20 m/s) 0/50 °C 32/122 °F				Identification	
Précision Accuracy		Vélocité : \pm (5% v.m. + 1ch) ou \pm (1%p.é.+1ch) Température : \pm 0.8°C (\pm 1.5°F)				Non
Client / Customer	ITS Se	ITS Services D'essais Intertek Ltée #1802				Oui
Bon de travail Work order #	15215-02	État instrument Condition	<u>Arrivée/In</u> Bon	Sortle/Out Bon	Réparation (o/n) Repaired (y/n)	Non
Conditions d'étalonnage à l'ambiante Ambient conditions at time of calibration				20.5°C		35-55% H.R.

Remarque(s)

Comments

Appliquée	Lectures Before rea	Sate Advised & State	Appliquée	Lectures After rea	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Applied: pi/min		Erreur Error	Applied pl/mln	an a	Erreur
50	44	-6	50	33	17
100	93	-7	100	85	15
200	166	-34	200	168	32
500			500	465	35
800			800	790	10
1000	Sector Presser		1000	996	4
2000	1974	-26	2000	2089	-89
3000	2970	-30	3000	3138	-138
		Tempéra	iture 'C	ie weeks of t	
22,1	21,4	-0,7	20,5	20,0	-0,5

Étalons utilisés traçable au C.N.R.C / N.I.S.T.-- Standards used C.N.R.C / N.I.S.T. Traceable

Étalonné par la méthode de comparaison en conformité avec les spécifications du manufacturier avec:

CHEV031 Tuyère à jet d'air Airflow Developments type 83 FSL #VM7154670 et plaques orifices certifiées. Différentiel de pression mesuré avec transmetteur Kimo modèle CP303-MOP/SPI-1000, n/s 6030628, id. CHEV121, précision ±(0.5% v.m + 1Pa)., référencé BNM-COFRAC no.P05334, P05335, P05347, certificat no.AMA0602030609, date due 02 mars 2007.

CHEV033, Thermomètre numérique COOPER PM200A, précision de ± 0.2 °C ou 0.5%v.m.,certificat #060628-CHEV033, référencé au NIST, date due 28 juin 2008.

3105271

Certifié par Trinh, Thanh Tung Certified by

Date 2006/sep/05 Numéro du certificat Certificate number

Date due Due Date 2007/sep/05 15215-02-1802

กต

H:\WPAT\CERTIFIC\Save\15215-02-1802.doe Enregistré par le BNQ selon ISQ 9001

Révision 060905 Reproduction interdite sans consentement écrit Points non-conforme en ombragé. Out of tolerance readings shaded.

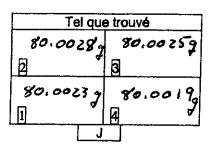
Page 1 de 1

Report No. 3105271 Foyers Valcourt

e de la composition de la comp

Intertek ETL SEMKO

Issued: November 17, 2006


ANALYTICAL SCALE

RAPPORT D'ESSAI EXHAUSTIF

1		······	- <u>1</u>		·/
I	<u>TS</u>		Nº DU TICKET SAV	ORDRE D'INTERVENTIC	N 560461
unité	LACHTNE		Nº du client	180 - 170	
modèle	OHAUS / AP	3/05	Nº de série	111450114	7
310	2, kg - 10 -	Nb.Divisions	310 0000	Taille Divisions	100019
	modèle		modèle OHAUS AP3105	unité LACIFINE N° du client modèle 01/AUS/AP3/05 N° de série	modèle 01/AUS/AP3/05 N° de série 111450114

┛ L'équipement de pesage mentionné sur le présent rapport a été vérifié et/ou calibré en conformité avec la procédure Mettler Toledo Réf. VP0023IR, et la norme canadienne et/out le manuel NIST Nº., le cas échéant

VÉRIFICATIONS DES COINS

Poids Appliqué <u>: 809</u> Erreur per	missive <u>300</u> D
Tel que remis	
80.00119 80.00097	Dans la tolér réglage
80,00069 80,00049 11 4	Dans la tolér réglage 🔲
J	Hors tolérance

Dans la tolérance sans réglage

Dans la tolérance après réglage

Hors tolérance

METTLER

TOLEDO

Essai progressif	Poids Appliqué	Lecture tel que trouvé	Erreur: plus ou moins (d)	Erreur permissive (d)	Lecture tel que remis	Dans la Tolérance O/N
Zéro	0.0000 9	0,00009	0	1	<u> </u>	
2	10.0000	10,0000	0	100		
	50,0000	50.0007	7	500	50,0000	
	100:0000	100.0030	30	1000	100.0016	
Charge Maximale*	300,0000	300.0066	66	3000	300,0036	
	100 0000	100.0030	30	1000	100,0016	
	50.0000	50,0007	7	500	50,0000	
	10.0000	10,0000	0	100	10,0000	
Zéro *Charge maximal u	0:0000	0 .0000	0	1	0,0000	

*Charge maximal utilisé pour l'essai

Dai

oans la tolérance sa OBSERVATIONS:	CALIBR	É	
NUMÉROS D'IDENTIFIC	TION DES POIDS:	13 7480 7481	ZFEUOG H
Vº du certificat de traçabilité du poids: RÉALISÉ PAR:	1342	DATE DETALONNAGE	EU 06 PROCHAIN ÉTALONNAGE POUR CLIENT: LEU 07
		echnicien (en lettres capitales)	Signature du technicien
e cas échéant:	Nom	tu Client (en lettres capitales)	Signature du client

3105271.

CERTIFICAT D'ÉTALONNAGE

BALANCES

Nº de certificat : 1342

Pour l'étalonnage, nous utilisons les balances suivantes :

De > 200 g à 5 kg :	Mettler PM5003, SNR 1115311634, max. 5100 g d = 0,00 lg
De > 5 g à 200 g :	Mettler AT-201, SNR 1115230146, max. 205 g d = 0,01 mg
De Imgà 5g;	Mettler MT-5, SNR 1115252538, max. 5.1 g $d = 0.1 \mu g$
201 mg u 2 g .	$M_{1} = 0, 1 \mu g$

INCERTITUDES

Les incertitudes que nous retrouvons comprennent :

- I. L'incertitude associée à l'opération de pesage.
- 2. L'incertitude associée à la densité de l'air.
- 3. L'incertitude associée à l'étalon utilisé.
- L'incertitude associée à la densité de la masse à être étalonnée.

L'incertitude de l'opération de pesage comprend la reproductibilité à long terme.

Les incertitudes précisées dans ce rapport sont des incertitudes élargies représentant un niveau de confiance d'approximativement 95 %, obtenu en multipliant ensemble l'incertitude-type composée par un facteur de couverture de k = 2. Pour de plus amples renseignements, veuillez consulter la publication GUM (Guide pour l'expression de l'incertitude de mesure, édition de 1995).

TRAÇABILITÉ

Le Service d'évaluation de laboratoires d'étalonnage (CLAS) du Conseil national de recherches du Canada (CNRC) a évalué et a certifié des capacités d'étalonnage spécifiques de ce laboratoire et leur traçabilité à des étalons nationaux de mesure reconnus et au Système international d'unités (SI). Ce certificat d'étalonnage est émis conformément aux conditions de certification accordées par CLAS et aux conditions d'accréditation accordées par le Conseil canadien des normes (CCN). Le CLAS pas plus que le CCN ne peut garantir l'exactitude des étalonnages individuels effectués par des laboratoires accrédités.

******		ÉRENCES UTILISÉES	
Poids	Nº de série	Fabricant	Date étalonnage
5 kg et 2 kg	96-088850-3	Denver Instrument C.O.	
2 kg	PE-2-1	OHaus	9 janvier 2003
kg à 200 g	96-088850-2	Denver Instrument C.O.	9 janvier 2003
00 g à 2 mg	96-088850-1	Denver Instrument C.O.	9 janvier 2003
l kg	29246	Troemner	<u>9 janvier 2003</u>
100 g	01-J54403-39	Troemner	<u> </u>
10 g	38827	Troemner	9 janvier 2003
1 g	42263	Troemner	9 janvier 2003
100 mg	42722	Troemner	<u> </u>
10 mg	48065	Troemner	9 janvier 2003
1 mg	21965 et 37759		<u>9 janvier 2003</u>
		Troemner ÉRENCE CERTIFIÉS PAR LE CNRC	9 janvier 2003
1 kg	96-088850-3		
100 g		Denver Instrument C.O.	7 mai 2004
100 8	96-088850-2	Denver Instrument C.O.	7 mai 2004

Le droit d'auteur de ce certificat appartient au laboratoire émetteur. Ce certificat ne peut être reproduit autrement qu'en entier et avec le consentement préalable écrit du laboratoire émetteur.

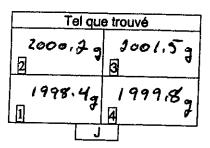
F-903

3105271 ...

Report No. 3105271 Foyers Valcourt

r L Issued: November 17, 2006

SCALE 0-8000 gr.


Intertek ETL SEMKO

RAPPORT D'ESSAI EXHAUSTIF

	····		
Nom du client ITS	Nº DU TICKET SAN	VORDRE D'INTERVENTION	SLOUGI
Emplacement unité LACHINE	N° du client	180-280	100 101
Marque/Nº de modèle ToleDo PB8001-3	Nº de série	111905387	9
Capacité 8 kg ib Nb.Divisions	80000	Taille Divisions	,19

L'équipement de pesage mentionné sur le présent rapport a été vérifié et/ou calibré en conformité avec la procédure Mettler Toledo Réf. VP0023IR, et la norme canadienne et/out le manuel NIST Nº., le cas échéant

VÉRIFICATIONS DES COINS

Poids Appliqué: 2 kg Erreur	permissive
Tel que remis	
2000.29 2001.59	Da réç
1998.4 j 1999.8 j 1	Da rég
J	Ho

Dans la tolérance sans régiage

20D

METTLER

TOLEDO

Dans la tolérance après réglage

Hors tolérance

Essai progressif	Poids Appliqué	Lecture tel que trouvé	Erreur: plus ou moins (d)	Erreur permissive (d)	Lecture tel que remis	Dans la Tolérance O/N
Zéro	0.09	0.09	0	1	0.07	
	500.0	500.1		5	500,1	
	2000,0	2000.0	0	20	2000.0	
Charge	4000.0	4000.0	6	40	4000,0	
Maximale*	8000,0	7999.3	7	80		
	4000.0	4000.0	0	40	4000.0	
	2000.0	2000,0	0	20		
·	500.0	500.1	1	5	<u> 2000.0</u>	
Zéro *Charge maximal uti	.0.0	0,0	0		500.1	

Dans la tolérance sans réglage

JMÉROS D'IDENTIFICATIO	DN DES POIDS:	48 7480	0,7481	JEEV 06 #	
cabilité du poids:	1342	UAIE D'ETALON	AFEV OG	PROCHAIN ÉTA	
ALISÉ PAR:	J. THIBAU		1	POUR CLIENT:	FEUGT
· · · · · · · · · · · · · · · · · · ·		icien (en lettres capitale	es)	-did L	bautt
				Signature du	technicien
as échéant:	Nom du Cli	ent (en leitres capitales)		<u> </u>	
				Signature	u client

<u>TECHN</u>İSOL

325, rue de l'Espinay Québec (Québec) G1L 2J2

CERTIFICAT D'ÉTALONNAGE

Tel. : (418) 647-1402 Télec. : (418) 648-9288

Client :	Mettler Toledo		Nº du certificat :	1240
Adresse :	9280, rue du Parcours		N° projet client :	1342 ME81310-160
	Anjou (Québec) H1J 2Z1	· · · · · · · · · · · · · · · · · · ·	Accréditation CCN n°:	24
			Certification CLAS n° :	2000-01
			Classe d'exactitude :	OIML R-111, classe F2
Masse : Fabricant :	5 kg à 1 g		Date d'étalonnage :	29 avril 2005
			Date du prochain étalonnage :	Avril 2006
Condition d	l'essai : Temp. °C :	21,7	Pression kPa: 101,4 Hur	midité % : 35

Valeur nominale	N deserie	N ^{o a} inventaire	conventiafinelle Telle que recue	Masse Conventionnelle correction apres Halonnage (mg)	Tolerance (+ ou -) (mg)	Incertiaide (+ ov -) (mg)
5 kg	7480	Jean Thibault	20,2		75,0	
5 kg 🔹	7481	Jean Thibault	8,5		75,0	4,0
2 kg	7480	Jean Thibault				4,0
2 kg •	7481	Jean Thibault	14,1		30,0	1,7-
l kg	7480	Jean Thibault	5,2		30,0	1,7
500 g	7480	Jean Thibault	2,3		15,0	0,83
200 g	7480	Jean Thibault	0,397		7,5	0,9
200 g 🔹	7481	Jean Thibault	- 1,573		3,000	0,170
100 g	7480	Jean Thibault	1,202		3,000	0,170
50 g	7480	Jean Thibault	0,218		1,500	0,100
20 g	7480	Jean Thibault	0,262		1,000	0,040
20 g •	7481	Jean Thibault	0,157		0,800	0,025
10 g	7480	Jean Thibault	0,093		0,800	0,025
5 g	7480	Jean Thibault	0,1118	<u> </u>	0,600	0,018
2 g	7480	Jean Thibault			0,5000	0,0110
			0,0760		0,4000	0,0110

S'applique seulement pour les masses qui ont été ajustées ***** Ajusté

** Hors-tolérance pour la classe spécifiée

Pour l'étalonnage des masses, nous utilisons la procédure « Comparaison individuelle » IES 902 et la procédure « Détermination des incertitudes » IES 903. Nos étalons de référence sont étalonnés chaque année par le CNRC. Ce certificat ne peut être reproduit sans la permission écrite de Technisol inc.

Remarques:

	· · · · · · · · · · · · · · · · · · ·	Silama
Effectué par :	J. Adey	Approuvé par : S. Hamel, resp. SMM Date : 29 avril 2005
-903 - Révision 02		3105271. Page 1 de 3

man in the second second second second second

T<u>ECHN</u>ISOL

325, rue de l'Espinay Québec (Québec) G1L 2J2

CERTIFICAT D'ÉTALONNAGE

Tél. : (418) 647-1402 Télec. : (418) 648-9288

Mettler Toledo	Nº du cartificat :		
9280, rue du Parcours		1342	
		ME81310-160	
		24	
	Certification CLAS n°:	2000-01	
She à La	Classe d'exactitude :	OIML R-111, classe F2	
	Date d'étalonnage :	29 avril 2005	
	Date du prochain étalonnage :	Avril 2006	
l'essai : Temp. °C : 2	1 Pression kPa : 100,5 Hu	midité % : 35	
	9280, rue du Parcours Anjou (Québec) H1J 2Z1 5 kg à 1 g	9280, rue du Parcours N° projet client : Anjou (Québec) H1J 2Z1 Accréditation CCN n° : 5 kg à 1 g Classe d'exactitude : Date d'étalonnage : Date du prochain étalonnage :	

N ^e de série	N° d'Inventaire	lelle que recue	correction après	(+ 04 -)	Incertitude (* ou-) (mg)
7481	Jean Thibault			THE REAL PROPERTY.	
7480	Jean Thibault				0,0110
			·	0,3000	0,0110
					·····
·					
		······································			
					······.
		······			
	7481	7481 Jean Thibault	N ^o de série N ^o d'Inventaire conventionnelle telle que reçue Correction (mg) 7481 Jean Thibault 0,0837	N ^a de série N ^a d'Inventaire conventionnelle telle que reçue conventionnelle correction après 7481 Jean Thibault 0,0837	N ^a de série N ^a d'inventaire conventionnelle telle que reçue conventionnelle correction après étalonnage (mg) Tolérance (+ ou -) (mg) 7481 Jean Thibault 0,0837 0,4000

🕈 S'applique seulement pour les masses qui ont été ajustées

* Ajusté **

** Hors-tolérance pour la classe spécifiée

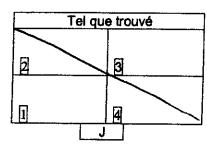
Pour l'étalonnage des masses, nous utilisons la procédure « Comparaison individuelle » IES 902 et la procédure « Détermination des incertitudes » IES 903. Nos étalons de référence sont étalonnés chaque année par le CNRC. Ce certificat ne peut être reproduit sans la permission écrite de Technisol inc.

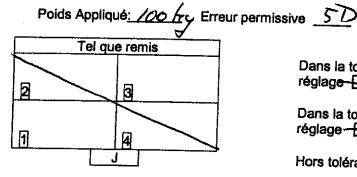
Remarques:

		stome O
Effectué par :	J. Adey	Approuvé par : S. Hamel, resp. SMM Date : 29 avril 2005
F-903 - Révision 02		
		3105271. Page 2 de 3
a tali katao il addina della potenzati atta	· Colorado Colorado	and with the second

Report No. 3105271 Foyers Valcourt Intertek ETL SEMKO

Issued: November 17, 2006


PLATFORM SCALE


RAPPORT D'ESSAI EXHAUSTIF

Nom du client	I7	S		Nº DU TICKET SA	V/ORDRE D'INTERVENTION	560461
Emplacement	unité	LACHING		N° du client	180-129	<u> </u>
Marque/Nº de	modèle	ume / c.	20	Nº de série	16990	
Capacité	45		Nb.Divisions	22700	Taille Divisions	107 4.

L'équipement de pesage mentionné sur le présent rapport a été vérifié et/ou calibré en conformité avec la procédure Mettler Toledo Réf. VP0023IR, et la norme canadienne et/out le manuel NIST N°., le cas échéant

VÉRIFICATIONS DES COINS

Dans la tolérance sans réglage

METTLER

TOLEDO

Dans la tolérance après réglage

Hors tolérance

Essai progressif	Poids Appliqué	Lecture tel que trouvé	Erreur: plus ou moins (d)	Erreur permissive (d)	Lecture tel que remis	Dans la Tolérance O/N
Zéro	0.00hg	0.00/2	0	1	7-	
	50.00	50.00	0	5		
	100.00	100.00	0	5		
	150.00	149.98	1	7	149.98	
Charge Maximale*	200.00	199.94	3	10		
	150.00	149.98	1	¥	149.98	
	100.00	100.00	0	5	100.00	
ļ	50.00	50.00	0	2		
Zéro	0.00	0.00	0	1		

Dans la tolérance sans réglage

OBSERVATIONS: TE	ST DE COINS SANS	s obdet -7 Restric	TIONS PHYSIQUE
NUMÉROS D'IDENTIFICA	TION DES POIDS: 1-7 20	kg	
Nº du certificat de traçabilité du poids:	1201954	DATE D'ÉTALONNAGE POUR CLIENT: 2 FEU	06 PROCHAIN ÉTALONNAGE POUR CLIENT: FEUS7
RÉALISÉ PAR:	J. THIBAU	IT	J.Thebrue to
		n (en lettres capitales)	¹ Signature du technicien
9 cas échéant:	Nom du Client ((en lettres capitales)	Signature du client

3105271...

- - - - TAGE. 62/82

Canada

Measurement Mesures Canada

> Un organisme d'Industrie Canada

An Agency of Industry Canada

CERTIFICATE OF DESIGNATION GRAVIMETRIC STANDARDS CERTIFICAT DE DÉSIGNATION ÉTALONS GRAVIMÉTRIQUES

issued to - Emis a	Weight Set No N° du jeu de poids		
ETTLER / TOLEDO			
Address - Adresse	······································	Issue Date - Date d'émission	
9280 DU PARCOURS, ANJOU	(QUÉBEC)	2005 02 11 1	
Contect - Personne-ressource	Telephone number - N° de téléphone	Expiry Date - Date d'expiration	
GÉRALD BERNIER	514-863-1441	2000 07-14	

I, the undersigned, being authorized by the Minister of Industry to exercise the power of the Minister pursuant to section 13.(1) of the Weights & Measures Act hereby

a) centry that the standard(s) identified below has (have) been calibrated in accordance with Part III of the Weights and Measures Regulations in relation to Measurement Canada's reference standards which in turn have been cellbrated in relation to Canada's prototype for the kilogram whose calibration is traceable to the International prototype for the kilogram maintained by the Bureau International des Polds et Mesures;

Je, soussigné(e), étant autorisé(e) par le ministre de l'industrie à exercer les pouvoirs du ministre conformément à l'article 13.(1) de la Loi sur les poids et mesurea

a) certifie que l'(les) étalon(s) identifió(s) ci-dossous a (oni) été étalonné(s) certifié que r(pas) etalon(s) identifié(s) ci-dossous a (oni) été étalonné(s) contormément à la Partie III du Réglement sur les poids et mesures par rapport aux étalons de référence de Mesuros Canada, qui à leur four ont été étalonnée per rapport au prototype canadian du kilogramme qui est étalonné et ratraçoble su prototype international du kilogramme concervé au Bureau International des Polds et Mesuros;

b) designate the sald standard(s) as (s) local standard(s),

b) fixe leoit (losdits) étalon(s) à titre d'(un) d'étalon(s) local(aux).

Identification Number Numéro d'Identification	Nominal Vajue Valcur nominale	Identification Number Numére d'Identificatio		Identification Number Numéro d'Identification	Nominal Value Value nominale	identification Number Numéro d'identification	Nominal Value Valeur nominal
TO3	10 kg	17	10 kg	981112	10 kg		
1	10 kg	18	10 kg	981113	10 kg		
2	10 kg	19	10 kg	981114	10 kg		
3	10 kg	20	10 kg	981115	10 kg		
4	10 kg	94001	10 kg	981116	10 kg		
5	10 kg	94003	10 kg	981117	10 kg		
6	10 kg	981101	10 kg	981118	10 kg		
7	10 kg	981102	10 kg	981119	10 kg		
3	10 kg	981103	10 kg	981120	10 kg		
9	10 kg	981104	10 kg				
	10 k g	981105	10 kg				
11	10 kg	981105	10 kg				
.2	10 kg	981107	10 kg				
.3	10 kg	961108	10 kg				
.4	10 kg	981109	10 kg				
5	10 kg	981110	10 kg				
6	10 kg	981111	10 kg				
		District MONTRÉAL	Certificate Number 1201954	- N° du certificat	Position Title - 1 GÉRANT D	Fitre du poste DE DISTRICT INT.	
		Local Standard - Étalon I M31821	ocal	signature U	un		
J376c (2005/03)					<u></u>	Cana	14

3105271...

()

Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt Issued: November 17, 2006

CALIBRATION WEIGHTS

CMC électronique

CMC Électronique Inc. - CMC Electronics Inc.

600, boulevard Dr.-Frederik-Philips, Ville Saint-Laurent (Québec) Canada H4M 2S9 Téléphone : (514) 748-3000 Télécopieur : (514) 748-3149

www.cmcelectronics.ca

912-0005-0383-3 7-01

Client

CERTIFICAT D'ÉTALONNAGE - CALIBRATION CERTIFICATE

Customer	INTERTEK	
Instrument	WEIGHT SET (8)	Type 10 TO 500MG
Fabricant Manufacturer	RICE LAKE WEIGHING	No de série S864
No de stock du client Customer inventory No —	180-195	Cycle d'étalonnage 52 WEEKS
Procédé d'étaionnage Calibration procedure	ASTM E 617-97	Date d'échéance 19 December 2002

La présente sert à certifier que l'on a procédé à l'étalonnage de l'instrument décrit ci-dessus, avec les étalons de la Société, qui sont rattachables aux étalons du Conseil national de recherches Canada; et/ou par le National Institute of Standards and Technology des E.-U.

Ce certificat est la propriété exclusive de CMC Électronique Inc. et ne peut être reproduit en partie.

This is to certify that the instrument listed above was calibrated against Company Standards which are directly traceable to the National Research Council, Canada and/or the National Institute of Standards; and technology U.S.A.

This certificate is the exclusive property of CMC Electronics Inc. and cannot be reproduced partially.

certificat / certificate : #253,1 ISO 9001: 1994		IN specs. CONDITIONS DE MESURE/ Température Temperature <u>19.9</u> °		
Étalons utilisés / Transfer standards	SEE FOLL	OWING SHEET		
COMMENTAIRES / REMARKS			5271	
20 December 2001	adrau	akaya A	lance Da	

Date

Technicien / Technician

Approuvé par / Approved by

ÉTAT DE L'INSTRUMENT/CONDITIONS OF INSTRUMENT

No Certificat/Certificate <u>CX11</u>537

À la	réception / Rece	eived
X Selon les spéc. IN specs.	Hors des spéc. OUT of specs.	Réparation nécessaire
A	u retour / Return	
Selon les IN spe		des spéc. of specs.
ONDITIONS DE ME	SURE/MEASUR	EMENT CONDITIONS
empérature Imperature <u>19.</u>	Humi 9°C Humi	dité dity <u>41</u> %

CMC Electronique Inc. CMC Electronics Inc. 600, boulevard Dr.-Frederik-Philips, '/ille Saint-Laurent (Quebec) Canada H4M 2S9 Tel: (514) 748-3148 Telecopieur: 748-3149 www.cmcelectronics.ca

et

Instrument: Weights

CMC Certificate # CX 11537

Model: 10 to 500 mg

Serial No.: S864

Manufacturer: Rice Lake

Customer: ITS - Inertek

Class: ASTM # 1 #

Procedure: ASTM E617-97

Customer Inv. No.: 180-195

Applied	Actual	
Mass mg 10.00	Mass mg 9.998	Tolerance mg +/-0,010
20.00	19.991	+/-0,010
20.00	19.995	+/-0,010
50.00	50.003	+/-0,010
100.00	99.994	+/-0,010
200.00	199.991	+/-0,010
200.00	199.993	+/-0,010
500.00	5 00 .008	+/-0,010
pration was made in air le following properties:	Temp: Pressure: Humidity:	20.05 Deg C 100430.00 Pascals 40.30 %RH

The density of the weights' material is assigned as follows:

Stainless St	7900.00 Kg/m cu.
Aluminum	2700.00 Kg/m cu.
Tantalum	16600.00 Kg/m cu.
Nichrome	8500.00 Kg/m cu.

Density:

Metrologist: A. Bhattacharya

man

Approved :4

Date : 20 Dec ' 2001

1.189

Kg/m cu.

3105271

CMC électronique

CMC Électronique Inc. 600, boulevard Dr.-Frederik-Philips Ville Saint-Laurent (Québec), Canada H4M 2S9 Téléphone: (514) 748-3148 Téléc: (514) 748-3014

Certificat / Certificate

CX11537

Étalons Utilisés - Transfer Standards

<u>Asset#</u>	Mfg	<u>Model</u>	Description	<u>Cal. due date</u> (dd/mm/yy)
000178	METTLER	AT-106	MASS COMPARATOR	08/May/02
B03643	SEKO UNDER	CLASS "S"	METRIC WEIGHT SET	03/Feb/03

3105271

20 Dec -01 Date

Technicien / Technician

Approuvé par / Approved by

CMC Électronique Inc. - CMC Electronics Inc.

600, boulevard Dr.-Frederik-Philips, Ville Saint-Laurent (Québec) Canada H4M 2S9 Téléphone : (514) 748-3000 Télécopieur : (514) 748-3149

No Certificat/Certificate _CX11536

ÉTAT DE L'INSTRUMENT/CONDITIONS OF INSTRUMENT

À la réception / Received

Hors des spéc.

OUT of specs.

Au retour / Returned

CONDITIONS DE MESURE/MEASUREMENT CONDITIONS

3105271

Hors des spéc.

OUT of specs.

Humidité

.°C Humidity .

Réparation nécessaire

Required repair

42

www.cmcelectronics.ca

912-0005-0383-3 7-01

Client

CERTIFICAT D'ÉTALONNAGE - CALIBRATION CERTIFICATE

ITS-INTERTEK		
WEIGHT SET (4)	Туре 294Р	
OHAUS	No de série N/A	
180-110	Cycle d'étalonnage 52 WEEKS	
ASTM E617-97	Date d'échéance 19 December 2002	
	WEIGHT SET (4) OHAUS 180-110	

La présente sert à certifier que l'on a procédé à l'étalonnage de l'instrument décrit ci-dessus, avec les étalons de la Société, qui sont rattachables aux étalons du Conseil national de recherches Canada; et/ou par le National Institute of Standards and Technology des E.-U.

Ce certificat est la propriété exclusive de CMC Électronique Inc. et ne peut être reproduit en partie.

This is to certify that the instrument listed above was calibrated against Company Standards which are directly traceable to the National Research Council, Canada and/or the National Institute of Standards; and technology U.S.A.

This certificate is the exclusive property of CMC Electronics Inc. and cannot be reproduced partially.

certificat / certificate : #253,1 ISO 9001: 1994

Étalons utilisés / Transfer standards ____

SEE FOLLOWING SHEET

Température

Temperature .

Х

Selon les spéc.

IN specs.

Selon les spéc.

IN specs.

19.9

COMMENTAIRES / REMARKS

20 December 2001 Date

Technicien / Technician

Approuvé par / Approved by

CMC Electronique Inc. CMC Electronics Inc. 600, boulevard Dr.-Frederik-Philips, /ille Saint-Laurent (Quebec) Canada H4M 2S9 Tel: (514) 748-3148 Telecopieur: 748-3149 www.cmcelectronics.ca

CMC Certificate # CX 11536	Instrument: Weights
Model: 294P	Serial No.: N/A

Manufacturer: Ohaus

Customer: ITS - Inertek

Clase NIST " D "

Calibration Data Sheet

Customer Inv. No.: 180-110

Procedure: ASTM E617-97

Applied Mass gram	Actual Mass gram	Tolerance mg	
100.00	100.00380	+/-4	
200.00	200.0065	+/-8	
200.00	200.0068	+/-8	
500.00	500.009	+/-20	

Metrologist: A. Bhattacharya Approved : Approved

Date : 20 Dec ' 2001

3105271

CMC électronique

CMC Électronique Inc. 600, boulevard Dr.-Frederik-Philips Ville Saint-Laurent (Québec), Canada H4M 2S9 Téléphone: (514) 748-3148 Téléc: (514) 748-3014

Certificat / Certificate

CX11536

Étalons Utilisés - Transfer Standards

<u>Asset#</u>	Mfg	Model	Description	<u>Cal. due date</u> (dd/mm/yy)
131707	METTLER TOLEDO	PR10003	COMPARATOR	01/May/02
B03775	SARTORIUS	2404	ANALYTICAL BALANCE	11/Sep/02
B05477	SARTORIUS	2462	BALANCE	14/Oct/02

<u>LoDec'01</u> Date

Technicien / Technician

Approuvé par / Approved by

3105271

		lan a tha ann an tha ann an tha ann an tha		
CMC électr		tronique Inc C		
	l elephone : ((514) /48-3000 Téléco	i, Ville Saint-Laurent (Q opieur : (514) 748-3149	uébec) Canada H4M 2S9
912-0005-0383-3 7-01	www.cmcele			ificate _CX11539
	T D'ÉTALONN	AGE - CAL	IBRATION	I CERTIFIC
Client Customer		ITS-INT	ERTEK /80-	302 /202
				•
Instrument				1KG / 2KG
Fabricant Manufacturer	PRICE LAKE WEIG	GHING	No de série _ Serial No	S862/63
No de stock du client	N/A		Create distant	
Customer inventory No Procédé d'étalonnage			- Calibration cycle -	52 WEEKS
Calibration procedure -	ASTM E61	7-97	Date d'échéance - Due date	20 December 200
Company Standards which Research Council, Canada ar	rument listed above was calibrated ag h are directly traceable to the Nati nd/or the National Institute of Stand	ional	s. OUT of sp Au retour / F	ecs. Required rep
This is to certify that the instr Company Standards which Research Council, Canada ar and technology U.S.A.	rument listed above was calibrated ag h are directly traceable to the Nati nd/or the National Institute of Stand sive property of CMC Electronics Inc.	gainst IN spec: ional lards; . and	s. OUT of sp Au retour / F X Selon les spéc. IN specs. NS DE MESURE/ME/	ecs. Required rep
This is to certify that the instr Company Standards which Research Council, Canada ar and technology U.S.A. This certificate is the exclusi cannot be reproduced partial	rument listed above was calibrated ag h are directly traceable to the Nati nd/or the National Institute of Stand sive property of CMC Electronics Inc: liv.	ional lards; CONDITION Température	s. OUT of sp Au retour / F X Selon les spéc. IN specs. S DE MESURE/ME/ 20.1C	Required rep Returned Hors des spéc. OUT of specs. ASUREMENT CONDIT Humidité
This is to certify that the instr Company Standards which Research Council, Canada ar and technology U.S.A. This certificate is the exclusi cannot be reproduced partial certificat / certificate : #253.1 ISO 9001: 1994	rument listed above was calibrated ag h are directly traceable to the Nati nd/or the National Institute of Stand sive property of CMC Electronics Inc: liv.	ional lards; and CONDITION Température Temperature	s. OUT of sp Au retour / F X Selon les spéc. IN specs. NS DE MESURE/ME/ 20.1C HEET	Required rep Returned Hors des spéc. OUT of specs. ASUREMENT CONDIT Humidité
This is to certify that the instr Company Standards which Research Council, Canada ar and technology U.S.A. This certificate is the exclusi cannot be reproduced partial certificat / certificate : #253.1 ISO 9001: 1994	rument listed above was calibrated ag h are directly traceable to the Nati nd/or the National Institute of Stand sive property of CMC Electronics Inc. liy.	ional lards; and CONDITION Température Temperature	s. OUT of sp Au retour / F X Selon les spéc. IN specs. NS DE MESURE/ME/ 20.1C HEET	ecs. Required rep Returned Hors des spéc. OUT of specs. ASUREMENT CONDIT Humidité Humidity 43

CMC Electronique Inc. CMC Electronics Inc. 600, boulevard Dr.-Frederik-Philips, Ville Saint-Laurent (Quebec) Canada H4M 2S9 Tel: (514) 748-3148 Telecopieur: 748-3149 www.cmcelectronics.ca

			Calibration Data Sheet
CMC Certif	ficate # CX 115	39	Instrument: Weights
Model: 1kg	,,2kg		Serial No.: S862/63
Manufactu	rer: Price Lake	Weighing	Customer Inv. No.: N/A
Customer:	ITS - Intertek	180-300/303	Procedure: ASTM E617-97
	Class: NIST " I	= "	
	Applied	Actual	
	Mass	Mass	Tolerance
	gram	gram	mg
	1000.00	1000.035	+/-200

2000.056

+/-400

Metrologist: A. Bhattacharya lance Approved :

2000.00

Date : 21 Dec ' 2001

3105271.

CMC électronique

CMC Électronique Inc. 600, boulevard Dr.-Frederik-Philips Ville Saint-Laurent (Québec), Canada H4M 2S9 Téléphone: (514) 748-3148 Téléc: (514) 748-3014

Certificat / Certificate

CX11539

Étalons Utilisés - Transfer Standards

<u>Asset#</u>	Mfg	<u>Model</u>	Description	<u>Cal. due date</u> (dd/mm/yy)
131707	METTLER TOLEDO	PR10003	COMPARATOR	01/May/02
G03447	OHAUS	49016-01	CALIBRATION WEIGHT 1 KG	31/Jan/03
G03448	OHAUS	49026-01	CALIBRATION WEIGHT 2000 GR	31/Jan/03

21.Dee Date

Technicien / Technician

Approuvé par / Approved by

3105271

Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

MOISTURE METER

Lachine, le 5 mai 2006

Hygromètre

Marque :DelmhorstModèle :J2000Numéro :180-355

Procédure de calibration

La procédure de calibration décrite ci-dessous est effectuée en utilisant les étalons de référence MCS-1 de "Delmhorst Instrument Company". (pièce # 180-463)

Méthode

Appliquer une des pointes du lecteur sur le point commun de l'étalon (au centre) et l'autre pointe successivement sur l'indicateur 12% et 22%.

Calculer la différence entre les valeurs obtenues et les valeurs théoriques.

La plus grande différence sera considérée comme la précision de l'appareil.

Valeurs Théoriques	Valeurs Obtenues	Différence
12%	12 %	0
22%	22 %	0
Précis	ion :	

3105271.

Services d'essais Intertek AN Ltée Intertek Testing Services NA Ltd.

1829 32° Avenue, Lachine, Québec H8T 3J1 Canada Téléphone: (514) 631-3100 Télécopieur: (514) 631-1133 www.intertek-et/semko.com

LETTER OF CERTIFICATION

December 12, 2005

ITM Instruments, Inc. 20701 Chemin Ste-Marie Ste-Anne-De-Bellevue, QC H9X 6X5 Canada

Gentlemen:

Subject: Moisture Content Standard Model MCS-2 Serial #121205C

This is to certify that the primary calibration - electrical resistance - of the Delmhorst Moisture Meters for Paper has been tested on equipment whose accuracy is certified by:

General Radio Model No. 1644-A S/N 2526. Keithley Model No. 197, S/N 283483.

The calibration of these instruments, certified by Industrial Process Measurement, Inc. with Report No. 28927-01, 28927-02 dated December 07, 2005, is traceable to the NIST.

The MCS-2 (Moisture Content Standard) is an external means to check the Delmhorst Moisture Meters' calibration at two points, 6% and 10% on the meter scale. The resistance values at said points, i.e., 2700 Megohms and 7.5 Megohms, verified with the same equipment as above are within $\pm 10\%$ of their specified values.

The analog Moisture Meters, checked with the "MCS-2" Standard, should read within (\pm) one division on the dial at the point(s) checked; the digital Moisture Meters should read within ± 0.3 M.C. of the indicated values.

Sincerely,

3105271

John Laurenzi VP Manufacturing

JCL:dm

51 INDIAN LANE EAST, TOWACO, NEW JERSEY 07082 PHONE: 973-334-2557. FAX: 973-334-2657 www.delmhorst.com Intertek ETL SEMKO

Report No. 3105271 Foyers Valcourt

Ó

, , Issued: November 17, 2006

CALIBRATOR T/C

Uirich Métrologie inc. Uirich Metrology Inc. 9912, Côte-de-Liesse Montréal (Québec) H8T 1A1

Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca www.ulrich.ca

CALIBRATION CERTIFICATE

Certificate no.:	43520	Calibration date:	Averal de Dese
Instrument ID:	180-223		August 11, 2006
Type: Size:	CALIBRATOR, OMEGA CL23A	Certificate issued: Interval:	August 11, 2006 12 Months
- -	TC K/J/T	Due date:	August 11, 2007
Manufacturer:	OMEGA	Procedure:	MET/CAL
Model no.:	CL23A	Environment:	CLAS Type 2 Laboratory
Serial no.:	T-192959	Temperature:	23 ± 2°C
		Humidity:	35 - 55% RH
Property of:	SERVICES D ESSAIS INTERTEK AN LTEE	Metrologist:	MAR
	1829, 32E AVENUE		An - An .
	LACHINE, QC H8T 3J1	Approved by:	MUCCIO Mercuri Nuccio Mercuri, Lab Manager

This calibration certificate is issued in accordance with the applicable requirements of ISO/IEC 17025 and QSM-06. Measurement results provided are traceable to either the National Research Council Canada (NRC), the National Institute of Standards and Technology (NIST), a national laboratory of another country signatory to the CIPM Mutual Recognition Arrangement (MRA), or a calibration laboratory accredited by an accrediting body with which

CALIBRATION STANDARDS

See notes below.

MEASUREMENT UNCERTAINTY

The above listed instrument meets or exceeds all specifications as stated in the reference procedure, unless noted otherwise. For measurement results associated with the conformance to a tolerance, the uncertainty in the measurement system did not exceed 25% (4:1 test uncertainty ratio) of the acceptable tolerance for each characteristic calibrated, unless otherwise noted in the report.

MEASUREMENT RESULTS

See next page for measurement results.

Notes:

EQUIPMENT RECEIVED OUT OF SPECIFICATIONS:

Calibrator mode at -40°F (type K) out of specifications (reading at -39.21°F instead of maximum -39.5°F). Calibrator mode at 32°F (type K) out of specifications (reading at 32.59°F instead of maximum 32.5°F). Calibrator mode at -40°F (type T) out of specifications (reading at -39.37°F instead of maximum -39.5°F).

It was adjusted.

3105271

e • ,

ſ

íC.

Ulrich Métrologie inc. • Ulrich Metrology Inc.

9912, Côte-de-Liesse Lachine, QC H8T1A1 www.ulrich.ca Tél. (514) 631-6653 Fax (514) 631-6122 info@ulrich.ca

CALIBRATION DATA

Certificate No. 43520

Instrument ID:	180-223
Туре:	CALIBRATOR
Serial no.:	T-192959
Procedure:	Omega CL23A: 5520A-M

Result: PASS Condition: FOUND-LEFT

8608002					Model no.	Cal. Date	Due Date
	CALIBRATOR		FLUKE		5520A	2004/12/31	2006/12/31
MEASUREMENT R	ESULTS (Per MET/CAL						
PARAMETER		TRUE VALUE	TEST Result	ACCEPT/ Low	NCE LIMITS HIGH	PASS/ Fail	TUR
DISPLAY CALIBRA	ATION						
Did all segment Result of Opera	s of the display i tor Evaluation	lluminate?	,			PASS	
THERMOMETER CAL	IBRATION						•
K Type Thermoco	uple						
-200.0degF			-200.4	-201.0	-199.0	PASS	1.7
-60.0degF			-60.2	-61.0	-59.0	PASS	3.1
-40.0degF			-40.3	-40.5	-39.5	PASS	1.5
32.0degF			31.7	31.5	32.5	PASS	1.7
1240.0degF			1239.6	1239.5	1240.5	PASS	1.1
1260.0degF			1259.6	1259.5	1260.5	PASS	1.1
2500.0degF			2499.2	2499.0	2501.0	PASS	1.4
Type Thermocou	ple						
200.0degF			-199.3	-201.0	-199.0	PASS	2.1
60.0degF			-59.4	-61.0	-59.0	PASS	3.5
40.0degF			-39.5	-40.5	-39.5	PASS	1.7
32.0degF			32.3	31.5	32.5	PASS	2.0
L240.0degF			1240.1	1239.5	1240.5	PASS	L.6
libration Data for Certificate No	5. 43520 3	1052	71	1			age 1 of 3

••••

ĺ

 9912, Côte-de-Liesse
 Tél. (514) 631-6653

 Lachine, QC H8T1A1
 Fax (514) 631-6122

 www.ulrich.ca
 info@ulrich.ca

	TRUE TEST		ACCEPT	ANCE LIMITS	PASS/	
Parameter	VALUE	RESULT	LOW	HIGH	FAIL	
1260.0degF		1260.1	1259.5	1260.5	PASS	1.6
1400.0degF		1400.2	139 <mark>9</mark> .4	1400.6	PASS	1.8
T Type Thermocouple						
-200.0degF		-199.5	-201.0	-199.0	PASS	2.3
-60.0degF		-59.3	-61.0	-59.0	PASS	2.3
-40.0degF	,	-39.6	-40.5	-39.5	PASS	1.2
32.0degF		32.3	31.5	32.5	PASS	1.7
750.0degF		750.0	749.5	750.5	PASS	2.0
CALIBRATOR CALIBRATION						
K Type Thermocouple						•
-200.0degF		-19 9. 9	-201.0	-199.0	PASS	1.7
-60.0degF		-60.1	-61.0	-59.0	PASS	3.1
-40.0degF		-39,9	-40.5	-39.5	PASS	1.5
32.0degF		32.1	31.5	32.5	PASS	1.7
1240.0degF		1240.2	1239.5	1240.5	PASS	1.1
1260.0degF		1260.2	1259.5	1260.5	PASS	1.1
2500.0degF		2501.0	2499.0	2501.0	PASS	1.4
Type Thermocouple						
200.0degF		-199.6	-201.0	-199.0	PASS	2.1
60.0degF		-59.8	-61.0	-59.0	PASS	3.5
40.0degF		-39.7	-40.5	-39.5	PASS	1.7
32.0degF		32.1	31.5	32.5	PASS	2.0
1240.0degF		1240.5	1239.5	1240.5	PASS	1.6
1260.0degF		1260.4	1259.5	1260.5	PASS	1.6
400.0degF		1400.1	1399.4	1400.6	PASS	1.8
Type Thermocouple						
00.0degF		-199.1	-201.0	-199.0	PASS	2.3
0.0degF		-59.3	-61.0	-59.0	PASS	2.3

Calibration Data for Certificate No. 43520

3105271...

Page 2 of 3

Rtrsit01

Uirich Métrologie inc. - Uirich Metrology Inc.

 9912, Côte-de-Liesse
 Tél. (514) 631-6653

 Lachine, QC H8T1A1
 Fax (514) 631-6122

 WWW.ulrich.ca
 info@ulrich.ca

1373479700	TRUE	TEST	ACCEPTANCE	ACCEPTANCE LIMITS		
PARAMETER -40.0degf	VALUE	RESULT -39.9	LOW -40.5	HIGH -39.5	FAIL PASS	TUR 1.2
32.0degF		31.9	31.5	32.5	PASS	1.7
750.0degF		749.9	749.5	750.5	PASS	2.0

End of Test Data

3105271.

Report No. 3105271 Foyers Valcourt

Issued: November 17, 2006

TEMPERATURE RECORDER

Date: 2006-08-01

^н. не

in leftini Technicien: LENEC LAFONTAING Reviewer:

d'équipement: /80-055 AVEC FLUKE 180-004

Vérifié avec l'appareil #: 180-223*1

T/C Calibrateur	Δerreur	T/C lecteur	ΔΤ/C
0.0	± 0.1	0.1-0.0-0.1	0.07
33.0	1.01	33.2.33.2-33.2	0.2
66.0	20.	66.4 - 66.3 - 66.3	
100.0	\$0.1	99.0 - 99.0 - 99.0	0.33
150.0	±0.	149.1-149.1-149.1	1.0
250.0	20.1	2494-2494-249.4	0.9
400.0	=0.1	399.9 - 399.9-400.0	0.6
s so. o	20.1	550.1 - 550.1-550.1	0.1
750.0	±0.1	750.4-750.4-750.4	<u> </u>
900.0	20.1	900.8.900.8-900.7	0.7
		Précision de l'appareil:	± 2,0 °E

^{*1}: Il est possible, si l'impédance de l'appareil de mesure est voisine de celle du calibrateur que la température lue par l'appareil à étalonner ne soit pas proche de celle injectée par le calibrateur. Dans ce cas le calibrateur ne peut être utilisé de la façon usuelle et doit être utilisé comme appareil de mesure qui lira une température créée par une source extérieure et lue par les deux appareils simultanément en des endroits rapprochés.

3105271

Date: 2006-08-01

Technicien: <u>CILEC CAFONTAINE</u>

d'équipement: 180-056 AUEC FLUKE 180-004 Reviewer:

Vérifié avec l'appareil #: 180-223^{*1}

T/C Calibrateur	∆erreur	T/C lecteur	ΔΤ/C	
0.0	<u>±0.1</u>	0.0 - 0.1 - 0.1	0.07	
33.0	±0.1	33. / - 33.2 - 33./	0.13	
66.0	±0.1	66.3 - 66.3 - 66.3	0.3	
(00.0	30.1	99.0 - 99.0 - 99.0	10	
150.0	30.1	149.1-149.1-149.1	0.9	
250.0	30,1	249.3-249.4-249.4	0.63	
400.0	50.1	399.9 - 399.9 - 399.9	0.1	
550.0	±0.1	SSO. 1 · SSO. 1 · SSO. 1	0.1	
750.0	20.1	750.5 - 750.9-750.5	0.47	
900. D	30.1	900.8 - 900.7 - 900.8	0.77	
		Précision de l'appareil:	22.0%=	

^{*1}: Il est possible, si l'impédance de l'appareil de mesure est voisine de celle du calibrateur que la température lue par l'appareil à étalonner ne soit pas proche de celle injectée par le calibrateur. Dans ce cas le calibrateur ne peut être utilisé de la façon usuelle et doit être utilisé comme appareil de mesure qui lira une température créée par une source extérieure et lue par les deux appareils simultanément en des endroits rapprochés.

3105271

192bf0001 192-bf-0510

Date: 2006-08-01

Eins Labortume Technicien: <u>ENEC LAFONTAINE</u> n

d'équipement: /80-058 AVEC FCUKE-180-004 Reviewer: _

Vérifié avec l'appareil #: 180-223*1

T/C Calibrateur	Aerreur	T/C lecteur	ΔΤ/C
0.0	±0.1	0.1-0.2-0.2	0.17
33.0	10·1	323 - 323 - 323	0.3
66.0	30.1	66.4 - 66.4 - 66.4	0.4
100.0	±0.1	99.0 - 99.1 - 99.1	0.93
150.0	20.1	149.1 - 149.1 - 149.1	0.9
250.0	50.1	249.5 - 249.4 - 249.5	0.53
400.0	50.1	399.9 - 399.9 - 399.9	0.1
SS0.0	to.[550,1 - 550,1 - 550,1	0.1
750.0	30.	750.5 · 750.5 · 750.5	0.5
900.0	±0.	900.8 - 900.5 - 900.9	0.83
		Précision de l'appareil:	± 1.86 °1-

^{*1}: Il est possible, si l'impédance de l'appareil de mesure est voisine de celle du calibrateur que la température lue par l'appareil à étalonner ne soit pas proche de celle injectée par le calibrateur. Dans ce cas le calibrateur ne peut être utilisé de la façon usuelle et doit être utilisé comme appareil de mesure qui lira une température créée par une source extérieure et lue par les deux appareils simultanément en des endroits rapprochés.

3105271..

192bf0001 192-bf-0510

Date: 2006-08-01

Gebetan Technicien: <u>CILEC CAFONTAENE</u>

cn

3105271.

1925f0001 192-5f-0510

d'équipement: 180-059 AUGT FLUKE 180-004 Reviewer:

Vérifié avec l'appareil #: 180-223*1

T/C Calibrateur	Δerreur	T/C lecteur	ΔΤ/C
0.0	<u>±0.1</u>	0.0 - 0.0 - 0.0	0.0
33. D	±0.1	321-322-33.	0./3
66.0	IO.1	66.3 - 66.3 - 66.3	0.3
100.0	. to. [99.0 - 99.0 - 99.0	D.Q 1.0 EC
(50.0	30.1	149.1-149.1-149.0	0.07
250.0	30.1	2493-2493-249.3	0.7
400.0	<u></u>	3998 - 399.9 - 399.9	0.17
550.0	30.1	550,1 - 550.0- 550.0	0.03
750.0	<u>±0.1</u>	750.4-750.4-750.4	0.4
900.0	30.1	900.8-901.8-900.7	0.77
		Précision de l'appareil:	: 2.0%

^{*1}: Il est possible, si l'impédance de l'appareil de mesure est voisine de celle du calibrateur que la température lue par l'appareil à étalonner ne soit pas proche de celle injectée par le calibrateur. Dans ce cas le calibrateur ne peut être utilisé de la façon usuelle et doit être utilisé comme appareil de mesure qui lira une température créée par une source extérieure et lue par les deux appareils simultanément en des endroits rapprochés.

Intertek ETL SEMKO

Issued: November 17, 2006

APPENDIX E Drawings and Specifications

Section E-1: Fireplace and firebox dimensions Section E-2: Fireplace fabrication drawings with components

Issued: November 17, 2006

APPENDIX G Unit Pre-Burn Documentation

Intertek ETL SEMKO

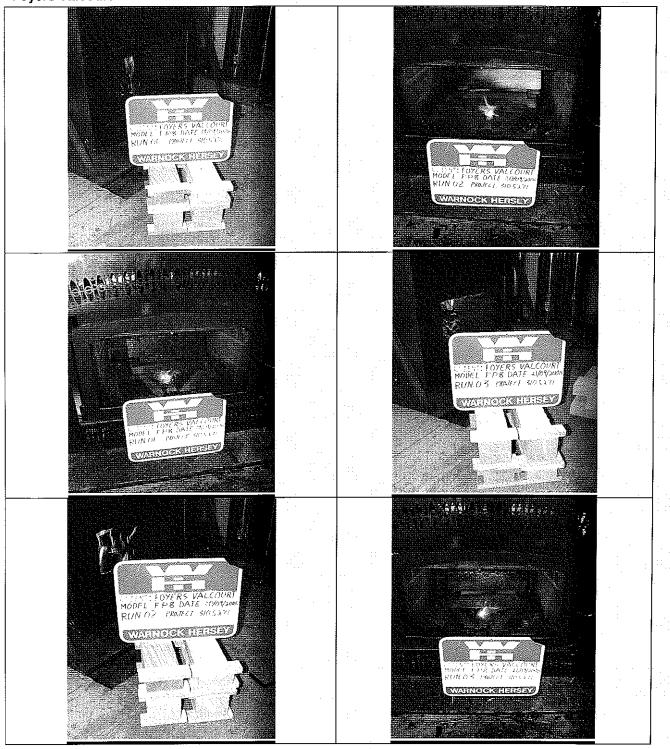
		Intertek ETL SE	MKO
	Date: 15/09/2006		Page of
Ĵ	Manufacturer: FOYERS	VALCOURT	Model: FP8
	Project #: <u>3/0 S27/</u>	Run:	Tech: ELC CAFON AT UC Reviewer:

Break-in Data log

Type of fuel used:

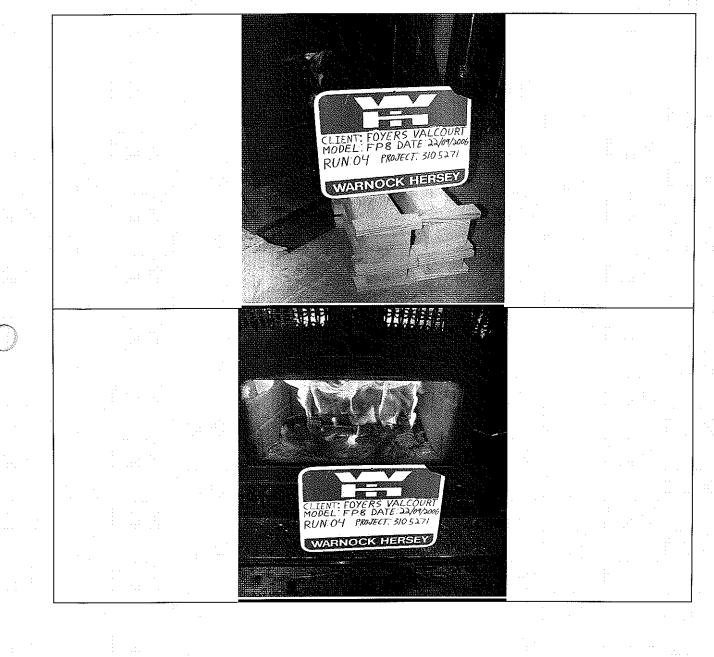
Moisture content corrected to 2-pin and for the type of fuel used.

		Catalytic		Non-ca	talytic <u>X</u>		
					Comb. cham.	· ·	. *
	Date	Time	Flue Temp	fuel scale reading	or Catalyst temp	lbs. Fuel weight added	Moisture content
	15/09/2006	8:45	528	11,35		10,40	19,6
	15/09/2006	9:45	5/2	4,60		0	
	15/09/2006	10:45	428	13,65	-	11,45	20,2
	15/09/2006		506	6,4		0	
(5/09/2006	12:45	455	15,1		8,45	19,9
*	15/09/2006	13:45	390	1,05		0	21,2
	15/09/2006 15/09/2006	19.95 15:45	422	790		0,3	
	15/09/2006		401	$\frac{1}{2}/5$		0	
	16/09/2006		439	12,30		11,65	20,6
	16/09/2006	8:45	388	6,25		O'	
	16/09/2006	9:45	333	2,05		0	
		· · · · · · · · · · · · · · · · · · ·					
	····						


Report No. 3105271 Foyers Valcourt

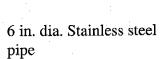
Issued: November 17, 2006

APPENDIX H Photographs



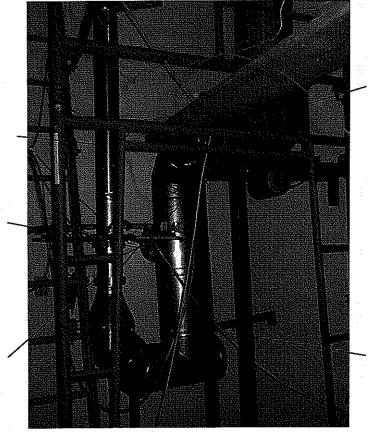
Issued: November 17, 2006

Issued: November 17, 2006



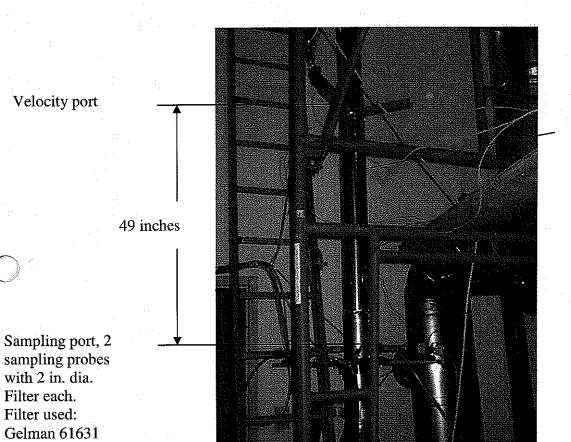
Intertek ETL SEMKO

Issued: November 17, 2006


APPENDIX I Drawings of stack gas sampling train and dilution tunnel system

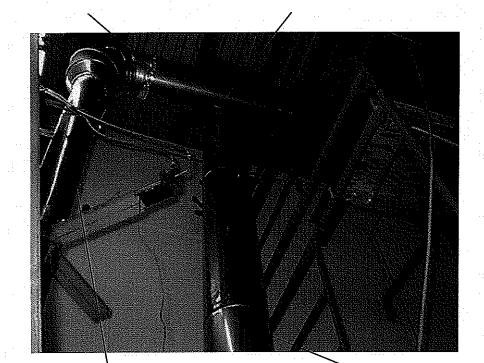
Report No. 3105271

Air intake with damper o adjust flow rate


16 in. between sampling probe and lower elbow

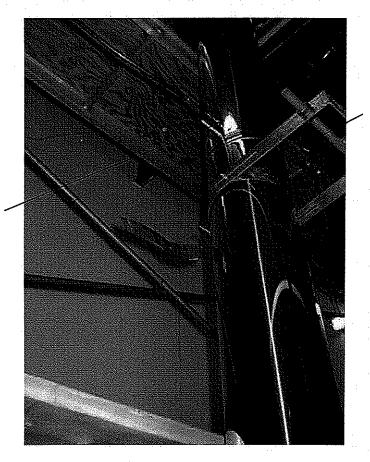
Exhaust blower

12 in. dia. Stainless steel pipe


Report No. 3105271

10 feet long dilution tunnel

12 in. dia. Stainless steel pipe


Mixing baffle (2) location; 1 foot between baffles

4 feet long between velocity port and upper elbow 12 in. dia. Stainless steel pipe

18 x 18 in. Galvanized steel smoke captures hood, located 10 feet away from dilution tunnel

Exhaust system support bracket

Temperature and gas analyser sampling ports cated 9 feet above platform

Draft sampling port located 6 in. from flue outlet